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Abstract
Paleoceanographical reconstructions are often based on microfossil geochemical analy-
ses. Coccoliths are the most ancient, abundant and continuous record of pelagic photic
zone calcite producer organisms. Hence, they could be valuable substrates for geochem-
ically based paleoenvironmental reconstructions but only Sr/Ca is exploited even if it
remains poorly understood. For example, some murolith coccoliths species have very
high Sr/Ca compared to the common 1-4 mmol/mol recorded in placolith coccoliths. In
this study, we analyzed the elemental composition of theMiddle Jurassic murolith Crepi-
dolithus crassus by synchrotron-based nanoXRF (X-ray Fluorescence Spectroscopy) map-
ping focusing on Sr/Ca and compared the record to two placolith species, namelyWatz-
naueria contracta and Discorhabdus striatus. InC. crassus, Sr/Ca is more than ten times
higher than in both placoliths and seems higher in the proximal cycle. By comparison
with the placoliths analyzed in the same analytical set-up and from the same sample, we
exclude the impact of the diagenesis and seawater Sr/Ca to explain the high Sr/Ca in
C. crassus. Based on comparisons to Pontosphaera discopora and Scyphosphaera apsteinii
which also have high Sr/Ca, it seemsmore likely that high Sr/Ca in C. crassus is either due
to the vertical elongation of the R-units of the proximal cycle or related to the action of
the special polysaccharide controlling the growth of those vertically elongated R-units
that may have affinities to Sr2+. In order to apply the Sr/Ca proxy to muroliths, further
investigations are needed on cultured coccoliths.
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1. Introduction 

Paleoceanography partly relies on the application of geochemical proxies – i.e. chemical changes of fossils or 
sediments composition induced by chemical, physical or biological parameters changing through time. Many 
geochemical proxies are based on elemental ratios in planktic or benthic foraminifera e.g. Mg/Ca (temperature; 
Elderfield & Ganssen, 2000), B/Ca (pH, Yu et al., 2007), U/Ca (carbonate saturation, Raitzsch et al., 2011), Cd/Ca 
(paleonutrient, Rickaby & Elderfield, 1999). Conversely, calcareous nannofossils – the micrometric platelets called 
coccoliths produced by the photosynthetic unicellular algae called coccolithophore and other micrometric calcite 
incertae sedis – are rarely used for geochemistry in paleoceanography. The rarity of nannofossil-based geochemical 
paleoproxies is linked to the very small size of calcareous nannofossils – i.e. ~1-15 µm – increasing the difficulty to 
isolate them from the rest of the sediment (Stoll & Ziveri, 2002; Stoll & Shimizu, 2009; Minoletti et al., 2009; 
Suchéras-Marx et al., 2016a). The only proxy commonly based on the calcareous nannofossil chemical composition 
is the Sr/Ca ratio used as a paleoproductivity proxy (Stoll & Schrag, 2000). 

The most important factors influencing Sr/Ca ratios in biogenic carbonates is outlined in Ullmann et al. (2013) 
and are i) the composition of the liquid from which they are precipitated (modern oceans ~8 mmol/mol (Lebrato et 
al., 2020); Middle Jurassic ~5 mmol/mol (Ullmann et al., 2013), ii) the calcium carbonate polymorph, iii) the species 
specific fractionation of the Sr/Ca ratio, iv) metabolic controls on this fractionation factor and v) water temperature. 
The Sr/Ca ratio in calcareous nannofossils is a relative proxy which has no quantitative calibration. The process 
underlying the positive relation between Sr/Ca and productivity stands on the observation that more Sr is 
incorporated in calcite with high calcification rates which positively correlates with high cell physiological rates. This 
proxy is also species-dependent or, at least, group-dependent (Stoll & Ziveri, 2004). The latter is discussed, the 
species-dependency may be related to different calcification physiologies (Payne et al., 2008; Suchéras-Marx et al., 
2016b) or to different partitioning coefficients in relation to different ultrastructure organizations and more 
precisely between V- and R- crystals in coccoliths (Young et al., 1992) theoretically possible (Paquette & Reeder, 
1995) but still not observed (Stoll & Ziveri, 2004).  

Recently, analyses on the cultured murolith Scyphosphaera apsteinii showed Sr/Ca ~22 mmol/mol, an order of 
magnitude higher than the common ~1-4 mmol/mol measured in placoliths such as Gephyrocapsa oceanica, 
Gephyrocapsa huxleyi, Calcidiscus leptoporus, Coccolithus pelagicus or Helicosphaera carteri (Hermoso et al., 2017; 
Stoll et al., 2007). Hermoso et al. (2017) also highlight observations of high Sr/Ca in fossil muroliths Pontosphaera 
(Pliocene) and Crepidolithus (Lower Jurassic) but points out that Scyphosphaera, Pontosphaera and Crepidolithus 
have different crystal organizations and growth directions and thus crystal organization cannot explain murolith 
high Sr/Ca. 

The present study aims to map Sr and Ca in Crepidolithus crassus and to compare the calculated Sr/Ca with the 
crystal growth directions in order to explain the murolith Sr anomaly. This study will discuss then the range of 
applicability and limitation of the Sr/Ca proxy in coccoliths. 

2. Material and methods 

1.1 Material 
The coccolith analyzed in this study comes from sample CM35, a marlstone from the lower Bajocian (Middle 

Jurassic) of Cabo Mondego (Portugal; section in Suchéras-Marx et al., 2012). This section was selected because it is 
the Aalenian-Bajocian boundary GSSP (Pavia & Enay, 1997). A total of three coccoliths from three different species 
were studied, namely the murolith Crepidolithus crassus and two placoliths Discorhabdus striatus and Watznaueria 
contracta. 

1.2 Sample preparation 
The three coccoliths were picked using Suchéras-Marx et al. (2016a) protocol which consist in a hand-picking 

procedure. Rock powder is smeared on a cover slide in order isolate particles from each other. Coccoliths are then 
observed with an optical microscope Leica DM750P with a x200 magnification (x20 dry objective) under cross-
polarized light. Coccoliths are identified with a x400 magnification (x40 dry objective) and a λ/4 gypsum filter may 
be used if further optical criteria of recognition are needed. Once picked, each coccolith is mounted on 500 nm-
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thick silicon nitride (Si3N4) TEM windows (Silson Ltd. Southam, UK) using a drop of ethanol to detach the coccolith 
from the needle. No other chemical or physical treatment were made. 

1.3 NanoXRF 17 keV mapping at ID22NI 
The XRF analyses were performed at beamline ID22NI (currently ID16b) at the European Synchrotron Radiation 

Facility (ESRF), Grenoble, France. All three coccoliths were analyzed at an incident X-ray beam energy of 17 keV to 
ensure the measure of Sr (Kα = 14.165 keV). The beam spot was focused by an ESRF custom-made Kirkpatrick-Baez 
double multilayer mirror device to a 100 nm x 100 nm size. Each spot was analyzed for 2 s. The detectors were high-
count rate twin SII™ vortex SDD (silicon drift diode) detectors, capable of counting up to 200 kcps with no saturation 
and no peak shift or FWHM broadening, when operated below 10% dead time. The sample is orthogonal to the 
incident beam and the detector is placed at a 15° angle relative to the sample surface. The three coccoliths were 
mapped. Each pixel corresponds to a spot of analysis and spots are adjacent provinding a full map of each coccolith. 
Crepidolithus crassus map is 136 x 120 pixels large, D. striatus is 60 x 34 pixels large and W. contracta map is 100 x 
74 pixels large. The XRF analysis being penetrative, the element counting sum up the membrane, the coccolith and 
the air surrounding the coccolith. The contribution of the air is negligible, and the contribution of the membranes 
are estimated in Fig. 1 based on quantification in zones without the coccolith in the maps. All calculations were 
made using PyMCA 5.1.1. (Solé et al., 2007). This beam line set-up, analysis procedure and calculation fit are the 
same as in Suchéras-Marx et al. (2016b). 

3. Results 

1.4 XRF spectrum 
The three spectra shown in Fig. 1 represent the mean spectrum for each coccolith. Because XRF analysis is 

penetrative, the spectra also record the membrane holding the coccolith and thus the spectrum of zones with only 
the membrane is also presented. The fit presented for each spectrum is the modeled reconstruction used for the 
calculation and the map reconstruction (cps and mmol/mol). In D. striatus and W. contracta, 14 elements are 
recorded namely: S, Cl, Ar, K, Ca, Mn, Fe, Cu, Zn, Br, Kr, Rb, Sr and Pb whereas in C. crassus only 12 are recorded 
(same elements except Kr and Rb) (Fig. 1). The rare gases Ar and Kr are present in the air in the experimental hutch. 
The contribution of the membrane is lower than 1% for Ca and Sr and thus is negligible for the Sr/Ca calculation. 
Nevertheless, membrane contribution was excluded in Table 1. Those results are similar to already published 
W. britannica and D. striatus (Suchéras-Marx et al., 2016b; Suchéras-Marx et al., 2021).  

1.5 Element and ratio maps 
For the three coccoliths, element maps of Ca, Mn and Sr are presented in Fig. 2 (cps) and the three maps 

together in color in Supplementary Figure 1. Direct comparison of Ca and Sr is possible in both placoliths whereas 
Mn is quite different although crystal organization is also observed in this element map. In W. contracta, the Ca 
maps are precise enough to recognize the shield crystal orientations, especially the outer radial growth from the 
tube ring. The tube structures are difficult to recognize but still, crystals can be seen in the rim around the central 
area. In the Sr map of the same species, the outer rim with radial crystals of the shields are easily observed too. A 
ring with slightly more Sr marks a boundary between the outer rim and the inner rim structures. These inner rim 
structures are composed of two concentric rings of crystal assemblages. The outermost one may correspond to the 
mid tube elements whereas the innermost one may correspond to the inner tube elements. The mid tube elements 
form a clear rim whereas one shield crystal assemblage is nicely depicted in the Mn map (Suchéras-Marx et al., 
2016b). In D. striatus, the Sr seems less abundant in the tube units in comparison to the shield elements. For the 
same species, the Mn is scarce in the central area and the tube structures but more abundant in the shields. 
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Figure 1. Mean XRF spectra of C. crassus, D. striatus and W. contracta coccoliths and associated membrane 
spectra. Capile-up correspond to the quantification of two Ca energy summed arriving at the same time in the 

captor. Ar is the same in coccolith and membrane because it corresponds to the air in the experimental hutch. In 
the three coccoliths, membrane contribution in Ca, Fe, Cu and Zn and in Sr in C. crassus is observed. However, it is 
always two order of magnitude below the concentration in the coccolith thus membrane contribution represents 

less than 1% in those elements. 
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Figure 2. Ca, Mn and Sr maps (cps) of C. crassus, D. striatus and W. contracta. 

Conversely to the placoliths, in C. crassus, the Ca and Sr maps are slightly different. In Sr maps, the central area 
is easily visible. Around the central area, an inner concentric rim of more abundant Sr is observed. A concentric 
outer rim up to the lateral border is observed with Sr concentrated in radial rays. In the Ca map, the outer rim is 
also observed in radial structures but the inner rim is distinguished from the outer only by a discontinuity. Finally, 
another discontinuity separates the central area from the inner rim.  

element ratio (mmol/mol) Mn/Ca Sr/Ca Mn/Ca Sr/Ca
Crepidolithus crassus 0,75 9,82 0,92 17,70
Discorhabdus striatus 0,23 0,38 0,09 0,31
Watznaueria contracta 1,10 0,40 0,58 0,45

Mean whole coccolith Selected zone

Table 1. Mn/Ca and Sr/Ca (mmol/mol) of whole coccoliths of C. crassus, D. striatus and W. contracta or a selected 
region (see Supplementary Figure 2), depleted in Mn and Fe. 
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For all species, the Sr/Ca maps have the same patterns as Sr and similarly, the Mn/Ca maps have the same 
patterns as Mn (Fig. 3). In C. crassus then, the Sr/Ca is higher in a ring around the central area and in radially oriented 
crystals in the outer ring. In the most concentrated area, the Sr/Ca ranges between 10 and 100 mmol/mol and tends 
to be two orders of magnitude higher than in W. contracta and D. striatus. Finally, the area with higher Sr/Ca is 
neither enriched nor depleted in Mn/Ca. 

4. Discussion 

A previous study already discussed the Sr/Ca signal in Watznaueria (Suchéras-Marx et al., 2016b), discussion 
that likely applies to Discorhabdus. The presence of other elements such as Cl, Fe or Zn won’t be discussed here to 
focus on Sr/Ca. Nevertheless, according to Suchéras-Marx et al. (2016b) Cl and S may be incorporated in the 
coccolith during coccolithogenesis whereas K, Fe, Cu, Zn, Br and Rb are incorporated during diagenesis or are 
contaminant from clays. Recently, Bottini et al. (2020) studied coccolith from controlled cultures confirmed that V, 
Fe, Ni, Zn and Pb are not incorporated in coccolith calcite ; they also proposed that Cl is a contaminant from 
seawater not present in the coccolith crystal composition. Finally, the presence of Mn is related to overgrowth and 
diagenesis in both Watznaueria and Discorhabdus (Suchéras-Marx et al., 2016b; Suchéras-Marx et al., 2021). The 
three coccoliths are coming from the same sample and were analyzed with the same set-up, thus the very high 
Sr/Ca in C. crassus compared to W. contracta and D. striatus is not related to analytical biases and to seawater 
Sr/Ca. Moreover, the Sr-rich rim in C. crassus is not enriched in Mn and thus the high Sr/Ca in C. crassus is not 
related to diagenesis. Finally, the calculated Sr/Ca for the lower Bajocian seawater ranges between 4 mmol/mol 
and 6.8 mmol/mol (Ullmann et al., 2013) below most modern oceanic environments (Lebrato et al., 2020) and thus 
cannot explain the high Sr/Ca in C. crassus. This result is coherent with a previous study observing that diagenesis 
tends to lower Sr/Ca in calcareous nannofossils (Dedert et al., 2014) as Sr concentrations are relatively high in 
seawater and are low in diagenetic fluids (Veizer, 1974; James & Jones, 2016). 

The Sr anomaly in C. crassus is then related to either i) an ion pump concentrating the Sr2+ inside the cell to 
higher concentrations than other species; ii) the use of a polysaccharide that tends to increase Sr/Ca in comparison 
to other species or iii) the crystal organization and growth directions which are controlled by the cell but the high 
concentration in Sr would then be a by-product of the coccolith construction. Obviously, C. crassus being a fossil 
occurring only during the Jurassic, the cell biology of the species cannot be explored. Nevertheless, this species is a 
large murolith like the extant Pontosphaera discopora and has a similar shape to the extant Scyphosphaera 
apsteinii's lopadolith, both having also higher Sr/Ca than the common placoliths’ signature of 1-4 mmol/mol 
(Hermoso et al., 2017). 

6 Baptiste Suchéras-Marx et al.

Peer Community Journal, Vol. 1 (2021), article e25 https://doi.org/10.24072/pcjournal.20

https://doi.org/10.24072/pcjournal.20


 

Figure 3. Mn/Ca and Sr/Ca (mmol/mol) maps of C. crassus, D. striatus and W. contracta. 

The first two hypotheses (i.e. Sr2+ ion pump or special polysaccharide) could be that high Sr/Ca is inherited in 
descendant species from C. crassus. Both Pontosphaera and Scyphosphaera are very closely related in the 
coccolithophore phylogeny (family Pontosphaeraceae; de Vargas et al., 2007). Crepidolithus is within the family 
Chiastozygaceae (Bown & Young, 1998), whose position is unknown, but could be the ancestor of the family 
Zygodiscaceae and its descendants, the families Pontosphaeraceae and Helicosphaeraceae (Bown & Young, 1998). 
Thus, the high Sr/Ca in both Pontosphaera and Scyphosphaera could be an ancestral character inherited from 
Crepidolithus. This hypothesis may be challenged by Helicosphaera carterii which has a Sr/Ca ratio around 2-
3 mmol/mol (Stoll & Ziveri, 2004) and is from the family Helicosphaeraceae, the sister group of the family 
Pontosphaeraceae (Bown & Young, 1998). The low Sr/Ca in H. carterii could then be a derived character in the 
phylogeny, arguing for a phyletic heritage of Pontosphaera and Scyphosphaera from Crepidolithus or this character 
is ancestral in the family Helicosphaeraceae and the Sr/Ca is not linked to the phylogeny. The current knowledge 
on coccolithophore phylogeny and Sr/Ca cannot exclude one or the other solutions, hence a possible ion pump or 
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polysaccharide could have favored the high Sr/Ca in C. crassus. Recently, Meyer et al. (2020) observed that Sr2+ and 
Ca2+ fluxes in the coccolith vesicle for coccolithogenesis does not solely govern Sr incorporation in the coccolith 
speculating than that possible species-specific polysaccharides dedicated to a peculiar coccolith morphology may 
act in the high Sr/Ca observed in Scyphosphaera. 

The last hypothesis relies on the fact that C. crassus, P. discopora and S. apsteinii have the same shape (i.e. 
murolith and lopadolith) and are very large coccoliths, thus the shape and size may influence the Sr incorporation 
in coccolith calcite. The large size of those coccoliths cannot be the main reason of high Sr/Ca because Coccolithus 
braarudii, a very large placolith, has Sr/Ca equivalent to very small placoliths (i.e. G. huxleyi; Müller et al., 2011). 
The basic crystal organization of heterococcoliths is explained by the V/R model which describes the crystal growth 
in the c-axis whether radially (i.e. R-unit) or vertically (i.e. V-unit) from a primary ring of crystals called protococcolith 
(Young et al., 1992). In C. crassus, the V-units are more developed than the R-units (Fig. 4), whereas in P. discopora 
and S. apsteinii V-units represent only the narrow outer part of the rim wall (Young & Bown, 1997; Fig. 4). According 
to Hermoso et al. (2017), the growth of calcite in the same direction as the c-axis should favor Sr2+ incorporation 
but the R-units in P. discopora and S. apsteinii actually grow longer in the vertical axis hence grow orthogonally to 
the c-axis. In the case of C. crassus, the Sr/Ca is higher around the central area which corresponds to the proximal 
cycle formed by R-units. Counter-intuitively for these three species with thick vertical walls, the Sr is concentrated 
in the R-units. Surprisingly, C. crassus R-units are, like P. discopora and S. apsteinii, more elongated vertically than 
radially, thus the growth seems orthogonal to the c-axis (Fig. 4). Then, either the orthogonal to c-axis growth 
actually favors Sr2+ contradicting Hermoso et al. (2017) or the biomolecule acting in this growth direction has more 
affinities with Sr2+ than the other polysaccharides.  

 

Figure 4. Crystal assembly of Crepidolithus, Pontosphaera and Scyphosphaera. R-units (light grey) and V-units 
(dark grey), derived from Bown & Young, 1998. 

5. Conclusion 

Despite the very high and continuous fossil record of coccoliths since the Late Triassic, the use of geochemical 
analyses on these calcite platelets for paleoenvironmental reconstructions remain rare. So far, coccolith Sr/Ca is 
the only coccolith-based geochemical proxy commonly used in paleoceanography. Yet, there are many unknown 
features about this productivity proxy such as the very high Sr/Ca (i.e. above ~10 mmol/mol) in some species namely 
S. apsteinii, P. discopora and C. crassus. In this study, we compared Sr/Ca of C. crassus to contemporaneous 
placoliths using synchrotron-based nanoXRF and observed that:  

C. crassus has higher Sr/Ca than contemporaneous placoliths; 
C. crassus Sr/Ca map is different than the Mn/Ca map 
Sr/Ca in C. crassus is higher in the proximal cycle than in the distal cycle 
Hence, high C. crassus Sr/Ca, is not linked to diagenetic overgrowth or seawater Sr/Ca but may be related to 

vertical elongation of R-units and/or affinity to Sr2+ of the polysaccharide responsible for the growth of those 
peculiar R-units. The use of murolith’s Sr/Ca in the future may be interesting due to their high values, easier to 
measure and to the large size of these coccoliths, easier to separate from the bulk placoliths. Nevertheless, in order 
to apply the Sr/Ca productivity proxy to muroliths in the future, new culture studies should test the relation 
between Sr incorporation and growth rate. The study of Pontosphaera or Scyphosphaera with 3D nanoXRF will 
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directly link Sr/Ca relative concentration with coccolith crystal organization and thus would clearly improve the 
understanding of the Sr anomaly in those coccoliths. 
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11. Supplementary figures 

 

Supplementary Figure 1. Ca (blue), Sr (red) and Mn (green) maps (free scale cps) of C. crassus, W. contracta 
and D. striatus.  
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Supplementary Figure 2. Selected zone (green) and background (red) used for calculations in Table 1 over 
Sr/Ca (mmol/mol) maps for C. crassus, W. contracta and D. striatus. 
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