
HAL Id: hal-03517074
https://hal.science/hal-03517074v2

Submitted on 2 Mar 2022 (v2), last revised 22 Feb 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mass concentration in rescaled first order integral
functionals

Antonin Monteil, Paul Pegon

To cite this version:
Antonin Monteil, Paul Pegon. Mass concentration in rescaled first order integral functionals. Journal
de l’École polytechnique - Mathématiques, In press. �hal-03517074v2�

https://hal.science/hal-03517074v2
https://hal.archives-ouvertes.fr


MASS CONCENTRATION IN RESCALED FIRST ORDER
INTEGRAL FUNCTIONALS

ANTONIN MONTEIL

Université Paris-Est Créteil Val-de-Marne, LAMA, France

PAUL PEGON

Université Paris-Dauphine, Ceremade & INRIA, Project team Mokaplan, France

Abstract. We consider first order local minimization problems of the form
min
´
RN f(u,∇u) under a mass constraint

´
RN u = m ∈ R. We prove that

the minimal energy function H(m) is always concave on (−∞, 0) and (0,+∞),
and that relevant rescalings of the energy, depending on a small parameter ε,
Γ-converge in the weak topology of measures towards the H-mass, defined for
atomic measures

∑
i
miδxi as

∑
i
H(mi). We also consider space dependent

Lagrangians f(x, u,∇u), which cover the case of space dependent H-masses∑
i
H(xi,mi), and also the case of a family of Lagrangians (fε)ε converging

as ε → 0. The Γ-convergence result holds under mild assumptions on f , and
covers several situations including homogeneous H-masses in any dimension
N ≥ 2 for exponents above a critical threshold, and all concave H-masses in
dimension N = 1. Our result yields in particular the concentration of Cahn-
Hilliard fluids into droplets, and is related to the approximation of branched
transport by elliptic energies.
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Notation

Br(x) open ball of radius r centered at x;
Br open ball Br(0);

M (RN ) set of finite signed Borel measures on RN ;
M+(RN ) set of finite positive Borel measures on RN ;
τxµ Borel measure A 7→ µ(A− x) if µ ∈M (RN ) and x ∈ RN ;
cBµ Borel measure τ−x(µ B) if B is the ball Br(x);

µ`
C ′0−−⇀ µ weak convergence of measures, i.e. weak-? convergence in

duality with the space C0(RN ) of continuous functions vanishing
at infinity;

µ`
C ′b−−⇀ µ narrow convergence of measures, i.e. weak-? convergence in

duality with the space of continuous and bounded function
Cb(RN );

Σ set of increasing maps σ : N→ N;
σ1 � σ2 σ1, σ2 ∈ Σ are such that σ1(Jn,+∞K) ⊆ σ2(N) for some n ∈ N ;
± fixed to either + or − in the whole statement or proof, and

∓ = −(±).

1. Introduction

1.1. Setting. Let N ∈ N∗ and let f : RN ×R×RN → [0,+∞] be a Borel function.
Consider the following energy functional, defined for any fixed x ∈ RN on the set
of finite Borel measures M (RN ) on RN by

(1.1) Exf (u) =


ˆ
RN

f(x, u(y),∇u(y)) dy if u ∈W 1,1
loc (RN ),

+∞ otherwise.
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The minimization of this energy energy under a mass constraint gives rise to the
notion of minimal cost function, defined by
(1.2)

Hf (x,m) := inf
{
Exf (u) : u ∈W 1,1

loc ∩ L
1(RN ) such that

ˆ
RN

u = m

}
∈ [0,+∞].

Note that the minimization can be restricted to non-negative functions when m ≥ 0
and non-positive functions when m ≤ 0, as explained in Remark 2.2.

As a preliminary result, which deserves interest on its own, we will establish the
following:

Theorem 1.1. Let x ∈ RN . The map m 7→ Hf (x,m) is concave non-decreasing
on (0,+∞). If we further assume that f(x, 0, 0) = 0 then Hf (x, 0) = 0 and Hf (x, ·)
is either identically +∞ on (0,+∞) or continuous on [0,+∞) ; it is in particular
lower semicontinuous on R+. A similar statement holds on (−∞, 0].

The proof is very simple and works with no further assumptions on f , as a conse-
quence of Theorem 2.1 and the following Remark 2.2.

Our main purpose is to prove that under some conditions, if (fε)ε>0 is a family
of functions fε : RN ×R×RN → [0,+∞] converging pointwise to f as ε→ 0, then
the rescaled energy functionals Eε, defined for each ε > 0 on M (RN ) by

(1.3) Eε(u) =


ˆ
RN

fε(x, εNu(x), εN+1∇u(x))ε−N dx if u ∈W 1,1
loc (RN ),

+∞ otherwise,

Γ-converge as ε → 0, for the narrow or weak convergence of measures, to the
Hf -mass, defined on M (RN ) by (see Definition 2.3):

MHf (u) :=
ˆ
RN

Hf (x, u({x})) dH0(x)

+
ˆ
RN

H ′f (, 0+) dud+ +
ˆ
RN

H ′f (x, 0−) dud−(x).

where u = ua + ud is the decomposition of u into its atomic part ua and its diffuse
part ud, ud = ud+−ud− is the Jordan decomposition of ud into positive and negative
parts, and H ′f (x, 0±) = limm→0±

Hf (x,m)
|m| ∈ [0,+∞].

This kind of singular limit of integral functionals is reminiscent of several vari-
ational models with physical relevance which have been the object of intensive
mathematical analysis, such as Cahn-Hilliard fluids with concentration on droplets
[BDS96] or on singular interfaces [MM77], toy models for micromagnetism and liq-
uid crystals like Aviles-Giga [AG99] and Landau-de Gennes [BPP12], or Ginzburg-
Landau theory of supraconductivity [BBH17].

The fact that MHf is expected to be the Γ-limit of Eε is due to the following
observation: if Br(x0) ⊆ RN and uε(x) =: ε−Nvε(ε−1(x − x0)), then

´
Br(x0) uε =´

Br/ε
vε and

ˆ
Br(x0)

fε(x, εNuε(x), εN+1∇uε(x))ε−N dx =
ˆ
Br/ε

fε(x0 + εy, vε(y),∇vε(y)) dy,

so that the energy contribution of a mass m ≥ 0 contained in a ball Br(x0) should
be of the order of Hf (x0,m).
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Nevertheless, it is not true in general that MHf is the Γ-limit of the functionals
Eε (see Section 1.3 below). We will need a couple of assumptions on f and fε
detailed in the next section.

1.2. Assumptions and main result. Our first two assumptions are rather stan-
dard and guarantee the sequential lower semicontinuity of the functionals Exf ,
(H1) f : RN × R× RN → [0,+∞] is lower semicontinuous,
(H2) f(x, u, ·) is convex for every x ∈ RN , u ∈ R.

In order for vanishing parts to have no energetic contribution, we will impose
(H3) f(x, 0, 0) = 0 for every x ∈ RN .

We also need continuity in the spatial variable,
(H4) f(·, u, ξ) is continuous for every u ∈ R, ξ ∈ RN .

Next, we need a compactness assumption which ensures relative compactness in
the weak topology of W 1,p

loc (RN ) for sequences of bounded energy Exf and bounded
mass; it will also be needed in obtaining lower bounds for the energy (see Proposi-
tion 3.8):
(H5) there exist α, β ∈ (0,+∞), p ∈ (1,+∞) such that for all (x, u, ξ) ∈ RN ×R×

RN ,
f(x, u, ξ) ≥ α|ξ|p − βu.

We also impose a condition on the slope of f(x, ·, ξ) at the origin which will be
needed in order to identify the initial slope ofHf (x, ·) (see Section 2.3), and rules out
some non-trivial scale invariant Lagrangians for which the expected Γ-convergence
result fails (see Section 1.3),
(H6) for every x0 ∈ RN ,

(1.4) f ′−(x0, 0±, 0) := lim inf
(x,u,ξ)→(x0,0±,0)

f(x, u, ξ)
|u|

≥ lim sup
u→0±

sup
|ξ|=1

f(x0, u, ρ(|u|)ξ)
|u|

,

with ρ ≡ 0 if N = 1 and for some ρ ∈ C ((0, 1], (0,+∞)) satisfying
ˆ 1

0

( ˆ 1

y

dt
ρ(t)

)N
dy < +∞ if N ≥ 2.

Since our aim is not to care much about the dependence on x, we shall impose
a spatial quasi-homogeneity condition:
(H7) there exists C < +∞ such that for every x, y ∈ RN , u ∈ R, ξ ∈ RN ,

f(y, u, ξ) ≤ C(f(x, u, ξ) + u).

Last of all, we need the family of functions fε : RN × R × RN → [0,+∞] to
converge towards f in a suitable sense, namely, we assume
(H8) fε ↑ f and f ′ε,−(·, 0±, 0) ↑ f ′−(·, 0±, 0) as ε→ 0.
Notice that this assumption is empty if fε does not depend on ε.

Our main result is the following:

Theorem 1.2. If (fε)ε>0 satisfies (H8) with each fε satisfying (H1)–(H5) and the
limit f satisfying (H6)–(H7), then MHf is the Γ-limit as ε → 0 of the functionals
Eε, defined in (1.3), for both the weak convergence and the narrow convergence of
measures.
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In particular, as a Γ-limit, the functional MHf must be lower semicontinuous
for the weak convergence of measures (and so for the narrow convergence as well).
This implies that Hf is lower semicontinuous on RN × R (see Proposition 2.5).

We point out that for the Γ− lim sup, we need weaker assumptions on fε and f
(see Proposition 4.2), which will be useful for some applications (see Section 5.5).

We will allow ourselves slight abuses of notation. We will sometimes consider
Lagrangians defined on R × RN which do not depend on x and still refer to hy-
potheses (H1)–(H8) ; we will use the notation Ef instead of Exf in (1.1) and consider
Hf as a function of m only in (1.2). Besides, we will also consider Lagrangians
defined only for u ∈ R+, which may be thought as defined for u ∈ R, set to +∞
when u is negative1. The resulting minimal cost function Hf and its associated
Hf -mass may be thought as defined on R+ and M+(RN ) respectively, as they will
be infinite on the respective complements.

1.3. Remarks and applications. We start with two situations where the ex-
pected Γ-convergence fails and which justify the importance of (H3) and (H6), then
we provide examples and applications of our result, as a short summary of Section 5,
where full details are provided. We restrict our attention to positive measures and
Lagrangians defined for u ≥ 0.

Lagrangians giving energy to vanishing parts. By assumption (H3) no energy is
given to any set where a function u vanishes. It is a necessary condition for MHf to
be lower semicontinuous (a necessary condition to be a Γ-limit) and not identically
+∞. Indeed if MHf is lower semicontinuous and finite for some measure u ∈
M (RN ) then thanks to Theorem 2.1 we know that MHf (tu) ≤MHf (u) for every
t ∈ (0, 1) and thus MHf (0) ≤ lim inft→0+ MHf (tu) ≤MHf (u) < +∞. Thus MHf

is not identically +∞ if and only if MHf (0) < +∞, i.e.
´
RN Hf (x, 0) dH0(x) <

+∞. But since Hf (x, 0) = (+∞)× f(x, 0, 0) this can only happen if f(·, 0, 0) ≡ 0.
This justifies imposing (H3).

Scale invariant Lagrangians. In the particular case where f(x, u, ξ) = u−p(1−
1
p?

)|ξ|p
and fε ≡ f , with p ∈ (1, N) and p? = pN

N−p , we find that

Eε(u) =
ˆ
RN

f(x, εNu, εN+1∇u)ε−N =
ˆ
RN

u−p(1−
1
p?

)|∇u|p = Ef (u),

i.e. the rescaled energies Eε do not depend on ε > 0. A scaling analysis also
shows that the associated minimal cost function satisfies Hf (m) = m1− p

NHf (1).
Moreover, it can be seen (see Section 5.1) that 0 < Hf (1) < +∞, which implies
that the Γ-limit of Eε, which is nothing but the lower semicontinuous relaxation
of Ef , does not coincide with MHf . Considering the perturabation of f given by
f̃(x, u, ξ) = f(x, u, ξ) + |ξ|p, we find a Lagrangian satisfying all our assumptions
except (H6) (note that |ξ|p is needed in (H5)), and such that the associated rescaled
energies do not Γ-converge to MHf̃

. Hence, an assumption like (H6) is required in
our Γ-convergence result. We will even see that the lower semicontinuity of Hf and
MHf is not guaranteed without (H6).

1Notice that if any of our assumptions is satisfied for a Lagrangian defined for u ∈ R+, then it
holds also for the Lagrangian extended to R in this way.



6 MASS CONCENTRATION IN RESCALED FIRST ORDER INTEGRAL FUNCTIONALS

Concave H-masses in dimension one. Consider the energy

Ef (u) =
ˆ
RN
|∇u|2 + c(u) with Lagrangian f(x, u, ξ) = |ξ|2 + c(u).

In dimension N = 1, it is shown in [Wir19] that for any concave continuous function
H with H(0) = 0, there exists a suitable c ≥ 0 such that Hf = H. As explained in
Section 5.2, Theorem 1.2 implies that the rescaled energies

(1.5) Eε(u) =
ˆ
RN

f(εNu, εN+1∇u)ε−N =
ˆ
RN

εN+2|∇u|2 + ε−Nc(εNu).

Γ-converge to MH , leading to an elliptic approximation of any concave H-mass in
dimension one. In dimension N ≥ 2, we will show that Hf must be concave on
(0,+∞), and strictly concave after the possible initial interval where it is linear
(see Proposition 2.8) ; however, we have no solution to the inverse problem, con-
sisting in characterizing the class of attainable minimal cost functions H = Hf for
Lagrangians f satisfying our assumptions.

Homogeneous H-masses in any dimension. We consider the functional

(1.6) Ef (u) =
ˆ
RN

f(u,∇u) =
ˆ
RN
|∇u|p + us, p > 1, s ∈ (−p′, 1].

Then, the rescaled energies

Eε(u) =
ˆ
RN

f(εNu, εN+1∇u)ε−N =
ˆ
RN

εpN+p−N |∇u|p + ε−(1−s)Nus

Γ-converge to a non-trivial multiple of some α-mass Mα := Mt 7→tα where the
exponent α = (1− s

p + s
N )(1− s

p + 1
N )−1 ranges over (1− 2

N+1 , 1] when (s, p) varies
in its range and N ≥ 1. More details are given in Section 5.3.

Cahn-Hilliard approximations of droplets models. Following the works of [BDS96;
Dub98], we consider the functionals

(1.7) Wε(u) =
ˆ
RN

ε−ρ(W (u) + ε|∇u|2),

where W (t) ∼t→+∞ ts for some exponent s ∈ (−2, 1). As shown in Section 5.5,
we way rewrite these functionals to fit our general framework, and recover known
Γ-convergence results, under slightly more general assumptions, as stated in Theo-
rem 5.1. The Γ-limit is a non-trivial multiple of the α-mass with α = 1−s/2+s/N

1−s/2+1/N .

Elliptic approximations of Branched Transport. The energy of Branched Transport
(see [BCM09] for an account of the theory), in its Eulerian formulation, is an H-
mass defined this time on vector measures w whose divergence is also a measure,

(1.8) MH
1 (w) :=

ˆ
Σ
H(x, θ(x)) dH1(x) +

ˆ
Rd
H ′(x, 0+) d|w⊥|,

where w = θξ · H1 Σ + w⊥ is the decomposition of w into its 1-rectifiable and
1-diffuse parts (see Section 5.4 for more details). An elliptic approximation of
Modica-Mortola type has been introduced in [OS11] forH(m) = mα, α ∈ (0, 1), and
their Γ-convergence result in dimension d = 2 has been extended to any dimension
in [Mon15] by a slicing method which relates the energy of w to the energy of its
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slicings. The same slicing method, together with Theorem 1.2, would allow to prove
the Γ-convergence of the functionals

(1.9) Eε(w) =
{´

Rd fε(x, ε
d−1|w|(x), εd|∇w|(x))ε1−d dx if w ∈W 1,1

loc (Rd,Rd),
+∞ otherwise,

toward MHf
1 for Lagrangians fε → f satisfying (H1)–(H8), thus covering a wide

range of concave H-masses over vector measures with divergence.

1.4. Structure of the paper. In Section 2, we prove the concavity of the mini-
mal cost function Hf with respect to the mass variable m in full generality (The-
orem 2.1), we establish useful properties of general H-masses, and we identify the
slope at the origin of Hf in terms of f under our assumption (Proposition 2.6
and Proposition 2.7). In Section 3, we apply a concentration-compactness princi-
ple to provide a profile decomposition theorem for sequences of positive measures
(Theorem 3.2), which is used to obtain our main lower bound for the energy Ef
(Proposition 3.10) and also yields an existence criterion for profiles with minimal
energy under a mass constraint (Proposition 3.12). Section 4 is dedicated to proving
lower and upper bounds on the rescaled energies Eε (Proposition 4.1 and Propo-
sition 4.2) that imply in particular our main Γ-convergence result (Theorem 1.2).
Last of all, in Section 5, we provide counterexamples and several examples of energy
functionals that fall into our framework, as summarized in the previous section.

2. Minimal cost function and H-mass

In this section, we study the properties of general H-masses, of costs Hf associ-
ated with general Lagrangians f , and we relate the slope of Hf at m = 0 to that
of f at (u, ξ) = (0, 0) in the variable u, under particular conditions.

2.1. Concavity and lower semicontinuity of the minimal cost function.
Our concavity result stated in Theorem 1.1 is a consequence of:

Theorem 2.1. Let f : R+ × RN → [0,+∞] be Borel measurable. The function

(2.1) Hf (m) = inf
{ˆ

RN
f(u,∇u) : u ∈W 1,1

loc (RN ,R+),
ˆ
RN

u = m

}
, m ≥ 0,

is either identically +∞ on (0,+∞), or it is everywhere finite, continuous, concave
and non-decreasing on (0,+∞). In the latter case, if moreover f(0, 0) = 0 then
limm→0+ Hf (m) = Hf (0) = 0.

The fact that Theorem 2.1 implies Theorem 1.1 is due to the following remark.

Remark 2.2. The minimization in (1.2) can be restricted to non-negative (resp.
non-positive) functions when m ≥ 0 (resp. m ≤ 0). For instance fix x ∈ RN ,
m ≥ 0, and take u ∈ W 1,1

loc ∩ L1(RN ) such that
´
RN u = m. If u = u+ − u− is

the decomposition of u ∈ W 1,1
loc ∩ L1(RN ) into positive and negative parts, then

Exf (u) = Eg(u+) + Eg̃(u−), with g, g̃ defined on R+ × RN by g(u, ξ) = f(x, u, ξ) for
every (u, ξ) and g̃(u, ξ) = f(x,−u,−ξ) for (u, ξ) 6= (0, 0), g̃(0, 0) = 0. In particular
Exf (u) ≥ Hg(m+) + Hg̃(m−) where m± =

´
RN u±. Since Hg is non-decreasing on

(0,+∞) and Hg̃ is non-negative, we therefore have Exf (u) ≥ Hg(m) since m+ ≥ m.
A similar reasoning holds for non-positive functions when m ≤ 0.
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Note that, considering Lagrangians f taking infinite values, Theorem 2.1 covers
the case where we have a constraint (u,∇u) ∈ A, where A ⊆ R × RN is Borel
measurable.

Proof. We first prove that Hf is concave on (0,+∞). Let m > 0 and u ∈
W 1,1

loc (RN ,R+) such that
´
RN u = m. We pick a non-zero vector v ∈ RN and

for every t ∈ R, we set ut(·) = u(·+ tv) and

u ∧ ut(·) = min{u(·), ut(·)}, u ∨ ut(·) = max{u(·), ut(·)}.

We have u ∧ ut + u ∨ ut = u+ ut. Hence

(2.2)
ˆ
RN

u ∧ ut +
ˆ
RN

u ∨ ut = 2
ˆ
RN

u = 2m.

Moreover, it is standard that u ∧ ut = u − (ut − u)− ∈ W 1,1
loc (RN ) with ∇(u ∧

ut) = ∇u a.e. in {u ≤ ut} and ∇(u ∧ ut) = ∇ut a.e. in {u > ut}. Since
u ∨ ut = u+ ut − u ∧ ut, we have similar identities for u ∨ ut, and we obtain

(2.3) Ef (u ∧ ut) + Ef (u ∨ ut) = Ef (u) + Ef (ut) = 2Ef (u).

Now, let M : t 7→
´
RN u ∧ u

t. In view of (2.2), (2.3), and by definition of H, we
have proved

(2.4) Hf (M(t)) +Hf (2m−M(t)) ≤ 2Ef (u).

Now, by continuity of translations in L1 and since the map (x, y) 7→ x ∧ y is Lip-
schitz on R2, we have that M is continuous on R with M(0) = m. Moreover
limt→+∞M(t) = 0 by dominated convergence. So, by the intermediate value the-
orem M(R) ⊇ (0,m]. Hence, we have proved Hf (θ) + Hf (2m − θ) ≤ 2Ef (u) for
every θ ∈ (0,m]. Taking the infimum over u such that

´
RN u = m, we obtain

Hf (θ) +Hf (2m− θ)
2 ≤ Hf (m), ∀θ ∈ (0,m],

that is, Hf is midpoint concave on (0,+∞). Since Hf is also bounded below
(by 0), we can deduce that Hf is concave (0,+∞) (see [RV73, Section 72]), and
since Hf ≥ 0, either Hf is identically +∞ on (0,+∞), or it is finite everywhere,
continuous, concave and non-decreasing on (0,+∞).

We now justify that if Hf (m) < +∞ for some m > 0 and f(0, 0) = 0, then
limm→0+ Hf (m) = 0 = Hf (0). Let u ∈ W 1,1

loc (RN ,R+) such that
´
RN u = m > 0

and Ef (u) < +∞, and set

t∗ := sup{t ≥ 0 : M(t) > 0} ∈ [0,+∞], where M(t) =
ˆ
RN

u ∧ ut.

Since M is continuous with M(0) =
´
RN u > 0 and limt→+∞M(t) = 0 as seen

above, we have that t∗ ∈ (0,+∞], limt→t∗M(t) = 0 and M(t) does not vanish
identically near t∗. Moreover, if t∗ = +∞, since ut → 0 locally in measure, by
dominated convergence,

lim sup
m→0+

Hf (m) ≤ lim sup
t→+∞

Ef (u ∧ ut) = lim sup
t→+∞

ˆ
{u<ut}

f(u,∇u) +
ˆ
{u−t≥u}

f(u,∇u)

≤ 2f(0, 0)|{u = 0}| = 0.
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If t∗ < +∞, we have u ∧ ut∗ = 0 a.e. and ut → ut∗ locally in measure as t→ t∗ by
continuity of translation in L1. Thus using dominated convergence again,

lim sup
m→0+

Hf (m) ≤ lim sup
t→(t∗)−

Ef (u ∧ ut) = lim sup
t→(t∗)−

ˆ
{u<ut}

f(u,∇u) +
ˆ
{u−t≥u}

f(u,∇u)

=
ˆ
{u<ut∗}

f(u,∇u) +
ˆ
{u−t∗≥u}

f(u,∇u)

= Ef (u ∧ ut∗) = f(0, 0)× (+∞) = 0. �

2.2. H-transform and H-mass.

Definition 2.3. Let H : RN ×R→ [0,+∞] be a Borel measurable function having
left/right slopes at the origin defined for each x ∈ RN by

(2.5) H ′(x, 0±) := lim
m→0±

H(x,m)
|m|

∈ [0,+∞].

We define the H-transform of a finite signed Borel measure u ∈M (RN ) by:

H(u) := H(·, u({·}))H0 +H ′(·, 0+)ud+ +H ′(·, 0−)ud−,

where u = ua + ud is the decomposition of u into its atomic part ua and its diffuse
(or non-atomic) part ud, ud = ud+ − ud− is the Jordan decomposition of ud into
positive and negative parts.

The H-mass of u is then defined as the total variation of H(u), that is:

MH(u) :=
ˆ
RN

H(x, u({x})) dH0(x)

+
ˆ
RN

H ′(x, 0+) dud+(x) +
ˆ
RN

H ′(x, 0−) dud−(x).

MH(u) is a natural spatially non-homogeneous extension (depending on the
position x) of the H-mass of k-dimensional flat currents2 from Geometric Measure
Theory, introduced by [Fle66] (see also the more recent works [DH03; Col+17]).

We say that H : RN × R→ [0,+∞] is mass-concave if m 7→ H(x,m) is concave
on (0,+∞) and (−∞, 0) for every x ∈ RN . From [BB90], we have the following
result3:

Proposition 2.4 ([BB90, Theorem 3.3]). Assume that H : RN × R → [0,+∞]
is lower semicontinuous, mass-concave and H(·, 0) ≡ 0. Then MH is sequentially
lower semicontinuous on M (RN ) for the weak topology.

From another work from the same authors [BB93, Theorem 3.2], we know that
under some further assumptions on H, MH is the relaxation for the weak topology
of the functional

MH
atom(u) =

{∑k
i=1H(xi,mi) if u =

∑k
i=1miδxi with k ∈ N∗, xi ∈ RN , mi ∈ R,

+∞ otherwise.

2In the case k = 0, since signed measures are merely 0-currents with finite mass.
3In the notation of this paper, we take µ = 0 and f(x, s) = |s|2; we have ϕf (x, 0) = 0 and

ϕf (x, s) = +∞ if s 6= 0.
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We need a slightly different result4, namely that for any function H : RN × R →
[0,+∞] satisfying all the assumptions of Proposition 2.4 except the lower semicon-
tinuity, the relaxation of MH

atom for the narrow sequential convergence is MHlsc ,
where Hlsc is the lower semicontinuous envelope of H, which can be expressed as

Hlsc(x,m) = sup{G(x,m) : G ≤ H with G lower semicontinuous}.(2.6)
It is worth noticing that if H(·, 0) ≡ 0 and H is mass-concave, then these properties
hold also for Hlsc.

Proposition 2.5. Let H : RN ×R→ [0,+∞] be a function which is mass-concave
and such that H(·, 0) ≡ 0. Then, the sequentially lower semicontinuous envelope of
MH

atom in the narrow topology of M (RN ) is given by MHlsc , namely we have:
(2.7)

MHlsc = sup
{
F : F ≤MH

atom, F sequentially narrowly l.s.c. on M (RN )
}
.

We point out that for a general H, for MH to be sequentially lower semicontin-
uous (for the narrow topology) it is necessary that H is lsc on RN × (0,+∞). How-
ever, neither the subadditivity of H in m nor its lower semicontinuity on RN ×R+
are necessary. Indeed, MH is sequentially lower semicontinuous if for instance
H(x,m) = +∞ when x 6= 0,m > 0, H(x, 0) = 0 when x 6= 0 and H(0, ·) is any
lower semicontinuous function. Nevertheless the subadditivity in the mass m and
the lower semicontinuity would be necessary if H did not depend on x.

Proof of Proposition 2.5. Since Hlsc is lower semicontinuous and mass-concave, we
know from Proposition 2.4 that MHlsc is sequentially lower semicontinuous in the
weak topology hence also in the narrow topology of M (RN ). Since MHlsc ≤MH

atom,
we deduce that MHlsc is lower or equal than the sequentially lower semicontinuous
envelope of MH

atom in the narrow topology, i.e. the right hand side in (2.7), which
we denote by F : M (RN )→ R+. We shall see that F ≤MHlsc .

We first prove that
(2.8) F ≤MHlsc

atom.

For this, we let u =
∑k
i=1miδxi be a finitely atomic positive measure and we

let un :=
∑k
i=1mi,nδxi,n where for each i ∈ {1, . . . , k}, (xi,n)n∈N is a sequence of

points converging to xi and (mi,n)n∈N is a sequence converging to mi such that
Hlsc(xi,mi) = limn→∞H(xi,n,mi,n). Then (un)n∈N converges narrowly to u and,
by lower semicontinuity,

F (u) ≤ lim inf
n→∞

F (un) ≤ lim inf
n→∞

MH
atom(un)

= lim
n→∞

k∑
i=1

H(xi,n,mi,n) =
k∑
i=1

Hlsc(xi,mi),

so that F (u) ≤MHlsc
atom(u) as wanted.

We now prove that F ≤ MHlsc . Let u ∈ M (RN ) and u = ua + ud be the
decomposition of u into its atomic part ua =

∑k
i=1miδxi , with k ∈ N ∪ {+∞}

(here, k = 0 if there is no atom), and its diffuse part ud, and let ud = ud+ − ud− be
the Jordan decomposition of ud into positive and negative parts. We then discretize

4In [BB93, Theorem 3.2], H is assumed to be lower semicontinuous and the authors make a
further coercivity assumption (assumption (3.5) in the paper) that we want to avoid.
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ud± by taking n ∈ N∗, a partition (Qni )i∈{1,...,(n2n)N} of [−n, n)N by means of cubes
of the form Qni = cni + 2−n[−1, 1)N with cni ∈ RN , and we define

un :=
n∧k∑
i=1

miδxi +
(n2n)N∑
i=1

ud+(Qni )δxn
i
−

(n2n)N∑
i=1

ud−(Qni )δyn
i
,

where for each i ∈ {1, . . . , (n2n)N}, xni , yni ∈ Q̄ni are some points such that
(2.9) Hlsc

′(xni , 0+) = inf
x∈Q̄n

i

Hlsc
′(x, 0+), Hlsc

′(yni , 0−) = inf
x∈Q̄n

i

Hlsc
′(x, 0−).

Such points exist since Q̄ni is compact and since by concavity,

(2.10) Hlsc
′(x, 0±) = sup

±m>0

Hlsc(x,m)
|m|

,

so that H ′lsc(·, 0±) are lower semicontinuous as suprema of lower semicontinuous
functions.

The sequence (un)n∈N converges narrowly to u. We deduce by lower semiconti-
nuity of F ,

F (u) ≤ lim inf
n→∞

F (un)
(2.8)
≤ lim inf

n→∞
Mlsc

atom(un)

= lim inf
n→∞

n∧k∑
i=1

Hlsc(xi,mi) +
(n2n)N∑
i=1

(
Hlsc(xni , ud+(Qni )) +Hlsc(yni ,−ud−(Qni ))

)
,

(2.10)
≤ lim inf

n→∞

n∧k∑
i=1

Hlsc(xi,mi) +
(n2n)N∑
i=1

Hlsc
′(xni , 0+)ud+(Qni )

+
(n2n)N∑
i=1

Hlsc
′(yni , 0−)ud−(Qni )

(2.9)
≤ lim inf

n→∞

n∧k∑
i=1

Hlsc(xi,mi) +
(n2n)N∑
i=1

ˆ
Qn
i

Hlsc
′(·, 0+) dud+ +

ˆ
Qn
i

Hlsc
′(·, 0−) dud−

=
k∑
i=1

Hlsc(xi,mi) +
ˆ
RN

Hlsc
′(·, 0+) dud+ +

ˆ
RN

Hlsc
′(·, 0−) dud−

= MHlsc(u),
where we have used monotone convergence in the last but one equality. �

2.3. Slope at the origin of the minimal cost function.

Proposition 2.6. Let f : R+×RN → [0,+∞] be a lower semicontinuous function
such that f(0, 0) = 0, with N ≥ 2. For every function ρ ∈ C ((0, 1], (0,+∞)) such
that

(2.11)
ˆ 1

0

(ˆ 1

y

dt
ρ(t)

)N
dy < +∞,

the function Hf defined in (2.1) satisfies

(2.12) lim
m→0+

Hf (m)
m

≤ lim sup
u→0+

sup
ξ∈SN−1

f(u, ρ(u)ξ)
u

.
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Proof. For every y ≥ 0, we let

F (y) =
ˆ 1

y

dt
ρ(t) ∈ [0,+∞].

The function F is decreasing, and belongs to C 1((0, 1]) and LN ((0, 1]) by assump-
tion. We now consider the solution of the ODE v′ε = −ρ(vε), with vε(0) = ε, given
by

vε(r) =
{
F−1(F (ε) + r), if 0 ≤ r < F (0)− F (ε),
0 if r ≥ F (0)− F (ε),

with F (0) possibly equal to +∞. Notice that vε ∈ W 1,1
loc (R+) because it is non-

increasing and bounded, hence it has finite total variation, and because it is of class
C 1 except possibly at rε := F (0)− F (ε), where it has no jump. As a consequence
the radial profile defined by uε(x) := vε(|x|) belongs to W 1,1

loc (RN ) and we compute,
using the change of variables s = vε(r) (i.e. r = F (s) − F (ε)) and an integration
by parts combined with monotone convergence.

mε :=
ˆ
RN

uε = |SN−1|
ˆ ∞

0
vε(r)rN−1 dr

= −|SN−1|
ˆ ε

0
s(F (s)− F (ε))N−1F ′(s) ds

= |SN−1| lim
t↓0

(ˆ ε

t

(F (s)− F (ε))N

N
ds−

[
s

(F (s)− F (ε))N

N

]ε
t

)
= |SN−1|

ˆ ε

0

(F (s)− F (ε))N

N
ds −−−→

ε→0
0.

The equality on the last line holds because limt→0+
´ ε
t

(F − F (ε))N < +∞ (since
F ∈ LN ((0, 1])), hence limt→0 t(F (t) − F (ε))N exists by existence of the limit in
the previous line, and it must be zero (again, because F ∈ LN ((0, 1])).

Moreover, since sup[0,+∞) vε = ε,

E(uε) =
ˆ ∞

0

ˆ
SN−1

f(vε(r), v′ε(r)ξ)rN−1 dHN−1(ξ) dr ≤ mε sup
u≤ε, |ξ|=1

f(u, ρ(u)ξ)
u

.

By assumption, we deduce that

lim sup
m→0+

Hf (m)
m

≤ lim sup
ε→0+

E(uε)
mε

≤ lim sup
u→0+

sup
ξ∈SN−1

f(u, ρ(u)ξ)
u

. �

In dimension N = 1, we need no other assumption than Hf < +∞, as stated
below.

Proposition 2.7. Let f : R+ × RN → [0,+∞] be Borel measurable with N = 1.
The minimal cost function Hf is either identically infinite on (0,+∞), or it satisfies
(2.12) with ρ ≡ 0, i.e.

lim
m→0+

Hf (m)
m

≤ lim sup
u→0+

f(u, 0)
u

.

Proof. One can assume that there exists u ∈W 1,1
loc (R,R+) with 0 <

´
R u < +∞ and

E(u) < +∞. In particular, up to changing the value of u on a negligible set, u is
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continuous on R. Let ε ∈ (0, supR u), set Aε := {x : u(x) = ε} which is non-empty
by the intermediate value theorem and integrability of u, and define

aε =
{

inf Aε if inf Aε > −∞,
any point in (−∞,−ε−1) ∩Aε otherwise,

bε =
{

supAε if supAε < +∞,
any point in (ε−1,+∞) ∩Aε otherwise.

By continuity and integrability of u, u(aε) = u(bε) = ε and
sup

x∈R\[aε,bε]
u(x) ≤ ε ∨ sup

|x|>ε−1
u(x) −−−→

ε→0
0.

Moreover aε, bε converge to points −∞ ≤ a ≤ b ≤ +∞, hence u = 0 on R \ (a, b)
and by dominated convergence, since ∇u = 0 a.e. on {u = 0},

+∞ > lim
ε→0+

ˆ
R\[aε,bε]

u+ f(u,∇u) = f(0, 0)L(R \ (a, b)).

Notice that this limit is necessary zero. Let m > 0. If ε is small enough, then´
R\[aε,bε] u < m so that we can take Rε > 0 such that εRε = m −

´
R\[aε,bε] u. We

then define

uε(x) =


u(x) if x ≤ aε,
ε if aε < x < aε +Rε,

u(bε + x− (aε +Rε)) if x ≥ aε +Rε,

so that
´
R vε = m. Moreover,

E(vε) = E(u,R \ [aε, bε]) +Rεf(ε, 0).

Hence, as Rε = m+o(1)
ε as ε→ 0,

Hf (m) ≤ lim sup
ε→0+

E(vε) = m lim sup
ε→0+

f(ε, 0)
ε

. �

2.4. Strict concavity of the minimal cost function in dimension N ≥ 2.
We show that in dimension N ≥ 2, the minimal cost function must be strictly

concave away from the possible initial interval where it is linear:

Proposition 2.8. Assume that N ≥ 2 and that f : RN × R × RN → [0,+∞]
satisfies (H1), (H2), (H5) and (H6). Let

m∗ = sup{m ≥ 0 : Hf (x0, ·) is linear on [0,m]},
where x0 ∈ RN is fixed. Then, Hf (x0, ·) is strictly concave on (m∗,+∞). A similar
statement holds on R−.

A similar result does not hold in dimension 1 since any continuous concave
function H : R+ → R+ with H(0) = 0 can be written as H = Hf with f satisfying
all our assumptions (H1)–(H8) (see Section 5.2).

In the rest of this section, we will systematically omit the dependence on x0 of
Hf (x0,m) since x0 is fixed.

We denote byMf
m the set of non-negative minimizers (see Remark 2.2) of mass

m ∈ R+:

(2.13) Mf
m :=

{
u ∈W 1,1

loc (RN ,R+) : Ef (u) = Hf (m) and
ˆ
RN

u = m
}
.
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The proof of Proposition 2.8 is based on the following observation:

Lemma 2.9. Let f : R+ × RN → [0,+∞] be Borel measurable and let ui ∈ Mf
mi

with mi ∈ R+ for i = 1, 2. Let also u∗ := min{u1, u2}, u∗ := max{u1, u2},
m∗ :=

´
RN u∗ and m

∗ :=
´
RN u

∗. If Hf is affine on [m∗,m∗] then u∗ ∈ Mf
m∗ and

u∗ ∈Mf
m∗ .

Proof of Lemma 2.9. We use the same observations as in the proof of Theorem 2.1.
In particular, we have m∗+m∗ = m1 +m2; since Hf is affine on [m∗,m∗], it yields

Hf (m∗) +Hf (m∗) = Hf (m1) +Hf (m2).
But we have also
Hf (m∗) +Hf (m∗) ≤ Ef (u∗) + Ef (u∗) = Ef (u1) + Ef (u2) = Hf (m1) +Hf (m2),

so that the inequalities we used, i.e. Hf (m∗) ≤ Ef (u∗) and Hf (m∗) ≤ Ef (u∗), are
actually equalities. �

We also use an elementary Sobolev type inequality:

Lemma 2.10. Let N ≥ 2, p ∈ (1,+∞) and ω ⊂ RN−1 be a bounded open set. For
every u ∈W 1,p

loc (R× ω),ˆ
ω

‖u(·, x′)‖L∞(R) dx′ ≤ ‖u‖L1(R×ω) + |ω|
p−1
p

∥∥∥∥ ∂u∂x1

∥∥∥∥
Lp(R×ω)

.

Proof of Lemma 2.10. We prove the lemma when u ∈ C 1(R× ω); the general case
follows by approximation. For every x1, y1 ∈ R, x′ ∈ ω, we have

u(x1, x
′) = u(y1, x

′) +
ˆ x1

y1

∂u

∂x1
(t, x′) dt.

By averaging in the variable y1, we deduce

|u(x1, x
′)| ≤

ˆ x1+ 1
2

x1− 1
2

|u(y1, x
′)|dy1 +

ˆ x1+ 1
2

x1− 1
2

∣∣∣∣ ∂u∂x1
(t, x′)

∣∣∣∣dt.
The result follows from Hölder inequality after integrating over ω. �

Proof of Proposition 2.8. Assume by contradiction that the concave function Hf is
not strictly concave on (m∗,+∞) which means that there exists m ∈ (m∗,+∞)
and η > 0 such that Hf is affine on [m − η,m + η]. (Note that η ≤ m − m∗ by
definition of m∗.) Moreover, we will see in Proposition 3.12 thatMf

m is not empty
because Hf is not linear on [0,m]. We let u ∈Mf

m.
As before, we shall use the notations ∧ and ∨ for the minimum and maximum;

we also let (e1, . . . , eN ) be the canonical basis of RN . Knowing that τ 7→ u(·+ τ) is
continuous in RN for every u ∈ L1(RN ), that u 7→ u(·+ τ) is isometric in L1(RN )
for every τ ∈ RN , that the map (x, y) 7→ x ∧ y is Lipschitz on RN ×RN , and since
the set Mm+ η

2
is compact in L1 up to translations in view of Remark 3.13, we

deduce that there exists δ0 > 0 such that
(2.14) ‖u ∧ u(·+ δe2)‖L1(RN ) > m for all δ ∈ (0, δ0) and u ∈Mf

m+ η
2
.

We now construct by induction a sequence (tn)n∈N in R+ and a sequence (un)n∈N
inMf

m such that
(2.15) tn+1 ≥ tn + δ0 and un(x) ≤ U(x) ∧ U(x+ tne2) ∀x ∈ RN ,
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where we have set
U(x) := ess sup

t∈R
u(x+ te1).

To this aim, we first set u0 := u and t0 = 0. Then, if we assume that tn and
un are constructed as before, we first pick an δ1

n ∈ R+ such that vn := un ∨
un(· + δ1

ne1) satisfies
´
RN vn = m + η

2 , which is possible since η ≤ m, as we
argued in the proof of Theorem 2.1. Similarly, we pick a δ2

n ∈ R+ such that
un+1 := vn ∧ vn(· + δ2

ne2) satisfies
´
RN un+1 = m, and we set tn+1 = tn + δ2

n.
By Lemma 2.9, vn ∈ Mf

m+ η
2
and un ∈ Mf

m. By (2.14), we have δ2
n ≥ δ0, thus

insuring the first condition in (2.15). For the second condition, we observe that for
all x = (x1, x

′) ∈ RN ,

un+1(x) ≤ (sup
t∈R

un(x+ te1)) ∧ (sup
t∈R

un(x+ te1 + δ2
ne2)) ≤ U(x) ∧ U(x+ tn+1e2),

where in the last inequality we have used the induction hypothesis (2.15).
We now show that the sequence (un LN )n∈N is vanishing which will contradict

the compactness ofMf
m in L1 up to translations.

For this, we let (xk)k∈N be a sequence in RN and (unk)k∈N be a subsequence of
(un)n∈N such that

lim sup
n→∞

sup
x∈RN

ˆ
x+[0,1)N

un = lim
k→∞

ˆ
xk+[0,1)N

unk .

By (H5), we have ∂u
∂x1
∈ Lp(RN ). Using this fact, estimate (2.15), and Lemma 2.10

with ω a unit cube in RN−1, we obtain

lim
k→∞

ˆ
xk+[0,1)N

unk ≤ lim inf
k→∞

ˆ
xk+[0,1)N

U ∧
ˆ
xk+tnke2+[0,1)N

U

≤ lim inf
k→∞

(
‖u‖L1({0≤(x−xk)·e2≤1}) +

∥∥∥∥ ∂u∂x1

∥∥∥∥
Lp({0≤(x−xk)·e2≤1})

)
∧ lim inf

k→∞

(
‖u‖L1({tnk≤(x−xk)·e2≤tnk+1}) +

∥∥∥∥ ∂u∂x1

∥∥∥∥
Lp({tnk≤(x−xk)·e2≤tnk+1})

)
,

and the conclusion follows since the sequences (xk · e2)k∈N and (tnk + xk · e2))k∈N
cannot be both bounded as limk→∞ tnk =∞. �

3. Lower bound for the energy and existence of optimal profiles

Our main tool to localize the energy and obtain a lower bound relies on a profile
decomposition for bounded sequences of positive measures, which is reminiscent of
the concentration-compactness principle of P.-L. Lions. This differs from classical
strategies to localize the energy which are based on suitable cut-offs. Naturally,
this concentration-compactness result also provides a criterion for the existence of
optimal profiles in (1.2).

3.1. Profile decomposition by concentration-compactness. We prove a pro-
file decomposition theorem for bounded sequences of positive measures over RN ,
which is essentially equivalent to [Mar14, Theorem 1.5] in the Euclidean case. We
have added an extra information on mass conservation that will be useful, and
provide a self-contained simple proof. We start with a definition.
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Definition 3.1. A sequence of positive measures (µn)n∈N ∈M+(RN ) is vanishing
if

sup
x∈RN

µn(B1(x)) −−−−→
n→∞

0.

Any bounded sequence of positive measures over RN may be decomposed (up
to subsequence) into a countable collection of narrowly converging “bubbles” and
a vanishing part, accounting for the total mass of the sequence, as stated in the
following theorem.

Theorem 3.2. For every bounded sequence (µn)n∈N of positive Borel measures on
RN , there exists a subsequence (µn)n∈σ(N), σ ∈ Σ, a non-decreasing sequence of
integers (kn)n∈σ(N) converging to some k ∈ N ∪ {+∞}, a sequence of non-trivial
positive Borel measures (µi)0≤i<k, and for every n ∈ σ(N), a collection of balls
(Bin)0≤i<kn centered at points of suppµn such that, writing for all n ∈ σ(N),

(3.1) µn = µbn + µvn, where µbn =
∑

0≤i<kn

µn Bin,

(A) bubbles emerge: (cBinµn)n∈σ(N)
C ′b−−−−⇀

n→∞
µi for every i < k,5

(B) bubbles split: min0≤i<j<kn dist(Bin, Bjn) −−−−→
n→∞

+∞,
(C) bubbles diverge: min0≤i<kn diam(Bin) −−−−→

n→∞
+∞,

(D) the bubbling mass is conserved: ‖µbn‖ −−−→
`→∞

∑
0≤i<k‖µi‖,

(E) the remaining part is vanishing: supx∈RN µvn(B1(x)) −−−−→
n→∞

0.

Before proving Theorem 3.2, we introduce the “bubbling” function of a sequence
of finite signed measures (µn)n∈N:
(3.2)

m((µn)n∈N) := sup
{
‖µ‖ : (τ−xσ(`)µσ(`))`∈N

C ′0−−⇀ µ, σ ∈ Σ, xσ(`) ∈ RN (∀`)
}
.

Although we will use this function on signed measures, we will start from a sequence
of positive measures and use the following characterization of vanishing sequences,
which holds only in the case of positive measures:

Lemma 3.3. A sequence (µn)n∈N of finite positive measures over RN is vanishing
if and only if m((µn)n∈N) = 0.

Proof. Assume that (µn)n∈N is vanishing and that (τ−xσ(`)µσ(`))`∈N
C ′0−−⇀ µ for some

σ ∈ Σ and some sequence of points (xσ(`))`∈N. Then, for every x ∈ RN ,
µ(B1(x)) ≤ lim inf

`→∞
τ−xσ(`)µσ(`)(B1(x)) = lim inf

`→∞
µσ(`)(B1(x+ xσ(`))) = 0,

i.e. µ = 0 and thus m((µ`)`∈N) = 0.
Conversely, if (µn)n∈N is not vanishing, then there exists ε > 0, σ ∈ Σ and a

sequence of points (xn)n∈σ(N) in RN such that µn(B1(xn)) ≥ ε for every n ∈ σ(N).

Up to further extraction, one can assume that (τ−xσ(`)µσ(`))`∈N
C ′0−−⇀ µ ∈ M (RN ).

We have
µ(B̄1(0)) ≥ lim sup

`→∞
τ−xσ(`)µσ(`)(B̄1(0)) = lim sup

`→∞
µσ(`)(B̄1(xσ(`))) ≥ ε > 0,

5Recall that cBµ = (x 7→ x− y)](µ B) if B = Br(y) and µ ∈M (RN ).
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which entails m((µ`)`∈N) ≥ ε > 0. �

Proof of Theorem 3.2. If (µn)n∈N is vanishing, then we take σ = Id and k = 0, so
that µσ(`) = µ` = µv` , (A) to (D) are empty statements and (E) is satisfied since
(µn)n∈N is vanishing. Assume on the contrary that (µn)n∈N is not vanishing. We
shall construct the bubbles by induction and prove their properties in several steps.

Step 1: construction of bubbles centers. At first step (step 0), sincem((µn)n∈N) > 0,
there exists σ0 ∈ Σ and a sequence of points (x0

n)n∈σ0(N), such that

(3.3) (τ−x0
n
µn)n∈σ0(N)

C ′0−−⇀ µ0 ∈M (RN ) with ‖µ0‖ ≥ 1
2m((µn)n∈N).

We then set µ0
n := µn − τx0

n
µ0 and we continue by induction, starting from the

sequence (µ0
n)n∈σ0(N). More precisely, assume that for a fixed step k − 1 ∈ N, for

every i ∈ N such that 0 ≤ i ≤ k − 1, we have built µi ∈ M (RN ), σi ∈ Σ, points
(xin)n∈σi(N) and sequences (µin)n∈σi(N) ∈M (RN ) such that for every i,

σi � σi−1,(3.4)

µin = µn −
∑

0≤j≤i
τxjnµ

j , (∀n ∈ σi(N)),(3.5)

(τ−xinµ
i−1
n )n∈σi(N)

C ′0−−⇀ µi,(3.6)

‖µi‖ ≥ 1
2m((µin)n∈σi(N)) > 0,(3.7)

where σ−1 := Id, (µ−1
n ) := (µn). If m((µk−1

n )n∈σk−1(N)) = 0, we stop; otherwise, we
proceed to the next step k to build σk, µk, (xkn)n∈σk(N), (µkn) as we did at step k = 0,
starting with (µk−1

n )n∈σk−1(N). Either the induction stops at some step k−1 ∈ N for
which m((µk−1

n )n∈σk−1(N)) = 0 or the previous objects are defined for every i ∈ N,
in which case we let k := +∞.

Step 2: splitting of bubbles centers. We prove that

(3.8) lim
σi(N)3n→∞

dist(xin, xjn) = +∞ for every i, j ∈ N with 0 ≤ j < i < k.

Indeed, assume by contradiction that there is a first index i < k such that for some
j0 < i, (dist(xin, xj0

n ))n∈σi(N) is not divergent. In particular, there exists σ � σi
such that (xin − xj0

n )n∈σ(N) → x ∈ RN . Moreover, (dist(xin, xjn))n∈σi(N) → ∞, for
every j < i, j 6= j0 by minimality of i and the triangle inequality dist(xjn, xj0

n ) ≤
dist(xjn, xin) + dist(xin, xj0

n ). Notice by (3.5) that for every n ∈ σ(N),

µi−1
n = µj0−1

n − τ
x
j0
n
µj0 −

∑
j0<j<i

τxjnµ
j ,

hence taking the translation τ−xin ,

τ−xinµ
i−1
n = τ

x
j0
n −xin

(τ−xj0
n
µj0−1
n − µj0)−

∑
j0<j<i

τxjn−xin
µj ,

and passing to the weak limit, knowing that xj0
n −xin → −x and dist(xjn, xin)→ +∞

for j0 < j < i,

µi = τ−x(µj0 − µj0)−
∑

j0<j<i

0 = 0.
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This contradicts the fact that (τ−xinµ
i−1
n )n∈σ(N)

C ′0−−⇀ µi 6= 0 and proves (3.8).

Step 3: weak convergence of bubbles. From (3.5) we get

(3.9) τ−xinµ
i−1
n = τ−xinµn −

∑
0≤j<i

τ−xin+xjnµ
j ,

and by (3.8), the sum converges weakly to 0, and so

(3.10) (τ−xinµn)n∈σi(N)
C ′0−−⇀ µi for every i ∈ N with i < k.

Step 4: construction of the bubbles with mass conservation. We now construct the
extraction σ ∈ Σ that we need by induction: we set σ(0) = 0 and, assuming that
σ(0) < · · · < σ(` − 1), with ` ∈ N∗, have been constructed, we set σ(`) := n with
n ∈ σ`∧k−1(N) large enough so that n > σ(`− 1) and for every i < ` ∧ k,

µn(B`(xin)) ≤ ‖µi‖+ 2−`,(3.11)

and

min
0≤j<i

dist(xin, xjn) ≥ 4`.(3.12)

Such an n exists by (3.8) and (3.10), noticing that µn(B`(xin)) = (τ−xinµn)(B`).
Then for each n = σ(`), ` ∈ N, we set kn = ` ∧ k, and for each i ∈ {0, . . . , kn − 1},

Bin := B`(xin).

Finally, for every n ∈ σ(N), we decompose µn as expected:

µn = µbn + µvn, where µbn =
∑

0≤i<kn

µn Bin.

Let us check the four first items (A)–(D). Notice that (C) is fulfilled because
diam(Biσ(`)) = `→ +∞ as `→∞, and (B) because of (3.12). Since for every i < k,
limσ(N)3n→∞ diam(Bin) = +∞ and cBinµn = (τ−xin(µn Bin)) for every n ∈ σi(N),
(cBinµn)n∈σ(N) converges weakly to µi by (3.10), and together with (3.11) it implies
that

(cBinµn)n∈σ(N)
C ′b−−⇀ µi,

i.e. (A) is satisfied. Moreover, by (3.11) again,

lim sup
`→∞

∑
0≤i<kσ(`)

µσ(`)(Biσ(`)) ≤
∑

0≤i<k
‖µi‖+ lim sup

`→∞
(` ∧ k)2−` =

∑
0≤i<k

‖µi‖,

and since kn → k, by Fatou’s lemma we have,∑
0≤i<k

‖µi‖ ≤ lim inf
`→∞

∑
0≤i<kσ(`)

µσ(`)(Biσ(`)),

which proves (D) because
∑

0≤i<kσ(`)
µσ(`)(Biσ(`)) = ‖µbσ(`)‖.

Step 5: vanishing of the remaining part, proof of (E). By Lemma 3.3, it suffices to
prove that m((µvn)n∈σ(N)) = 0. We claim that:

(3.13) m((µvn)n∈σ(N)) ≤ m((µin)n∈σi(N)), for every i ∈ N with i < k,
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which concludes since m((µkn)n∈σk−1(N)) = 0 if k <∞, and m((µin))n∈σi(N))→ 0 as
i→∞ if k =∞. Indeed, if k =∞, we have by (3.7) and (D),

1
2
∑
i∈N

m((µin)n∈σi(N)) ≤
∑
i∈N
‖µi‖ = lim

`→∞
‖µbσ(`)‖ ≤ lim inf

`→∞
‖µσ(`)‖ <∞.

Let us show (3.13). Let σ̄ � σ and (xn)n∈σ̄(N) be a sequence of points such that

(τ−xnµvn)n∈σ̄(N)
C ′0−−⇀ µ ∈M (RN ).

We need to prove that ‖µ‖ ≤ m((µin)n∈σi(N)) for every i < k. Assume without loss
of generality that ‖µ‖ > 0. Then for every i < k,

(3.14) (dist(xn, xin))n∈σ̄(N) →∞.

Otherwise, up to subsequence, (dist(xn, xin))n would be bounded by some constant
M , and for every r > 0,

(τ−xnµvn)(Br) ≤ µvn(Br+M (xin)) −−−−→
n→∞

0,

because µvn is supported on RN \ ∪0≤i<knB
i
n and Br+M (xin) ⊆ Bin for n large

enough by (C). Hence µ would be 0, a contradiction. Up to further extraction, one
can assume that (τ−xnµn)n∈σ̄(N) converges weakly to a measure µ̄ ∈M (RN ). Since
µvn ≤ µn, we have µ ≤ µ̄. Moreover by (3.5), for every i < k and n ∈ σ̄(N) large
enough,

τ−xnµ
i
n = τ−xnµn −

∑
0≤j≤i

τxjn−xnµ
j ,

and because of (3.14) the sum converges weakly to 0, so that τ−xnµin
C ′0−−⇀ µ̄, and

consequently,
‖µ‖ ≤ ‖µ̄‖ ≤ m((µin)n∈σi(N)),

which is what had to be proved.

Step 6: re-centering of the bubbles at points of suppµn. By (3.10), (τ−xinµn)n∈σ(N)
converges weakly to the non-trivial measure µi for every i < k, thus

(3.15) Ri/2 := lim sup
σ(N)3n→+∞

dist(suppµn, xin) < +∞.

Therefore, for every n large enough, there is a point x̃in such that |xin − x̃in| < Ri
and x̃in ∈ suppµn. After a further extraction, one may assume that for every
i, |xin − x̃in| < Ri < rni where diamBin = 2rin for every n, and (xin − x̃in)n∈σ(N)
converges to some pi ∈ RN . Finally, we set r̃ni := rni − Ri and B̃in := B(x̃in, r̃ni ) ⊆
Bin. After replacing the balls Bin by B̃in, (B) and (C) are satisfied by definition.
Notice that (τ−x̃inµn)n∈σ(N) converges weakly to µ̃i := τpiµ

i with ‖µ̃i‖ = ‖µi‖, and
lim supn‖cBinµn‖ = lim supn µn(B̃in) ≤ lim supn µn(Bin) = ‖µi‖ hence (A) holds.
Besides, using Fatou’s lemma,

lim sup
n

∑
i<kn

µn(B̃in) ≤ lim sup
n

∑
i<kn

µn(Bin)

=
∑
i<k

‖µi‖ ≤
∑
i<k

lim inf
n

µn(B̃in) ≤ lim inf
n

∑
i<kn

µn(B̃in)
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so that limn

∑
i<kn

µn(B̃in) =
∑
i‖µi‖ and (D) is satisfied. In particular,

lim
n

∑
i<kn

µn(Bin \ B̃in) = lim
n

∑
i<kn

µn(Bin)− lim
n

∑
i<kn

µn(B̃in) = 0,

and (E) holds as well. �

Remark 3.4. If the sequence of families of balls (Bin)0≤i<kn satisfies the conclusion of
the theorem, i.e. (A)–(E), then it is also the case for any family of balls (B̃in)0≤i<kn
with the same centers as those of Bin and with smaller but still divergent radii (i.e.
satisfying (C)). It can be easily seen following the arguments at Step 6 of the proof.
3.2. Lower bound by concentration-compactness. We will first establish a
lower bound for the minimal energy along vanishing sequences defined on varying
subsets of RN . We say that a sequence of Borel functions (un)n∈N, each defined on
some open set Ωn ⊆ RN , is vanishing if the sequence of measures (|un| LN Ωn)n∈N
is vanishing in the sense of Definition 3.1, namely if ‖un‖L1

uloc(Ωn) → 0 as n → ∞,
where L1

uloc(Ω) is the set of uniformly locally integrable functions on the open set
Ω, i.e. Borel functions u on Ω such that

(3.16) ‖u‖L1
uloc(Ω) := sup

x∈RN

ˆ
Ω∩(x+[0,1)N )

|u| < +∞.

It will be convenient to first extend our Sobolev functions to a neighbourhood Ωδ
of Ω where for every δ > 0 and every set X ⊆ RN , we have set

Xδ := {x ∈ RN : dist(x,X) < δ}.
We will need to consider sufficiently regular domains for which we have an extension
operator W 1,p ∩ L1

uloc(Ω) → W 1,p ∩ L1
uloc(Ωδ). We will only apply it to domains

with smooth boundary, in which case we can use a reflexion technique. Since we
want quantitative estimates, we will use the notion of reach of a set X ⊆ RN (see
[Fed59]). We say that X has positive reach if there exists δ > 0 such that every
x ∈ Xδ has a unique nearest point π(x) on X. The greatest δ for which this holds is
denoted by reach(X) and the map x ∈ Xreach(X) 7→ π(x) ∈ X is called the nearest
point retraction.

Example 3.5. Assume that Ω is a perforated domain B0 \
⋃k
i=1B

i where the Bi are
disjoint closed balls included in some open ball B0 (possibly B0 = RN ). Then,

reach(∂Ω) = inf{radius(Bi) : i = 0, . . . , k} ∪ {dist(∂Bi, ∂Bj) : i 6= j}.

By [Fed59, Theorem 4.8], we have
(i) if x, y ∈ Xδ with 0 < δ < δ0 := reach(X), then |π(x)− π(y)| ≤ δ0

δ0−δ |x− y|,
(ii) if x ∈ X and Dx is the intersection of Xreach(X) with the straight line

crossing ∂Ω orthogonally at x, then π(y) = x for every y ∈ Dx.
Lemma 3.6 (Extension). Let Ω ⊆ RN be an open set such that its boundary ∂Ω
is C 1 with positive reach6. Then, for every δ ∈ (0, reach(∂Ω)), every p ∈ [1,+∞)
and every u ∈ L1 ∩W 1,p(Ω), there exists ū ∈ L1 ∩W 1,p(Ωδ) such that ū = u a.e.
on Ω, and
‖ū‖L1(Ωδ) ≤ A‖u‖L1(Ω), ‖ū‖L1

uloc(Ωδ) ≤ A‖u‖L1
uloc(Ω), ‖∇ū‖Lp(Ωδ) ≤ A‖∇u‖Lp(Ω),

with a constant A < +∞ depending only on N, δ and reach(∂Ω).
6Thanks to [Fed59, Remark 4.20], ∂Ω is actually of class C 1,1.
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Proof. Let σ : (∂Ω)δ → (∂Ω)δ be the reflection through ∂Ω, defined by σ(x) =
2π(x) − x. By the properties (i) and (ii) of the nearest point retraction, we have
that σ = σ−1 (simply because π(σ(x)) = π(x)) and σ is L-Lipschitz with a constant
L < +∞ depending on δ and reach(∂Ω) only.

We define7 ū by ū = u on Ω and ū = u ◦ σ on Ωδ \ Ω. This map is well-defined
since σ(Ωδ \ Ω) ⊆ Ω. Indeed, if we had x, σ(x) ∈ Ωδ \ Ω, then the line segment
[x, σ(x)] would meet ∂Ω orthogonally at its center π(x), and would remain out of
Ω, because otherwise there would exist a point y belonging either to ∂Ω∩ (x, π(x))
or ∂Ω ∩ (π(x), σ(x)) thus contradicting the definition of π(x). Such a situation is
not possible for a C 1 boundary.

Moreover, by the change of variable formula and the chain rule, ū satisfies the
desired estimates since σ is bi-Lipschitz with its Lipschitz constants controlled in
terms of δ and reach(∂Ω). �

We will need a localized version of the Gagliardo–Nirenberg–Sobolev inequality
in a particular case:

Lemma 3.7. Let Ω ⊆ RN be an open set such that ∂Ω is C 1 with positive reach,
let p ∈ [1,+∞), let r ≥ p(1 + 1

N ), and assume that r ≤ pN
N−p when p < N . Then

for every u ∈ L1 ∩W 1,p(Ω),

‖u‖Lr(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖L1(Ω)

)α‖u‖1−α
L1

uloc(Ω),

where α ∈ (0, 1] is the unique parameter such that 1
r = α( 1

p −
1
N ) + (1−α), and the

constant C < +∞ depends on N, r, p and reach(∂Ω).

Proof of Lemma 3.7. We let u ∈ L1∩W 1,p(Ω) and we extend u to ū ∈ L1∩W 1,p(Ωδ)
as in Lemma 3.6, with δ := reach(Ω)/2. By the Gagliardo–Nirenberg–Sobolev
inequality (see [Nir59]) on the hypercube Qδ = [− δ√

N
, δ√

N
)N ⊆ B̄δ, we have for

some C depending on N, δ,

‖ū‖Lr(Qδ) ≤ C‖∇ū‖
α
Lp(Qδ)‖ū‖

1−α
L1(Qδ) + C‖ū‖L1(Qδ).

We then cover Ω with the disjoint hypercubes Qδ(c) = c + Qδ ⊆ Ωδ centered at
points c on the grid C := Ω ∩ 2δ√

N
ZN . Since r ≥ p(1 + 1/N), we can check that

(3.17) rα = r − 1
1 + 1

N −
1
p

≥ p.

By superadditivity of s 7→ s
rα
p and of s 7→ srα, we obtain

‖u‖rLr(Ω) ≤
∑
c∈C

‖ū‖rLr(Qδ(c))

≤ C ′
∑
c∈C

‖∇ū‖p
rα
p

Lp(Qδ(c))‖ū‖
r(1−α)
L1(Qδ(c)) + C ′‖ū‖rL1(Qδ(c))

≤ C ′‖∇ū‖rαLp(Ωδ)‖ū‖
r(1−α)
L1

uloc(Ωδ) + C ′‖ū‖rαL1(Ωδ)‖ū‖
r(1−α)
L1

uloc(Ωδ)

≤ C ′′
(
‖∇u‖Lp(Ω) + ‖u‖L1(Ω)

)rα‖u‖r(1−α)
L1

uloc(Ω). �

7Note that ū is not defined on ∂Ω, but this set is negligible.
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Proposition 3.8. Assume that f : RN×R×RN → [0,+∞] satisfies (H1) and (H5)
for some p ∈ (1,+∞). Consider a vanishing sequence (un)n∈N in W 1,1

loc (Ωn,R±),
where the Ωn ⊆ RN are open sets with C 1 boundary such that infn∈N reach(∂Ωn) >
0, and a sequence (Φn)n∈N of Borel maps Φn : Ωn → RN such that supy∈Ωn |Φn(y)−
x0| → 0 as n→ +∞ for some x0 ∈ RN . If θn :=

´
Ωn un 6= 0 for every n and (θn)n∈N

is bounded, then:

lim inf
n→+∞

1
|θn|

ˆ
Ωn
f(Φn(y), un(y),∇un(y)) dy ≥ f ′−(x0, 0±, 0),

where f ′−(x0, 0±, 0) was defined in (1.4).

Proof of Proposition 3.8. Suppose for example that un ≥ 0 a.e. for every n. With-
out loss of generality, we may assume after extracting a subsequence that:

(3.18) K := sup
n

1
θn

ˆ
Ωn
f(Φn(y), un(y),∇un(y)) dy + θn < +∞.

We consider the sequence of measures (νn)n∈N ∈M+(RN × R× RN ) defined by

νn := 1
θn

(Φn, un,∇un)](un LN Ωn), n ∈ N.

We are going to show in several steps that νn
C ′b−−⇀ δ(x0,0,0) and deduce the result.

It suffices to show that the three projections νin := (πi)]νn, i ∈ {1, 2, 3} converge
narrowly to δx0 , δ0 and δ0 respectively. Indeed, this would imply that (νn) converges
narrowly to a measure concentrated on (x0, 0, 0), hence to δ(x0,0,0) since the νn are
probability measures. First of all, since (νn) has bounded mass and (θn) is bounded,
we may take a subsequence (not relabeled) such that νn

C ′0−−⇀ ν and θn → θ as n→∞
for some ν ∈M+(RN × R× RN ) and θ ≥ 0.

Step 1: ν1
n

C ′b−−⇀ δx0 . This is a direct consequence of the fact that ν1
n is concentrated

on Φn(RN ) for every n and dist(Φn(RN ), x0)→ 0 as n→∞.

Step 2: ν2
n

C ′b−−⇀ δ0. By (3.18) and our assumption (H5), there is a constant K1 > 0
with

(3.19)
ˆ

Ωn
|∇un|p ≤ K1

ˆ
Ωn
un, n ∈ N.

We deduce from Markov’s inequality, and Lemma 3.7 applied with r = p(1 + 1
N ),

corresponding to α = N
N+1 , that

ν2
n([η,+∞)) = 1

θn

ˆ
{un≥η}

un

= 1
θn

ˆ
{un≥η}

u1−r
n urn

≤ 1
θnηr−1

ˆ
Ωn
urn

≤ C

θnηr−1

(
‖∇un‖Lp(Ωn) + ‖un‖L1(Ωn)

)rα‖un‖r(1−α)
L1

uloc(Ωn)

≤ C ′

ηr−1

(
1 + θp−1

n

)
‖un‖r(1−α)

L1
uloc(Ωn),
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where in the last inequality, we have used the identity αr = p and (3.19), and C,C ′
depend only on N, r, p and infn reach(∂Ωn).

Since (un)n∈N is vanishing and (θn)n∈N is bounded, the last term in the previous
inequality goes to zero as n→∞ and it follows that ν2

n

C ′b−−⇀ δ0.

Step 3: ν3
n

C ′b−−⇀ δ0. Fix M > 0 and η > 0. One has by (3.19),

ν3
n([M,+∞)) = 1

θn

ˆ
{|∇un|≥M}

un ≤
1
θn

ˆ
{un<η}∩{|∇un|≥M}

un + 1
θn

ˆ
{un>η}

un

≤ η

θn
LN ({|∇un| ≥M}) + ν2

n([η,+∞))

≤ η

θn

1
Mp

ˆ
Ωn
|∇un|p + ν2

n([η,+∞))

≤ ηK1

Mp
+ ν2

n([η,+∞)).

By the previous step, we know that limn→+∞ ν2
n([η,+∞)) = 0, hence taking the

superior limit as n → +∞ then η → 0 we get limn→+∞ ν3
n([M,+∞)) = 0. Since

this is true for every M > 0 we obtain ν3
n

C ′b−−⇀ δ0.

Step 4: conclusion. By the previous steps, we deduce that νn
C ′b−−⇀ δ(x0,0,0) as n →

+∞. We define g : RN ×R+×RN → [0,+∞] as the lower semicontinuous envelope
of RN×R∗+×RN 3 (x, u, ξ) 7→ 1

uf(x, u, ξ). By (H1), we have g(x, u, ξ) = 1
uf(x, u, ξ)

if u > 0, and by definition of f ′− (see (1.4)), we have g(x, 0, 0) = f ′−(x, 0+, 0) for
every x ∈ RN . Hence, by lower semicontinuty of g and weak convergence of (νn),
we get

lim inf
n→∞

ˆ
Ωn
f(Φn, un,∇un) ≥ lim inf

n→∞

ˆ
{un>0}

f(Φn, un,∇un)
un

un

= lim inf
n→∞

ˆ
RN×R×RN

g(x, u, ξ) dνn(x, u, ξ)

≥
ˆ
RN

g(x, u, ξ) dδ(x0,0,0) = f ′−(x0, 0+, 0),

which ends the proof of the lemma. �

As a corollary, we may now relate the slope at 0 of Hf to that of f .

Corollary 3.9. Assume that f : RN × R × RN → [0,+∞] satisfies (H1), (H5)
for some p ∈ (1,+∞) and (H6). Fix x ∈ RN . If either N ≥ 2 or (N = 1 and
Hf (x, ·) 6≡ +∞ on R∗±), then H ′f (x, 0±) = f ′−(x, 0±, 0).

Proof. The inequality H ′f (x, 0±) ≤ f ′−(x, 0±, 0) is a consequence of (H6), Proposi-
tion 2.6 and Proposition 2.7, and the converse inequality H ′f (x, 0±) ≥ f ′−(x, 0±, 0)
comes from Proposition 3.8. Indeed, if (un)n∈N ∈ W 1,1

loc (RN ,R±) is a sequence
of functions of mass θn =

´
RN un going to 0 and which is almost minimizing in

the sense that limn→∞
Exf (un)
|θn| = lim infn→∞ H(x,θn)

θn
then (un)n∈N is vanishing and

Proposition 3.8 yields

lim inf
n→∞

Exf (un)
|θn|

≥ f ′−(x, 0±, 0).
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�

We now establish our main energy lower bound along sequences with bounded
mass (not necessarily vanishing):

Proposition 3.10. Assume that (fε)ε>0 is a family of functions fε : RN × R ×
RN → [0,+∞] satisfying (H1), (H2), (H5) and (H8) where f = limε fε. Let
(εn)n∈N be a sequence of positive numbers going to zero, (Rn)n∈N and (rn)n∈N
be two sequences in (0,+∞] such that limn→∞ rn = limn→∞Rn − rn = +∞,
(un)n∈N be a sequence of functions un ∈ W 1,1

loc (BRn ,R±) with finite limit mass
m := limn→∞

´
Brn

un, and (Φn)n∈N be a sequence of Borel maps Φn : BRn → RN

such that
(3.20) sup

y∈BRn
|Φn(y)− x0| −−−−→

n→∞
0 for some x0 ∈ RN .

Then there exists a family (ui)0≤i<k of functions in W 1,1
loc (RN ,R±) with k ∈ N ∪

{+∞}, such that mi :=
´
RN u

i ∈ R∗± for every i, and

m = mv +
∑

0≤i<k
mi with ±mv ≥ 0,(3.21)

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un) ≥ |mv|f ′−(x0, 0±, 0) +
∑

0≤i<k

ˆ
RN

f(x0, u
i,∇ui).

(3.22)

Proof. Suppose for example that un ≥ 0 a.e. for every n. We first assume, up to
subsequence, that the left hand side of (3.22) is a finite limit. We apply the profile
decomposition Theorem 3.2 to the sequence of positive measures µn = un LN Brn
where, we assume the extraction σ to be the identity for convenience, and we
use the same notation as in Theorem 3.2. In particular, for each bubble Bin =
Brin(xin), with 0 ≤ i < kn, we have xin ∈ suppµn ⊆ B̄rn . By assumption, we
have limn→∞(Rn − rn) = +∞; hence, up to reducing the radii of the balls Bin
if necessary, in such a way that their radii still diverge (see Remark 3.4), we can
assume that
(3.23) Bin ⊆ BRn−1, 0 ≤ i < kn.

For each 0 ≤ i < kn, we let uin := un(· + xin). Since (3.22) is assumed to be
finite, we get that the sequence (uin)n is bounded in W 1,p

loc (RN ) by (H5). Hence,
after a further extraction if needed, we get that (uin)n∈N ⇀ ui weakly in W 1,p

loc (RN )
for some limit ui, for every 0 ≤ i < k = lim kn. Setting mi =

´
RN u

i for every i, by
(D) in Theorem 3.2, we have

mv := m−
∑

0≤i<k
mi = lim

n→∞

ˆ
Brn\∪0≤i<knB

i
n

un.

Fix ε > 0. We decompose the energy as

(3.24)
ˆ
BRn

fε(Φn, un,∇un) =
ˆ
BRn\∪0≤i<knB

i
n

fε(Φn, un,∇un)

+
∑

0≤i<kn

ˆ
B
rin

fε(Φn(·+ xin), uin,∇uin).
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Note that the domains Ωn := BRn \ ∪0≤i<kB
i
n satisfy infn∈N reach(∂Ωn) > 0 as

noticed in Example 3.5, thanks to (3.23) and (B), (C) in Theorem 3.2. Hence,
applying Proposition 3.8 to the Lagrangian fε, we obtain

(3.25) lim inf
n→∞

ˆ
BRn\∪0≤i<knB

i
n

fε(Φn, un,∇un) ≥ mv(fε)′−(x0, 0+, 0).

Moreover, by the lower semicontinuity of integral functionals (see [But89, Theo-
rem 4.1.1]), in view of (3.20), we have for each i with 0 ≤ i < k,

(3.26) lim inf
n→∞

ˆ
B
rin

fε(Φn(·+ xin), uin,∇uin) ≥
ˆ
RN

fε(x0, u
i,∇ui).

Finally, by (3.24), (3.25), (3.26), (H8) together with monotone convergence, we
deduce that

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un)

≥ lim
ε→0+

(
mv(fε)′−(x0, 0+, 0) +

∑
0≤i<k

ˆ
RN

fε(x0, u
i,∇ui)

)
= mvf

′
−(x0, 0+, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui).

The similar statement for non-positive functions is obtained in the same way. �

3.3. Existence of optimal profiles. For the existence of an optimal profile in
(1.2), we need a criterion that rules out splitting and vanishing of minimizing se-
quences:

Lemma 3.11. Let H : R+ → R+ be a concave function. Then H is subadditive,
and if for some 0 < θ < m one has H(m) = H(m− θ) +H(θ), then H is linear on
(0,m).

Proof. By concavity, t 7→ H(t)
t is non-increasing. Hence,

H(m) = θ
H(m)
m

+ (m− θ)H(m)
m

≤ θH(θ)
θ

+ (m− θ)H(m− θ)
m− θ

.

But, by assumption, the last inequality is an equality which means that H(m)
m =

H(θ)
θ = H(m−θ)

m−θ . In particular, the monotone function t 7→ H(t)
t must be constant

on [θ,m], i.e. H must be linear on [θ,m]. By concavity this is only possible if H is
linear on [0,m]. �

We can now state and prove our existence result:

Proposition 3.12. Assume that f : RN ×R×RN → [0,+∞] satisfies (H1), (H2),
(H5) and (H6). Let x0 ∈ RN and m ∈ R+ (resp. m ∈ R−). If Hf (x0, ·) is not linear
on [0,m] (resp. [m, 0]), then (1.2) admits a solution u ∈W 1,1

loc (RN ), i.e.
´
RN u = m

and
´
RN f(x0, u,∇u) = Hf (x0,m), such that u ≥ 0 (resp. u ≤ 0) in RN .

Proof. We consider the case m ≥ 0, the case m < 0 can then be deduced by
considering f̃(x, u, ξ) = f(x,−u,−ξ). We assume without loss of generality that
Hf is finite on (0,+∞), otherwise by Theorem 2.1 there is nothing to prove. By
Remark 2.2, the admissible class in (1.2) can be reduced to non-negative functions.
In particular, if m = 0, then u = 0 is the only non-negative solution. If m > 0,
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we apply Proposition 3.10 in the following situation: fε ≡ f , Rn ≡ +∞, Φn ≡ x0,
(un)n∈N is a minimizing sequence for the minimization problem in (1.2), and (rn)n∈N
is a sequence of positive radii going to +∞ such that limn→∞

´
Brn

un = m. We
obtain

Hf (x0,m) ≥ mvf
′
−(x0, 0+, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui),

with k ∈ N ∪ {+∞}, ui ∈ W 1,p
loc (RN ,R+) and m =

∑
0≤i<kmi + mv, where mi :=´

RN u
i. By Proposition 2.6 and Proposition 2.7, in view of our assumption (H6),

and since Hf is assumed to be finite on (0,+∞) (for the case N = 1), we have
f ′−(x0, 0+, 0) ≥ H ′f (x0, 0). Moreover, by Theorem 2.1, we have mvH

′
f (x0, 0) ≥

Hf (x0,mv). Hence, by definition of Hf ,

Hf (x0,m) ≥ Hf (x0,mv) +
∑

0≤i<k
Hf (x0,mi).

Since the concave function Hf (x0, ·) is not linear on [0,m], by Lemma 3.11, we
have either k = 1 and mv = 0, and we are done, or k = 0 and m = mv. But
in the latter case, we would have Hf (x0,m) = mH ′f (x0, 0) which implies that the
monotone function t 7→ Hf (x0,t)

t is constant on [0,m], i.e. that Hf (x0, ·) is linear
on [0,m]. This contradicts our assumption. �

Remark 3.13. Notice that the end of the proof actually shows, under the given
assumptions, that the set of minimizers for a given massm is compact in L1 modulo
translations.

4. Γ-convergence of the rescaled energies towards the H-mass

We establish lower and upper bounds for the Γ − lim inf and Γ − lim sup re-
spectively, from which we deduce the proof of our main Γ-convergence result. The
upper bound on the Γ− lim sup holds under more general assumptions and will be
needed in Section 5.5.

4.1. Lower bound for the Γ− lim inf. Given a Borel function f : RN×R×RN →
[0,+∞], we define for every (x,m) ∈ RN × R,

(4.1) H−f (x,m) := Hf (x,m) ∧ (f ′−(x, 0±, 0)|m|), if ±m ≥ 0,

recalling that Hf is defined in (1.2) and f ′−(x, 0±, 0) in (1.4), with the usual con-
vention (±∞) × 0 = 0. Notice that under (H6), in view of Proposition 2.6 and
Proposition 2.7 we have H−f (x,m) = Hf (x,m), provided Hf 6≡ +∞ on R∗+ and
R∗−.

Proposition 4.1. Assume that (fε)ε>0 is a family of functions fε : RN×R×RN →
[0,+∞] satisfying (H1), (H2), (H5) and (H8) where f = limε→0 fε. Let (εn)n∈N be
a sequence of positive numbers going to zero, (un)n∈N be a sequence in W 1,1

loc (RN ),
and let

en(x) := fεn(x, εNn un(x), εN+1
n ∇un(x))ε−Nn , x ∈ RN ,

be the energy density of un. If un LN
C ′0−−⇀ u ∈M (RN ) and en LN

C ′0−−⇀ e ∈M (RN ),
then
(4.2) e ≥ H−f (u).
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In particular, Γ(C ′0)− lim infε→0 Eε ≥MH−
f .

Proof of Proposition 4.1. Set H := H−f . Let us assume first that un ≥ 0 a.e. for
every n. To obtain (4.2), it is enough to prove that for every x0 ∈ RN ,

(4.3) e({x0}) ≥ H(x0, u({x0})).

and that if x0 ∈ suppu is not an atom of u, then

(4.4) lim sup
R→0+

e(BR(x0))
u(BR(x0)) ≥ H

′(x0, 0+),

Indeed (4.3) implies that e ≥ (H(u))a (the atomic part of the measure H(u)) while
(4.4) implies that e ≥ H ′(·, 0+)ud = (H(u))d, by Radon-Nikodỳm theorem (see
[AFP00, Theorem 2.22]); these two relations yield e ≥ (H(u))a + (H(u))d = H(u)
as required.

We fix x0 ∈ suppu and proceed in several steps.

Step 1: blow-up near x0. We first take two sequences of positive radii (R`)`∈N → 0
and (r`)`∈N such that for every ` ∈ N, r` ∈ (0, R`),

e(∂BR`(x0)) = u(∂Br`(x0)) = 0,(4.5)
and

lim
`→∞

e(BR`(x0))
u(Br`(x0)) = lim sup

R→0+

e(BR(x0))
u(BR(x0)) .(4.6)

This last property is obtained by taking first a sequence (ρ`)` such that

lim sup
R→0+

e(BR(x0))
u(BR(x0)) = lim

`→∞

e(Bρ`(x0))
u(Bρ`(x0)) ,

then using monotone convergence the measures to get first r` then R` such that
0 < r` < R` < ρ`, u(Br`(x0)) ≥ (1 − 2−`)u(Bρ`(x0)) and e(BR`(x0)) ≥ (1 −
2−`)e(Bρ`(x0)).

By weak convergence and (4.5), according to [AFP00, Proposition 1.62 b)], we
have for every ` ∈ N,

lim
n→∞

en(BR`(x0)) = e(BR`(x0)) and lim
n→∞

ˆ
Br` (x0)

un = u(Br`(x0)).

Hence, there exists an extraction (n`)`∈N ∈ Σ such that

(4.7) lim
`→∞

r`
εn`

= +∞ and lim
`→∞

R` − r`
εn`

= +∞,

satisfying the following conditions:

u({x0}) = lim
`→∞

ˆ
Br` (x0)

un` , e({x0}) = lim
`→∞

en`(BR`(x0)),(4.8)

and

lim sup
`→∞

e(BR`(x0))
u(Br`(x0)) = lim

`→∞

en`(BR`(x0))´
Br` (x0) un`

.(4.9)

We may rewrite the mass and energy in terms of the re-scaled map v` defined by

(4.10) v`(y) := εNn`un`(x0 + εn`y), y ∈ RN , ` ∈ N,



28 MASS CONCENTRATION IN RESCALED FIRST ORDER INTEGRAL FUNCTIONALS

as follows: ˆ
Br` (x0)

un` =
ˆ
B
ε
−1
n`

r`

v`,(4.11)

and

en`(BR`(x0)) =
ˆ
B
ε
−1
n`

R`

fεn` (x0 + εn`y, v`(y),∇v`(y)) dy.(4.12)

Step 2: proof of (4.3). By Proposition 3.10, we have

(4.13)

e({x0}) = lim
`→∞

ˆ
B
ε
−1
n`

R`

fεn` (x0 + εn`y, v`(y),∇v`(y)) dy

≥ mvf
′
−(x0, 0+, 0) +

∑
0≤i<k

Hf (x0,mi).

Here k ∈ N ∪ {+∞} and m = mv +
∑

0≤i<kmi, with mi > 0, mv ≥ 0 and

m = lim
`→∞

ˆ
B
ε
−1
n`

r`

v` = u({x0}).

Since the function H = H−f , defined in (4.1), is the infimum of two functions
which are mass-concave, it is mass-concave hence subadditive. From (4.13) we thus
arrive at

e({x0}) ≥ H(x0,mv)+
∑

0≤i<k
H(x0,mi) ≥ H

(
x0,mv+

∑
0≤i<k

mi

)
= H(x0, u({x0})).

Step 3: proof of (4.4). Fix ε > 0 and assume that m = u({x0}) = 0. In that case,
we apply Proposition 3.8 to the sequence of functions (v`)`∈N defined on the sets
Ω` = Bε−1

n`
r`

and the function fε to get, thanks to (H8):

lim sup
R→0+

e(BR(x0))
u(BR(x0)) = lim

`→∞

en`(BR`(x0))´
Br` (x0) un`

≥ lim inf
`→∞

1´
B
ε
−1
n`

r`

v`

ˆ
B
ε
−1
n`

r`

fε(x0 + εn`y, v`(y),∇v`(y))

≥ (fε)′−(x0, 0+, 0).

Taking the limit ε→ 0+, we deduce by (H8) and (4.1):

(4.14) lim sup
R→0+

e(BR(x0))
u(BR(x0)) ≥ f

′
−(x0, 0+, 0) ≥ H ′(x0, 0+).

In view of the discussion at the beginning of the proof, we have now proved (4.2).

Step 4: proof of (4.2) for signed (un)n. Notice that the preceding reasoning for
non-negative un applies also to the case of non-positive un. Let us handle the case
where the (un)’s may change sign. We simply apply the above cases to the positive
and negative parts ((un)±)n which converge weakly (up to subsequence) to some
measures u± ∈ M+(RN ) which satisfy u = u+ − u−, so that e ≥ H(±u±). We
know that the Jordan decomposition u = u+ − u− is minimal, so that u± ≤ u±
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and u+ ⊥ u−. By monotonicity of the H-transform, due to Theorem 2.1, e ≥
H(±u±) ≥ H(±u±), and since H(u+) ⊥ H(−u−), we get

e ≥ H(u+) +H(−u−) = H(u).

Step 5: lower bound for the Γ − lim inf. We justify that (4.2) implies the lower
bound Γ(C ′0) − lim infε→0 Eε ≥ MH . Indeed, fix u ∈ M (RN ) and consider a
family (uε)ε>0 weakly converging to u as ε → 0. We need to show that MH(u) ≤
lim infε→0 Eε(uε). Assume without loss of generality that the inferior limit is finite
and take a sequence of positive numbers (εn)n∈N → 0 such that this inferior limit
is equal to limn→∞ Eεn(uεn). Now the energy density en associated to un = uεn
has bounded mass and up to extracting a subsequence one may assume that it
converges weakly to some measure e ∈M+(RN ). By the previous steps, e ≥ H(u),
and by lower semicontinuity and monotonicity of the mass:

lim inf
ε→0+

Eε(uε) = lim inf
n→∞

‖en‖ ≥ ‖e‖ ≥ ‖H(u)‖ = MH(u). �

4.2. Upper bound for the Γ−lim sup. In this section, we introduce the following
substitute for (H4), (H7) and (H8), where f, (fε)ε>0 are Borel maps from RN×R→
RN to [0,+∞]:

(U) there exists C < +∞ such that for every x, y ∈ RN , u ∈ R and ξ ∈ RN ,
lim sup
ε→0+

fε(x+ εy, u, ξ) ≤ f(x, u, ξ) and fε(y, u, ξ) ≤ C(f(x, u, ξ) + u) ∀ε > 0.

Proposition 4.2. Assume that f, (fε)ε>0 satisfy (U) and (H3). If u ∈ M (RN ),
then there exists (uε)ε>0 ∈W 1,1

loc (RN ) such that uε LN
C ′b−−⇀ u when ε→ 0 and which

satisfies
lim sup
ε→0+

Eε(uε) ≤MHf,lsc(u),

where Hf,lsc ≤ Hf stands for the lower semicontinuous envelope of Hf , defined in
(2.6). In other words, we have Γ(C ′b)− lim supε→0 Eε ≤MHf,lsc .

Proof of Proposition 4.2. Let F = Γ(C ′b) − lim supε→0 Eε. As an upper Γ-limit, F
is sequentially lower semicontinuous in the narrow topology. Hence, by Propo-
sition 2.5, it is enough to prove that F (u) ≤ MHf (u) whenever u is finitely
atomic. Let u =

∑k
i=1miδxi with k ∈ N, mi ∈ R, xi ∈ RN , and assume with-

out loss of generality that xi 6= xj when i 6= j and MHf (u) < +∞. Fix η > 0.
For each i = 1, . . . , k, there exists ui ∈ W 1,1

loc (RN ) such that
´
RN ui = mi and´

RN f(xi, ui,∇ui) ≤ H(xi,mi) + η < +∞. We define for every i = 1, . . . , k,

uiε(x) = ε−Nui(ε−1(x− xi)), x ∈ RN ,(4.15)
and

uε = max{uiε : i = 1, . . . , k},(4.16)
which converge narrowly as measures to u as ε→ 0. We have by change of variables:

Eε(uε) ≤
k∑
i=1

ˆ
{uε=uiε}

fε(x, εNuiε(x), εN+1∇uiε(x))ε−N dx

≤
k∑
i=1
Eε(uiε) =

k∑
i=1

ˆ
RN

fε(xi + εx, ui,∇ui).
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Using our assumption (U) and the dominated convergence theorem, one gets as
ε→ 0:

F (u) ≤ lim sup
ε→0

Eε(uε) ≤
k∑
i=1

ˆ
RN

f(xi, ui,∇ui) ≤
k∑
i=1

H(xi,mi)+kη = MH(u)+kη.

The conclusion follows by arbitrariness of η > 0. �

4.3. Proof of the main Γ-convergence result. We now explain how Theo-
rem 1.2 follows from Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.2. The lower bound Γ(C ′0)− lim infε→0 Eε ≥MH−
f follows from

Proposition 4.1, and the upper bound Γ(C ′b)− lim supε→0 Eε ≤MHf,lsc from Propo-
sition 4.2, where the assumption (U) is a consequence of (H4), (H7) and (H8). In
the case N = 2, by Proposition 2.6 and assumption (H6), we have H−f = Hf , and
Hf ≥ Hf,lsc by definition, so that both Γ − lim inf and Γ − lim sup (for weak and
narrow topologies) coincide. In the case N = 1, by Proposition 2.7 either we have
again H−f = Hf on RN × R+ by (H6) and (H3), or we have Hf (x0, ·) ≡ +∞ on
(0,+∞) for some x0 ∈ R. In that case, by (H7) we necessarily have Eε(u) = +∞
for every u such that

´
RN u > 0, and Hf (x, ·) ≡ Hf (x0, ·) on R+ for every x ∈ R. It

implies that both Γ− lim inf and Γ− lim sup (for the weak and narrow topologies)
coincide with8 χ{0} = MHf on M+(RN ). Similarly, they coincide on finite negative
measures. �

5. Examples, counterexamples and applications

5.1. Scale-invariant Lagrangians and necessity of assumption (H6). Our
assumption (H6) is not very standard, but we need a condition of this type in order
to get Γ-convergence of the rescaled energies Eε towards MHf , as shown by the
following class of scale-invariant Lagrangians:

(5.1) fε(x, u, ξ) = f(u, ξ) with f(u, ξ) =
{
up(

1
p?
−1)|ξ|p if u > 0,

0 else,

where p ∈ (1, N), N ∈ N∗ and p? := pN
N−p . By straightforward computations,

Eε(u) = Ef (u) :=
´
RN f(u,∇u) for every ε > 0 and u ∈W 1,p

loc (RN ) in that case.
Moreover, the associated minimal cost function Hf is not trivial. Indeed, apply-

ing the Gagliardo–Nirenberg–Sobolev inequality,(ˆ
RN
|v|p

?
) 1
p? ≤ C

( ˆ
RN
|∇v|p

) 1
p

, ∀v ∈ Lp
?

∩W 1,1
loc (RN ),

to the function9 v = u
1
p? , we obtain that for every u ∈W 1,1

loc (RN ,R+) ∩ L1(RN ),(ˆ
RN

u

) p
p?

≤
(
C

p?

)p ˆ
{u>0}

u
p
p?
−p|∇u|p =

(
C

p?

)p
Ef (u).

8χC(x) = 0 if x ∈ C and +∞ otherwise.
9Actually, we apply it to vε = φε(u) where φε is a suitable approximation of (·)

1
p? and take

ε→ 0.
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Hence, for every m > 0, we have Hf (m) > 0, and even Hf (m) < +∞ since any
function u = vp

? , with v ∈W 1,p(RN ,R+), has finite energy. Replacing u by mu in
the infimum defining Hf in (1.2), we actually obtain

(5.2) Hf (m) = m1− p
NHf (1), 0 < Hf (1) < +∞.

In that case, it is clear that the Γ-limit of Eε ≡ E in the weak or narrow topology of
M+(RN ), that is the lower semicontinuous relaxation of Ef , does not coincide with
MHf ; indeed, the first functional is finite on diffuse measures whose density has
finite energy, while the second functional is always infinite for non-trivial diffuse
measures since H ′f (0) = +∞.

These scaling invariant Lagrangians are ruled out by our assumption (H6). All
the other assumptions are satisfied except (H5). Note that the following perturba-
tion of f ,

f̃(u, ξ) =
(
1 + up(

1
p?
−1))|ξ|p

satisfies all the assumptions except (H6), and provides a counterexample to the
Γ-convergence. Indeed, MHf̃

≥MHf is still infinite on diffuse measures, while (the
relaxation of) Ef̃ is finite for any diffuse measure whose density has finite energy.

We stress that an assumption like (H6) is actually needed, even for the lower
semicontinuity of the function Hf – recall that if MHf is a Γ-limit, then it must
be lower semicontinuous by [Bra02, Proposition 1.28], which in turn implies that
the function Hf is lower semicontinuous by Proposition 2.5. Indeed, consider the
Lagrangians

f(x, u, ξ) =
(
1 + up(

1
p?
−1))|ξ|p(x),

with p ∈ C 0(RN , (1, N)) such that p(0) = p ∈ (1, N) and p(x) > p when x 6= 0.
Then, we have Hf (0,m) = m1− p

NH(1), but Hf (x, ·) ≡ 0 if x 6= 0 as can be easily
seen via the change of function εNu(ε ·), with ε > 0 small.

5.2. General concave costs in dimension one. It has been proved in [Wir19]
that for any continuous concave function H : R+ → R+ with H(0) = 0, there exists
a function c : R+ → R+ such that c(0) = 0, u 7→ c(u)

u is lower semicontinuous and
non-increasing on (0,+∞), and for every m ≥ 0,

H(m) = inf
{ˆ

R
|u′|2 + c(u) : u ∈W 1,1

loc (R,R+),
ˆ
R
u = m

}
.

The Lagrangians of the form fε(x, u, ξ) = |ξ|2 +c(u), in dimension N = 1, satisfy all
our assumptions (H1)–(H8), hence our Γ-convergence result stated in Theorem 1.2
yields the Γ-convergence of the functionals

Eε(u) =
ˆ
R
ε3|u′|2 + c(εu)

ε
, u ∈W 1,2(R,R+),

towards MH for both the weak and narrow convergence of measures. Therefore, we
may find an elliptic approximation of any concave H-mass. Let us stress that c is
determined in [Wir19] from H through several operations including a deconvolution
problem, but no closed form solution is given in general; nonetheless, an explicit
solution is provided if c is affine by parts.
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In higher dimension N ≥ 2, Proposition 2.8 tells us that the class of functions
H = Hf with f satisfying (H1)–(H8) is smaller, namely, H must satisfy:

(5.3) ∃m∗ ≥ 0,
{
H is linear on [0,m∗],
H is strictly concave (m∗,+∞).

We have no positive or negative answer to the inverse problem, consisting in finding
f satisfying our assumptions such that Hf = H, for a given continuous concave
function H : R+ → R+ satisfying (5.3).

5.3. Homogeneous costs in any dimension. In this section, we provide La-
grangians f to obtain the α-mass Mα := Mt7→tα in any dimension N for a wide
range of exponents, including exponents α ∈

(
1− 1

N , 1
]
. We consider for every p ∈

[1,+∞), s ∈ (−∞, 1] and N ∈ N∗, the energy defined for every u ∈ W 1,1
loc (RN ,R+)

by

(5.4) Ef (u) :=
ˆ
RN

f(u,∇u) :=
ˆ
RN
|∇u|p + us.

Notice that for p > 1, f satisfies all our hypotheses (H1)–(H6) (without dependence
on x), (H6) holding in dimension N ≥ 2 with ρ(t) = t for example. Thus by
Theorem 1.2 the re-scaled energies Γ-converge to the Hf -mass.

One may compute Hf substituting u by v such that u = mλNv(λ·) in (1.2),
where

(5.5) λ = m
s/p−1

1+N−sN/p .

Straightforward computations give
´
RN v = 1 if

´
RN u = m, and

Ef (u) = mαEf (v), where α =
1− s

p + s
N

1− s
p + 1

N

,

thus
Hf (m) = cmα, where c = Hf (1).

We look for cases when the cost is non-trivial, i.e. neither identically zero nor
infinite on (0,+∞). Take an auxiliary exponent q ∈ [1,+∞) and α ∈ [0, 1] such
that 1 = αq + (1− α)s. By Hölder inequality,ˆ

RN
u =
ˆ
RN

uαqu(1−α)s ≤
(ˆ

RN
uq
)α(ˆ

RN
us
)1−α

.

Moreover, choosing q ∈ (1, p?) if p < N and any q ∈ (1,+∞) if p ≥ N , by the
Gagliardo–Nirenberg–Sobolev inequality, for every u ∈W 1,1

loc ∩ L1(RN ,R+),(ˆ
RN

uq
) 1
q

= ‖u‖Lq ≤ C‖∇u‖βLp‖u‖
1−β
L1 ,

with β ∈ (0, 1) such that 1
q = β

(
1
p −

1
N

)
+ (1− β). Hence,(ˆ

RN
u

)1−qα(1−β)
≤ C

(ˆ
RN
|∇u|p

) qαβ
p
(ˆ

RN
us
)1−α

,

and the cost is non-zero for every m > 0.
In the case s ∈ [0, 1], any u = vr with v ∈ C 1

c (RN ) is a competitor with finite
energy, thus Ef is non-trivial for every p ∈ [1,+∞). In the case s < 0, consider the
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competitor u : x 7→ (1− |x|)γ+ for γ > 0 to be fixed later. Then
´
RN |∇u|

p < +∞ if
and only if t 7→ (1−t)(γ−1)p is integrable at 1−, i.e. (γ−1)p > −1 ⇐⇒ γ > 1−1/p,
and
´
{u>0} u

s < +∞ if and only if γs > −1 ⇐⇒ γ < −1/s. Therefore, one may
find γ > 0 satisfying both conditions, and ensure that Hf is non-trivial, if

−p′ < s < 0.

To summarize, we have shown that Hf is non-trivial if:

s ∈ (−p′, 1].

Since α is monotone in s, one may easily compute the range of α. If p and N are
fixed, α ranges over

(
N−1

N+1−1/p , 1
]
when s ∈ (−p′, 1]. Notice that when N = 1 we

obtain the whole range α ∈ (0, 1], and at least the range
[
1− 1

N , 1
]
for every p in

dimension N ≥ 2. Finally, we obtain a range α ∈
(

1− 2
N+1 , 1

]
when p ranges over

(1 +∞) in dimension N .

5.4. Branched transport approximation: H-masses of normal 1-currents.
Branched Transport is a variant of classical optimal transport (see [San15] and
Section 4.4.2 therein for a brief presentation of branched transport, and [BCM09]
for a vast exposition) where the transport energy concentrates on a network, i.e.
a 1-dimensional subset of Rd, which has a graph structure when optimized with
prescribed source and target measures. It can be formulated as a minimal flow
problem,

min
{

MH
1 (w) : div(w) = µ− − µ+

}
,

where µ± are probability measures on Rd, H : Rd × R+ → R+ is mass-concave,
and the H-mass MH

1 is this time defined for finite vector measures w ∈M (Rd,Rd)
whose distributional divergence is also a finite measure; in the language of currents,
it is called a 1-dimensional normal current. Any such measure may be decomposed
into a 1-rectifiable part θξ ·H1 Σ where θ(x) ≥ 0 and ξ(x) is a unit tangent vector
to Σ for H1-a.e. x ∈ Σ, and a 1-diffuse part w⊥ satisfying |w⊥|(A) = 0 for every
1-rectifiable set A:

w = θξ · H1 M + w⊥.

The H-mass is then defined by:

(5.6) MH
1 (w) :=

ˆ
Σ
H(x, θ(x)) dH1(x) +

ˆ
Rd
H ′(x, 0) d|w⊥|.

In the case H(x,m) = mα with 0 < α < 1, a family of approximations of these
functional has been introduced in [OS11]:

(5.7) Eε(w) =
{´

Rd ε
γ1 |∇w|2 + ε−γ2 |w|β if w ∈W 1,2

loc (Rd,Rd),
+∞ otherwise,

with β = 2−2d+2αd
3−d+α(d−1) , γ1 = (d − 1)(1 − α) and γ2 = 3 − d + α(d − 1). It has

been shown in [OS11; Mon17] that the functionals Eε Γ-converge as ε → 0+, in
the topology of weak convergence of u and its divergence, to a non-trivial multiple
of the α-mass Mα

1 := MH
1 with H(x,m) = mα in dimension d = 2. The result

extends to any dimension d, by [Mon15], thanks to a slicing method that relates
the energy Eε with the energy of the sliced measures u = (w · ν)+ supported on the
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slices Va = {x ∈ Rd : x · ν = a} ' RN , for any given unit vector ν ∈ Rd, defined
by

Ēε(u) =
ˆ
RN

εγ1 |∇u|2 + ε−γ2 |u|β .

The functionals Ēε Γ-converge as ε→ 0+, in the narrow topology, to cMα for some
non-trivial c, as shown in Section 5.3, and one may recover every α-mass in this
way for α ∈

(
2d−4
2d+1 , 1

]
, and in particular every so-called super-critical exponents for

Branched Transport in dimension d, that is α ∈ (1− 1/d, 1].
The same slicing method would allow to extend our Γ-convergence result stated

in Theorem 1.2 to functionals defined on vector measure

(5.8) Eε(w) =
{´

Rd fε(x, ε
d−1|w|(x), εd|∇w|(x))ε1−d dx if w ∈W 1,1

loc (Rd,Rd),
+∞ otherwise,

for Lagrangians fε → f fitting the framework of Theorem 1.2. The expected Γ-
limit, for the weak topology of measures and their divergence measure, would be
the functional MHf

1 , with Hf defined in (1.2). Note that this approach would
provide approximations of H-masses for more general continuous and concave cost
functions H : R+ → R+ satisfying H(0) = 0. By [Wir19], we would obtain all such
H-masses when N = 1 (corresponding to d = 2).

5.5. A Cahn-Hilliard model for droplets. Following the works [BDS96] in the
one-dimensional case and [Dub98] in higher dimension, we consider functionals on
M+(RN ) of the form:

(5.9) Wε(u) =


ˆ
RN

ε−ρ(W (u) + ε|∇u|2) if u ∈W 1,1
loc (RN ,R+),

+∞ otherwise,

where W : R+ → R+ is a Borel function satisfying W (t) ∼u→+∞ us for some
exponent s ∈ (−∞, 1). In [BDS96; Dub98], it is in particular proven, under some
assumptions on the slope of W at 0 and its regularity, that the family (Wε)ε>0 Γ-
converges to a non-trivial multiple of the α-mass, α = 1−s/2+s/N

1−s/2+1/N , when s ∈ (−2, 1)
and ρ = ρ(s,N) := N(1−s)

(N+2)+N(1−s) . In this section, we recover this Γ-convergence
result using our general model.

Replacing ε with ε̄ := ε(N+2)+N(1−s) and noticing that 1 − ρ = N+2
(N+2)+N(1−s) ,

one gets for every u ∈W 1,1
loc (RN ,R+):

Wε̄(u) =
ˆ
RN

ε−N(1−s)W (u) + εN+2|∇u|2

=
ˆ
RN

(
[εNsW (ε−NεNu)] + |εN+1∇u|2

)
ε−N

=
ˆ
RN

fWε (x, εNu, εN+1∇u)ε−N ,

where fWε is defined for every x ∈ RN , u ∈ R+, ξ ∈ RN by

fWε (x, u, ξ) := Wε(u) + |ξ|2 and Wε(u) := εNsW (ε−Nu).

Therefore if we take fε = fWε in our general model (1.3) we exactly get Wε̄ = Eε.
The fact that W (u) ∼ us as u → +∞ implies that Wε converges pointwise to the
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map ws : u 7→ us if u > 0, ws(0) = 0, hence fWε converges to fs : (x, u, ξ) 7→
ws(u) + |ξ|2.

Theorem 5.1. Assume that W : R+ → R+ satisfies:
(HW1) W is lower semicontinuous,
(HW2) {W = 0} = {0},
(HW3) W (u) ∼u→+∞ us for some s ∈ (−∞, 1),

(HW4) sup
u>0

W (u)
us

< +∞,

(HW5) 0 < lim inf
u→0+

W (u)
u

.

Then (Wε)ε>0 Γ-converges to MHfs , for both topologies C ′0 and C ′b , and if s ∈
(−2, 1] then MHfs is a non-trivial multiple of Mα where α = 1−s/2+s/N

1−s/2+1/N .

To prove this theorem, we start with a simple lemma.

Lemma 5.2. Assume that W satisfies (HW1)–(HW5). Then for every δ ∈ (0, 1),
there exists cδ ∈ (0,+∞) such that for every ε > 0 and every u ∈ R+,

(5.10) δ(us ∧ cδε−N(1−s)u) ≤Wε(u).

Proof. Fix δ ∈ (0, 1). There exists M > 0 such that δus ≤ W (u) for every u ≥M .
Besides, the map w : u 7→ W (u)/u is lower semicontinuous and positive on (0,M ]
by (HW1) and (HW2), and since lim infu→0 w(u) > 0 by (HW5), w is necessarily
bounded from below on (0,M ] by some contant c > 0. As a consequence Wε(u) ≥
δus if u ≥ εNM and Wε(u) ≥ cεN(s−1)u if u ≤ εNM , hence:

∀u ∈ R, Wε(u) ≥ δ(us ∧ cε−N(1−s)u). �

Proof of Theorem 5.1. By (HW4), there exists a constant C such that fWε ≤ Cfs
for every ε, and since fWε does not depend on the x variable and converges pointwise
to fs, (U) is satisfied and our Γ− lim sup result stated in Proposition 4.2 yields

MHfs ≥ Γ(C ′b)− lim sup
ε→0

Eε.

Fix δ ∈ (0, 1). By Lemma 5.2, there exists cδ such that

∀x, u, ξ, fWε (x, u, ξ) ≥ δ(|ξ|2 + (us ∧ cδε−N(1−s)u) =: fδε (x, u, ξ).
It is easy to check that fδε satisfies (H1), (H2) and (H5) for every ε > 0. Moreover
fδε ↑ δfs and (fδε )′−(·, 0+, 0) = δcδε

−N(1−s) ↑ (+∞) = (δfs)′−(·, 0+, 0) as ε → 0,
thus (H8) holds for the family (fδε )ε>0, and by applying our Γ− lim inf result stated
in Proposition 4.1 to the energies Eδε induced by fδε we get:

Γ(C ′0)− lim inf Eε ≥ Γ(C ′0)− lim inf Eδε ≥MH−
δfs .

We get the result by taking the limit δ → 1, noticing that (fs)′−(·, 0+, 0) = +∞, so
that H−δfs = Hδfs = δHfs and MH−

δfs = MδHfs = δMHfs . �

Remark 5.3. We recover the Γ-convergence results of [BDS96] and [Dub98] when
s ∈ (−2, 1) under slightly more general assumptions: besides (HW2) and (HW3),
the authors impose the existence of a non-trivial slope limu→0

W (u)
u ∈ (0,+∞) and

a regularity condition (either W is of class C 1 or continuous and non-decreasing
close to 0), which are stronger than (HW1), (HW4) and (HW5). Let us stress
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however that these works also tackle the cases s < −2 in any dimension, where the
exponent ρ has to be fixed to ρ(−2, N), and the case s = −2 in dimension one, where
a logarithmic factor must be introduced, replacing ε−ρ with ε−ρ(−2,1)|log ε|−1 =
ε−1/2|log ε|−1. This implies that in our model we get a trivial Γ-limit when s ≤ −2,
namely Hfs ≡ +∞ on (0,+∞).
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