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We prove a first stability result of self-similar blow-up for the modified KdV equation on the line. More precisely, given a self-similar solution and a sufficiently small regular profile, there is a unique global solution which behaves at t " 0 as the sum of the self-similar solution and the smooth perturbation.

B t u `Bxxx u " ˘Bx pu 3 q, pt, xq P R 2 , upt, xq P R.

Throughout this work, the specific sign of the nonlinearity is irrelevant. To simplify the exposition, we treat the focusing case (with the + sign), even though the results presented also hold for the defocusing one.

This equation admits a scaling invariance: if u is a solution, so is u λ px, tq " λupλ 3 t, λxq, for any λ ą 0. As a consequence, one may look for self-similar solutions of (mKdV), which are invariant under scalings. A simple computation shows that these solutions are of the form

Spt, xq " 1 t 1{3 V ´x t 1{3 ¯, V 2 ´y 3 V " V 3 `α, α P R.
The existence of profiles V can be studied using either ODE techniques ( [START_REF] Deift | Asymptotics for the Painlevé II equation[END_REF][START_REF] Dunst | On global solutions of defocusing mKdV equation with specific initial data of critical regularity[END_REF][START_REF] Hastings | A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation[END_REF][START_REF] Perelman | Self-similar planar curves related to modified Korteweg-de Vries equation[END_REF]) or stationary phase arguments ( [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF]). Very precise asymptotics were obtained in both physical and frequency space. Generally speaking, self-similar profiles have the same behavior as the Airy function (which solves the linear equation), up to some logarithmic corrections. In physical space, the profiles have weak decay and strong oscillations as x Ñ ´8. On Fourier side, a jump discontinuity at the zero frequency appears for α ‰ 0 and no decay is available for large frequencies (see Proposition 3 for a precise description).

As it turns out, self-similar solutions determine the behavior of small solutions for large times. This was first seen by Deift and Zhou in [START_REF] Deift | A steepest descent method for oscillatory riemann-hilbert problems. asymptotics for the mkdv equation[END_REF] using inverse scattering techniques, under strong smoothness and decay assumptions. In [START_REF] Hayashi | Large time behavior of solutions for the modified Korteweg-de Vries equation[END_REF][START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF], the phenomena was proven as a consequence of modified scattering. This was later revisited in [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF] and [START_REF] Harrop-Griffiths | Long time behavior of solutions to the mKdV[END_REF]. On the other hand, self-similarity induces a natural blow-up behavior at t " 0. This singularity is directly connected to some geometric flows. Indeed, (mKdV) appears in the modeling of the evolution of the boundary of a vortex patch on the plane subject to Euler's equations ( [START_REF] Goldstein | Solitons, Eulers equations, and vortex patch dynamics[END_REF]) and in the study of vortex filaments in R 3 . In these models, self-similar blow-up is connected to the formation of logarithmic spirals (if α " 0, one observes a sharp corner).

For geometric flows modeled by the cubic nonlinear Schrödinger equation, we advise the reader to look at the series of papers [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF][START_REF] Banica | Stability of the self-similar dynamics of a vortex filament[END_REF][START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] and references therein. Both the cubic (NLS) and the (mKdV) equations are L 1 -critical. This feature translates a critical polynomial behavior of the nonlinearity at t " 0. In the (NLS) case, using the pseudo-conformal transformation, one can reduce the self-similar blowup analysis at t " 0 to a problem at t " `8. Furthermore, self-similar solutions are transformed to constants, which is of course a nice simplification. However, for the (mKdV) equation, no such transformation exists. One must handle the critical behavior and truly understand what happens at the blow-up time.

In a previous work with Luis Vega [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF], we built a critical space on which self-similar solutions naturally exist and proved local and global well-posedness for strictly positive times. This is actually a delicate issue: on one hand, the rough properties of self-similar profiles imply very mild conditions on the functional space. On the other hand, the loss of derivative in the nonlinear term is very difficult to handle at low regularity (in the context of H s spaces, one cannot go lower than s " 1{4). These ingredients had to be carefully balanced in order to achieve a suitable framework on which we could analyze self-similar solutions for large times. This framework will once again play a major role in the analysis at the blow-up time, as we will see later on.

The goal of this work is to give a first step in understanding the (mKdV) flow near self-similar solutions at time t " 0. There are two intertwined stability problems which one may consider. The first is to start with a perturbed self-similar solution at time t " 1 and to study the behavior as t Ñ 0. The second, on which we focus here, is to construct a solution u of (mKdV), defined on a small time interval around t " 0, and such that, given a perturbation z, uptq ´Sptq Ñ z as t Ñ 0 in some appropriate norm,

We shall prove that it is possible to construct a such a solution u, for a large (open) class of perturbations z, thus showing a first result on the stability of self-similar blow-up for (mKdV). This is in the same spirit as [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF] for the L 2 -critical (NLS), and [START_REF] Gutierrez | On the stability of self-similar solutions of 1D cubic Schrödinger equations[END_REF] for the cubic 1D (NLS). However, (mKdV) self-similar solutions are localized neither in physical nor Fourier space, as opposed to solitons (as in [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF]), or constant solutions (as in [START_REF] Gutierrez | On the stability of self-similar solutions of 1D cubic Schrödinger equations[END_REF]). Even further, the L 1 -criticality of the equation leads to modified scattering, involving logarithmic spirals (see [START_REF] Perelman | Self-similar planar curves related to modified Korteweg-de Vries equation[END_REF]). These critical features in both space and time create substantial obstacles in the analysis of the linearized problem around self-similar solutions. To our knowledge, our result is the first to directly construct solutions under such a rough background.

1.2. Definitions and statement of the main result. Given a function v : I Ă R Ñ S 1 pRq, we define the profile ṽpt, ξq :" e itξ 3 vpt, ξq (we denote by ˆor F the Fourier transform in the space variable). Observe that, if v is a solution of the Airy equation, then ṽ is constant in time. On the other hand, a self-similar solution S will satisfy (with a slight abuse of notation) Spt, ξq " Spt 1{3 ξq.

By canceling the linear evolution, the oscillatory behavior in frequency is completely concentrated on the nonlinear term: the equation (mKdV) writes for the profile ũ B t ũ " N rũsptq, where

N rũsptq :" iξ 4π 2 ij ξ1`ξ2`ξ3"ξ e itpξ 3 ´ξ3 1 ´ξ3 2 ´ξ3 3 q ũpt, ξ 1 qũpt, ξ 2 qũpt, ξ 3 qdξ 1 dξ 2 .
One may use stationary phase arguments (pointwise in time) to extract the main contributions of the nonlinear term. To bound properly the remainder in such an expansion, we define

}u} E ptq :" }ũptq} L 8 `t´1{6 }B ξ ũptq} L 2 pRzt0uq
and, for any interval I Ă p0, `8q,

E pIq " ␣ u : I Ñ S 1 pRq : ũ P C pI, L 8 pRqq, B ξ ũ P L 8 pI, L 2 pRzt0uqq ( endowed with the norm }u} E pIq " sup tPI }uptq} E ptq .
Remark 1. By L 2 pRzt0uq, we mean the set of distributions whose restriction to Rzt0u identifies with an L 2 function. From Sobolev's embedding, a function in E is 1{2-Hölder continuous in frequency, with the possible exception of ξ " 0, where a jump discontinuity may occur. One needs to allow this behavior in order to include self-similar solutions with α ‰ 0. As one can see in the following proofs, this jump will not introduce any extra difficulty (observe that the zero frequency is preserved by the (mKdV) flow).

As it was proven in [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF], the space E is sufficient to perform the stationary phase analysis (see also [START_REF] Hayashi | Large time behavior of solutions for the modified Korteweg-de Vries equation[END_REF] for a similar development using a slightly stronger norm):

Lemma 2 (The profile equation, [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF]Lemma 7]). Let u P E pIq. For all t P I and ξ ą 0, N rũspt, ξq " πξ 3 xξ 3 ty ˆi|ũpt, ξq| 2 ũpt, ξq ´1 ?

3 e ´8itξ 3 {9 ũ3 ˆt, ξ 3 ˙˙`Rruspt, ξq (1.1) with |Rruspt, ξq| À ξ 3 }uptq} 3 E ptq pξ 3 tq 5{6 xξ 3 ty 1{4 . (1.2)
Consequently, if u is a distributional solution of (mKdV) on I,

(1.3) @t P I, }B t ũptq} L 8 À 1 t }uptq} 3 E ptq .
One of the main observations in [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF] is that the E norm is enough to bound both the nonlinear term and self-similar solutions:

Proposition 3 (Existence of self-similar solutions, [5, Theorem 1]). Given c, α P R sufficiently small, there exists a unique self-similar solution S P E pp0, `8qq with }Sptq} E ptq " }Sp1q} E p1q À c 2 `α2 for all t ą 0, and

Sptq á cδ x"0 `α p.v. ˆ1 x ˙in D 1 pRq as t Ñ 0.
Furthermore, there exist A, B P C such that

Spt 1{3 ξq " # Ae ia ln |t 1{3 ξ| `B e ia ln |tξ 3 |´i 8 9 tξ 3 tξ 3 , |tξ 3 | " 1, c `3iα 2π sgnptξ 3 q, |tξ 3 | ! 1.
Remark 4. The norm of self-similar solutions is preserved due to the norm } ¨}E ptq being scale-invariant.

Our goal in this paper is to construct solutions u to (mKdV) which blow up at time 0 as the sum of such a self-similar solution S and a prescribed (more regular) perturbation.

Let us outline the scheme to derive a precise statement and its proof. Using estimate (1.3), one can hope to bootstrap the L 8 norm of ũ. In order to control the E norm, we need another key ingredient: the scaling operator Iu, formally defined as 1 , or equivalently in Fourier variable:

Iu :" xu `3t ż x ´8 B t udx
(1.4) x Iupt, ξq :" iB ξ û ´3it ξ B t û.
As it can be seen in Fourier variables, the L 2 norm of Iu is intimately related to that of B ξ ũ. A direct computation yields pB t `B3

x qIu " 3u 2 pIuq x and thus

(1.5) d dt }Iuptq} 2 L 2 À ˇˇˇż u 2 pIuq x Iudx ˇˇˇÀ ˇˇˇż uu x pIuq 2 dx ˇˇˇÀ }u} 2 E ptq t }Iuptq} 2 L 2 .
(recall [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF]Lemma 6]). As it is clear from (1.3) and (1.5), the problem is marginally singular at t " 0. This should not come as a surprise, due to the L 1 -critical nature of the (mKdV) equation. For positive times away from t " 0, these estimates are sufficient to construct a solution over the space E (see [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF]). To explain how to improve the behavior at t " 0, let us look closely to (1.1) and forget the R term.

If, for some reason, one had |ũpt, ξq| À xξy ´ϵ for some ϵ ą 0, then

|B t ũpt, ξq| À ξ 3´ϵ xξ 3 ty sup t ␣ }ũptq} 2 L 8 }x¨y ϵ ũptq} L 8 ( À 1 t 1´ϵ{3 ,
which can now be integrated in p0, tq to produce an L 8 bound on ũ. There are two problems with this approach: first, as one may expect, self-similar solutions do not enjoy any extra decay in ξ; second, an a priori bound for the extra decay would have to go through the profile equation, where finds once again the 1{t behavior at t " 0. On the other hand, if one had |ũpt, ξq| À t ϵ , then

|B t ũpt, ξq| À ξ 3 t ϵ xξ 3 ty sup t ␣ t ´ϵ}ũptq} 3 L 8 ( À 1 t 1´ϵ ,
and the integration becomes possible on p0, tq. Unfortunately, this assumption is even more problematic, since it implies that ũp0, ξq " 0. It becomes clear that an extra decay in either frequency or time would suffice to derive an L 8 ξ bound. The key idea is to decompose u as ũpt, ξq " Spt, ξq `zpt, ξq `wpt, ξq, (1.6) where z has extra smoothness and we aim at bootstrapping information on }w} E . The self-similar solution, despite its singular behavior, is an exact solution with precise asymptotics in both space and frequency. The regular term z can be chosen sufficiently smooth in space and frequency: in fact, as no polynomial bound in time is necessary, we will assume z constant in time (that is, it corresponds to the linear evolution of the perturbation). The remainder term w will satisfy a bound }wptq} E ptq À t ϵ and it will measure the interaction between the self-similar solution and the localized linear solution. The equation for the remainder w is (1.7)

B t w `Bxxx w " B x pu 3 ´S3 q, wp0q " 0.

Observe that, since the evolution of the regular part z is linear, no a priori decay and smoothness estimates are necessary. The problem is completely reduced to the existence of w over E with a polynomial bound in time. From the above discussion, the L 8 bound on w should hold and we are left with the a priori bound on Iw, for which the equation is

pB t `B3 x qIw " 3 `u2 pIuq x ´S2 pISq x ˘.
It is at this point that another decisive feature is revealed: due to the self-similar nature of S, pISq x " 0. Thus

pB t `B3 x qIw " 3u 2 pIe ´tB 3 x zq x `3u 2 pIwq x A direct integration yields d dt }Iw} 2 L 2 À ˇˇˇż u 2 pIe ´tB 3 x zq x Iwdx ˇˇˇ`ˇˇˇż u 2 pIwq x Iwdx ˇˇÀ }u} 2 E ptq t 2{3 }pIe ´tB 3 x zq x } L 2 }Iw} L 2 `}u} 2 E ptq t }Iw} 2 L 2 .
Since F pIe ´tB 3 x zq x " B ξ ẑ, the factor }pIe ´tB 3 x zq x } L 2 causes no further singular behavior at t " 0. As Iw " 0 at t " 0, this inequality can now be integrated to produce a polynomial bound on Iw. Here we see the importance of I: it provides essential a priori bounds while completely canceling out the self-similar background. The decomposition (1.6) of u is quite natural. If S " 0, then w is just the Duhamel integral term, for which one may indeed expect a polynomial bound by applying the H s local well-posedness theory. The point of this work is that self-similar solutions do not disrupt the classical theory, even though they do not belong to the usual spaces involved in the Cauchy problem. A solution with a self-similar background can still be obtained as a perturbation of the linear flow.

Remark 5. Speaking loosely, self-similar solutions appear from the underlying structure of the equation and not from any specific balance between nonlinearity and dispersion (as it is for solitons). Their blow-up behavior is caused by the equation itself. Being unavoidable, it is should also be stable. This is in strong contrast with soliton-related blow-up, where the singularity comes from the precise structure of the solution. There, small perturbations may obviously lead to strong unstable behavior.

We now state the main result of this paper. Define the space of admissible perturbations

Z :" ␣ z P S 1 pRq : ~z~:" }z} L 1 `}xξy 2 ẑ} L 1 `}xξyB ξ ẑ} L 1 ă `8( .
Here and below, xxy :" a 1 `|x| 2 stands for the japanese bracket.

Theorem 6 (Stability of self-similar solutions at blow-up time). There exists δ ą 0 such that, given z P Z and a self-similar solution S P E pp0, `8qq with

(1.8) ~z~`}S} E pp0,`8qq ă δ,
there exists a unique w P E pp0, `8qq X L 8 pR `, L 2 pRqq distributional solution to (1.7) satisfying (1.9) @t ą 0, }wptq} E ptq ď δt 1{9 , }wptq} L 2 pRq ď δ 2 t 1{18 .

In particular, uptq " S `e´tB 3 x z `w is a distributional solution of (mKdV) on R `ˆR satisfying # uptq ´Sptq Ñ z in L 2 pRq ûptq ´Ŝptq Ñ ẑ in L 8 pRq as t Ñ 0 `.

Remark 7. From time reversibility, one may solve the problem for negative times and glue the solutions together. Thus one may actually go beyond the blow-up time.

After some careful considerations, this is not that surprising: over E , the self-similar solution does not present any sort of blow-up behavior at t " 0.

In order to prove this result, we first need to understand how the various components of u interact in the nonlinear term. This is done in Section 2. Afterwards, in Section 3, we construct an approximation sequence by cutting off high frequencies (Proposition 13) and prove the necessary a priori bounds in E through a careful bootstrap argument (Proposition 15). Finally, in Section 4, the limiting procedure yields the claimed solution on a small time interval, which can then be extended for all positive times using the global results of [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF]. The uniqueness statement follows from a direct energy argument (Proposition 16).
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Linear and multilinear estimates

In the following, the variables ξ, ξ 1 , ξ 2 and ξ 3 are linked via the relation

ξ " ξ 1 `ξ2 `ξ3 .
We will perform a stationary phase analysis, with the phase

Φ " Φpξ, ξ 1 , ξ 2 q :" ξ 3 ´pξ 3 1 `ξ3 2 `ξ3
3 q " 3pξ ´ξ1 qpξ ´ξ2 qpξ ´ξ3 q. Consider the trilinear version of N defined by

N r f , g, hspt, ξq :" iξ 4π 2 ij ξ1`ξ2`ξ3"ξ e itΦ f pt, ξ 1 qgpt, ξ 2 q hpt, ξ 3 qdξ 1 dξ 2 .
We state a trilinear version of Lemma 2.

Lemma 8 (L 8 bounds in E ). For any t ą 0 and f, g, h P E ptq,

(2.1) |N r f , g, hspt, ξq| À 1 t }f } E ptq }g} E ptq }h} E ptq .
Proof. This can be derived from polarizing (1.1)-(1.2). We refer to [6, Lemma 7]: actually its proof (in the appendix there) is done for the trilinear version N r f , g, hs, and gives in particular (2.1). □

The 1{t decay in (2.1) cannot be improved, in view of the leading terms in (1.1). However, if one of the functions involved is better behaved, namely belongs to Z , we can gain some decay in time. This our next result.

Lemma 9 (L 8 bounds on terms with z). For any 0 ă t ď 1, z P Z and v P E ptq, one has

}N rz, ṽ, ṽsptq} L 8 ξ À 1 t 8{9 ~z~}v} 2 E ptq , (2.2) }N rz, z, ṽsptq} L 8 ξ À 1 t 2{3 ~z~2}v} E ptq , (2.3) }N rz, z, zsptq} L 8 ξ À ~z~3. (2.4) Proof. Estimate (2.4) is direct : we simply bound by |N rz, z, zspt, ξq| ď ˆżξ1`ξ2`ξ3"ξ p|ξ 1 | `|ξ 2 | `|ξ 3 |q|ẑpξ 1 qẑpξ 2 qẑpξ 3 q|dξ 1 dξ 2 À }ẑ} 2 L 1 }ξ ẑ} L 8 À ~z~3.
We now prove (2.2), (2.3) simultaneously. For each fixed t P p0, 1s and ξ P R, we split R 2 into several domains A , B, etc.. For each of them, we consider various cases depending on the relative size of the frequencies involved with respect to t (of course, the implicit constants do not depend on pt, ξq).

To shorten notation, we denote I 1 " N rz, ṽ, ṽspt, ξq and I 2 " N rz, z, ṽspt, ξq, and, if D Ă R 2 , we denote I 1 pDq, I 2 pDq the corresponding integral where the domain of integration is

D instead of R 2 . Case A . Let A :" tpξ 1 , ξ 2 q P R 2 : |ξ 1 | ě maxp|ξ|, |ξ 2 |q{100u.
The bound in this case is direct. Indeed,

|I 1 pA q| À |ξ| ż |ξ1|ě|ξ|{10 |ẑpξ 1 q| ˜ż|ξ2|ď10|ξ1| dξ 2 ¸dξ 1 }ṽ} 2 L 8 À ż R |ξ 1 | 2 |ẑpξ 1 q|dξ 1 }ṽ} 2 L 8 À }xξy 2 ẑ} L 1 }v} 2 E ptq . Similarly, |I 2 pA q| À |ξ| ż A |ẑpξ 1 qẑpξ 2 q|dξ 1 dξ 2 }ṽ} L 8 À }xξyẑ} L 1 }ẑ} L 1 }v} E ptq À ~z~2}v} E ptq . Case B. Let B :" tpξ 1 , ξ 2 q P R 2 : |ξ| ě maxp|ξ 2 |{10, 10|ξ 1 |qu.
Here we consider several subcases depending on the size of tξ 3 .

Step (B.0). If |tξ 3 | ă 10 9 , then

|I 1 pBq| À |ξ| ż |ξ2|ď10|ξ| |ṽ|dξ 2 }ẑ} L 1 }ṽ} L 8 À |ξ| 2 }ẑ} L 1 }ṽ} L 8 À 1 t 2{3 ~z~}v} 2 E ptq .
We bound similarly

|I 2 pBq| À |ξ|}ẑ} 2 L 1 }ṽ} L 8 À 1 t 1{3 ~z~2}v} E ptq .
For the remaining computations in Case B, we assume that

|tξ 3 | ě 10 9 ,
and we further split the domain B by letting

B 1 " tpξ 1 , ξ 2 q P B : ||ξ 3 | ´|ξ 2 || ď au and B 2 " BzB 1 ,
for some 0 ă a ă |ξ|{10 (depending on ξ) to be fixed later. We will perform an integration by parts using e itΦ " B ξj pe itΦ q 1 itB ξj Φ , where j " 1, 2 and recall that

B ξj Φ " 3pξ 2 3 ´ξ2 j q " 3pξ 3 `ξj qpξ 3 ´ξj q. Notice that on B, |B 2 ξj ξj Φ| À |ξ|.
Also, an extra care should be taken with the boundary terms, as ṽ may have a jump at frequency 0. To this end, the domains of integration are meant to be deprived from the lines ξ 2 " 0 or ξ 3 " 0, while the boundary terms are always meant to contain the corresponding portion of these lines. This is why, throughout this proof, we change from the standard notation and denote by B∆ the boundary of ∆zptξ 2 " 0u Y tξ 3 " 0uq. This does not weigh on the estimates, as we will use the }ṽ} L 8 bound to control the boundary terms.

Step pB.1q. On B 1 , we have As a consequence, |ξ 3 | ´|ξ 1 | ě |ξ|{2 ´|ξ|{5 ě |ξ|{4 and so |B ξ1 Φ| Á |ξ| 2 . Therefore, we perform an IBP with respect to ξ 1 :

|I 1 pB 1 q| ď ˇˇˇξ ż B1 e itΦ B ξ1 ˆ1 itB ξ1 Φ ẑpξ 1 qṽpt, ξ 3 q ˙ṽpt, ξ 2 qdξ 1 dξ 2 ˇˇ| ξ| ż BB1 1 t|B ξ1 Φ| |ẑpξ 1 qṽpt, ξ 2 qṽpt, ξ 3 q|dσpξ 1 , ξ 2 q À |ξ| ż B1 |ξ| t|ξ| 4 |ẑpξ 1 q|}ṽ} 2 L 8 `1 t|ξ| 2 |B ξ zpξ 1 q|}ṽ} 2 L 8 dξ 1 dξ 2 `|ξ| ż B1 1 t|ξ| 2 |zpξ 1 q||B ξ ṽpξ 3 q|}ṽ} L 8 dξ 1 dξ 2 `|ξ| ż BB1 1 t|ξ| 2 |ẑpξ 1 q|}ṽ} 2 L 8 dσpξ 1 , ξ 2 q. On B 1 , for fixed ξ 1 , |ξ 2 ´pξ ´ξ1 q{2| " |ξ 2 ´ξ3 |{2 ď a{2, so that |ξ| ż B1 |ξ| t|ξ| 4 |ẑpξ 1 q|dξ 1 dξ 2 À 1 t|ξ| 2 ż R |zpξ 1 q| ˜ż|ξ2´pξ´ξ1q{2|ďa{2 dξ 2 ¸dξ 1 À a t|ξ| 2 }ẑ} L 1 , |ξ| ż B1 1 t|ξ| 2 |B ξ zpξ 1 q|dξ 1 dξ 2 À 1 t|ξ| ż R |B ξ zpξ 1 q| ˜ż|ξ2´pξ´ξ1q{2|ďa{2 dξ 2 ¸dξ 1 À a t|ξ| }B ξ ẑ} L 1 and |ξ| ż B1 1 t|ξ| 2 |zpξ 1 q||B ξ ṽpξ 3 q|dξ 1 dξ 2 À 1 t|ξ| ż R |ẑpξ 1 q| ˜ż|ξ2´pξ´ξ1q{2|ďa{2 |B ξ ṽpξ ´ξ1 ´ξ2 q|dξ 2 ¸dξ 1 À 1 t|ξ| }ẑ} L 1 a 1{2 }B ξ ṽ} L 2 À a 1{2 t 5{6 |ξ| }ẑ} L 1 }v} E ptq .
We see on the second bound that one requires a ! |ξ| in order to gain over the 1{t bound.

For the boundary term, we have

|ξ| ż BB1 1 t|ξ| 2 |ẑpξ 1 q|dσpξ 1 , ξ 2 q À 1 t|ξ| }ẑ} L 1 .
Therefore,

|I 1 pB 1 q| À ˆa t|ξ| `a1{2 t 5{6 |ξ| `1 t|ξ| ˙}ẑ} W 1,1 }v} 2 E ptq . (2.5) Step pB.2q. On B 2 , ||ξ 2 | ´|ξ 3 || ě a. Also, as |ξ 1 | ď |ξ|{10, |ξ 2 | `|ξ 3 | ě 9|ξ|{10 and so |B ξ2 Φ| Á a|ξ|.
Here, we perform an IBP in ξ 2 :

|I 1 pB 2 q| ď ˇˇˇξ ż B2 e itΦ B ξ2 ˆ1 itB ξ2 Φ ṽpt, ξ 2 qṽpt, ξ 3 q ˙ẑpξ 1 qdξ 1 dξ 2 ˇˇ8 `|ξ| ż BB2 1 t|B ξ2 Φ| |ẑpξ 1 qṽpt, ξ 2 qṽpt, ξ 3 q|dσpξ 1 , ξ 2 q À |ξ| ż B2 |ξ| t|aξ| 2 |ẑpξ 1 q|}ṽ} 2 L 8 `1 t|aξ| |ẑpξ 1 q||B ξ vpξ 2 q|}ṽ} L 8 dξ 1 dξ 2 `|ξ| ż B2 1 t|aξ| |ẑpξ 1 q|}ṽ} L 8 |B ξ ṽpξ 3 q|dξ 1 dξ 2 `|ξ| ż BB2 1 t|aξ| |ẑpξ 1 q|}ṽ} 2 L 8 dσpξ 1 , ξ 2 q
Observe that all derivatives fall on ṽ (or Φ, but not ẑ), the point being that }B ξ ṽ} L 2 is better behaved than }ṽ} L 8 . To complete the bounds, we now only use that

|ξ 1 |, |ξ 2 | À |ξ| on B 2 as follows |ξ| ż B2 1 ta 2 |ξ| |ẑpξ 1 q|dξ 1 dξ 2 À |ξ| ta 2 }ẑ} L 1 , |ξ| ż B1 1 t|aξ| |zpξ 1 q|p|B ξ ṽpξ 2 q| `|B ξ ṽpξ 3 q|dξ 1 dξ 2 À 1 ta ż R |ẑpξ 1 q| ˜ż|ξ2|À|ξ| p|B ξ vpξ 2 q| `|B ξ ṽpξ ´ξ1 ´ξ2 q|dξ 2 ¸dξ 1 À 1 ta }ẑ} L 1 |ξ| 1{2 }B ξ ṽ} L 2 À |ξ| 1{2 t 5{6 |a| }ẑ} L 1 }v} E ptq .
For the boundary term, we simply have

ż BB2 1 ta |ẑpξ 1 q|dσpξ 1 , ξ 2 q À 1 ta }ẑ} L 1 .
Therefore,

I 1 pB 2 q| À ˆ|ξ| ta 2 `|ξ| 1{2 t 5{6 a `1 ta ˙}ẑ} W 1,1 }v} 2 E ptq . (2.6)
Step pB.3q. We now optimize in a, choosing a " |ξ| 2{3 . As |ξ| 1{3 ě 10t ´1{9 ě 10, a ď |ξ|{10, which justifies the above computations. Using (2.5) and (2.6), and that |ξ| ´1 À t 1{3 , we get

|I 1 pBq| ď |I 1 pB 1 q| `|I 1 pB 2 q| À 1 t 8{9 }ẑ} W 1,1 }v} 2 E ptq .
We now bound I 2 pBq. The bounds are obtained in a similar fashion as for I 1 pBq (they are in fact simpler). However, to sharpen the bound, the frequency splitting is slightly different:

B 4 " tpξ 1 , ξ 2 q P B : ||ξ 3 | ´|ξ 2 || ď |ξ|{10u and B 5 " BzB 4 ,
(this corresponds to the choice a " |ξ|{10).

Step pB.4q. For I 2 pB 4 q, as |B ξ1 Φ| Á |ξ| 2 on B 4 , we perform an IBP in ξ 1 :

|I 2 pB 4 q| ď ˇˇˇξ ż B4 e itΦ B ξ1 ˆ1 itB ξ1 Φ ẑpξ 1 qṽpt, ξ 3 q ˙ẑpξ 2 qdξ 1 dξ 2 ˇˇ| ξ| ż BB4 1 t|B ξ1 Φ| |ẑpξ 1 qẑpξ 2 qṽpt, ξ 3 q|dσpξ 1 , ξ 2 q À |ξ| ż B4 |ξ| t|ξ| 4 |ẑpξ 1 q||ẑpξ 2 q|}ṽ} L 8 `1 t|ξ| 2 |B ξ ẑpξ 1 qẑpξ 2 q|}ṽ} L 8 dξ 1 dξ 2 `|ξ| ż B4 1 t|ξ| 2 |ẑpξ 1 qẑpξ 2 qB ξ ṽpξ 3 q|dξ 1 dξ 2 `|ξ| ż BB4 1 t|ξ| 2 |ẑpξ 1 q|}ẑ} L 8 }ṽ} L 8 dσpξ 1 , ξ 2 q.
The gain over the case pB.1q comes from the two factors in z which insure an L 1 pdξ 1 dξ 2 q bound:

|I 2 pB 4 q| À 1 t|ξ| 2 }ẑ} 2 L 1 }ṽ} L 8 `1 t|ξ| }B ξ ẑ} L 1 }ẑ} L 1 }ṽ} L 8 `1 t|ξ| }ẑ} L 1 }B ξ v} L 2 }ẑ} L 2 `1 t|ξ| }ẑ} L 1 }ẑ} L 8 }ṽ} L 8 À 1 t|ξ| }ẑ} L 1 }ẑ} W 1,1 }v} E ptq .
As we assumed |ξ| Á t ´1{3 here, we infer

|I 2 pB 4 q| À 1 t 2{3 }ẑ} L 1 }ẑ} W 1,1 }v} E ptq . (2.7)
Step pB.5q. For I 2 pB 5 q, |B ξ2 Φ| Á |ξ| 2 , so that we perform an IBP in ξ 2 :

|I 2 pB 5 q| ď ˇˇˇξ ż B5 e itΦ B ξ2 ˆ1 itB ξ2 Φ ẑpξ 2 qṽpt, ξ 3 q ˙ẑpξ 1 qdξ 1 dξ 2 ˇˇ| ξ| ż BB5 1 t|B ξ1 Φ| |ẑpξ 1 q|ẑpξ 2 qṽpt, ξ 3 q|dσpξ 1 , ξ 2 q À |ξ| ż B5 |ξ| t|ξ| 4 |ẑpξ 1 q||ẑpξ 2 q|}ṽ} L 8 `1 t|ξ| 2 |ẑpξ 1 q||B ξ ẑpξ 2 q|}ṽ} L 8 dξ 1 dξ 2 `|ξ| ż B5 1 t|ξ| 2 |ẑpξ 1 q||ẑpξ 2 q||B ξ ṽpξ 3 q|dξ 1 dξ 2 `|ξ| ż BB5 1 t|ξ| 2 |ẑpξ 1 q|}ẑ} L 8 }ṽ} L 8 dσpξ 1 , ξ 2 q À 1 t|ξ| 2 }ẑ} 2 L 1 }ṽ} L 8 `1 t|ξ| }ẑ} L 1 }B ξ ẑ} L 1 }v} L 8 `1 t|ξ| }ẑ} L 1 }ẑ} L 2 }B ξ ṽ} L 2 `1 t|ξ| }ẑ} L 1 }ẑ} L 8 }ṽ} L 8 À 1 t|ξ| }ẑ} L 1 }ẑ} W 1,1 }ṽ} E ptq .
(recall that 0 ă t ď 1). Together with (2.7), we infer

|I 2 pBq| ď |I 2 pB 4 q| `|I 2 pB 5 q| À 1 t 2{3 }ẑ} L 1 }ẑ} W 1,1 }ṽ} E ptq . Case C . We finally consider C " R 2 zpA YBq " tpξ 1 , ξ 2 q P R 2 : |ξ 1 | ă maxp|ξ|, |ξ 2 |q{100, |ξ| ă maxp|ξ 2 |{10, 10|ξ 1 |qu. Observe that on C , |ξ| ď maxp|ξ 2 |{10, maxp|ξ|, |ξ 2 |q{10q " maxp|ξ|{10, |ξ 2 |{10q so that |ξ| ď |ξ 2 |{10, and therefore |ξ 1 | ď |ξ 2 |{100. Hence |ξ 3 `ξ2 | ď |ξ 2 |{5, |ξ 3 | ě 4|ξ 2 |{5
and ξ 2 and ξ 3 are the highest frequencies (of the same magnitude). In particular, |B 2 ξiξj Φ| À |ξ 2 | on C . We argue in C in the same spirit as we did for case B. We split Step pC .0q. On C 0 , we bound as in pB.0q:

C 0 " tpξ 1 , ξ 2 q P C : |tξ 3 2 | ď 10 9 u C 1 " tpξ 1 , ξ 2 q P C : |tξ 3 2 | ě 10 9 and |ξ ´ξ1 | ď |ξ 2 | 2{3 u, C 2 " tpξ 1 , ξ 2 q P C :
I 1 pC 0 q ď |ξ| ż C0 |ẑpξ 1 q|dξ 1 dξ 2 }ṽ} 2 L 8 À }ẑ} L 1 }ṽ} 2 L 8 ż |ξ2|Àt ´1{3 |ξ 2 |dξ 2 À 1 t 2{3 }ẑ} L 1 }ṽ} 2 L 8 , (2.8) I 2 pC 0 q ď |ξ| ż C0 |ẑpξ 1 q|dξ 1 dξ 2 }ẑ} L 8 }ṽ} L 8 À }ẑ} L 1 }ẑ} L 8 }ṽ} L 8 ż |ξ2|Àt ´1{3 |ξ 2 |dξ 2 À 1 t 2{3 }ẑ} L 1 }ẑ} L 8 }ṽ} L 8 .
(2.9)

Step pC .1q. On C 1 , we integrate by parts in ξ 1 : observe that in this domain

|ξ 1 | ď |ξ 2 |{100 and |ξ 3 | ě 4|ξ 2 |{5 so that |B ξ1 Φ| " 3|ξ 2 1 ´ξ2 3 | Á |ξ 2 | 2 . Hence, |I 1 pC 1 q| ď ˇˇˇξ ż C1 e itΦ B ξ1 ˆ1 itB ξ1 Φ ẑpξ 1 qṽpt, ξ 3 q ˙ṽpt, ξ 2 qdξ 1 dξ 2 ˇˇ| ξ| ż BC1 1 t|B ξ1 Φ| |ẑpξ 1 qṽpt, ξ 2 qṽpt, ξ 3 q|dσpξ 1 , ξ 2 q À |ξ| ż C1 |ξ 2 | t|ξ 2 | 4 |ẑpξ 1 q|}ṽ} 2 L 8 `1 t|ξ 2 | 2 |B ξ ẑpξ 1 q|}ṽ} 2 L 8 dξ 1 dξ 2 `|ξ| ż C1 1 t|ξ 2 | 2 |zpξ 1 q||B ξ ṽpξ 3 q|}ṽ} L 8 dξ 1 dξ 2 `|ξ| ż BC1 1 t|ξ 2 | 2 |ẑpξ 1 q|}ṽ} 2 L 8 dσpξ 1 , ξ 2 q.
On C 1 , |ξ| À |ξ 2 |, and for fixed ξ 2 , |ξ ´ξ1 | ď |ξ 2 | 2{3 , so that

|ξ| ż C1 |ξ 2 | t|ξ 2 | 4 |ẑpξ 1 q|dξ 1 dξ 2 À 1 t ż |ξ2|Át ´1{3 dξ 2 |ξ 2 | 2 }ẑ} L 1 À 1 t 2{3 }ẑ} L 1 , |ξ| ż C1 1 t|ξ 2 | 2 |B ξ zpξ 1 q|dξ 1 dξ 2 À 1 t ż |ξ2|Át ´1{3 ż p|ξ ´ξ1 | `|ξ 1 ||B ξ zpξ 1 q|dξ 1 q dξ 2 |ξ 2 | 2 À 1 t ż |ξ2|Át ´1{3 ´|ξ 2 | 2{3 }B ξ ẑ} L 1 `}ξB ξ ẑ} L 1 ¯dξ 2 |ξ 2 | 2 À 1 t 8{9 }xξyB ξ ẑ} L 1 , |ξ| ż C1 1 t|ξ 2 | 2 |zpξ 1 q||B ξ ṽpξ 3 q|dξ 1 dξ 2 À 1 t ż R |ẑpξ 1 q| ˜ż|ξ2|Át ´1{3 |B ξ ṽpξ 3 q| dξ 2 |ξ 2 | ¸dξ 1 À 1 t }ẑ} L 1 }B ξ ṽ} L 2 ˜ż|ξ2|Át ´1{3 dξ 2 |ξ 2 | 2 ¸1{2 À 1 t 5{6 }ẑ} L 1 }B ξ ṽ} L 2 À 1 t 2{3 }ẑ} L 1 }v} E ptq . On BC 1 , since |ξ 2 | Á |ξ| and |ξ 2 | Á t ´1{3 , one has |ξ| |ξ 2 | 2 À t 1{3 . Thus (2.10) |ξ| ż BC1 1 t|ξ 2 | 2 |ẑpξ 1 q|dσpξ 1 , ξ 2 q ď 1 t 2{3 }ẑ} L 1 ,
Therefore, we get

|I 1 pC 1 q| À 1 t 8{9 p}xξyB ξ ẑ} L 1 `}ẑ} L 1 q}v} 2 E ptq . (2.11)
Step pC .2q. On C 2 , we integrate by parts in ξ 2 : observe that in this domain

|B ξ2 Φ| " 3|ξ 2 2 ´ξ2 3 | " 3|ξ 2 ´ξ3 ||ξ ´ξ1 | Á |ξ 2 | 5{3 , Hence we can estimate |I 1 pC 2 q| ď ˇˇˇξ ż C2 e itΦ B ξ1 ˆ1 itB ξ2 Φ ṽpt, ξ 2 qṽpt, ξ 3 q ˙ẑpξ 1 qdξ 1 dξ 2 ˇˇ| ξ| ż BC2 1 t|B ξ2 Φ| |ẑpξ 1 qṽpt, ξ 2 qṽpt, ξ 3 q|dσpξ 1 , ξ 2 q À |ξ| ż C2 |ξ 2 | t|ξ 2 | 10{3 |ẑpξ 1 q|}ṽ} 2 L 8 dξ 1 dξ 2 `|ξ| ż C2 1 t|ξ 2 | 5{3 |ẑpξ 1 q|p|B ξ ṽpξ 2 q| `|B ξ ṽpξ 3 q|q}ṽ} L 8 dξ 1 dξ 2 `|ξ| ż BC2 1 t|ξ 2 | 5{3 |ẑpξ 1 q|}ṽ} 2 L 8 dσpξ 1 , ξ 2 q. On C 2 , |ξ| À |ξ 2 |, so that |ξ| ż C2 1 t|ξ 2 | 7{3 |ẑpξ 1 q|dξ 1 dξ 2 À 1 t ż |ξ2|Át ´1{3 dξ 2 |ξ 2 | 4{3 }ẑ} L 1 À 1 t 8{9 }ẑ} L 1 , |ξ| ż C2 1 t|ξ 2 | 5{3 |ẑpξ 1 qB ξ ṽpξ 2 q|dξ 1 dξ 2 À 1 t ż R |ẑpξ 1 q| ˜ż|ξ2|Át ´1{3 |B ξ ṽpξ 2 q| dξ 2 |ξ 2 | 2{3 À 1 t }ẑ} L 1 }B ξ ṽ} L 2 ˜ż|ξ2|Át ´1{3 dξ 2 |ξ 2 | 4{3 ¸1{2 À 1 t }ẑ} L 1 }B ξ ṽ} L 2 t 1{18 À 1 t 7{9 }ẑ} L 1 }v} E ptq .
On BC 2 , we have, as in (2.10),

|ξ| |ξ 2 | 5{3 À t 2{9 so that |ξ| ż BC2 1 t|ξ 2 | 5{3 |ẑpξ 1 q|dσpξ 1 , ξ 2 q ď 1 t 7{9 }ẑ} L 1 .
Hence, we obtain

|I 1 pC 2 q| À 1 t 8{9 }ẑ} L 1 }v} 2 E ptq .
Together with (2.8) and (2.11), we infer that

|I 1 pC q| À 1 t 8{9 ~z~}v} 2 E ptq .
Step pC .3q. We now bound I 2 on

C 3 " C zC 0 " tpξ 1 , ξ 2 q P C : |tξ 2 | 3 ą 10 9 u.
For I 2 , we don't need to further split the domain. As for C 1 , on C 3 we integrate by parts with respect to ξ 1 . In this region,

|ξ 3 | ě 4|ξ 2 |{5 and |ξ 1 | ď |ξ 2 |{5 so that |B ξ1 Φ| " 3|ξ 2 1 ´ξ3 | 2 Á |ξ 2 | 2 .
Hence we bound:

|I 2 pC 3 q| ď ˇˇˇξ ż C3 e itΦ B ξ1 ˆ1 itB ξ1 Φ ẑpξ 1 qṽpt, ξ 3 q ˙ẑpξ 2 qdξ 1 dξ 2 ˇˇ| ξ| ż BC3 1 t|B ξ1 Φ| |ẑpξ 1 qẑpξ 2 qṽpt, ξ 3 q|dσpξ 1 , ξ 2 q À |ξ| ż C3 |ξ 2 | t|ξ 2 | 4 |ẑpξ 1 qẑpξ 2 q|}ṽ} L 8 `1 t|ξ 2 | 2 |B ξ ẑpξ 1 qẑpξ 2 q|}ṽ} L 8 dξ 1 dξ 2 `żC3 1 t|ξ 2 | 2 |ẑpξ 1 qẑpξ 2 qB ξ ṽpξ 3 q|dξ 1 dξ 2 `|ξ| ż BC3 1 t|ξ 2 | 2 |ẑpξ 1 q|}ẑ} L 8 }ṽ} L 8 dσpξ 1 , ξ 2 q. On C 3 , |ξ| À |ξ 2 | and 1 |ξ2| À t 1{3 . Hence |ξ| ż C3 |ξ 2 | t|ξ 2 | 4 |ẑpξ 1 qẑpξ 2 q|dξ 1 dξ 2 À 1 t 1{3 ż |ẑpξ 1 qẑpξ 2 q|dξ 1 dξ 2 À 1 t 1{3 }ẑ} 2 L 1 , |ξ| ż C3 1 t|ξ 2 | 2 |B ξ ẑpξ 1 qzpξ 2 q|dξ 1 dξ 2 À 1 t 2{3 ż R |B ξ ẑpξ 1 qzpξ 2 q|dξ 1 dξ 2 À 1 t 2{3 }B ξ ẑ} L 1 }ẑ} L 1 and |ξ| ż C3 1 t|ξ 2 | 2 |ẑpξ 1 qzpξ 2 qB ξ ṽpt, ξ 3 q|dξ 1 dξ 2 À 1 t 2{3 ż |ẑpξ 1 q| ˆż |zpξ 2 qB ξ ṽpt, ξ 3 q| ˙dξ 2 À 1 t 2{3 }ẑ} L 1 }ẑ} L 2 }B ξ ṽ} L 2 À 1 t 1{2 }ẑ} L 1 }ẑ} L 2 }v} E ptq .
On BC 3 , we have similarly

|ξ| ż BC3 1 t|ξ 2 | 2 |ẑpξ 1 q|dσpξ 1 , ξ 2 q ď 1 t 2{3 }ẑ} L 1 . Therefore |I 2 pC 3 q| À 1 t 2{3 }ẑ} L 1 }ẑ} W 1,1 }v} E ptq .
Together with (2.9), we conclude that

|I 2 pC q| À 1 t 2{3 }ẑ} L 1 }ẑ} W 1,1 }v} E ptq .

Conclusion.

Summing up the bounds obtained in case A , B and C , and observing that these cover R 2 , we conclude that

|I 1 | À 1 t 8{9 }xξyẑ} W 1,1 }v} 2 E ptq . |I 2 | À 1 t 2{3 }ẑ} L 1 }ẑ} W 1,1 }v} E ptq . □
It turns out in the energy estimates involving the dilation operator I, some terms can not be interpreted as a full derivative (mainly because the equation for w has a source term). In addition to (2.1), we will also need the following bound on a term of the form N r S, S, vs, but where the weight ξ (associated to the derivative in physical space) only falls on the v term.

Lemma 10. For any

0 ă t ă 1, if v P E ptq, › › › › ij e itΦ Spt 1{3 ξ 1 q Spt 1{3 ξ 2 qξ 3 ṽpξ 3 qdξ 1 dξ 2 › › › › L 8 ξ À 1 t }S} 2 E ptq }v} E ptq .
Remark 11. This estimate involves only the critical norm E ptq. Consequently, the 1{t decay is optimal.

Proof. Before we perform the estimate, we rewrite the oscillatory integral. Set η " ξ 1 `ξ2 , ν " ξ 1 ´ξ2 and

Ψ " ´3 ˆηξ 2 ´η2 ξ `1 4 η 3
˙.

Then a simple computation yields

Ipt, ξq :" the phase Ψ has two stationary points, η " 2ξ and η " 2ξ{3. We use the same notation as in the previous proof: given a set ∆ Ă R, Ip∆q is the restriction of I to ∆. We perform a stationary phase analysis in the complementary regions ∆ 1 " tη P R : |η| ď 10|ξ|u and ∆ 2 " tη P R : |η| ě 10|ξ|u.

ż e itΦ Spt 1{3 ξ 1 q Spt 1{3 ξ 2 qξ 3 ṽpξ
Step 1. We first consider the case |t 1{3 ξ| ď 1.

(i) On ∆ 1 , |ξ ´η| À |ξ| so that

|Ip∆ 1 q| À 1 t 1{2 ż |η|À|ξ| 1 |η| 1{2 |ξ´η|dη}S} 2 E ptq }ṽ} L 8 À |ξ| 3{2 t 1{2 }S} 2 E ptq }ṽ} L 8 À 1 t }S} 2 E ptq }v} E ptq . Now, we further split ∆ 2 " ∆ 1 2 Y ∆ 2 2 where ∆ 1 2 " tη P R : |η| ě 10|ξ|, |t 1{3 η| ď 1u and ∆ 2 2 " tη P R : |η| ě 10|ξ|, |t 1{3 η| ě 1u. (ii)
We first focus on ∆ 1 2 . On ∆ 2 , we have |ξ ´η| À |η|, so that

|Ip∆ 1 2 q| À 1 t 1{2 ż |η|ďt ´1{3 |ξ ´η| |η| 1{2 dη}S} 2 E ptq }ṽ} L 8 À 1 t 1{2 ż |η|ďt ´1{3 |η| 1{2 dη}S} 2 E ptq }v} E ptq À 1 t }S} 2 E ptq }v} E ptq .
(iii) In ∆ 2 2 , we perform an integration by parts, to get

|Ip∆ 2 2 q| ď ˇˇˇ1 t 1{3 ż ∆2 e itΨ B Bη ˆ1 itB η Ψ KpS, Sqpt 1{3 ηqpξ ´ηqṽpξ ´ηq ˙dη ˇˇ1 t 1{3 " e itΨ 1 itB η Ψ KpS, Sqpt 1{3 ηqξ 3 ṽpξ 3 q ȷ ηPB∆2 ˇˇˇˇ.
Since, on ∆ 2 , we have |ξ ´η| À |η|, |B η Ψ| Á |η| 2 , |B 2 ηη Ψ| À |η|, and |η| ě t ´1{3 , we can bound the first term by

1 t 1{3 ż |η|ět ´1{3 ˜|η| t|η| 4 }S} 2 E ptq t 1{6 |η| 1{2 |η|}ṽ} L 8 `1 t|η| 2 }S} 2 E ptq t 1{6 |η| 3{2 |η|}ṽ} L 8 `1 t|η| 2 }S} 2 E ptq t 1{6 |η| 1{2 |ξ ´η||B η ṽpξ ´ηq| ¸dη À 1 t }S} 2 E ptq }}ṽ} L 8 `1 t 4{3 }S} 2 E ptq ˜ż|η|ět ´1{3 dη |η| 3 ¸1{2 1 t 1{6 }B ξ ṽ} L 2 À 1 t }S} 2 E ptq }v} E ptq .
(on the second line, we used the Cauchy-Schwarz inequality for the last term). For the boundary term, we notice that on B∆ 2 , |η| ě t ´1{3 , so that it is bounded by

1 t 1{3 " 1 t|η| 2 1 t 1{6 |η| 1{2 }S} 2 E ptq |η|}ṽ} L 8 ȷ |η|" 1 t 1{3 À 1 t }S} 2 E ptq }v} E ptq .
This proves that |Ip∆ 2 2 q| À t ´1}S} 2 E ptq }v} E ptq .

Step 2. We now consider the case |t 1{3 ξ| ě 1.

Here, we split

∆ 1 " ∆ 1 1 Y ∆ 2 1 Y ∆ 3 1 where ∆ 1 1 " tη P R : |η| ď 10|ξ|, |tξ 3 | ě 1, minp|η ´2ξ|, |η ´2ξ{3|q ě |ξ|{10u, ∆ 2 
1 " tη P R : |η ´2ξ| ď |ξ|{10, |tξ 3 | ě 1u, ∆ 3 1 " tη P R : |η ´2ξ{3| ď |ξ|{10, |tξ 3 | ě 1u.

(i) On ∆ 1 1 , we perform an integration by parts so that

|Ip∆ 1 1 q| ď ˇˇˇˇ1 t 1{3 ż ∆ 1 1 ηe itΨ B Bη ˆ1 1 `itηB η Ψ KpS, Sqpt 1{3 ηqpξ ´ηqṽpξ ´ηqq ˙dη ˇˇˇ1 t 1{3 " ηe itΨ 1 1 `itηB η Ψ KpS, Sqpt 1{3 ηqpξ ´ηqṽpξ ´ηq ȷ ηPB∆ 1 1 ˇˇˇ( 2.12)
Observe that, on ∆ 1 1 , |B η Ψ| Á |ξ| 2 and |B 2 ηη Ψ| À |ξ|. In particular |B η p1 `itηB η Ψq| À t|ξ| 2 . Therefore, the integral term is bounded by

1 t 1{3 ż |η|À|ξ| ˜t|ηξ 2 | 1 `ptηξ 2 q 2 }S} 2 E ptq t 1{6 |η| 1{2 |ξ|}ṽ} L 8 `|η| 1 `|tηξ 2 | }S} 2 E ptq t 1{6 |η| 3{2 |ξ|}ṽ} L 8 `|η| 1 `|tηξ 2 | }S} 2 E ptq t 1{6 |η| 1{2 }ṽ} L 8 ¸dη `1 t 1{3 ż |η|À|ξ| |η| 1 `|tηξ 2 | }S} 2 E ptq t 1{6 |η| 1{2 |ξ||B ξ ṽpξ ´ηq|dη (2.13)
Letting ρ " tηξ 2 so that dη |η| 1{2 " dρ t 1{2 |ξ||ρ| 1{2 , (and using again |η| À |ξ|), the first three terms are bounded as follows

1 t 1{3 ż R ˆ|ρ| 1 `ρ2 |ξ| t 1{6 `1 1 `|ρ| |ξ| t 1{6 ˙dρ t 1{2 |ξ||ρ| 1{2 }S} 2 E ptq }ṽ} L 8 À 1 t }S} 2 E ptq }v} E ptq .
We bound the fourth and last terms of (2.13) by

1 t 1{3 ˜ż|η|À|ξ| |ηξ 2 | 1 `|tηξ 2 | 2 dη ¸1{2 }S} 2 E ptq 1 t 1{6 }B ξ ṽ} L 2 À 1 t 1{3 ˆżR 1 t 1{3 |tηξ 2 | 1{3 ξ 2 1 `|tηξ 2 | 2 dη ˙1{2 }S} 2 E ptq }v} E ptq À 1 t 1{2 ˆż |ρ| 1{3 ξ 2 1 `ρ2 dρ tξ 2 ˙1{2 }S} 2 E ptq }v} E ptq À 1 t }S} 2 E ptq }v} E ptq .
We now focus on the boundary term in (2.12): on B∆ 1 1 , |η| Á |ξ|, so it can be bounded by

1 t 1{3 « |ξ| 1 `t|ξ| 3 }S} 2 E ptq t 1{6 |ξ| 1{2 |ξ|}ṽ} L 8 ff À 1 t |tξ 3 | 1{2 1 `tξ 3 }S} 2 E ptq }v} E ptq À 1 t }S} 2 E ptq }v} E ptq .
This proves that |Ip∆ 1 1 q| À t ´1}S} 2 E ptq }v} E ptq .

(ii) For ∆ 2 1 , we are near the stationary point 2ξ. Denote q " η ´2ξ. An integration by parts yields 

|Ip∆ 2 1 q| À ˇˇˇˇ1 t 1{3 ż ∆ 2 1 qe itΨ B Bη ˆ1 1 `itqB η Ψ KpS, Sqpt 1{3 ηqpξ ´ηqṽpξ ´ηq ˙dη ˇˇˇ( 2.14) `ˇˇˇˇ1 t 1{3 " pη ´2ξqe itΨ 1 1 `itpη ´2ξqB η Ψ KpS, Sqpt 1{3 ηqpξ ´ηqṽpξ ´ηq ȷ ηPB∆ 2 1 ˇˇˇǑ n ∆ 2 1 , |qξ| À |B η Ψ| À |qξ|, |B
1 t 1{3 ż ∆ 2 1 ˜tq 2 |ξ| 1 `ptq 2 |ξ|q 2 }S} 2 E ptq t 1{6 |ξ| 1{2 |ξ|}ṽ} L 8 `q 1 `|tq 2 ξ| }S} 2 E ptq t 1{6 |ξ| 3{2 |ξ|}ṽ} L 8 `|q| 1 `|tq 2 ξ| }S} 2 E ptq t 1{6 |ξ| 1{2 |ξ||B ξ ṽpξ ´ηq| ¸dη
Let here ρ " tq 2 |ξ|, dη " dρ 2|tξρ| 1{2 so that the first term is bounded by

1 t 1{3 ż R ρ 1 `ρ2 |ξ| 1{2 t 1{6 dρ |tξρ| 1{2 }S} 2 E ptq }ṽ} L 8 À 1 t }S} 2 E ptq }ṽ} E ptq .
For the second term, notice that q 1 `|tq 2 ξ| ď 1 |tξ| 1{2 , and as the measure

|∆ 2 1 | À |ξ|, it is bounded by |∆ 2 1 | t 1{3 1 |tξ| 1{2 1 t 1{6 |ξ| 1{2 }S} 2 E ptq }ṽ} L 8 À 1 t }S} 2 E ptq }ṽ} E ptq .
For the third term, using the Cauchy-Schwarz inequality and then the fact that on ∆ 2 1 , |q| À |ξ|,

1 t 1{3 }S} 2 E ptq t 1{6 |ξ| 1{2 ˜ż∆ 2 1 q 2 1 `ptq 2 ξq 2 dη ¸1{2 }B ξ ṽ} L 2 À |ξ| 1{2 t 1{3 ˆżR |q| 5{3 |ξ| 1{3 1 `ptq 2 ξq 2 dη ˙1{2 }S} 2 E ptq }v} E ptq À |ξ| 1{2 t 1{3 ˆżR 1 t 5{6 |ξ| 1{2 |ρ| 5{6 1 `|ρ| 2 dρ |tξρ| 1{2 ˙1{2 }S} 2 E ptq }v} E ptq À 1 t }S} 2 E ptq }v} E ptq .
We observe that on the last line, the ξ cancel out and the ρ integral is convergent, leaving the desired power of t.

For the boundary term in (2.14), notice that on B∆ 2 1 , η, ξ ´η and η ´2ξ are of the order of ξ, and |B η Ψ| Á |ξ| 2 , so that we can bound it by

1 t 1{3 |ξ| 1 1 `t|ξ| 3 }S} 2 E ptq t 1{6 |ξ| 1{2 |ξ|}ṽ} L 8 À 1 t 1{2 |ξ| 3{2 1 `t|ξ| 3 }S} 2 E ptq }ṽ} L 8 À 1 t }S} 2 E ptq }ṽ} L 8 , because |ξ 3{2 1 `t|ξ| 3 ď 1 t 1{2 . We conclude that |Ip∆ 2 1 q| À t ´1}S} 2 E ptq }v} E ptq .
(iii) On ∆ 3 1 , we are near the stationary point 2ξ{3: letting q " η ´2ξ{3, completely similar computations as in the ∆ 2 1 case give the same bound:

|Ip∆ 3 1 q| À t ´1}S} 2 E ptq }v} E ptq .
(iv) On ∆ 2 , |η| ě 10|ξ| ě 10t ´1{3 , so that we can repeat the same computations as for ∆ 2 2 in Step 1:

|Ip∆ 2 q| À 1 t }S} 2 E ptq }v} E ptq .
Summing up, we conclude that |I| À t ´1}S} 2 E ptq }v} E ptq , as claimed. □ Lemma 12. Given t P p0, 1q, z P Z and v P E p0, 1q,

|vpt, xq| À 1 t 1{3 xx{t 1{3 y 1{4 }vptq} E ptq , |e ´tB 3 x zpxq| À min ˆ1, 1 t 1{3 xx{t 1{3 y 1{4 ˙~z~, |B x vpt, xq| À 1 t 2{3 xx{t 1{3 y 1{4 }vptq} E ptq , |B x e ´tB 3 x zpxq| À ~z~,
In particular, u " v `e´tB 3 x z satisfies

}uu x ptq} L 8 À 1 t }vptq} E ptq p}vptq} E ptq `~z~q `~z~2, }uptq} L 8 À 1 t 1{3 }vptq} E ptq `~z~,
and }uptq} L 6 À 1 t 5{18 }vptq} E ptq `~z~.
In the above bounds on u, observe the gain in powers of t on the z terms.

Proof. Since xξyẑ P L 1 pRq, one has directly e ´tB 3

x z P W 1,8 pRq. Also, ẑ P L 2 pRq, so that e ´tB 3

x z P L 2 pRq. In particular,

}e ´tB 3 x z} L 6 À ~z~.
Furthermore, by [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF]Lemma 6],

|vpt, xq| À 1 t 1{3 xx{t 1{3 y 1{4 }vptq} E ptq , |v x pt, xq| À 1 t 2{3 xx{t 1{3 y 1{4 }vptq} E ptq .
It remains to prove the pointwise spatial decay for

pe ´tB 3 x zqpxq " 1 t 1{3 ż Ai ˆx ´y t 1{3 ˙zpyqdy. If |x ´y| ď |x|, then |pe ´tB 3 x zqpxq| À ˜1 t 1{3 ż |x´y|ď|x| A x ´y t 1{3 E ´1{4 xxy ´1dy ¸}xxyz} L 8 À ˆ|x| t 1{3 ˙3{4 xxy ´1~z~À 1 t 1{3 xx{t 1{3 y 1{4 ~z~. If |x ´y| ě |x|, then |pe ´tB 3 x zqpxq| À 1 t 1{3 ż A x ´y t 1{3 E ´1{4 |zpyq|dy À 1 t 1{3 xx{t 1{3 y 1{4 }z} L 1 .
For the uu x estimate, one notices that uu x " vv x `ve ´tB 3

x z x `vx e ´tB 3 x z `pe ´tB 3 x zqpe ´tB 3

x z x q.

The first three terms are estimated by observing the cancellation of the xx{t 1{3 y 1{4 factor, and the quadratic term in z is bounded by a constant. The other estimates on u are easy consequences. □

Construction of an approximation sequence

Now that we possess the necessary estimates, let us begin the construction of the error function w in the same spirit as [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF]. Fix χ P S pRq such that 0 ă χ ď 1 and χ " 1 on r´1, 1s and let χ n pξq " χ 2 pξ{nq. Given u P S 1 pRq, set y Π n u :" χ n û and define the approximation space at time t ą 0 X n ptq :" ␣ u P S 1 pRq : }u} Xnptq ă 8 ( , where

}u} Xnptq :" › › ›e itξ 3 ûχ ´1 n › › › L 8 `› › ›Bξ ´eitξ 3 û¯χ ´1{2 n › › › L 2 . If I Ă r0, `8q is an interval, }u} XnpIq :" sup tPI }uptq} Xnptq " sup tPI }ũptqχ ´1 n } L 8 `}B ξ ũptqχ ´1{2 n } L 2 ,
and

X n pIq :" ! u P C pI, S 1 pRqq : ũχ ´1 n P C pI, C b pRqq, B ξ ũχ ´1{2 n P C pI, L 2 pRqq ) .
Next, we consider a suitable approximation of the error w by cutting off the nonlinearity at large frequencies. However, one must also truncate the self-similar solution to avoid problems with the linear term pSSwq x . In order to keep the self-similar structure, we set Sn pt, ξq " χ n pt 1{3 ξq Spt 1{3 ξq.

This cut-off is well-behaved in E :

}S n } E pp0,`8qq " }S n } E p1q " } χn S} L 8 `}B ξ pχ n Sq} L 2 À } S} L 8 `}B x S} L 2 `}B x χ n } L 2 } S} L 8 À }S} E p1q .
The resulting approximate problem is

B t u n `B3 x u n " Π n B x pu 3 n q, u n ptq ´Sn ptq Ñ z as t Ñ 0 `.
Writing u n ptq ": S n ptq `e´tB 3 x z `wn ptq, one arrives at the (equivalent) problem for the error w n

B t w n `B3 x w n " Π n B x pu 3 n ´S3 n q, w n p0q " 0. (3.1)
Observe that, in frequency space, this equation reads as B t wn " χ n pN rũ n s ´N r Sn sq. Proposition 13. Given z P Z and a self-similar solution S P E pp0, `8qq, there exists T n " T n pz, Sq ą 0 and a unique maximal solution w n P X n pr0, T n qq of (3.1), in the sense that if T n ă `8, then }w n } Xnptq Ñ `8 as t Ñ T ń . Moreover, there exists 0 ă T 0 n ă T n such that @t P r0, T 0 n s, }w n } Xnptq À n t 1{3 . Remark 14. Since w n p0q " 0, wn will not have any jump discontinuity at ξ " 0. Therefore B ξ wn will be bounded in L 2 pRq (see Proposition 15).

Sketch of the proof. The proof follows from a fixed-point argument in X n pr0, T sq for the map Ψ defined as

Č Ψrw n spt, ξq " χ n pξq ż t 0 pN rũ n s ´N r Sn sqps, ξqds.
for some 0 ă T ď 1 to be determined later. Let us consider the source term

N r Sn , Sn , zspt, ξq " i ξ 4π 2 ij ξ1`ξ2`ξ3"ξ e itΦ Sn pt, ξ 1 q Sn pt, ξ 2 qẑpξ 3 qdξ 1 dξ 2 .
The idea is to place the z factor in L 1 based spaces. To bound the L 8 term in the X n norm, we estimate

|N r Sn , Sn , zspt, ξq| À } S} 2 L 8 ij ξ1`ξ2`ξ3"ξ p|ξ 1 | `|ξ 2 | `|ξ 3 |qχ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 q|ẑpξ 3 q|dξ 1 dξ 2 À } S} 2 L 8 t 2{3 }ξχ n } L 8 }χ n } L 1 }ẑ} L 1 `} S} 2 L 8 t 1{3 }χ n } L 8 }χ n } L 1 }xξyẑ} L 1 À 1 t 2{3 }xξyχ n } L 8 }χ n } L 1 }xξyẑ} L 1 } S} 2 L 8 .
Therefore, for t P r0, 1s,

› › › › ż t 0 N r Sn , Sn , zsps, ξqds › › › › L 8 À ż t 0 } S} 2 L 8 s 2{3 }xξyχ n } L 8 }χ n } L 1 }xξyẑ} L 1 ds À t 1{3 }xξyχ n } L 8 }χ n } L 1 }xξyẑ} L 1 } S} 2 L 8 . (3.2) For the estimate of the L 2 term in X n , we have to bound in L 2 χ ´1{2 n pξqB ξ ˆχn pξq ż t 0 pN r Sn , Sn , zsqps, ξqds ˙.
This requires us to consider the following three terms:

ˇˇχ ´1{2 n B ξ pξχ n pξqqN r Sn , Sn , zspt, ξq ˇÀ |B ξ pξχ 1{2 n pξqq|} S} 2 L 8 ij ξ1`ξ2`ξ3"ξ χ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 q|ẑpξ 3 q|dξ 1 dξ 2 À |B ξ pξχ 1{2 n pξqq| 1 t 1{3 }χ n } L 1 }ẑ} L 1 }χ n } L 8 } S} 2 L 8 , ˇˇˇˇˇˇξ χ 1{2 n pξq ij ξ1`ξ2`ξ3"ξ tpB ξ Φq e itΦ Sn pt, ξ 1 q Sn pt, ξ 2 qzpt, ξ 3 qdξ 1 dξ 2 ˇˇˇˇˇ1 À |ξχ 1{2 n pξq|} S} 2 L 8 ij ξ1`ξ2`ξ3"ξ tpξ 2 1 `ξ2 2 `ξ2 3 qχ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 q|ẑpξ 3 q|dξ 1 dξ 2 À |ξχ 1{2 n pξq|}xξy 2 χ n } L 1 }xξy 2 ẑ} L 1 }xξy 2 χ n } L 8 } S} 2 L 8 , ˇˇξχ 1{2 n pξqN r Sn , Sn , B ξ zspt, ξq ˇÀ |ξχ 1{2 n pξq|} S} 2 L 8 ij ξ1`ξ2`ξ3"ξ χ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 q|B ξ ẑpξ 3 q|dξ 1 dξ 2 À |ξχ 1{2 n pξq| 1 t 1{3 }χ n } L 1 }ẑ} W 1,1 }χ n } L 8 } S} 2 L 8 .
Since χ

1{2 n P S pRq, these terms are bounded in L 2 and

› › ›χ ´1{2 n pξqB ξ ´χn N r Sn , Sn , zsps, ξq ¯› › › L 2 À t ´1{3 } S} 2 L 8 .
After integration in time, we get for t P r0, 1s

› › › › χ ´1{2 n pξqB ξ ˆχn ż t 0 N r Sn , Sn , zsps, ξqds ˙› › › › L 2 À t 2{3 } S} 2 L 8 ,
and so, together with (3.2), we conclude

› › › › χ n ż t 0 N r Sn , Sn , zspsqds › › › › Xnptq À t 1{3 } S} 2 L 8 .
The others source terms (where z is quadratic or cubic) can be treated in a similar fashion (and are actually better behaved).

Similarly, let us consider the linear term N r Sn , Sn , wn s:

|N r Sn , Sn , wn spt, ξq|

À } S} 2 L 8 } wn ptqχ ´1 n } L 8 ij p|ξ 1 | `|ξ 2 | `|ξ 3 |qχ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 qqχ n pξ 3 qdξ 1 dξ 2 À } S} 2 L 8 }w n } Xnptq ˆ1 t 2{3 }ξχ n } L 8 }χ n } 2 L 1 `1 t 1{3 }χ n } L 1 }χ n } L 8 }ξχ n } L 1 À 1 t 2{3 }xξyχ n } L 8 }χ n } L 1 } S} 2 L 8 }w n } Xnptq .
Hence, after integration in time,

› › › › ż t 0 N r Sn , Sn , wn sps, ξqds › › › › L 8 À t 1{3 }w n } Xnpr0,tsq . (3.3) For the L 2 term, we have ˇˇχ ´1{2 n B ξ pξχ n pξqqN r Sn , Sn , wn spt, ξq ˇÀ |B ξ pξχ 1{2 n pξqq|} S} 2 L 8 } wn ptqχ ´1 n } L 8 ij χ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 qχ n pξ 3 qdξ 1 dξ 2 À |B ξ pξχ 1{2 n pξqq| 1 t 1{3 }χ n } L 8 }χ n } 2 L 1 } S} 2 L 8 }w n } Xnptq , ˇˇˇˇˇˇξ χ 1{2 n pξq ij ξ1`ξ2`ξ3"ξ tpB ξ Φq e itΦ Sn pt, ξ 1 q Sn pt, ξ 2 q wn pt, ξ 3 qdξ 1 dξ 2 ˇˇˇˇˇÀ } S} 2 L 8 } wn ptqχ ´1 n } L 8 |ξχ 1{2 n pξq| ij tpξ 2 1 `ξ2 2 `ξ2 3 qχ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 qχpξ 3 qdξ 1 dξ 2 À |ξχ 1{2 n pξq|}xξy 2 χ n } L 8 }χ n } 2 L 1 } S} 2 L 8 }w n } Xnptq , ˇˇξχ 1{2 n pξqN r Sn , Sn , B ξ wn spt, ξq ˇÀ |ξχ 1{2 n pξq|} S} 2 L 8 ij χ n pt 1{3 ξ 1 qχ n pt 1{3 ξ 2 q|B ξ wn pt, ξ 3 q|dξ 1 dξ 2 À |ξχ 1{2 n pξq|} S} 2 L 8 }B ξ wn χ ´1{2 n } L 2 ˆij χ 2 n pt 1{3 ξ 1 qχ n pξ 3 qdξ 1 ˙1{2 χ n pt 1{3 ξ 2 qdξ 2 À |ξχ 1{2 n pξq|} S} 2 L 8 }w n } Xnptq 1 t 1{3 }χ n } L 2 }}χ n } L 8 }χ n } L 1 . Therefore, taking the L 2 norm in ξ gives › › ›χ ´1{2 n B ξ ´χn N r Sn , Sn , wn sptq ¯› › › L 2 À t ´1{3 } S} 2 L 8 }w n } Xnptq .
Integrating in time, we get, for t P r0, 1s,

› › › › χ ´1{2 n B ξ ˆχn ż t 0 N r Sn , Sn , zspsqds ˙› › › › L 2 À t 2{3 } S} 2 L 8 }w n } Xnpr0,tsq ,
and with (3.3), we obtain

› › › › χ n ż t 0 N r Sn , Sn , wn sps, ξqds › › › › Xnptq À t 1{3 } S} 2 L 8 }w n } Xnpr0,tsq .
All the remaining terms can be estimated similarly (and enjoy in fact better bounds), and the difference estimates can be performed in the same way as well. Choosing T sufficently small, Φ becomes a contraction over X n pr0, T sq. This concludes the proof. □ In order to take the limit n Ñ 8, one must prove that the maximal existence time T n does not tend to 0 and also that the approximations remain bounded in E . To do this, we actually prove a priori bounds in the stronger spaces X n , thus tackling both problems at once. The methodology to prove this follows the heuristics presented in the introduction.

In the remainder of this work, we now assume that, for some small δ to be fixed later on, (1.8) holds: ~z~`}S} E pp0,`8qq ă δ. In order to bound B ξ wn , the scaling operator I comes into play: we recall its definition given in (1.4) x Iupt, ξq " ie itξ 3 ˆBξ ũ ´3t ξ B t ũ˙.

Proposition 15. There exist δ 0 ą 0 such that, given δ P p0, δ 0 s, the solution w n of Proposition 13 satisfies T n ą 1 and

(3.4) @t P p0, 1s, }w n ptq} E ptq À δ 3 t 1{9 and }w n ptq} L 2 À δ 3 t 1{18 .

Moreover, B ξ wn ptq P L 2 pRq, B t wn ptq P L 8 pRq and @t P p0, 1s, }B ξ wn ptq} L 2 À δ 3 t 5{18 and }B t wn ptq} L 8 À δ 3 t 8{9 . (3.5)

Proof. We perform a bootstrap argument. Fix δ 0 P p0, 1q and A " Apδ 0 q ě 1 to be chosen later on. For now, we only require Aδ 2 0 ď 1. We let δ P p0, δ 0 s. Define, for any t P p0, T n q, f n ptq " t ´1{9 ´} wn ptqχ ´1 n } L 8 `t´1{6 }B ξ wn ptqχ ´1{2 n } L 2 ānd τ n " sup ␣ t P r0, minp1, T n qq : @s P p0, ts, f n psq ď Aδ 3 ( . In the following argument, the implicit constants in À do not depend on δ or A.

From Proposition 13, f n is continuous on p0, T n q and f n ptq À t 1{18 for t P r0, T 0 n s, so that f n ptq Ñ 0 as t Ñ 0 `. In particular, τ n ą 0.

Step 1. Improved estimates on the nonlinear term. First observe that (3.6) @t P p0, τ n q, }w n ptq} E ptq ď t 1{9 f n ptq ď Aδ 3 t 1{9 .

Using the estimates from Lemma 12, for all t P r0, τ n s,

}u 3 n ´S3 n } L 2 À ´}w n } 2 L 6 `}S n } 2 L 6 `}e ´tB 3 x z} 2 L 6 ¯´}w n } L 6 `}e ´tB 3 x z} L 6 À ˆ1 t 5{9 }w n ptq} 2 E ptq `1 t 5{9 }S n ptq} 2 E ptq `~z~2 ˙ˆ1 t 5{18 }w n ptq} E ptq `~z~À 1 t 5{9 ´pAδ 3 q 2 t 2{9 `δ2 ¯ˆAδ 3 t 1{9 t 5{18 `δ˙.
Recall that Aδ 2 ď 1 so that Aδ 3 t 1{9 ď δ, and so (3.7) @t P r0, τ n q, }u 3

n ´S3 n } L 2 À Aδ 5 t 13{18 `δ3 t 5{9 .
Let emphasize the gain of t 1{9 with respect to the rough estimate of Lemma 12

}v 3 } L 2 " }v} 3 L 6 À }v} 3 E ptq t 5{6 .
Step 2. A priori estimate for Iw n . In this step, we prove that (3.8) @t P r0, τ n q, › › › y

Iw n ptqχ ´1{2 n › › › L 2 À δ 3 t 5{18 ´t1{18 `Aδ 2 ¯.
Let us notice that from the equation for wn and Lemma 12, given

t ă T 0 n , › › › y Iw n ptqχ ´1{2 n › › › L 2 ď }B ξ wn ptqχ ´1{2 n } L 2 `3t}χ 1{2 n F pu 3 n ´S3 n q} L 2 À }B ξ wn ptqχ ´1{2 n } L 2 `3t}u 3 n ´S3 n } L 2 À }w n ptq} Xnptq
`t1{6 pδ 3 `}w n ptq} 3 Xnptq q À t 1{3 `t1{6 pδ 3 `tq. We conclude that (3.9) @γ ă 1{6,

› › › y Iw n ptqχ ´1{2 n › › › L 2
" opt γ q as t Ñ 0

`.

Now that we have a control near t " 0, we aim to control Iw n for 0 ă t ă 1. Denote

y Π 1 n upξq " χ 1 n pξqûpξq. A simple computation yields pB t `B3 x qIw n " 3Π n pu 2 n pIu n q x ´S2 n pIS n q x q `Π1 n pu 3 n ´S3 n q x " 3Π n pu 2
n pIw n q x q `3Π n pu 2 n pIe ´tB 3 x zq x q `Π1 n pu 3 n ´S3 n q x where we used the decisive property pIS n q x " 0. Equivalently, on Fourier side it writes

B t y Iw n ´iξ 3 y Iw n " 3χ n F `u2 n pIw n q x ˘`3χ n F ´u2 n pIe ´tB 3 x zq x ¯`iξχ 1 n F `u3 n ´S3 n
We now multiply by y Iw n χ ´1 n , integrate on R and take the real part. Due to the jump of ũn at ξ " 0, an extra care should be taken in the computations: one should first integrate over Rzp´ε, εq and let ϵ Ñ 0. This procedure shows that no unexpected term occur, we refer to [6, Lemma 12] for full details. This justifies the following computations:

1 2 d dt ż | y Iw n | 2 χ ´1 n dξ " 3 ż F pu 2 n pIw n q x q y Iw n dξ `3 ż F pu 2 n pIe ´tB 3 x zq x q y Iw n dξ ´Im ż ξ χ 1 n χ n F pu 3 n ´S3 n q y Iw n dξ.
Now by Plancherel and integration by parts,

ż F pu 2 n pIw n q x q y Iw n dξ " 1 2π ż u 2 n pIw n q x pIw n qdx " ´1 2π ż pu n q x u n pIw n q 2 dx ˇˇˇż F pu 2 n pIw n q x q y Iw n dξ ˇˇˇÀ δ 2 t }Iw n } 2 L 2 À δ 2 t } y Iw n } 2 L 2 , ˇˇˇż F pu 2 n pIe ´tB 3 x zq x q y Iw n dξ ˇˇˇď }u 2 n pIe ´tB 3 x zq x } L 2 } y Iw n } L 2 À }u n } 2 L 8 }pIe ´tB 3 x zq x } L 2 } y Iw n } L 2 À δ 2 t 2{3 }B ξ ẑ} L 2 } y Iw n } L 2 À δ 3 t 2{3 } y Iw n } L 2 , ˇˇˇż ξ χ 1 n χ n F pu 3 ´S3 n q y Iw n dξ ˇˇˇ" 2 ˇˇˇż ξpχ 1{2 n q 1 F pu 3 n ´S3 n q y Iw n χ ´1{2 n dξ ˇˇˇ, ď }ξpχ 1{2 n q 1 } L 8 }u 3 n ´S3 n } L 2 } y Iw n χ ´1{2 n } L 2 À ˆAδ 5 t 13{18 `δ3 t 5{9 ˙} y Iw n χ ´1{2 n } L 2 .
(We also used (3.7) for the last estimate). As 0 ă χ n ă 1, } y

Iw n } L 2 ď } y Iw n χ ´1{2 n } L 2 . Therefore, we obtain, for t ă τ n , 1 2 d dt › › › y Iw n ptqχ ´1{2 n › › › 2 L 2 À δ 2 t › › › y Iw n ptqχ ´1{2 n › › › 2 L 2 `ˆδ 3 t 2{3 `ˆAδ 5 t 13{18 `δ3 t 5{9 ˙˙› › › y Iw n ptqχ ´1{2 n › › › L 2 .
This implies that, for some universal constant C, ˇˇˇd dt

´t´2Cδ 2 › › › y Iw n ptqχ ´1{2 n › › › L 2 ¯ˇˇˇď 2Ct ´2Cδ 2 ˆδ3 t 2{3 `Aδ 5 t 13{18 ˙.
Now, for δ ă δ 0 small enough, 2Cδ 2 ă 5{18 so that the right hand side is integrable in time and due to (3.9),

t ´2Cδ 2 › › › y Iw n ptqχ ´1{2 n › › › L 2 Ñ 0 as t Ñ 0 `.
Hence, we can integrate the above estimate on r0, ts and get

@t P r0, τ n q, › › › y Iw n ptqχ ´1{2 n › › › L 2 À δ 3 t 5{18 ´t1{18 `Aδ 2 ¯,
which is (3.8).

Step 3. A priori estimate for B t w n . We claim that for all n P N,

@t P p0, T n q, › › B t wn ptqχ ´1 n › › L 8 À 1 t }w n ptq} E ptq ´}w n ptq} 2 E ptq `}S} 2 E p1q (3.10) `1 t 8{9 ~z~´}w n ptq} 2 E ptq `}S} 2 E p1q `~z~2 ¯.
Indeed, we have B t wn ptqχ ´1 n " N r Sn `z `w n sptq ´N r Sn sptq.

For the nonlinear terms with at least one z, we use Lemma 9 which gives the pointwise (in ξ) bound

1 t 8{9 p}S} E p1q `}w n ptq} E ptq q 2 ~z~`1 t 2{3 p}S} E p1q `}w n ptq} E ptq q~z~2 `~z~3.
The remaining terms are N r Sn , Sn , wn s, N r Sn , wn , wn s and N r wn , wn , wn s (they all have at least one w n ). Using Lemma 8, they are bounded pointwise by

1 t p}S} E p1q `}w n ptq} E ptq q 2 }w n } E ptq .
This gives (3.10). If we restrict to the interval p0, τ n q, using (3.6), and Aδ 2 ď 1, this rewrites simply

(3.11) @t P p0, t n q, › › B t wn ptqχ ´1 n › › L 8 À δ 3 t 8{9 .
Step 4. Bound on f n ptq. Let us bound separately the two terms of f n . First, after integration in time of (3.11) (recall that } wn ptqχ ´1 n } L 8 Ñ 0 as t Ñ 0 `), we get

@t P r0, τ n s, } wn ptqχ ´1 n } L 8 À δ 3 t 1{9 . (3.12)
Second, in view of the definition of I, we can write

B ξ wn " ´ie itξ 3 y Iw n `3t ξ B t wn " ´ie itξ 3 y Iw n `3te ´itξ 3 χ n F pu 3 n ´S3 n q,
and so, using (3.8) and (3.7), we infer

› › ›Bξ wn χ ´1{2 n › › › L 2 ď › › › y Iw n ptqχ ´1{2 n › › › L 2 `3t}u 3 n ´S3 n } L 2 À δ 3 t 5{18 pt 1{18 `Aδ 2 q `Aδ 5 t 5{18 `δ3 t 4{9 À δ 3 t 1{3 `Aδ 5 t 5{18 . (3.13)
Estimates (3.12) and (3.13) give that, for all t P r0, τ n s,

f n ptq " t ´1{9 ´} wn ptqχ ´1 n } L 8 `t´1{6 }B ξ wn χ ´1{2 n } L 2 À t ´1{9 ´δ3 t 1{9 `t´1{6 pδ 3 t 1{3 `Aδ 5 t 5{18 q ¯À δ 3 `Aδ 5 .
Let us remark that both terms in f n contribute (the leading powers of t cancel for both). Since Aδ 2 ď 1, there exists a universal constant M such that (3.14) @t P r0, τ n s, f n ptq ď M δ 3 .

Step 5. Closing the bootstrap. Choosing

δ 0 " min # 1 2 ? M , c 5 36C 
+ and then A " 1{δ 2 0 ,

Step 2 and (3.14) imply that

@t P r0, τ n s, f n ptq ď A 2 δ 3 .
From a continuity argument, we necessarily have τ n " minp1, T n q. But if T n ď 1, then we also have As }w n ptq} E ptq ď t 1{9 f n ptq, this gives the first part of (3.4). Also notice that }B x wn ptq} L 2 ď t 5{18 f n ptq, and in view of (3.11), we also obtain both estimates of (3.5).

Step 6. L 2 bound on w n . Finally, we will prove that (3.15) } ŵn ptqχ ´1{2 n } L 2 À Aδ 6 t 1{9 , @t P r0, 1s.

Notice that, for each n, } ŵn χ ´1} L 8 À Aδ 3 t 1{9 , so that one has for free that w n χ ´1{2 P L 8 pr0, 1s, L 2 q and for all t P r0, 1s 

} ŵn ptqχ ´1{2 n } L 2 À } ŵn ptqχ ´1} L 8 }χ 1{2 n } L 2 À n Aδ 3 t 1{9 . ( 3 

˘.

To see this, we expand the terms (made of 4 factors) and split them depending on whether w n occurs at most once or at least twice. In the following discussion, the factors v 1 , v 2 stand for either one of w n , S n or e ´tB 3 x z. For terms where w n occur at most once, e ´tB 3

x z also appear, and they all can take the form ż v 1 v 2 pe ´tB } L 2 " Opt 1{9 q, a Gronwall argument as in Step 2 gives (3.15). By Plancherel, the L 2 bound in (3.4) follows. □

Proof of the main result

Proposition 16 (Uniqueness). There exists a universal constant K ą 0 such that, given η ą δ 2 {K 2 and T ą 0, there exists at most one solution to (1.7) satisfying @t P p0, T s, }wptq} E ptq ď K ? η and }wptq} L 2 ď t η .

Proof. Suppose w 1 , w 2 are two solutions in the above conditions and set w " w 1 ẃ2 . Then B t w `B3

x w " pu 3 1 ´u3 2 q x , u j ptq " Sptq `e´tB 3

x z `wj ptq, j " 1, 2.

Observe that }u 1 ptq} E ptq , }u 2 ptq} E ptq À δ À K ? η.

Define A " sup tPr0,T s t ´η }wptq} L 2 (which is finite by assumption). Direct integration and Lemma 12 give that for all t P r0, T s, }wptq} Dividing by t 2η and taking the supremum in t P r0, T s, we get A 2 ď CK 2 2 A 2 , which implies A " 0 for K 2 ă 2{C. □ Remark 17. In [START_REF] Correia | Self-similar dynamics for the modified Korteweg-de Vries equation[END_REF], forward uniqueness of solutions in E was obtained for strictly positive times. The argument goes through an estimate for the L 2 norm on positive half-lines (which is finite for elements in E ).The bounds given by Lemma 12 give a behavior of 1{t, which must then be integrated in p0, T q. This can be compensated if one assumes the polynomial growth }wptq} L 2 x ď t η . In conclusion, this strategy can be used to provide an alternate proof of Proposition 16 but not to further improve it.

Proof of Theorem 6. Consider the approximations w n defined in Proposition 13. By Proposition 15, these solutions are defined on r0, 1s and (4.1)

}w n ptq} E ptq À δ 3 t 1{9 , }w n ptq} L 2 À δ 3 t 1{18 .

Notice that we also have, for t P p0, 1s, }B ξ wn ptq} L 2 À δ 3 t 5{18 and }B t wn ptq} L 8 À δ 3 t 8{9 , so that, by Sobolev embedding, (4.2) @t P r0, 1s, @ξ 1 , ξ 2 P R, | wn pt, ξ 1 q ´w n pt, ξ 2 q| À δ 3 t 5{18 |ξ 1 ´ξ2 | 1{2 , and, (4.3) @t 1 , t 2 P r0, 1s, @ξ P R, | wn pt 1 , ξq ´w n pt 2 , ξq| À δ 3 |t 1{9 1 ´t1{9 2 |. Consequently, for any R ą 0, p wn q nPN is equibounded and equicontinuous on r0, 1sr ´R, Rs. By Ascoli-Àrzela theorem, wn Ñ w uniformly in r0, T s ˆr´R, Rs and w satisfies (4.1), (4.2) and (4.3). In particular, w P E pp0, 1qqXL 8 pp0, 1q, L 2 pRqq and bound (1.9) holds. We now prove that w solves (1.7) in the sense of distributions. Since w n is uniformly bounded in E pp0, 1qq, Lemma 12 implies that w n is also equibounded and equicontinuous on rε, 1s ˆr´R, Rs for any ε ą 0 and R ą 0. Thus w n Ñ w uniformly in rε, 1s ˆr´R, Rs.

Since

|w n pt, xq| À 1 t 1{3 xx{t 1{3 y 1{4 , the uniform convergence implies that w n Ñ w in L 8 ppε, 1q, L 6 pRqq. The exact same reasoning also yields S n Ñ S in L 8 ppε, 1q, L 6 pRqq. These convergences can now be used to conclude that pu 3 n

´S3

n q x Ñ pu 3 ´S3 q x in D 1 ppε, 1q ˆRq and that w satisfies (1.7) in the distributional sense on p0, 1q.

To extend the solution up to t " `8, observe that @t P p0, 1s, }uptq} E ptq ď }Sptq} E ptq `}e ´tB 3

x z} E ptq `Cδ 3 t 1{9 ď 3δ.

Thus the global existence result of [6, Theorem 2] can be applied (at t " 1{2) to extend u for all positive times. Finally, Proposition 16 with η " 1{18 gives the uniqueness property (decreasing the value of δ 0 further, if necessary). □

1 . Introduction 1 . 1 .

 111 Description of the problem and motivation. We consider the modified Korteweg-de Vries equation on the whole line (mKdV)

  |ξ 2 `ξ3 ´ξ| " |ξ 1 | ď |ξ|{10 so that |ξ 2 `ξ3 | ě 9|ξ|{10. On the other side, ||ξ 2 | ´|ξ 3 || ď a ď |ξ|{10 is small relative to |ξ 2 `ξ3 |: this implies that |ξ 2 ´ξ3 | " ||ξ 2 | ´|ξ 3 || ď |ξ|{10, and we infer |ξ 2 ´ξ{2|, |ξ 3 ´ξ{2| ď |ξ|{10.

  |tξ 3 2 | ě 10 9 and |ξ ´ξ1 | ě |ξ 2 | 2{3 u. (ξ 2 is now playing the role of ξ in Case B).

  sup tPr0,Tnq }w n ptq} Xnptq ď sup tPr0,Tnq f n ptq ď Aδ 3 , which contradicts the maximality of T n in Proposition 13. Hence T n ą 1 and τ n " 1.

  3 qdξ 1 dξ 2

	"	ż	e itΨ pξ ´ηqṽpξ ´ηq ˆż e 3itην 2 {4	S ˆt1{3 η	`ν 2	˙S ˆt1{3 η	´ν 2	˙dν ˙dη
	"		1 t 1{3	ż	e itΨ ξ 3 ṽpξ 3 q ˆż e 3it 1{3 ηµ 2 {4	2 S ˆt1{3 η	`µ	˙S	2 ˆt1{3 η	´µ	˙dµ ˙dη
	":	1 t 1{3	ż	e itΨ pξ ´ηqṽpξ ´ηqKpS, Sqpt 1{3 ηqdη
	where the function				
					KpS, Sqpσq :"	ż	e 3iσµ 2 {4	S ˆσ	`µ 2	˙S	ˆσ	´µ 2	˙dµ
	has been studied in [5, Lemma 14] and satisfies the bounds
	|KpS, Sqpt 1{3 ηq| À	}S} 2 E ptq
	As									
							BΨ Bη	"	´3 4	pη ´2ξqp3η ´2ξq,

t 1{6 |η| 1{2 , ˇˇBη ´KpS, Sqpt 1{3 ηq ¯ˇˇÀ }S} 2 E ptq t 1{6 |η| 3{2 .

  .[START_REF] Hayashi | Large time behavior of solutions for the modified Korteweg-de Vries equation[END_REF])SinceB t ŵn ´iξ 3 ŵn " iξχ n F pu 3 n ´S3 n q, multiplying by ŵn χ ´1 n , integrating in ξ and taking the real part´S3 n qB x w n dx ˇˇˇÀ 1 t ´}w n ptq} E ptq `}S n } 2 E p1q `}e ´tB 3 x z} 2 E ptq (3.17) ¨`}w n } 2 L 2 `}z} L 1 }w n ptq} E ptq

	1 2	d dt	ż	| ŵn ptq| 2 χ ´1 n dξ " Re	ż	iξF ppu 3
	We claim that		
			ˇˇˇż pu 3 n		

n

´S3

n q ŵn dξ " ´ż pu 3 n ´S3 n qB x w n dx.

  3 x zqB x w n " ż F pv 1 v 2 B x w n qF pe ´tB 3 x zqdξ, which is bounded by}F pv 1 v 2 B x w n q} L 8 }F pe ´tB 3 x zq} L 1 " }N rṽ 1 , ṽ2 , iξ wn sptq} L 8 }ẑ} L 1 À 1 t }v 1 ptq} E ptq }v 2 ptq} E ptq }w n ptq} E ptq }ẑ} L 1 ,where we used Lemma 10 in a crucial way.For terms where w n occur at least twice, by integration by parts, we see that they can all take the form ż B x pv 1 v 2 qpw n q 2 dx and so, they are bounded by}B x pv 1 v 2 qptq} L 8 }w n ptq} 2 L 2 À 1 t }v 1 ptq} E ptq }v 2 ptq} E ptq }w n ptq} 2 L 2 .This proves (3.17).Since}w n } L 2 À } ŵn χ ´1{2 n } L 2 ,and, by Step 5, }w n ptq} E ptq À Aδ 3 t 1{9 (valid for t P r0, 1s), (3.17) implies that

	ˇˇˇd dt	} ŵn ptqχ ´1{2 n	} 2 L 2 ˇˇˇÀ δ 2 t	´} ŵn ptqχ ´1{2 n	} 2 L 2 `Aδ 4 t 1{9	¯.

Recalling that from (3.16), } ŵn ptqχ ´1{2 n
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