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Mass concentration in rescaled first order
integral functionals

Antonin Monteil∗ Paul Pegon†

January 7, 2022

We consider first order local minimization problems min
´
RN f(u,∇u) under

a mass constraint
´
RN u = m ∈ R. We prove that the minimal energy function

H(m) is always concave on (−∞, 0) and (0,+∞), and that relevant rescalings
of the energy, depending on a small parameter ε, Γ-converge in the weak topol-
ogy of measures towards the H-mass, defined for atomic measures

∑
imiδxi as∑

iH(mi). We also consider space dependent Lagrangians f(x, u,∇u), which
cover the case of space dependent H-masses

∑
iH(xi,mi), and also the case of

a family of Lagrangians (fε)ε converging as ε → 0. The Γ-convergence result
holds under mild assumptions on f , and covers several situations including ho-
mogeneous H-masses in any dimension N ≥ 2 for exponents above a critical
threshold, and all concave H-masses in dimension N = 1. Our result yields in
particular the concentration of Cahn-Hilliard fluids into droplets, and is related
to the approximation of branched transport by elliptic energies.
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Notation

Br(x) open ball of radius r centered at x;
Br open ball Br(0);

M(RN ) set of finite signed Borel measures on RN ;
M+(RN ) set of finite positive Borel measures on RN ;

τxµ Borel measure A 7→ µ(A− x) if µ ∈M(RN ) and x ∈ RN ;
cBµ Borel measure τ−x(µ B) if B is the ball Br(x);

µ`
C′0−⇀ µ weak convergence of measures, i.e. weak-? convergence in duality with

the space C0(RN ) of continuous functions vanishing at infinity;
µ`
C′b−⇀ µ narrow convergence of measures, i.e. weak-? convergence in duality with

thhe space of continuous and bounded function Cb(RN );
Σ set of increasing maps σ : N→ N;

σ1 � σ2 σ1, σ2 ∈ Σ are such that σ1(Jn,+∞K) ⊆ σ2(N) for some n ∈ N.

1 Introduction
1.1 Setting
Let N ∈ N∗ and let f : RN ×R×RN → [0,+∞] be a Borel function. Consider the following
energy functional, defined for any fixed x ∈ RN on the set of finite Borel measuresM(RN )
on RN by

Exf (u) =


ˆ
RN

f(x, u(y),∇u(y)) dy if u ∈W 1,1
loc (RN ),

+∞ otherwise.
(1.1)

The minimization of this energy energy under a mass constraint gives rise to the notion of
minimal cost function, defined by

Hf (x,m) := inf
{
Exf (u) : u ∈W 1,1

loc ∩ L
1(RN ) such that

ˆ
RN

u = m

}
∈ [0,+∞]. (1.2)
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Note that the minimization can be restricted to non-negative functions when m ≥ 0 and
non-positive functions when m ≤ 0, as explained in Remark 2.2.
As a preliminary result, which deserves interest on its own, we will establish the following:

Theorem 1.1. Let x ∈ RN . The map m 7→ Hf (x,m) is concave non-decreasing on (0,+∞).
If we further assume that f(x, 0, 0) = 0 then Hf (x, 0) = 0 and Hf (x, ·) is either identically
+∞ on (0,+∞) or continuous on [0,+∞) ; it is in particular lower semicontinuous on R+.
A similar statement holds on (−∞, 0].

The proof is very simple and works with no further assumptions on f .
Our main purpose is to prove that under some conditions, if (fε)ε>0 is a family of functions

fε : RN × R× RN → [0,+∞] converging pointwise to f as ε→ 0, then the rescaled energy
functionals Eε, defined for each ε > 0 onM(RN ) by

Eε(u) =


ˆ
RN

fε(x, εNu(x), εN+1∇u(x))ε−N dx if u ∈W 1,1
loc (RN ),

+∞ otherwise,
(1.3)

Γ-converge as ε → 0, for the narrow or weak convergence of measures, to the Hf -mass,
defined onM(RN ) by (see Definition 2.3):

MHf (u) :=
ˆ
RN

Hf (x, u({x})) dH0(x) +
ˆ
RN

H ′f (x, 0+) dud+(x) +
ˆ
RN

H ′f (x, 0−) dud−(x).

where u = ua + ud is the decomposition of u into its atomic part ua and its diffuse part
ud, and ud = ud+ − ud− is the decomposition of ud into positive and negative parts, and
H ′f (x, 0±) = limm→0±

Hf (x,m)
|m| ∈ [0,+∞].

This kind of singular limit in integral functionals is reminiscent of several variational mod-
els with physical relevance which have been the object of intensive mathematical analysis,
such as Cahn-Hilliard fluids with concentration on droplets [BDS96] or on singular inter-
faces [MM77], toy models for micromagnetism and liquid crystals like Aviles-Giga [AG99]
and Landau-de Gennes [BPP12], or Ginzburg-Landau theory of supraconductivity [Hél94].
The fact that MHf is expected to be the Γ-limit of Eε is due to the following observation:

if Br(x0) ⊆ RN and uε(x) := ε−Nvε(ε−1(x− x0)), then
´
Br(x0) uε =

´
Br/ε

vε and
ˆ
Br(x0)

fε(x, εNuε(x), εN+1∇uε(x))ε−N dx =
ˆ
Br/ε

fε(x0 + εy, vε(y),∇vε(y)) dy,

so that the energy contribution of a mass m ≥ 0 contained in a ball Br(x0) should be of the
order of Hf (x0,m), where r is arbitrary.
Nevertheless, it is not true in general that MHf is the Γ-limit of the functionals Eε (see

Section 1.3 below). We will need a couple of assumptions on f and fε detailed in the next
section.

1.2 Assumptions and main result
Our first two assumptions are rather standard and guarantee the sequential lower semicon-
tinuity of the functionals Exf ,
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(H1) f : RN × R× RN → [0,+∞] is lower semicontinuous,

(H2) f(x, u, ·) is convex for every x ∈ RN , u ∈ R.
In order for vanishing parts to have no energetic contribution, we will impose

(H3) f(x, 0, 0) = 0 for every x ∈ RN .
We also need continuity in the spatial variable,

(H4) f(·, u, ξ) is continuous for every u ∈ R+, ξ ∈ RN .
Next, we need a compactness assumption which ensures relative compactness in the weak

topology of W 1,p
loc (RN ) for sequences of bounded energy Exf and bounded mass; it will also

be needed in obtaining lower bounds for the energy (see Proposition 3.8):
(H5) there exist α, β ∈ (0,+∞), p ∈ (1,+∞) such that for all (x, u, ξ) ∈ RN × R+ × RN ,

f(x, u, ξ) ≥ α|ξ|p − βu.

We also impose a condition on the slope of f(x, ·, ξ) at the origin which will be needed
in order to identify the initial slope of Hf (x, ·) (see Section 2.3), and rules out some non-
trivial scale invariant Lagrangians for which the expected Γ-convergence result fails (see
Section 1.3),
(H6) for every x0 ∈ RN ,

f ′−(x0, 0±, 0) := lim inf
(x,u,ξ)→(x0,0±,0)

f(x, u, ξ)
|u|

≥ lim sup
u→0±

sup
|ξ|≤1

f(x0, u, ρ(|u|)ξ)
|u|

, (1.4)

with ρ ≡ 0 if N = 1 and for some ρ ∈ C((0, 1], (0,+∞)) satisfyingˆ 1

0

( ˆ 1

y

dt
ρ(t)

)N
dy < +∞ if N ≥ 2.

Since our aim is not to care much about the dependence on x, we shall impose a spatial
quasi-homogeneity condition:
(H7) there exists C < +∞ such that for every x, y ∈ RN , u ∈ R, ξ ∈ RN ,

f(y, u, ξ) ≤ C(f(x, u, ξ) + u).

Last of all, we need the family of functions fε : RN × R × RN → [0,+∞] to converge
towards f in a suitable sense, namely, we assume
(H8) fε ↑ f and f ′ε,−(·, 0±, 0) ↑ f ′−(·, 0±, 0) as ε→ 0.

Notice that this assumption is empty if fε does not depend on ε.
Our main result is the following:

Theorem 1.2. If (fε)ε>0 satisfies (H8) with each fε satisfying (H1)–(H5) and the limit f
satisfying (H6)-(H7), then MHf is the Γ-limit as ε → 0 of the functionals Eε, defined in
(1.3), for both the weak convergence and the narrow convergence of measures.
In particular, as a Γ-limit, the functional MHf must be lower semicontinuous for the weak

convergence of measures (and so for the narrow convergence as well). This implies that Hf

is lower semicontinuous on RN × R (see Proposition 2.5).
We point out that for the Γ − lim sup, we need weaker assumptions on fε and f (see

Proposition 4.2), which will be useful for some applications (see Section 5.5).
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1.3 Examples, counterexamples and applications
We start with two counterexamples, justifying the importance of (H6) and (H3), and we then
provide several examples satisfying our assumptions. Decomposing measures into positive
and negative parts, allows us to restrict our attention to positive measures, which we will do
in all our examples. This can be thought as taking Lagrangians such that f(x, u, ξ) = +∞
when u < 0.

Scale invariant Lagrangians. In the particular case where fε ≡ f and f(x, u, ξ) =
u
−p(1− 1

p?
)|ξ|p, with p ∈ (1, N) and p? = pN

N−p , we find that

Eε(u) =
ˆ
RN

f(x, εNu, εN+1∇u)ε−N =
ˆ
RN

u
−p(1− 1

p?
)|∇u|p = Ef (u),

i.e. the rescaled energies Eε do not depend on ε > 0. A scaling analysis also shows that
the associated cost function satisfies Hf (m) = m1− p

NHf (1). Moreover, it can be seen
that 0 < Hf (1) < +∞, which implies that the Γ-limit of Eε, which is nothing but the lower
semicontinuous relaxation of Ef , does not coincide with MHf . Considering the perturabation
of f given by f̃(x, u, ξ) = f(x, u, ξ)+|ξ|p, we find a Lagrangian satisfying all our assumptions
except (H6) (note that |ξ|p is needed in (H5)), and such that the associated rescaled energies
do not Γ-converge to MHf̃

(see Section 5.1). Hence, an assumption like (H6) is required in
our Γ-convergence result. We will even see that the lower semicontinuity of Hf and MHf

is not guaranteed without (H6).

Lagrangians giving energy to vanishing functions. By assumption (H3) no energy
is given to any part where a function u vanishes. It is a necessary condition for MHf to
be lower semicontinuous (a necessary condition to be a Γ-limit) and not identically +∞.
Indeed if MHf is lower semicontinuous and finite for some measure u ∈M(RN ) then thanks
to Theorem 2.1 we know that MHf (tu) ≤MHf (u) for every t ∈ (0, 1) and thus MHf (0) ≤
lim inft→0+ MHf (tu) ≤ MHf (u) < +∞. Thus MHf is not identically +∞ if and only if
MHf (0) < +∞, i.e.

´
RN Hf (x, 0) dH0(x) < +∞. But since Hf (x, 0) = (+∞) × f(x, 0, 0)

this can only happen if f(·, 0, 0) ≡ 0. This justifies imposing (H3).

Concave H-masses in dimension one. Consider the energy

Ef (u) =
ˆ
RN
|∇u|2 + c(u) with Lagrangian f(x, u, ξ) = |ξ|2 + c(u).

In dimension N = 1, it is shown in [Wir19] that for any concave continuous function H
with H(0) = 0, there exists a suitable c ≥ 0 such that Hf = H. As explained in Section 5.2,
Theorem 1.2 implies that the rescaled energies

Eε(u) =
ˆ
RN

f(εNu, εN+1∇u)ε−N =
ˆ
RN

εN+2|∇u|2 + ε−Nc(εNu). (1.5)

Γ-converge to MH , leading to an elliptic approximation of any concave H-mass in dimension
one. In dimension N ≥ 2, we will show that Hf must be concave on (0,+∞), and strictly
concave after the possible initial interval where it is linear (see Proposition 2.8) ; however, we
have no solution to the inverse problem, consisting in characterizing the class of attainable
cost functions H = Hf for Lagrangians f satisfying our assumptions.
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Homogeneous H-masses in any dimension. We consider the functional

Ef (u) =
ˆ
RN

f(u,∇u) =
ˆ
RN
|∇u|p + us, p > 1, s ∈ (−p′, 1]. (1.6)

Then, the rescaled energies

Eε(u) =
ˆ
RN

f(εNu, εN+1∇u)ε−N =
ˆ
RN

εpN+p−N |∇u|p + ε−(1−s)Nus

Γ-converge to a non-trivial multiple of some α-mass Mα := Mt7→tα where the exponent
α = (1− s

p + s
N )(1− s

p + 1
N )−1 ranges over (1− 2

N+1 , 1] when (s, p) varies in its range and
N ≥ 2. More cases, with details, are given in Section 5.3.

Cahn-Hilliard approximations of droplets models. Following the works of [BDS96;
Dub98], we consider the functionals

Wε(u) =
ˆ
RN

ε−ρ(W (u) + ε|∇u|2), (1.7)

where W (t) ∼t→+∞ ts for some exponent s ∈ (−2, 1). As shown in Section 5.5, we way
rewrite these functionals to fit our general framework, and recover known Γ-convergence
results, under slightly more general assumptions, as stated in Theorem 5.1. The Γ-limit is
a nontrivial multiple of the α-mass with α = 1−s/2+s/N

1−s/2+1/N .

Elliptic approximations of Branched Transport. The energy of Branched Transport
(see [BCM09] for an account of the theory), in its Eulerian formulation, is anH-mass defined
this time on vector measures w whose divergence is also a measure,

MH
1 (w) :=

ˆ
Σ
H(x, θ(x)) dH1(x) +

ˆ
Rd
H ′(x, 0+) d|w⊥|, (1.8)

where w = θξ · H1 Σ + w⊥ is the decomposition of w into its 1-rectifiable and 1-diffuse
parts (see Section 5.4 for more details). An elliptic approximation of Modica-Mortola type
has been introduced in [OS11] for H(m) = mα, α ∈ (0, 1), and their Γ-convergence result in
dimension d = 2 has been extended to any dimension in [Mon15] by a slicing method which
relates the energy of w to the energy of its slicings. The same slicing method, together with
Theorem 1.2, would allow to prove the Γ-convergence of the functionals

Eε(w) =
{´

Rd fε(x, ε
d−1|w|(x), εd|∇w|(x))ε1−d dx if w ∈W 1,1

loc (Rd,Rd),
+∞ otherwise,

(1.9)

toward MHf
1 for Lagrangians fε → f satisfying (H1)–(H8), thus covering a wide range of

concave H-masses.
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1.4 Structure of the paper
In Section 2, we prove the concavity of the cost functionHf with respect to the mass variable
m in full generality (Theorem 2.1), we establish useful properties of general H-masses, and
we identify the slope at the origin of Hf in terms of f under our assumption (Proposition 2.6
and Proposition 2.7). In Section 3, we apply a concentration-compactness principle to
provide a profile decomposition theorem for sequences of positive measures (Theorem 3.2),
which is used to obtain our main lower bound for the energy Ef (Proposition 3.10) and
also yields an existence criterion for profiles with minimal energy under a mass constraint
(Proposition 3.12). Section 4 is dedicated to proving lower and upper bounds on the rescaled
energies Eε (Proposition 4.1 and Proposition 4.2) that imply in particular our main Γ-
convergence result (Theorem 1.2). Last of all, in Section 5, we provide several examples of
energy functionals that fall into our framework, as summarized in the previous section.

2 Minimal cost function and H-mass
In this section, we study the properties of general H-masses, of costs Hf associated with
general Lagrangians f , and we relate the slope of Hf at m = 0 to that of f at (u, ξ) = (0, 0)
in the variable u, under particular conditions.

2.1 Concavity and lower semicontinuity of the cost function
Our concavity result stated in Theorem 1.1 is a consequence of:

Theorem 2.1. Let f : R+ × RN → [0,+∞] be Borel measurable and for every m ∈ R+,

Hf (m) := inf
{
Ef (u) :=

ˆ
RN

f(u,∇u) : u ∈W 1,1
loc (RN ,R+),

ˆ
RN

u = m

}
. (2.1)

Then Hf is either identically +∞ on (0,+∞), or it is continuous, concave, non-decreasing
on (0,+∞) with limm→0+ Hf (m) = 0.

The fact that Theorem 2.1 implies Theorem 1.1 is due to the following remark.
Remark 2.2. The minimization in (1.2) can be restricted to non-negative (resp. non-positive)
functions when m ≥ 0 (resp. m ≤ 0). For instance fix x ∈ RN , m ≥ 0, and take u ∈W 1,1

loc ∩
L1(RN ) such that

´
RN u = m. If u = u+ − u− is the decomposition of u ∈ W 1,1

loc ∩ L1(RN )
into positive and negative parts, then Exf (u) = Eg(u+) + Eg̃(u−), with g(u, ξ) = f(x, u, ξ)
and g̃(u, ξ) = f(x,−u,−ξ) for (u, ξ) 6= (0, 0), g̃(0, 0) = 0. In particular Exf (u) ≥ Hg(m+) +
Hg̃(m−) where m± =

´
RN u±. Since Hg is non-decreasing on (0,+∞) and Hg̃ is non-

negative, we have thus Exf (u) ≥ Hg(m) since m+ ≥ m. A similar reasoning holds for
non-positive functions when m ≤ 0.

Note that, considering Lagrangians f taking infinite values, Theorem 2.1 covers the case
where we have a constraint (u,∇u) ∈ A, where A ⊆ R× RN is Borel measurable.

Proof. We first prove that Hf is concave on (0,+∞). Let m > 0 and u ∈ W 1,1
loc (RN ,R+)

such that
´
RN u = m. We pick a non-zero vector v ∈ RN and for every t ∈ R, we set

ut(·) = u(·+ tv) and

u ∧ ut(·) = inf{u(·), ut(·)}, u ∨ ut(·) = sup{u(·), ut(·)}.
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We have u ∧ ut + u ∨ ut = u+ ut. Henceˆ
RN

u ∧ ut +
ˆ
RN

u ∨ ut = 2
ˆ
RN

u = 2m. (2.2)

Moreover, it is standard that u ∧ ut = u − (ut − u)− ∈ W 1,1
loc (RN ) with ∇(u ∧ ut) = ∇u

a.e. in {u ≤ ut} and ∇(u ∧ ut) = ∇ut a.e. in {u > ut}. Since u ∨ ut = u+ ut − u ∧ ut, we
have similar identities for u ∨ ut, and we obtain

Ef (u ∧ ut) + Ef (u ∨ ut) = Ef (u) + Ef (ut) = 2Ef (u). (2.3)

Now, let M : t 7→
´
RN u∧u

t. In view of (2.2), (2.3), and by definition of H, we have proved

Hf (M(t)) +Hf (2m−M(t)) ≤ 2Ef (u). (2.4)

Now, by continuity of translations in L1 and since the map (x, y) 7→ x ∧ y is Lipschitz on
R2, we have that M is continuous on R with M(0) = m. Moreover limt→+∞M(t) = 0 by
dominated convergence. So, by the intermediate value theorem M(R) ⊇ (0,m]. Hence, we
have proved Hf (θ) +Hf (2m− θ) ≤ 2Ef (u) for every θ ∈ (0,m]. Taking the infimum over u
such that

´
RN u = m, we obtain

Hf (θ) +Hf (2m− θ)
2 ≤ Hf (m), ∀θ ∈ (0,m],

that is, Hf is midpoint concave on (0,+∞). Since Hf is also bounded below (by 0), we can
deduce that Hf is concave (0,+∞) (see [RV73, Section 72]).
We now justify that if Hf (m) < +∞ for some m > 0, then limm→0+ Hf (m) = 0. By

concavity, this will imply that Hf is finite, continuous and non-decreasing on (0,+∞). Let
u ∈W 1,1

loc (RN ,R+) such that
´
RN u = m > 0 and Ef (u) < +∞, and set

t∗ := sup{t ≥ 0 : M(t) > 0} ∈ [0,+∞], where M(t) =
ˆ
RN

u ∧ ut.

Since M is continuous with M(0) =
´
RN u > 0 and limt→+∞M(t) = 0 as seen above, we

have that t∗ ∈ (0,+∞], limt→t∗M(t) = 0 and M(t) does not vanish near t∗. Moreover, if
t∗ = +∞, since ut → 0 locally in measure, by dominated convergence,

lim sup
m→0+

Hf (m) ≤ lim sup
t→+∞

Ef (u ∧ ut) = lim sup
t→+∞

ˆ
{u<ut}

f(u,∇u) +
ˆ
{u−t≥u}

f(u,∇u) = 0.

If t∗ < +∞, we have u∧ut∗ = 0 a.e. and ut → ut∗ locally in measure as t→ t∗ by continuity
of translation in L1. Thus using dominated convergence again,

lim sup
m→0+

Hf (m) ≤ lim sup
t→(t∗)−

Ef (u ∧ ut) = lim sup
t→(t∗)−

ˆ
{u<ut}

f(u,∇u) +
ˆ
{u−t≥u}

f(u,∇u)

=
ˆ
{u<ut∗}

f(u,∇u) +
ˆ
{u−t∗≥u}

f(u,∇u).

Besides,

+∞ >

ˆ
{u<ut∗}

f(u,∇u) +
ˆ
{u−t∗≥u}

f(u,∇u) = Ef (u ∧ ut∗) = f(0, 0)× (+∞),

which implies that f(0, 0) = 0 = Hf (0) and lim supm→0+ Hf (m) = 0.
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2.2 H-transform and H-mass
Definition 2.3. LetH : RN×R→ [0,+∞] be a Borel measurable function having left/right
slopes at the origin defined for each x ∈ RN by

H ′(x, 0±) := lim
m→0±

H(x,m)
|m|

∈ [0,+∞]. (2.5)

We define the H-transform of a finite signed Borel measure u ∈M(RN ) as:

H(u) := H(·, u({·}))H0 +H ′(·, 0+)ud+ +H ′(·, 0−)ud−,

where u = ua + ud is the decomposition of u into its atomic part ua and its diffuse (or non-
atomic) part ud, ud = ud+ − ud− is the Hahn decomposition of ud into positive and negative
parts.
The H-mass of u is then defined as the total variation of H(u), that is:

MH(u) :=
ˆ
RN

H(x, u({x})) dH0(x) +
ˆ
RN

H ′(x, 0+) dud+(x) +
ˆ
RN

H ′(x, 0−) dud−(x).

MH(u) is a natural spatially non-homogeneous extension (depending on the position x)
of the H-mass of k-dimensional flat currents1 from Geometric Measure Theory, introduced
by [Fle66] (see also the more recent works [DH03; Col+17]).
From [BB90], we have the following result2:

Proposition 2.4 ([BB90]). Assume that H : RN × R → [0,+∞] is lower semicontinuous
and that for each x ∈ RN , H(x, 0) = 0 and the map m 7→ H(x,m) is concave on (0,+∞) and
(−∞, 0). Then MH is sequentially lower semicontinuous onM(RN ) for the weak topology.

From another work from the same authors [BB93, Theorem 3.2], we know that under some
further assumptions on H, MH is the relaxation for the weak topology of the functional

MH
atom(u) =

{∑k
i=1H(xi,mi) if u =

∑k
i=1miδxi with k ∈ N∗, xi ∈ RN , mi ∈ R,

+∞ otherwise.

We need a slightly different result3, namely that for any function H : RN × R → [0,+∞]
satisfying all the assumptions of Proposition 2.4 exept the lower semicontinuity, the re-
laxation of MH

atom for the narrow sequential convergence is MHlsc , where Hlsc is the lower
semicontinuous envelope of H, which can be expressed as

Hlsc(x,m) = sup{G(x,m) : G ≤ H with G lower semicontinuous.}. (2.6)

It is straightforward to check that if H(x, 0) = 0 and H(x, ·) is concave on (−∞, 0) and
(0,+∞), then these properties hold also for Hlsc.

1In the case k = 0, since signed measures are merely 0-currents with finite mass.
2In the notations of this paper, we take µ = 0 and f(x, s) = |s|2; we have ϕf,µ(x, 0) = 0 and ϕf,µ(x, s) = +∞
if s 6= 0.

3In [BB93, Theorem 3.2], H is assumed to be lower semicontinuous and the authors make a further coercivity
assumption (assumption (3.5) in the paper) that we want to avoid.
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Proposition 2.5. Let H : RN × R → [0,+∞] be a function such that for each x ∈ RN ,
H(x, 0) = 0 and the map m 7→ H(x,m) is concave on (0,+∞) and (−∞, 0). Then, the
sequentially lower semicontinuous envelope of MH

atom in the narrow topology of M(RN ) is
given by MHlsc, namely we have:

MHlsc = sup
{
F : F ≤MH

atom, F sequentially narrowly l.s.c. onM(RN )
}
. (2.7)

We point out that for a general H, for MH to be sequentially lower semicontinuous (for
the narrow topology) it is necessary that H is lsc on RN × (0,+∞). However, neither the
subadditivity of H in m nor its lower semicontinuity on RN × R+ are necessary. Indeed,
MH is sequentially lower semicontinuous if for instance H(x,m) = +∞ when x 6= 0,m > 0,
H(x, 0) = 0 when x 6= 0 and H(0, ·) is any lower semicontinuous function. Nevertheless the
mass-subadditivity and lower semicontinuity would be necessary if H did not depend on x.

Proof of Proposition 2.5. SinceHlsc is lower semicontinuous and mass-subadditive, we know
from Proposition 2.4 that MHlsc is sequentially lower semicontinuous in the weak topology
hence also in the narrow topology ofM(RN ). Since MHlsc ≤MH

atom, we deduce that MHlsc

is lower or equal than the right hand side in (2.7).
In order to prove the opposite inequality, we take F :M(RN )→ R+ the sequentially lower

semicontinuous envelope of MH
atom in the narrow topology. We shall see that F ≤MHlsc .

We first prove that F ≤ MHlsc
atom. For this, we let u =

∑k
i=1miδxi be a finitely atomic

positive measure and we let un :=
∑k
i=1mi,nδxi,n where for each i ∈ {1, . . . , k}, (xi,n)n∈N

is a sequence of points converging to xi and mi,n is a sequence of non-negative numbers
converging to mi such that Hlsc(xi,mi) = limn→∞H(xi,n,mi,n). Then (un)n∈N converges
narrowly to u and, by lower semicontinuity,

F (u) ≤ lim inf
n→∞

F (un) ≤ lim inf
n→∞

MH
atom(un) = lim

n→∞

k∑
i=1

H(xi,n,mi,n) =
k∑
i=1

Hlsc(xi,mi),

so that F (u) ≤MHlsc
atom(u) as wanted.

We now prove that F ≤ MHlsc . Let u ∈ M(RN ), let u = ua + ud be the decomposition
of u into its atomic part ua =

∑k
i=1miδxi , with k ∈ N ∪ {+∞} (here, k = 0 if there is no

atom), and its diffuse part ud, and let ud = ud+−ud− be the decomposition of ud into positive
and negative parts. We then discretize ud± by taking n ∈ N∗, a partition (Qni )i∈{1,...,(n2n)N}
of [−n, n)N by means of cubes of the form Qni = cni + 2−n[−1, 1)N with cni ∈ RN , and we
define

un :=
n∧k∑
i=1

miδxi +
(n2n)N∑
i=1

ud+(Qni )δxni +
(n2n)N∑
i=1

ud−(Qni )δyni ,

where for each i ∈ {1, . . . , (n2n)N}, xni , yni ∈ Q̄ni are some points such that

Hlsc
′(xni , 0+) = inf

x∈Q̄ni
Hlsc

′(x, 0+), Hlsc
′(yni , 0−) = inf

x∈Q̄ni
Hlsc

′(x, 0−). (2.8)

Such points exist since Q̄ni is compact and since by concavity,

Hlsc
′(x, 0±) = sup

±m>0

Hlsc(x,m)
|m|

, (2.9)
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so that H ′lsc(·, 0±) are lower semicontinuous as suprema of lower semicontinuous functions.
The sequence (un)n∈N converges narrowly to u. We deduce using in turn the lower

semicontinuity of the functional F , the inequality F (u) ≤ MHlsc
atom(u), the subadditivity of

Hlsc(x, ·), (2.9), (2.8), and the monotone convergence, that

F (u) ≤ lim inf
n→∞

n∧k∑
i=1

Hlsc(xi,mi) +
(n2n)N∑
i=1

Hlsc(xni , ud+(Qni )) +
(n2n)N∑
i=1

Hlsc(yni , ud−(Qni )),

≤ lim inf
n→∞

n∧k∑
i=1

Hlsc(xi,mi) +
(n2n)N∑
i=1

Hlsc
′(xni , 0+)ud+(Qni ) +

(n2n)N∑
i=1

Hlsc
′(yni , 0−)ud−(Qni )

≤ lim inf
n→∞

n∧k∑
i=1

Hlsc(xi,mi) +
(n2n)N∑
i=1

ˆ
Qni

Hlsc
′(x, 0+) dud+ +

ˆ
Qni

Hlsc
′(x, 0−) dud−

=
k∑
i=1

Hlsc(xi,mi) +
ˆ
RN

Hlsc
′(x, 0+) dud+ +

ˆ
RN

Hlsc
′(x, 0−) dud−

= MHlsc(u).

2.3 Slope at the origin of the minimal cost function
Proposition 2.6. Let f : R+ × RN → [0,+∞] be a lower semicontinuous function such
that f(0, 0) = 0, with N ≥ 2. For every function ρ ∈ C((0, 1], (0,+∞)) such that

ˆ 1

0

(ˆ 1

y

dt
ρ(t)

)N
dy < +∞, (2.10)

the function Hf defined in (2.1) satisfies

lim
m→0+

Hf (m)
m

≤ lim sup
u→0+

sup
ξ∈SN−1

f(u, ρ(u)ξ)
u

. (2.11)

Proof. For every y ≥ 0, we let

F (y) =
ˆ 1

y

dt
ρ(t) ∈ [0,+∞].

The function F is decreasing, and belongs to C1((0, 1]) and LN ((0, 1]) by assumption. We
now consider the solution of the ODE v′ε = −ρ(vε), with vε(0) = ε, given by

vε(r) =
{
F−1(F (ε) + r), if 0 ≤ r < F (0)− F (ε),
0 if r ≥ F (0)− F (ε).

Notice that vε ∈W 1,1
loc (R+) because it is nonincreasing and bounded, hence it has finite total

variation, and it is of class C1 except possibly at rε := F (0)− F (ε), where it has no jump.
As a consequence the radial profile defined by uε(x) := vε(|x|) belongs to W 1,1

loc (RN ) and we
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compute, using the change of variables s = vε(r) (i.e. r = F (s)− F (ε)) and an integration
by parts combined with monotone convergence.

mε :=
ˆ
RN

uε = |SN−1|
ˆ ∞

0
vε(r)rN−1 dr

= −|SN−1|
ˆ ε

0
s(F (s)− F (ε))N−1F ′(s) ds

= |SN−1| lim
t↓0

(ˆ ε

t

(F (s)− F (ε))N

N
ds−

[
s

(F (s)− F (ε))N

N

]ε
t

)

= |SN−1|
ˆ ε

0

(F (s)− F (ε))N

N
ds −−−→

ε→0
0.

The equality on the last line holds because limt→0+
´ ε
t (F − F (ε))N < +∞ (since F ∈

LN ((0, 1])), hence limt→0 t(F (t) − F (ε))N exists by existence of the limit in the previous
line, and it must be zero (again, because F ∈ LN ((0, 1])).
Moreover, since sup[0,+∞) vε = ε,

E(uε) =
ˆ ∞

0

ˆ
SN−1

f(vε(r), v′ε(r)ξ)rN−1 dHN−1(ξ) dr ≤ mε sup
u≤ε, |ξ|=1

f(u, ρ(u)ξ)
u

.

By assumption, we deduce that

lim sup
m→0+

H(m)
m

≤ lim sup
ε→0+

E(uε)
mε

≤ lim sup
u→0+

sup
ξ∈SN−1

f(u, ρ(u)ξ)
u

.

In dimension N = 1, we need no other assumption than H < +∞, as stated below.

Proposition 2.7. Let f : R+×R→ [0,+∞] be Borel measurable. The function Hf defined
by (2.1) (with N = 1) is either identically infinite on (0,+∞), or it satisfies (2.11) with
ρ ≡ 0.

Proof. One can assume that there exists u ∈ W 1,1
loc (R,R+) with 0 <

´
R u < +∞ and

E(u) < +∞. In particular, up to changing the value of u on a negligible set, u is continuous
on R. Let ε ∈ (0, supR u), set Aε := {x : u(x) = ε} which is non-empty by the intermediate
value theorem and integrability of u, and define

aε =
{

inf Aε if inf Aε > −∞,
any point in (−∞,−ε−1) ∩Aε otherwise,

bε =
{

supAε if supAε < +∞,
any point in (ε−1,+∞) ∩Aε otherwise.

By continuity and integrability of u, u(aε) = u(bε) = ε and u < ε on R \ [aε, bε]. Moreover
aε, bε converge to points −∞ ≤ a ≤ b ≤ +∞, hence u = 0 on R \ (a, b) and by dominated
convergence, since ∇u = 0 a.e. on {u = 0},

+∞ > lim
ε→0+

ˆ
R\[aε,bε]

u+ f(u,∇u) = f(0, 0)L(R \ (a, b)).
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Notice that this limit is necessary zero. Letm > 0. If ε is small enough, then
´
R\[aε,bε] u < m

so that we can take Rε > 0 such that εRε = m−
´
R\[aε,bε] u. We then define

uε(x) =


u(x) if x ≤ aε,
ε if aε < x < aε +Rε,

u(bε + x− (aε +Rε)) if x ≥ aε +Rε,

so that
´
R vε = m. Moreover,

E(vε) = E(u,R \ [aε, bε]) +Rεf(ε, 0).

Hence, as Rε = m+o(1)
ε as ε→ 0,

Hf (m) ≤ lim sup
ε→0+

E(vε) = m lim sup
ε→0+

f(ε, 0)
ε

.

2.4 Strict concavity of the cost function in dimension N ≥ 2
We show that in dimension N ≥ 2, the cost function must be strictly concave away from
the possible initial interval where it is linear:

Proposition 2.8. Assume that N ≥ 2 and that f : RN ×R×RN → [0,+∞] satisfies (H1),
(H2), (H5) and (H6). Let

m∗ = sup{m ≥ 0 : Hf (x0, ·) is linear on [0,m]},

where x0 ∈ RN is fixed. Then, Hf (x0, ·) is strictly concave on (m∗,+∞). A similar state-
ment holds on R−.

A similar result does not hold in dimension 1 since any continuous concave function
H : R+ → R+ withH(0) = 0 can be written asH = Hf with f satisfying all our assumptions
(H1)–(H8) (see Section 5.2).
In the rest of this section, we will systematically ommit the dependence on x0 ofHf (x0,m)

since x0 is fixed.
We denote byMf

m the set of minimizers of mass m ∈ R+:

Mf
m :=

{
u ∈W 1,1

loc (RN ,R+) : Ef (u) = Hf (m) and
ˆ
RN

u = m
}
. (2.12)

The proof of Proposition 2.8 is based on the following observation:

Lemma 2.9. Let f : R+ × RN → [0,+∞] be Borel measurable and let ui ∈ Mf
mi with

mi ∈ R+ for i = 1, 2. Let also u∗ := min{u1, u2}, u∗ := max{u1, u2}, m∗ :=
´
RN u∗ and

m∗ :=
´
RN u

∗. If Hf is affine on [m∗,m∗] then u∗ ∈Mf
m∗ and u

∗ ∈Mf
m∗.

Proof of Lemma 2.9. We use the same observations as in the proof of Theorem 2.1. In
particular, we have m∗ +m∗ = m1 +m2; since Hf is affine on [m∗,m∗], it yields

Hf (m∗) +Hf (m∗) = Hf (m1) +Hf (m2).
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But we have also

Hf (m∗) +Hf (m∗) ≤ Ef (u∗) + Ef (u∗) = Ef (u1) + Ef (u2) = Hf (m1) +Hf (m2),

so that the inequalities we used, i.e. Hf (m∗) ≤ Ef (u∗) and Hf (m∗) ≤ Ef (u∗), are actually
equalities.

We also use an elementary Sobolev type inequality:

Lemma 2.10. Let N ≥ 2, p ∈ (1,+∞) and ω ⊂ RN−1 be a bounded open set. For every
u ∈W 1,p

loc (R× ω),
ˆ
ω
‖u(·, x′)‖L∞(R) dx′ ≤ ‖u‖L1(R×ω) + |ω|

p−1
p
∥∥ ∂u
∂x1

∥∥
Lp(R×ω).

Proof of Lemma 2.10. We prove the lemma when u ∈ C1(R × ω); the general case follows
by approximation. For every x1, y1 ∈ R, x′ ∈ ω, we have

u(x1, x
′) = u(y1, x

′) +
ˆ x1

y1

∂u

∂x1
(t, x′) dt.

By averaging in the variable y1, we deduce

|u(x1, x
′)| ≤

ˆ x1+ 1
2

x1− 1
2

|u(y1, x
′)| dy1 +

ˆ x1+ 1
2

x1− 1
2

∣∣ ∂u
∂x1

(t, x′)
∣∣ dt.

The result follows from Hölder inequality after integrating over ω.

Proof of Proposition 2.8. Assume by contradiction that the concave function Hf is not
strictly concave on (m∗,+∞) which means that there exists m ∈ (m∗,+∞) and η > 0
such that Hf is affine on [m − η,m + η]. (Note that η ≤ m − m∗ by definition of m∗.)
Moreover, we will see in Proposition 3.12 thatMf

m is not empty. We let u ∈Mf
m.

As before, we shall use the notations ∧ and ∨ for the minimum and maximum; we also
let (e1, . . . , eN ) be the canonic basis of RN . Since the translation operator u 7→ u(· + τ)
is continuous in L1(RN ) (for every τ ∈ RN ), since the map (x, y) 7→ x ∧ y is Lipschitz on
RN ×RN , and since the setMm+ η

2
is compact in L1 up to translations in view of the proof

of Proposition 3.12, we deduce that there exists τ0 > 0 such that

‖u ∧ u(·+ τe2)‖L1(RN ) > m for all τ ∈ (0, τ0) and u ∈Mf
m+ η

2
. (2.13)

We now construct by induction a sequence (tn)n∈N in R+ and a sequence (un)n∈N in Mf
m

such that
tn+1 ≥ tn + τ0 and un(x) ≤ U(x) ∧ U(x+ tne2) ∀x ∈ RN , (2.14)

where we have set
U(x) := ess sup

t∈R
u(x+ te1).

To this aim, we first set u0 := u and t0 = 0. Then, if we assume that tn and un are con-
structed as before, we first pick an τ1

n ∈ R+ such that vn := un∨un(·+τ1
ne1) satisfies

´
RN vn =

m+ η
2 , which is possible since η ≤ m, as we argued in the proof of Theorem 2.1. Similarly,
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we pick a τ2
n ∈ R+ such that un+1 := vn ∧ vn(· + τ2

ne2) satisfies
´
RN un+1 = m, and we set

tn+1 = tn + τ2
n. By Lemma 2.9, vn ∈ Mf

m+ η
2
and un ∈ Mf

m. By (2.13), we have τ2
n ≥ τ0,

thus insuring the first condition in (2.14). For the second condition, we observe that for all
x = (x1, x

′) ∈ RN ,

un+1(x) ≤ sup
t∈R

un(x+ te1) ∧ un(x+ te1 + τ2
ne2) ≤ U(x) ∧ U(x+ tn+1e2),

where in the last inequality we have used the induction hypothesis (2.14).
We now show that the sequence (unLN )n∈N is vanishing which will contradict the com-

pactness ofMf
m in L1 up to translations.

For this, we let (xk)k∈N be a sequence in RN and (unk)k∈N be a subsequence of (un)n∈N
such that

lim sup
n→∞

sup
x∈RN

ˆ
x+[0,1)N

un = lim
k→∞

ˆ
xk+[0,1)N

unk .

By (H5), we have ∂u
∂x1
∈ Lp(RN ). Using this fact, the estimate (2.14), and Lemma 2.10

with ω a unit cube in RN−1, we obtain

lim
k→∞

ˆ
xk+[0,1)N

unk ≤ lim inf
k→∞

ˆ
xk+[0,1)N

U ∧
ˆ
xk+tnke2+[0,1)N

U

≤ lim inf
k→∞

(
‖u‖L1({0≤(x−xk)·e2≤1}) +

∥∥∥∥ ∂u∂x1

∥∥∥∥
Lp({0≤(x−xk)·e2≤1})

)
∧ lim inf

k→∞

(
‖u‖L1({tnk≤(x−xk)·e2≤tnk+1}) +

∥∥∥∥ ∂u∂x1

∥∥∥∥
Lp({tnk≤(x−xk)·e2≤tnk+1})

)
,

and the conclusion follows since the sequences (xk · e2)k∈N and (tnk + xk · e2))k∈N cannot be
both bounded as limk→∞ tnk =∞.

3 Lower bound for the energy and existence of optimal profiles
Our main tool to localize the energy and obtain a lower bound relies on a profile decompo-
sition for bounded sequences of positive measures, which is reminiscent of the concentration
compactness principle of P.-L. Lions. This differs from classical strategies to localize the en-
ergy which are based on suitable cut-offs. Naturally, this concentration compactness result
also provides a criterion for the existence of optimal profiles in (1.2).

3.1 Profile decomposition by concentration compactness
We prove a profile decomposition theorem for bounded sequences of positive measures over
RN , which is essentially equivalent to [Mar14, Theorem 1.5] in the Euclidean case. We
have added an extra information on mass conservation that will be useful, and provide a
self-contained simple proof. We start with a definition.

Definition 3.1. A sequence of positive measures (µn)n∈N ∈M+(RN ) is vanishing if

sup
x∈RN

µn(B1(x)) −−−→
n→∞

0.
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Any bounded sequence of positive measures over RN may be decomposed (up to subse-
quence) into a countable collection of narrowly converging “bubbles” and a vanishing part,
accounting for the total mass of the sequence, as stated in the following theorem.

Theorem 3.2. For every bounded sequence (µn)n∈N of positive Borel measures on RN , there
exists a subsequence (µn)n∈σ(N), σ ∈ Σ, a non-decreasing sequence of integers (kn)n∈σ(N) con-
verging to some k ∈ N∪{+∞}, a sequence of non-trivial positive Borel measures (µi)0≤i<k,
and for every n ∈ σ(N), a collection of balls (Bi

n)0≤i<kn centered at points of suppµn such
that, writing for all n ∈ σ(N),

µn = µbn + µvn, where µbn =
∑

0≤i<kn
µn Bi

n, (3.1)

(A) bubbles emerge: (cBinµn)n∈σ(N)
C′b−−−⇀

n→∞
µi for every i < k,4

(B) bubbles split: min0≤i<j<kn dist(Bi
n, B

j
n) −−−→

n→∞
+∞,

(C) bubbles diverge: min0≤i<kn diam(Bi
n) −−−→

n→∞
+∞,

(D) the bubbling mass is conserved: ‖µbn‖ −−−→
`→∞

∑
0≤i<k‖µi‖,

(E) the remaining part is vanishing: supx∈RN µvn(B1(x)) −−−→
n→∞

0.

Before proving Theorem 3.2, we introduce the “bubbling” function of a sequence of finite
signed measures (µn)n∈N:

m((µn)n∈N) := sup
{
‖µ‖ : (τ−xσ(`)µσ(`))`∈N

C′0−⇀ µ, σ ∈ Σ, xσ(`) ∈ RN (∀`)
}
. (3.2)

Although we will use this function on signed measures, we will start from a sequence of
positive measures and use the following characterization of vanishing sequences, which holds
only in the case of positive measures:

Lemma 3.3. A sequence (µn)n∈N of finite positive measures is vanishing if and only if
m((µn)n∈N) = 0.

Proof. Assume that (µn)n∈N is vanishing and that (τ−xσ(`)µσ(`))`∈N
C′0−⇀ µ for some σ ∈ Σ

and some sequence of points (xσ(`))`∈N. Then, for every x ∈ RN ,

µ(B1(x)) ≤ lim inf
`→∞

τ−xσ(`)µσ(`)(B1(x)) = lim inf
`→∞

µσ(`)(B1(x+ xσ(`))) = 0,

i.e. µ = 0 and thus m((µ`)`∈N) = 0.
Conversely, if (µn)n∈N is not vanishing, then there exists ε > 0, σ ∈ Σ a sequence of points

(xn)n∈σ(N) in RN such that µn(B1(xn)) ≥ ε for every n ∈ σ(N). Up to further extraction,

one can assume that (τ−xσ(`)µσ(`))`∈N
C′0−⇀ µ ∈M(RN ). We have

µ(B̄1(0)) ≥ lim sup
`→∞

τ−xσ(`)µσ(`)(B̄1(0)) = lim sup
`→∞

µσ(`)(B̄1(xσ(`))) ≥ ε > 0,

which entails m((µ`)`∈N) ≥ ε > 0.
4Recall that cBµ = (x 7→ x− y)](µ B) if B = Br(y) and µ ∈M(RN ).
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Proof of Theorem 3.2. If (µn)n∈N is vanishing, then we take σ = Id and k = 0, so that
µσ(`) = µ` = µv` , (A) to (D) are empty statements and (E) is satisfied since (µn)n∈N is
vanishing. Assume on the contrary that (µn)n∈N is not vanishing. We shall construct the
bubbles by induction and prove their properties in several steps.
Step 1: construction of bubbles centers. At first step (step 0), since m((µn)n∈N) > 0, there
exists σ0 ∈ Σ and a sequence of points (x0

n)n∈σ0(N), such that

(τ−x0
n
µn)n∈σ0(N)

C′0−⇀ µ0 ∈M(RN ) with ‖µ0‖ ≥ 1
2m((µn)n∈N). (3.3)

We then set µ0
n := µn − τx0

n
µ0 and we continue by induction, starting from the sequence

(µ0
n)n∈σ0(N). More precisely, assume that for a fixed step k − 1 ∈ N, for every i ∈ N with

0 ≤ i ≤ k − 1, we have built µi ∈ M(RN ), σi ∈ Σ, points (xin)n∈σi(N) and sequences
(µin)n∈σi(N) ∈M(RN ) such that for every i,

σi � σi−1, (3.4)
µin = µn −

∑
0≤j≤i

τ
xjn
µj , (∀n ∈ σi(N)), (3.5)

(τ−xinµ
i−1
n )n∈σi(N)

C′0−⇀ µi, (3.6)

‖µi‖ ≥ 1
2m((µin)n∈σi(N)) > 0, (3.7)

where σ−1 := Id, (µ−1
n ) := (µn). If m((µk−1

n )n∈σk−1(N)) = 0, we stop; otherwise, we pro-
ceed to the next step k to build σk, µ

k, (xkn)n∈σk(N), (µkn) as we did at step k = 0, start-
ing with (µk−1

n )n∈σk−1(N). Either the induction stops at some step k − 1 ∈ N for which
m((µk−1

n )n∈σk−1(N)) = 0 or the previous objects are defined for every i ∈ N, in which case
we let k := +∞.
Step 2: splitting of bubbles centers. We prove that

lim
σi(N)3n→∞

dist(xin, xjn) = +∞ for every i, j ∈ N with 0 ≤ j < i < k. (3.8)

Indeed, assume by contradiction that there is a first index i < k such that for some j0 < i,
(dist(xin, xj0n ))n∈σi(N) is not divergent. In particular, there exists σ � σi such that (xin −
xj0n )n∈σ(N) → x ∈ RN . Moreover, (dist(xin, xjn))n∈σi(N) → ∞, for every j < i, j 6= j0
by minimality of i and the triangle inequality dist(xjn, xj0n ) ≤ dist(xjn, xin) + dist(xin, xj0n ).
Notice by (3.5) that for every n ∈ σ(N),

µi−1
n = µj0−1

n − τ
x
j0
n
µj0 −

∑
j0<j<i

τ
xjn
µj ,

hence taking the translation τ−xin ,

τ−xinµ
i−1
n = τ

x
j0
n −xin

(τ−xj0n µ
j0−1
n − µj0)−

∑
j0<j<i

τ
xjn−xin

µj ,

and passing to the weak limit, knowing that xj0n − xin → −x and dist(xjn, xin) → +∞ for
j0 < j < i,

µi = τ−x(µj0 − µj0)−
∑

j0<j<i

0 = 0.
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This contradicts the fact that (τ−xinµ
i−1
n )n∈σ(N)

C′0−⇀ µi 6= 0 and proves (3.8).

Step 3: weak convergence of bubbles. From (3.6) we get

τ−xinµ
i−1
n = τ−xinµn −

∑
0≤j<i

τ−xin+xjn
µj , (3.9)

and by (3.8), the sum converges weakly to 0, and so

(τ−xinµn)n∈σi(N)
C′0−⇀ µi for every i ∈ N with i < k. (3.10)

Step 4: construction of the bubbles with mass conservation. We now construct the extraction
σ ∈ Σ that we need by induction: we set σ(0) = 0 and, assuming that σ(0) < · · · < σ(`−1),
with ` ∈ N∗, have been constructed, we set σ(`) := n with n ∈ σ`∧k−1(N) large enough so
that n > σ(`− 1) and for every i < ` ∧ k,

µn(B`(xin)) ≤ ‖µi‖+ 2−`, (3.11)
and

min
0≤j<i

dist(xin, xjn) ≥ 4`. (3.12)

Such an n exists by (3.8) and (3.10), noticing that µn(B`(xin)) = (τ−xinµn)(B`). Then for
each n = σ(`), ` ∈ N, we set kn = ` ∧ k, and for each i ∈ {0, . . . , kn − 1},

Bi
n := B`(xin).

Finally, for every n ∈ σ(N), we decompose µn as expected:

µn = µbn + µvn, where µbn =
∑

0≤i<kn
µn Bi

n.

Let us check the four first items (A)–(D). Notice that (C) is fulfilled because diam(Bi
σ(`)) =

`→ +∞ as `→∞, and (B) because of (3.12). Since for every i < k, limσ(N)3n→∞ diam(Bi
n) =

+∞ and cBinµn = (τ−xin(µn Bi
n)) for every n ∈ σi(N), (cBinµn)n∈σ(N) converges weakly to

µi by (3.10), and together with (3.11) it implies that

(cBinµn)n∈σ(N)
C′b−⇀ µi,

i.e. (A) is satisfied. Moreover, by (3.11) again,

lim sup
`→∞

∑
0≤i<kσ(`)

µσ(`)(Bi
σ(`)) ≤

∑
0≤i<k

‖µi‖+ lim sup
`→∞

(` ∧ k)2−` =
∑

0≤i<k
‖µi‖,

and since kn → k, by Fatou’s lemma we have,∑
0≤i<k

‖µi‖ ≤ lim inf
`→∞

∑
0≤i<kσ(`)

µσ(`)(Bi
σ(`)),

which proves (D) because
∑

0≤i<kσ(`)
µσ(`)(Bi

σ(`)) = ‖µbσ(`)‖.
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Step 5: vanishing of the remaining part, proof of (E). By Lemma 3.3, it suffices to prove
that m((µvn)n∈σ(N)) = 0. We claim that:

m((µvn)n∈σ(N)) ≤ m((µin)n∈σi(N)), for every i ∈ N with i < k, (3.13)

which concludes since m((µkn)n∈σk−1(N)) = 0 if k < ∞, and m((µin))n∈σi(N)) → 0 as i → ∞
if k =∞. Indeed, if k =∞, we have by (3.7) and (D),

1
2
∑
i∈N

m((µin)n∈σi(N)) ≤
∑
i∈N
‖µi‖ = lim

`→∞
‖µbσ(`)‖ ≤ lim inf

`→∞
‖µσ(`)‖ <∞.

Let us show (3.13). Let σ̄ � σ and (xn)n∈σ̄(N) be a sequence of points such that

(τ−xnµvn)n∈σ̄(N)
C′0−⇀ µ ∈M(RN ).

We need to prove that ‖µ‖ ≤ m((µin)n∈σi(N)) for every i < k. Assume without loss of
generality that ‖µ‖ > 0. Then for every i < k,

(dist(xn, xin))n∈σ̄(N) →∞. (3.14)

Otherwise, up to subsequence, (dist(xn, xin))n would be bounded by some constant M , and
for every r > 0,

(τ−xnµvn)(Br) ≤ µvn(Br+M (xin)) −−−→
n→∞

0,

because µvn is supported on RN \ ∪0≤i<knB
i
n and Br+M (xin) ⊆ Bi

n for n large enough by
(E). Hence µ would be 0, a contradiction. Up to further extraction, one can assume that
(τ−xnµn)n∈σ̄(N) converges weakly to a measure µ̄ ∈M(RN ). Since µvn ≤ µn, we have µ ≤ µ̄.
Moreover by (3.5), for every i < k and n ∈ σ̄(N) large enough,

τ−xnµ
i
n = τ−xnµn −

∑
0≤j≤i

τ
xjn−xn

µj ,

and because of (3.14) the sum converges weakly to 0, so that τ−xnµin
C′0−⇀ µ̄, and consequently,

‖µ‖ ≤ ‖µ̄‖ ≤ m((µin)n∈σi(N)),

which is what had to be proved.

Step 6: re-centering of the bubbles at points of suppµn. By (3.10), (τ−xinµn)n∈σ(N) converges
weakly to the non-trivial measure µi for every i < k, thus

Ri/2 := lim sup
σ(N)3n→+∞

dist(suppµn, xin) < +∞. (3.15)

Therefore, for every n large enough, there is a point x̃in such that |xin − x̃in| < Ri and x̃in ∈
suppµn. After a further extraction, one may assume that for every i, |xin − x̃in| < Ri < rni
with diamBi

n = 2rin for every n, and (xin − x̃in)n∈σ(N) converges to some pi ∈ RN . Finally,
we set r̃ni := rni −Ri and B̃i

n := B(x̃in, r̃ni ) ⊆ Bi
n. After replacing the balls Bi

n by B̃i
n, (B) and

(C) are satisfied by definition. Notice that (τ−x̃inµn)n∈σ(N) converges weakly to µ̃i := τpiµ
i
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with ‖µ̃i‖ = ‖µi‖, and lim supn‖cBinµn‖ = lim supn µn(B̃i
n) ≤ lim supn µn(Bi

n) = ‖µi‖ hence
(A) holds. Besides, using Fatou’s lemma,

lim sup
n

∑
i<kn

µn(B̃i
n) ≤ lim sup

n

∑
i<kn

µn(Bi
n) =

∑
i<k

‖µi‖

≤
∑
i<k

lim inf
n

µn(B̃i
n) ≤ lim inf

n

∑
i<kn

µn(B̃i
n)

so that limn
∑
i<kn µn(B̃i

n) =
∑
i‖µi‖ and (D) is satisfied. In particular, limn

∑
i<kn µn(Bi

n \
B̃i
n) = limn

∑
i<kn µn(Bi

n)− limn
∑
i<kn µn(B̃i

n) = 0 and (E) holds as well.

Remark 3.4. If the sequence of families of balls (Bi
n)0≤i<kn satisfies the conclusion of the

theorem, i.e. (A)–(E), then it is also the case for any family of balls (B̃i
n)0≤i<kn with the

same centers as those of Bi
n and with smaller but still divergent radii (i.e. satisfying (C)).

It can be easily seen following the arguments at Step 6 of the proof.

3.2 Lower bound by concentration compactness
We will first establish a lower bound for the minimal energy along vanishing sequences de-
fined on varying subsets of RN . We say that a sequence of Borel functions (un)n∈N, each de-
fined on some open set Ωn ⊆ RN , is vanishing if the sequence of measures (|un| LN Ωn)n∈N
is vanishing in the sense of Definition 3.1, namely if ‖un‖L1

uloc(Ωn) → 0 as n → ∞, where
L1

uloc(Ω) is the set of uniformly locally integrable functions on the open set Ω, i.e. Borel
functions u on Ω such that

‖u‖L1
uloc(Ω) := sup

x∈RN

ˆ
Ω∩(x+[0,1)N )

|u| < +∞. (3.16)

It will be convenient to first extend our Sobolev functions to a neighbourhood Ωδ of Ω where
for every δ > 0 and every set X ⊆ RN , we have set

Xδ := {x ∈ RN : dist(x,X) < δ}.

We will need to consider sufficiently regular domains for which we have an extension operator
W 1,p∩L1

uloc(Ω)→W 1,p∩L1
uloc(Ωδ). We will only apply it to domains with smooth boundary,

in which case we can use a reflexion technique. Since we want quantitative estimates, we will
use the notion of reach of a set X ⊆ RN (see [Fed59]). We say that X has positive reach if
there exists δ > 0 such that every x ∈ Xδ has a unique nearest point π(x) onX. The greatest
δ for which this holds is denoted by reach(X) and the map x ∈ Xreach(X) 7→ π(x) ∈ X is
called the nearest point retraction.
Example 3.5. Assume that Ω is a perforated domain B0 \

⋃k
i=1B

i where the Bi are disjoint
closed balls included in some open ball B0 (possibly B0 = RN ). Then,

reach(∂Ω) = inf{radius(Bi) : i = 0, . . . , k} ∪ {dist(∂Bi, ∂Bj) : i 6= j}.

By [Fed59, Theorem 4.8], we have

i) if x, y ∈ Xδ with 0 < δ < δ0 := reach(X), then |π(x)− π(y)| ≤ δ0
δ0−δ |x− y|,
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ii) if x ∈ X and Dx is the intersection of Xreach(X) with the straight line crossing ∂Ω
orthogonally at x, then π(y) = x for every y ∈ Dx.

Lemma 3.6 (Extension). Let Ω ⊆ RN be an open set such that its boundary ∂Ω is C1

with positive reach. Then, for every δ ∈ (0, reach(∂Ω)), every p ∈ [1,+∞) and every
u ∈ L1 ∩W 1,p(Ω), there exists ū ∈ L1 ∩W 1,p(Ωδ) such that ū = u a.e. on Ω, and

‖ū‖L1(Ωδ) ≤ A‖u‖L1(Ω), ‖ū‖L1
uloc(Ωδ) ≤ A‖u‖L1

uloc(Ω), ‖∇ū‖Lp(Ωδ) ≤ A‖∇u‖Lp(Ω),

with a constant A < +∞ depending only on N, δ and reach(∂Ω).

Proof. Let σ : (∂Ω)δ → (∂Ω)δ be the reflexion through ∂Ω, defined by σ(x) = 2π(x) − x.
By the properties i) and ii) of the nearest point retraction, we have that σ = σ−1 (simply
because π(σ(x)) = π(x)) and σ is L-Lipschitz with a constant L < +∞ depending on δ and
reach(∂Ω) only.

We define ū by ū = u on Ω and ū = u ◦ σ on Ωδ \ Ω5. This map is well defined since
σ(Ωδ \ Ω) ⊆ Ω. Indeed, if we had x, σ(x) ∈ Ωδ \ Ω, then the line segment [x, σ(x)] would
meet ∂Ω orthogonally at its center π(x), and would remain out of Ω elsewhere, because
otherwise there would exist a point y belonging either to ∂Ω∩ (x, π(x)) or ∂Ω∩ (π(x), σ(x))
thus contradicting the definition of π(x). Such a situation is not possible for a C1 boundary.

Moreover, by the change of variable formula and the chain rule, ū satisfies the desired
estimates since σ is bi-Lipschitz with its Lipschitz constants controlled in terms of δ and
reach(∂Ω).

We will need a localized version of the Gagliardo–Nirenberg–Sobolev inequality in a par-
ticular case:

Lemma 3.7. Let Ω ⊆ RN be an open set such that ∂Ω is C1 with positive reach, let
p ∈ [1,+∞), let r ≥ p(1 + 1

N ), and assume that r ≤ pN
N−p when p < N . Then for every

u ∈ L1 ∩W 1,p(Ω),

‖u‖Lr(Ω) ≤ C
(
‖∇u‖Lp(Ω) + ‖u‖L1(Ω)

)α‖u‖1−α
L1

uloc(Ω),

where α ∈ (0, 1] is the unique parameter such that 1
r = α(1

p −
1
N ) + (1−α), and the constant

C < +∞ depends on N, r, p and reach(∂Ω).

Proof of Lemma 3.7. We let u ∈ L1 ∩W 1,p(Ω) and we extend u to ū ∈ L1 ∩W 1,p(Ωδ) as
in Lemma 3.6, with δ := reach(Ω)/2. By the Gagliardo–Nirenberg–Sobolev inequality (see
[Nir59]) on the hypercube Qδ = [− δ√

N
, δ√

N
)N , we have

‖ū‖Lr(Qδ) ≤ C‖∇ū‖
α
Lp(Qδ)‖ū‖

1−α
L1(Qδ) + C‖ū‖L1(Qδ).

We then cover Ω with the hypercubes Qδ(c) = c+Qδ ⊆ Ωδ centered at points c on the grid
C := Ω ∩ δZN . Since α ≥ N

N+1 , we can check that

rα = r − 1
1 + 1

N −
1
p

≥ p. (3.17)

5Note that ū is not defined on ∂Ω, but this set is negligible.
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By superadditivity of s 7→ s
rα
p and of s 7→ srα, we obtain

‖u‖rLr(Ω) ≤
∑
c∈C
‖ū‖rLr(Qδ(c))

≤ C ′
∑
c∈C
‖∇ū‖

p rα
p

Lp(Qδ(c))‖ū‖
r(1−α)
L1(Qδ(c)) + C ′‖ū‖rL1(Qδ(c))

≤ C ′′‖∇ū‖rαLp(Ωδ)‖ū‖
r(1−α)
L1

uloc(Ωδ)
+ C ′‖ū‖rαL1(Ωδ)‖ū‖

r(1−α)
L1

uloc(Ωδ)

≤ C ′′′
(
‖∇u‖Lp(Ω) + ‖u‖L1(Ω)

)rα‖u‖r(1−α)
L1

uloc(Ω).

Proposition 3.8. Assume that f : RN × R × RN → [0,+∞] satisfies (H1) and (H5) for
some p ∈ (1,+∞). Consider a vanishing sequence (un)n∈N in W 1,1

loc (Ωn,R±), where the
Ωn ⊆ RN are open sets with C1 boundary and such that infn∈N reach(∂Ωn) > 0, and a
sequence (Φn)n∈N of Borel maps Φn : Ωn → RN such that supy∈Ωn |Φn(y) − x0| → 0 as
n→ +∞ for some x0 ∈ RN . If θn :=

´
Ωn un > 0 for every n and (θn)n∈N is bounded, then:

lim inf
n→+∞

1
θn

ˆ
Ωn
f(Φn(y), un(y),∇un(y)) dy ≥ f ′−(x0, 0±, 0),

where f ′−(x0, 0±, 0) was defined in (1.4).

Proof of Proposition 3.8. Suppose for example that un ≥ 0 a.e. for every n. Without loss
of generality, we may assume after extracting a subsequence that:

K := sup
n

1
θn

ˆ
Ωn
f(Φn(y), un(y),∇un(y)) dy + θn < +∞. (3.18)

We consider the sequence of measures (νn)n∈N ∈M+(RN × R× RN ) defined by

νn := 1
θn

(Φn, un,∇un)](un LN Ωn), n ∈ N.

We are going to show in several steps that νn
C′b−⇀ δ(x0,0,0) and deduce the result. It suffices

to show that the three projections νin := (πi)]νn, i ∈ {1, 2, 3} converge narrowly to δx0 , δ0
and δ0 respectively. Indeed, this would imply that (νn) converges narrowly to a measure
concentrated on (x0, 0, 0), hence to δ(x0,0,0) since the νn are probability measures. First of
all, since (νn) has bounded mass and (θn) is bounded, we may take a subsequence (not
relabeled) such that νn

C′0−⇀ ν and θn → θ as n→∞ for some ν ∈ M+(RN × R× RN ) and
θ ≥ 0.

Step 1: ν1
n

C′b−⇀ δx0 . This is a direct consequence of the fact that ν1
n is concentrated on

Φn(RN ) for every n and dist(Φn(RN ), x0) as n→∞.

Step 2: ν2
n

C′b−⇀ δ0. By (3.18) and our assumption (H5), there is a constant K1 > 0 with
ˆ

Ωn
|∇un|p ≤ K1

ˆ
Ωn
un, ∀n ∈ N. (3.19)
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We deduce from Markov’s inequality, and Lemma 3.7 applied with r = p(1 + 1
N ), corre-

sponding to α = N
N+1 , that

ν2
n([η,+∞)) = 1

θn

ˆ
{un≥η}

un = 1
θn

ˆ
{un≥η}

u1−r
n urn

≤ 1
θnηr−1

ˆ
Ωn
urn

≤ C

θnηr−1
(
‖∇un‖Lp(Ωn) + ‖un‖L1(Ωn)

)rα‖un‖r(1−α)
L1

uloc(Ωn)

≤ C ′

ηr−1
(
1 + θp−1

n

)
‖un‖r(1−α)

L1
uloc(Ωn),

where in the last inequality, we have used the identity αr = p and (3.19).
Since (un)n∈N is vanishing and (θn)n∈N is bounded, the last term in the previous inequality

goes to zero as n→∞ and it follows that ν2
n

C′b−⇀ δ0.

Step 3: ν3
n

C′b−⇀ δ0. Fix M > 0 and η > 0. One has by (3.19),

ν3
n([M,+∞)) = 1

θn

ˆ
{|∇un|≥M}

un ≤
1
θn

ˆ
{un<η}∩{|∇un|≥M}

un + 1
θn

ˆ
{un>η}

un

≤ η

θn
LN ({|∇un| ≥M}) + ν2

n([η,+∞))

≤ η

θn

1
Mp

ˆ
Ωn
|∇un|p + ν2

n([η,+∞))

≤ ηK1
Mp

+ ν2
n([η,+∞)).

By the previous step, we know that limn→+∞ ν
2
n([η,+∞)) = 0, hence taking the superior

limit as n→ +∞ then η → 0 we get limn→+∞ ν
3
n([M,+∞)) = 0. Since this is true for every

M > 0 we obtain ν3
n

C′b−⇀ δ0.

Step 4: conclusion. By the previous steps, we deduce that νn
C′b−⇀ δ(x0,0,0) as n→ +∞. We

define g : RN×R+×RN → [0,+∞] as the lower semicontinuous envelope of RN×R∗+×RN 3
(x, u, ξ) 7→ 1

uf(x, u, ξ). By (H1), we have g(x, u, ξ) = 1
uf(x, u, ξ) if u > 0, and by (1.4), we

have g(x, 0, 0) = f ′−(x, 0+, 0) for every x ∈ RN . Hence, by lower semicontinuty of g and
weak convergence of (νn), we get

lim inf
n→∞

ˆ
Ωn
f(Φn, un,∇un) ≥ lim inf

n→∞

ˆ
{un>0}

f(Φn, un,∇un)
un

un

= lim inf
n→∞

ˆ
RN×R×RN

g(x, u, ξ) dνn(x, u, ξ)

≥
ˆ
RN

g(x, u, ξ) dδ(x0,0,0) = f ′−(x0, 0+, 0),

which ends the proof of the lemma.

As a corollary, we may now relate the slope at 0 of Hf to that of f .
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Corollary 3.9. Assume that f : RN × R × RN → [0,+∞] satisfies (H1), (H5) for some
p ∈ (1,+∞) and (H6). Fix x ∈ RN . If either N ≥ 2 or (N = 1 and Hf (x, ·) 6≡ +∞ on
R∗±), then H ′f (x, 0±) = f ′−(x, 0±, 0).

Proof. The inequalityH ′f (x, 0±) ≤ f ′−(x, 0±, 0) is a consequence of (H6), Proposition 2.6 and
Proposition 2.7, and the converse inequality H ′f (x, 0±) ≥ f ′−(x, 0±, 0) comes from Proposi-
tion 3.8.

We now establish our main energy lower bound along sequences with bounded mass (not
necessarily vanishing):

Proposition 3.10. Assume that (fε)ε>0 is a family of functions fε : RN×R×RN → [0,+∞]
satisfying (H1), (H2), (H5) and (H8) for some limit f . Let (εn)n∈N be a sequence of
positive numbers going to zero, (Rn)n∈N and (rn)n∈N be two sequences in (0,+∞] such
that limn→∞ rn = limn→∞Rn − rn = +∞, (un)n∈N be a sequence of functions un ∈
W 1,1

loc (BRn ,R±) with finite limit mass m := limn→∞
´
Brn

un, and (Φn)n∈N be a sequence
of Borel maps Φn : BRn → RN such that

sup
y∈BRn

|Φn(y)− x0| −−−→
n→∞

0 for some x0 ∈ RN . (3.20)

Then there exists a family (ui)0≤i<k of functions in W 1,1
loc (RN ,R±) with k ∈ N∪{+∞}, such

that mi :=
´
RN u

i ∈ R∗± for every i, and

m = mv +
∑

0≤i<k
mi with mv ≥ 0, (3.21)

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un) ≥ mvf
′
−(x0, 0±, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui). (3.22)

Proof. Suppose for example that un ≥ 0 a.e. for every n. We first assume, up to sub-
sequence, that the left hand side of (3.22) is a limit. We apply the profile decomposition
Theorem 3.2 to the sequence of positive measures µn = un LN|Brn where, without loss of gen-
erality, we assume the extraction σ to be the identity for convenience, and we use the same
notation as in Theorem 3.2. In particular, for each bubble Bi

n = Brin(xin), with 0 ≤ i < kn,
we have xin ∈ suppµn ⊆ Brn . By assumption, we have limn→∞(Rn − rn) = +∞; hence, up
to reducing the radii of the balls Bi

n if necessary, in such a way that their radii still diverge
(see Remark 3.4), we can assume that

Bi
n ⊆ BRn−1, 0 ≤ i < kn. (3.23)

For each 0 ≤ i < kn, we let uin := un(· + xin). Assuming without loss of generality that
the left hand side of (3.22) is finite, we get that the sequence (uin)n is bounded in W 1,p

loc (RN )
by (H5). Hence, after a further extraction if needed, we get that (uin)n∈N ⇀ ui weakly in
W 1,p

loc (RN ) for some limit ui, for every 0 ≤ i < k = lim kn. Setting mi =
´
RN u

i for every i,
by (D) in Theorem 3.2, we have

mv := m−
∑

0≤i<k
mi = lim

n→∞

ˆ
Brn\∪0≤i<knB

i
n

un.
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Fix ε > 0. We decompose the energy as
ˆ
BRn

fε(Φn, un,∇un) =
ˆ
BRn\∪0≤i<knB

i
n

fε(Φn, un,∇un)

+
∑

0≤i<kn

ˆ
B
rin

fε(Φn(·+ xin), uin,∇uin). (3.24)

Note that the domains Ωn := BRn \ ∪0≤i<kB
i
n satisfy infn∈N reach(∂Ωn) > 0 as noticed in

Example 3.5, thanks to (3.23) and (B), (C) in Theorem 3.2. Hence, applying Proposition 3.8
to the Lagrangian fε, we obtain

lim inf
n→∞

ˆ
BRn\∪0≤i<knB

i
n

fε(Φn, un,∇un) ≥ mv(fε)′−(x0, 0+, 0). (3.25)

Moreover, by lower semicontinuity of integral functionals (see [But89, Theorem 4.1.1]), in
view of (3.20), we have for each i with 0 ≤ i < k,

lim inf
n→∞

ˆ
B
rin

fε(Φn(·+ xin), uin,∇uin) ≥
ˆ
RN

fε(x0, u
i,∇ui). (3.26)

Finally, by (3.24), (3.25), (3.26), (H8) and by monotone convergence, we deduce that

lim inf
n→∞

ˆ
BRn

fεn(Φn, un,∇un) ≥ lim
ε→0+

(
mv(fε)′−(x0, 0+, 0) +

∑
0≤i<k

ˆ
RN

fε(x0, u
i,∇ui)

)
= mvf

′
−(x0, 0+, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui).

3.3 Existence of optimal profiles
For the existence of an optimal profile in (1.2), we need a criterion that rules out splitting
and vanishing of minimizing sequences:

Lemma 3.11. Let H : R+ → R+ be a concave function. Then H is subadditive, and if for
some 0 < θ < m one has H(m) = H(m− θ) +H(θ), then H is linear on (0,m).

Proof. By concavity, t 7→ H(t)
t is non-increasing. Hence,

H(m) = θ
H(m)
m

+ (m− θ)H(m)
m

≤ θH(θ)
θ

+ (m− θ)H(m− θ)
m− θ

.

But, by assumption, the last inequality is an equality which means that H(m)
m = H(θ)

θ =
H(m−θ)
m−θ . In particular, the monotone function t 7→ H(t)

t must be constant on [θ,m], i.e. H
must be linear on [θ,m]. By concavity this is only possible if H is linear on [0,m].

We can now state and prove our existence result:

Proposition 3.12. Assume that f : RN × R × RN → [0,+∞] satisfies (H1), (H2), (H5)
and (H6). Let x0 ∈ RN and m ∈ R+ (resp. m ∈ R−). If Hf (x0, ·) is not linear on
[0,m] (resp. [m, 0]), then (1.2) admits a solution u ∈ W 1,1

loc (RN ), i.e.
´
RN u = m and´

RN f(x0, u,∇u) = Hf (x0,m), such that u ≥ 0 (resp. u ≤ 0) in RN .
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Proof. We consider the case m ≥ 0, the case m < 0 can then be deduced by considering
f̃(x, u, ξ) = f(x,−u, ξ). By Remark 2.2, the admissible class in (1.2) can be reduced to non
negative functions. In particular, if m = 0, then u = 0 is the only solution. If m > 0, we
apply Proposition 3.10 in the following situation: fε ≡ f , Rn ≡ +∞, Φn ≡ x0, (un)n∈N is
a minimizing sequence for the minimization problem in (1.2), and (rn)n∈N is a sequence of
positive radii going to +∞ such that limn→∞

´
Brn

un = m. We obtain

Hf (x0,m) ≥ mvf
′
−(x0, 0+, 0) +

∑
0≤i<k

ˆ
RN

f(x0, u
i,∇ui),

with k ∈ N∪{+∞}, ui ∈W 1,p
loc (RN ,R+) and m =

∑
0≤i<kmi +mv, where mi :=

´
RN u

i. By
Proposition 2.6 and Proposition 2.7, in view of our assumption (H6), we have f ′−(x0, 0+, 0) ≥
H ′f (x0, 0). Moreover, by Theorem 2.1, we have mvH

′
f (x0, 0) ≥ Hf (x0,mv). Hence, by

definition of Hf ,
Hf (x0,m) ≥ Hf (x0,mv) +

∑
0≤i<k

Hf (x0,mi).

Since the concave function Hf (x0, ·) is not linear on [0,m], by Lemma 3.11, we have either
k = 1 and mv = 0, and we are done, or k = 0 and m = mv. But in the latter case,
we would have Hf (x0,m) = mH ′f (x0, 0) which implies that the monotone function t 7→
Hf (x0,t)

t is constant on [0,m], i.e. that Hf (x0, ·) is linear on [0,m]. This contradicts our
assumption.

4 Γ-convergence of the rescaled energies towards the H-mass
We establish lower and upper bounds for the Γ− lim inf and Γ− lim sup respectively, from
which we deduce the proof of our main Γ-convergence result. The upper bound on the
Γ− lim sup holds under more general assumptions and will be needed in Section 5.5.

4.1 Lower bound for the Γ− lim inf
Given a Borel function f : RN × R× RN → [0,+∞], we define for every (x,m) ∈ RN × R,

H−f (x,m) := Hf (x,m) ∧ (f ′−(x, 0±, 0)|m|), if ±m ≥ 0, (4.1)

recalling that Hf is defined in (1.2) and f ′−(x, 0±, 0) in (1.4), with the usual convention
(±∞) × 0 = 0. Notice that under (H6), in view of Proposition 2.6 and Proposition 2.7 we
have H−f (x,m) = Hf (x,m).

Proposition 4.1. Assume that (fε)ε>0 is a family of functions fε : RN×R×RN → [0,+∞]
satisfying (H1), (H2), (H5) and (H8) where f = limε→0 fε. Let (εn)n∈N be a sequence of
positive numbers going to zero, (un)n∈N be a sequence in W 1,1

loc (RN ), and let

en(x) := fεn(x, εNn un(x), εN+1
n ∇un(x))ε−Nn , x ∈ RN ,

be the energy density of un. If un LN
C′0−⇀ u ∈M(RN ) and en LN

C′0−⇀ e ∈M(RN ), then

e ≥ H−f (u). (4.2)

In particular, Γ(C′0)− lim infε→0 Eε ≥MH−
f .
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Proof of Proposition 4.1. Set H := H−f . Let us assume first that un ≥ 0 a.e. for every n.
To obtain (4.2), it is enough to prove that for every x0 ∈ RN ,

e({x0}) ≥ H(x0, u({x0})). (4.3)

and that if x0 ∈ suppu is not an atom of u, then

lim sup
R→0+

e(BR(x0))
u(BR(x0)) ≥ H

′(x0, 0+), (4.4)

Indeed (4.3) implies that e ≥ (H(u))a (the atomic part of the measure H(u)) while (4.4)
implies that e ≥ H ′(·, 0+)ud = (H(u))d, by Radon-Nikodỳm theorem (see [AFP00, Theo-
rem 2.22]); these two relations yield e ≥ (H(u))a + (H(u))d = H(u) as required.

We fix x0 ∈ suppu and proceed in several steps.

Step 1: blow-up near x0. We first take two sequences of positive radii (R`)`∈N → 0 and
(r`)`∈N such that for every ` ∈ N, r` ∈ (0, R`),

e(∂BR`(x0)) = u(∂Br`(x0)) = 0, (4.5)
and

lim
`→∞

e(BR`(x0))
u(Br`(x0)) = lim sup

R→0+

e(BR(x0))
u(BR(x0)) . (4.6)

This last property is obtained by taking first a sequence (ρ`)` such that

lim sup
R→0+

e(BR(x0))
u(BR(x0)) = lim

`→∞

e(Bρ`(x0))
u(Bρ`(x0)) ,

then using monotone convergence the measures to get first r` then R` such that 0 < r` <
R` < ρ`, u(Br`(x0)) ≥ (1− 2−`)u(Bρ`(x0)) and e(BR`(x0)) ≥ (1− 2−`)e(Bρ`(x0)).
By weak convergence and (4.5), according to [AFP00, Proposition 1.62 b)], we have for

every ` ∈ N,

lim
n→∞

en(BR`(x0)) = e(BR`(x0)) and lim
n→∞

ˆ
Br` (x0)

un = u(Br`(x0)).

Hence, there exists an extraction (n`)`∈N ∈ Σ such that

lim
`→∞

r`
εn`

= +∞ and lim
`→∞

R` − r`
εn`

= +∞, (4.7)

satisfying the following conditions:

u({x0}) = lim
`→∞

ˆ
Br` (x0)

un` , e({x0}) = lim
`→∞

en`(BR`(x0)), (4.8)

and

lim sup
`→∞

e(BR`(x0))
u(Br`(x0)) = lim

`→∞

en`(BR`(x0))´
Br` (x0) un`

. (4.9)
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We may rewrite the mass and energy in terms of the re-scaled map v` defined by

v`(y) := εNn`un`(x0 + εn`y), y ∈ RN , ` ∈ N (4.10)

as follows: ˆ
Br` (x0)

un` =
ˆ
B
ε−1
n`

r`

v`, (4.11)

and

en`(BR`(x0)) =
ˆ
B
ε−1
n`

R`

fεn` (x0 + εn`y, v`(y),∇v`(y)) dy. (4.12)

Step 2: proof of (4.3). By Proposition 3.10, we have

e({x0}) = lim
`→∞

en`(BR`(x0)) ≥ mvf
′
−(x0, 0+, 0) +

∑
0≤i<k

Hf (x0,mi). (4.13)

Here k ∈ N ∪ {+∞} and m = mv +
∑

0≤i<kmi, with mi > 0, mv ≥ 0 and

m = lim
`→∞

ˆ
B
ε−1
n`

r`

v` = u({x0}).

Since the function H = H−f , defined in (4.1), is the infimum of two functions which are
concave in the mass m, it is itself concave in m hence subadditive. From (4.13) we thus
arrive at

e({x0}) ≥ H(x0,mv) +
∑

0≤i<k
H(x0,mi) ≥ H

(
x0,mv +

∑
0≤i<k

mi

)
= H(x0, u({x0})).

Step 3: proof of (4.4). Fix ε > 0 and assume that m = u({x0}) = 0. In that case, we apply
Proposition 3.8 to the sequence of functions (v`)`∈N defined on the sets Ω` = Bε−1

n`
r`

and the
function fε to get, thanks to (H8):

lim sup
R→0+

e(BR(x0))
u(BR(x0)) = lim

`→∞

en`(BR`(x0))´
Br` (x0) un`

≥ lim inf
`→∞

1´
B
ε−1
n`

r`

v`

ˆ
B
ε−1
n`

r`

fε(x0 + εn`y, v`(y),∇v`(y))

≥ (fε)′−(x0, 0+, 0).

Taking the limit ε→ 0+, we deduce by (H8) and (4.1):

lim sup
R→0+

e(BR(x0))
u(BR(x0)) ≥ f

′
−(x0, 0+, 0) ≥ H ′(x0, 0+). (4.14)

In view of the discussion at the beginning of the proof, we have now proved (4.2).
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Step 4: proof of (4.2) for signed (un)n. Notice that the preceding reasoning for non negative
un applies also to the case of non-positive un. Let us handle the case where the (un)’s may
change sign. We simply apply the above cases to the positive and negative parts ((un)±)n
which converge weakly (up to subsequence) to some measures u± ∈M+(RN ) which satisfy
u = u+−u−, so that e ≥ H(±u±). We know that the positive and negative parts u± of u are
optimal decompositions in the sense that u = u+−u− with u± ≤ u±, and we have u+ ⊥ u−.
By monotonicity of the H-transform, due to Theorem 2.1, e ≥ H(±u±) ≥ H(±u±), and
since H(u+) ⊥ H(−u−), we get

e ≥ H(u+) +H(−u−) = H(u).

Step 5: lower bound for the Γ− lim inf. We justify that (4.2) implies the lower bound
Γ(C′0)− lim infε→0 Eε ≥MH . Indeed, fix u ∈ M(RN ) and consider a family (uε)ε>0 weakly
converging to u as ε→ 0. We need to show that MH(u) ≤ lim infε→0 Eε(uε). Assume with-
out loss of generality that the inferior limit is finite and take a sequence of positive numbers
(εn)n∈N → 0 such that this inferior limit is equal to limn→∞ Eεn(uεn). Now the energy
density en associated to un = uεn has bounded mass and up to extracting a subsequence
one may assume that it converges weakly to some measure e ∈ M+(RN ). By the previous
steps, e ≥ H(u), and by lower semicontinuity and monotonicity of the mass:

lim inf
ε→0+

Eε(uε) = lim inf
n→∞

‖en‖ ≥ ‖e‖ ≥ ‖H(u)‖ = MH(u).

4.2 Upper bound for the Γ− lim sup
In this section, we introduce the following substitute for (H8), where f, (fε)ε>0 are Borel
maps from RN × R→ RN to [0,+∞]:

(U) there exists C < +∞ such that for every x, y ∈ RN , u ∈ R and ξ ∈ RN ,

lim sup
ε→0+

fε(x+ εy, u, ξ) ≤ f(x, u, ξ) and fε(y, u, ξ) ≤ C(f(x, u, ξ) + u) ∀ε > 0.

Proposition 4.2. Assume that f, (fε)ε>0 satisfy (U) and (H3). If u ∈M(RN ), then there

exists (uε)ε>0 ∈W 1,1
loc (RN ) such that uε LN

C′b−⇀ u when ε→ 0 and which satisfies

lim sup
ε→0+

Eε(uε) ≤MHf,lsc(u),

where Hf,lsc ≤ Hf stands for the lower semicontinuous and mass-subadditive envelope of
Hf , defined in (2.6). In other words, we have Γ(C′b)− lim supε→0 Eε ≤MHf,lsc.

Proof of Proposition 4.2. Let F = Γ(C′b)− lim supε→0 Eε. As an upper Γ-limit, F is sequen-
tially lower semicontinuous in the narrow topology. Hence, by Proposition 2.5, it is enough
to prove that F (u) ≤ MHf (u) whenever u is finitely atomic. Let u =

∑k
i=1miδxi with

k ∈ N, mi ∈ R, xi ∈ RN , and assume without loss of generality that xi 6= xj when i 6= j

and MHf (u) < +∞. Fix η > 0. For each i = 1, . . . , k, there exists ui ∈W 1,1
loc (RN ) such that´

RN ui = mi and
´
RN f(xi, ui,∇ui) ≤ H(xi,mi) + η. We define for every i = 1, . . . , k,

uiε(x) = ε−Nui(ε−1(x− xi)), x ∈ RN , (4.15)
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and
uε = sup{uiε : i = 1, . . . , k}, (4.16)

which converge narrowly as measures to u as ε→ 0. We have by change of variables:

Eε(uε) ≤
k∑
i=1
Eε(uiε) =

k∑
i=1

ˆ
RN

fε(xi + εx, ui,∇ui).

Using our assumption (U) and the dominated convergence theorem, one gets as ε→ 0:

F (u) ≤ lim sup
ε→0

Eε(uε) ≤
k∑
i=1

ˆ
RN

f(xi, ui,∇ui) ≤
k∑
i=1

H(xi,mi) + kη = MH(u) + kη.

The conclusion follows by arbitrariness of η > 0.

4.3 Proof of the main Γ-convergence result
We now explain how Theorem 1.2 follows from Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.2. The lower bound Γ(C′0)− lim infε→0 Eε ≥MH−
f follows from Propo-

sition 4.1, and the upper bound Γ(C′b)− lim supε→0 Eε ≤MHf,lsc from Proposition 4.2, where
the assumption (U) is a consequence of (H4), (H7) and (H8). In the case N = 2, by Propo-
sition 2.6 and assumption (H6), we have H−f = Hf , and Hf ≥ Hf,lsc by definition, so that
both Γ − lim inf and Γ − lim sup (for weak and narrow topologies) coincide. In the case
N = 1, by Proposition 2.7 either we have again H−f = Hf on RN ×R+ by (H6) and (H3), or
we have Hf (x0, ·) ≡ +∞ on (0,+∞) for some x0 ∈ R. In that case, by (H7) and Remark 2.2
we necessarily have Eε(u) = +∞ for every u such that

´
RN u > 0, and Hf (x, ·) ≡ Hf (x0, ·)

on R+ for every x ∈ R. It implies that both Γ− lim inf and Γ− lim sup (for the weak and
narrow topologies) coincide with6 χ{0} = MHf on M+(RN ). Similarly, they coincide on
finite negative measures.

5 Examples, counterexamples and applications
5.1 Scale-invariant Lagrangians and necessity of assumption (H6)
Our assumption (H6) is not very standard, but we need a condition of this type in order to
get Γ-convergence of the rescaled energies Eε towards MHf , as shown by the following class
of scale-invariant Lagrangians:

fε(x, u, ξ) = f(u, ξ) with f(u, ξ) =
{
u
p( 1
p?
−1)|ξ|p if u > 0,

0 else,
(5.1)

where p ∈ (1, N), N ∈ N∗ and p? := pN
N−p . By straightforward computations, Eε(u) =

Ef (u) :=
´
RN f(u,∇u) for every ε > 0 and u ∈W 1,p

loc (RN ) in that case.

6χC(x) = 0 if x ∈ C and +∞ otherwise.
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Moreover, the associated cost function Hf is not trivial. Indeed, applying the Gagliardo–
Nirenberg–Sobolev inequality,( ˆ

RN
|v|p?

) 1
p? ≤ C

(ˆ
RN
|∇v|p

) 1
p
, ∀v ∈ Lp? ∩W 1,1

loc (RN ),

to the function7 v = u
1
p? , we obtain that for every u ∈W 1,1

loc (RN ,R+) ∩ L1(RN ),(ˆ
RN

u

) p
p?

≤
(
C

p?

)p ˆ
{u>0}

u
p
p?
−p|∇u|p =

(
C

p?

)p
Ef (u).

Hence, for every m > 0, we have Hf (m) > 0, and even Hf (m) < +∞ since any function
u = vp

? , with v ∈ W 1,p(RN ,R+), has finite energy. Replacing u by mu in the infimum
defining Hf in (1.2), we actually obtain

Hf (m) = m1− p
NHf (1), 0 < Hf (1) < +∞. (5.2)

In that case, it is clear that the Γ-limit of Eε ≡ E in the weak or narrow topology ofM+(RN ),
that is the lower semicontinuous relaxation of Ef , does not coincide with MHf ; indeed, the
first functional is finite on diffuse measures whose density has finite energy, while the second
functional is always infinite for non-trivial diffuse measures since H ′f (0) = +∞.

These scaling invariant Lagrangians are ruled out by our assumption (H6). All the other
assumptions are satisfied except (H5). Note that the following perturbation of f ,

f̃(u, ξ) =
(
1 + u

p( 1
p?
−1))|ξ|p

satisfies all the assumptions except (H6), and provides a counterexample to the Γ-convergence.
Indeed, MHf̃

≥MHf is still infinite on diffuse measures, while (the relaxation of) Ef̃ is finite
for any diffuse measure whose density has finite energy.
We stress that an assumption like (H6) is actually needed, even for the lower semicontinu-

ity of the function Hf – recall that if MHf is a Γ-limit, then it must be lower semicontinuous
by [Bra02, Proposition 1.28], which in turn implies that the function Hf is lower semicon-
tinuous by Proposition 2.5. Indeed, consider the Lagrangians

f(x, u, ξ) =
(
1 + u

p( 1
p?
−1))|ξ|p(x),

with p ∈ C0(RN , (1, N)) such that p(0) = p ∈ (1, N) and p(x) > p when x 6= 0. Then, we
have Hf (0,m) = m1− p

NH(1), but Hf (x, ·) ≡ 0 if x 6= 0 as can be easily seen via the change
of function εNu(ε ·), with ε > 0 small.

5.2 General concave costs in dimension one
It has been proved in [Wir19] that for any continuous concave function H : R+ → R+ with
H(0) = 0, there exists a function c : R+ → R+ such that c(0) = 0, u 7→ c(u)

u is lower
semicontinuous and non-increasing on (0,+∞), and for every m ≥ 0,

H(m) = inf
{ˆ

R
|u′|2 + c(u) : u ∈W 1,1

loc (R,R+),
ˆ
R
u = m

}
.

7Actually, we apply it to vε = φε(u) where φε is a suitable approximation of (·)
1

p? and take ε→ 0.
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The Lagrangians of the form fε(x, u, ξ) = |ξ|2 + c(u), in dimension N = 1, satisfy all our
assumptions (H1)–(H8), hence our Γ-convergence result stated in Theorem 1.2 yields the
Γ-convergence of the functionals

Eε(u) =
ˆ
R
ε3|u′|2 + c(εu)

ε
, u ∈W 1,2(R,R+),

towards MH for both the weak and narrow convergence of measures. Therefore, we may
find an elliptic approximation of any concave H-mass. Let us stress that c is determined
in [Wir19] from H through several operations including a deconvolution problem, but no
closed form solution is given in general; nonetheless, an explicit solution is provided if c is
affine by parts.
In higher dimension N ≥ 2, Proposition 2.8 tells us that the class of functions H = Hf

with f satisfying (H1)–(H8) is smaller, namely, H must satisfy:

∃m∗ ≥ 0,
{
H is linear on [0,m∗],
H is strictly concave (m∗,+∞).

(5.3)

We have no positive or negative answer to the inverse problem, consisting in finding f
satisfying our assumptions such that Hf = H, for a given continuous concave function
H : R+ → R+ satisfying (5.3).

5.3 Homogeneous costs in any dimension
In this section, we provide Lagrangians f to obtain the α-mass Mα := Mt7→tα in any dimen-
sion N for a wide range of exponents, including super-critical exponents α ∈

(
1− 1

N , 1
]
.

We consider for every p ∈ [1,+∞), s ∈ (−∞, 1] and N ∈ N∗, the energy defined for every
u ∈W 1,1

loc (RN ,R+) by

EN,ps(u) :=
ˆ
RN

fN,p,s(u,∇u) :=
ˆ
RN
|∇u|p + us. (5.4)

Notice that for p > 1, fN,p,s satisfies all our hypotheses (H1)–(H6) (without dependence on
x), (H6) holding in dimension N ≥ 2 with ρ(t) = t for example. Thus by Theorem 1.2 the
re-scaled energies Γ-converge to the HfN,p,s-mass.
One may compute HfN,p,s substituting u by v such that u = mλNv(λ·) in (1.2), where

λ = m
s/p−1

1+N−sN/p . (5.5)

Straightforward computations give
´
RN v = 1 if

´
RN u = m, and

EN,p,s(u) = mα(N,p,s)EN,p,s(v), where α(N, p, s) =
1− s

p + s
N

1− s
p + 1

N

,

thus
HN,p,s(m) = cN,p,sm

α(N,p,s), where cN,p,s = HN,p,s(1).
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We look for cases when the cost is non-trivial, i.e. neither identically zero nor infinite on
(0,+∞). Take an auxiliary exponent q ∈ [1,+∞) and α ∈ [0, 1] such that 1 = αq+(1−α)s.
By Hölder inequality,

ˆ
RN

u =
ˆ
RN

uαqu(1−α)s ≤
(ˆ

RN
uq
)α (ˆ

RN
us
)1−α

.

Moreover, choosing q ∈ (1, p?) if p < N and any q ∈ (1,+∞) if p ≥ N , by the Gagliardo–
Nirenberg–Sobolev inequality, for every u ∈W 1,1

loc ∩ L1(RN ,R+),

(ˆ
RN

uq
) 1
q

= ‖u‖Lq ≤ C‖∇u‖βLp‖u‖
1−β
L1 ,

with β ∈ (0, 1) such that 1
q = β

(
1
p −

1
N

)
+ (1− β). Hence,

(ˆ
RN

u

)1−qα(1−β)
≤ C

(ˆ
RN
|∇u|p

) qαβ
p
(ˆ

RN
us
)1−α

,

and the cost is non-zero for every m > 0.
In the case s ∈ [0, 1], any u = vr with v ∈ C1

c (RN ) is a competitor with finite energy,
thus EN,p,s is non-trivial for every p ∈ [1,+∞). In the case s < 0, consider the competitor
u : x 7→ (1 − |x|)γ+ for γ > 0 to be fixed later. Then

´
RN |∇u|

p < +∞ if and only if
t 7→ (1−t)(γ−1)p is integrable at 1−, i.e. (γ−1)p > −1 ⇐⇒ γ > 1−1/p, and

´
{u>0} u

s < +∞
if and only if γs > −1 ⇐⇒ γ < −1/s. Therefore, one may find γ > 0 satisfying both
conditions, and ensure that HfN,p,r,s is non-trivial, if

−p′ < s < 0.

To summarize, we have shown that HfN,p,s is non-trivial if:

s ∈ (−p′, 1].

Since α = α(N, p, s) is monotone in s, one may easily compute the range of α. If p and N
are fixed, α ranges over

(
N−1

N+1−1/p , 1
]
when s ∈ (−p′, 1]. Notice that when N = 1 we obtain

the whole range α ∈ (0, 1], and at least the range
[
1− 1

N , 1
]
for every p in dimension N ≥ 2.

Finally, we obtain a range α ∈
(
1− 2

N+1 , 1
]
when p ranges over (1 +∞) in dimension N .

5.4 Branched transport approximation: H-masses of normal 1-currents
Branched Transport is a variant of classical optimal transport (see [San15] and Section 4.4.2
therein for a brief presentation of branched transport, and [BCM09] for a vast exposition)
where the transport energy concentrates on a network, i.e. a 1-dimensional subset of Rd,
which has a graph structure when optimized with prescribed source and target measures.
It can be formulated as a minimal flow problem,

min
{

MH
1 (w) : div(w) = µ− − µ+

}
,
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where µ± are probability measures on Rd, H : Rd × R+ → R+ is mass-subadditive, and
the H-mass MH

1 is this time defined for finite vector measures w ∈ M(Rd,Rd) whose
distributional divergence is also a finite measure; in the language of currents, it is called a
1-dimensional normal current. Any such measure may be decomposed into a 1-rectifiable
part θξ · H1 Σ where θ(x) ≥ 0 and ξ(x) is a unit tangent vector to Σ for H1-a.e. x ∈ Σ,
and a 1-diffuse part w⊥ satisfying |w⊥|(A) = 0 for every 1-rectifiable set A:

w = θξ · H1
|M + w⊥.

The H-mass is then defined by:

MH
1 (w) :=

ˆ
Σ
H(x, θ(x)) dH1(x) +

ˆ
Rd
H ′(x, 0) d|w⊥|. (5.6)

In the case H(x,m) = mα with 0 < α < 1, a family of approximations of these functional
has been introduced in [OS11]:

Eβ,ε(w) =
{´

Rd ε
γ1 |∇w|2 + ε−γ2 |w|β if w ∈W 1,2

loc (Rd,Rd),
+∞ otherwise,

(5.7)

with β = 2−2d+2αd
3−d+α(d−1) , γ1 = (d − 1)(1 − α) and γ2 = 3 − d + α(d − 1). It has been shown

in [OS11; Mon17] that the functionals Fβ,ε Γ-converge as ε→ 0+, in the topology of weak
convergence of u and its divergence, to a non-trivial multiple of the α-mass Mα

1 := MH
1 with

H(x,m) = mα in dimension d = 2. The result extends to any dimension d, by [Mon15],
thanks to a slicing method that relates the energy Eβ,ε with the energy of the sliced measures
u = (w · ν)+ supported on the slices Va = {x ∈ Rd : x · ν = a} ' RN , for any given unit
vector ν ∈ Rd, defined by

Ēβ,ε(u) =
ˆ
RN

εγ1 |∇u|2 + ε−γ2 |u|β.

The functionals Ēβ,ε Γ-converge as ε → 0+, in the weak-? topology of C′b, to cMα for
some non-trivial c, as shown in Section 5.3, and one may recover every α-mass in this way
for α ∈

(
2d−4
2d+1 , 1

]
, and in particular every so-called super-critical exponents for Branched

Transport in dimension d, that is α ∈ (1− 1/d, 1].
The same slicing method would allow to extend our Γ-convergence result stated in The-

orem 1.2 to functionals defined on vector measure

Eε(w) =
{´

Rd fε(x, ε
d−1|w|(x), εd|∇w|(x))ε1−d dx if w ∈W 1,1

loc (Rd,Rd),
+∞ otherwise,

(5.8)

for Lagrangians fε → f fitting the framework of Theorem 1.2. The expected Γ-limit, for
the weak topology of measures and their divergence measure, would be the functional MHf

1 ,
with Hf defined in (1.2). Note that this approach would provide approximations of H-
masses for more general continuous and concave cost functions H : R+ → R+ satisfying
H(0) = 0. By [Wir19], we would obtain all such H-masses when N = 1 (corresponding to
d = 2).

34



5.5 A Cahn-Hilliard model for droplets
Following the works [BDS96] in the one-dimensional case and [Dub98] in higher dimension,
we consider functionals onM+(RN ) of the form:

Wε(u) =


ˆ
RN

ε−ρ(W (u) + ε|∇u|2) if u ∈W 1,1
loc (RN ,R+),

+∞ otherwise,
(5.9)

where W : R+ → R+ is a Borel function satisfying W (t) ∼u→+∞ us for some exponent
s ∈ (−∞, 1). In [BDS96; Dub98], it is in particular proven, under some assumptions on
the slope of W at 0 and its regularity, that the family (Wε)ε>0 Γ-converges to a non-trivial
multiple of the α-mass, α = 1−s/2+s/N

1−s/2+1/N , when s ∈ (−2, 1) and ρ = ρ(s,N) := N(1−s)
(N+2)+N(1−s) .

In this section, we recover this Γ-convergence result using our general model.
Replacing ε with ε̄ := ε(N+2)+N(1−s) and noticing that 1− ρ = N+2

(N+2)+N(1−s) , one gets for
every u ∈W 1,1

loc (RN ,R+):

Wε̄(u) =
ˆ
RN

ε−N(1−s)W (u) + εN+2|∇u|2 =
ˆ
RN

(
[εNsW (ε−NεNu)] + |εN+1∇u|2

)
ε−N

=
ˆ
RN

fWε (x, εNu, εN+1∇u)ε−N ,

where fWε is defined for every x ∈ RN , u ∈ R+, ξ ∈ RN by

fWε (x, u, ξ) := Wε(u) + |ξ|2 and Wε(u) := εNsW (ε−Nu).

Therefore if we take fε = fWε in our general model (1.3) we exactly get Wε̄ = Eε. The fact
that W (u) ∼ us as u→ +∞ implies that Wε converges pointwise to the map ks : u 7→ us if
u > 0, ks(0) = 0, hence fWε converges to fs : (x, u, ξ) 7→ ks(u) + |ξ|2.

Theorem 5.1. Assume that W : R+ → R+ satisfies:

(HW1) W is lower semicontinuous,

(HW2) {W = 0} = {0},

(HW3) W (u) ∼u→+∞ us for some s ∈ (−∞, 1),

(HW4) sup
u>0

W (u)
us

< +∞,

(HW5) 0 < lim inf
u→0+

W (u)
u

.

Then (Wε)ε>0 Γ-converges to MHfs , for both topologies C′0 and C′b, and if s ∈ (−2, 1] then
MHfs is a nontrivial multiple of Mα where α = 1−s/2+s/N

1−s/2+1/N .

To prove this theorem, we start with a simple lemma.

Lemma 5.2. Assume that W satisfies (HW1)–(HW5). Then for every δ ∈ (0, 1), there
exists cδ ∈ (0,+∞) such that for every ε > 0 and every u ∈ R+,

δ(up ∧ cδε−N(1−s)u) ≤Wε(u). (5.10)
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Proof. Fix δ ∈ (0, 1). There exists M > 0 such that δus ≤W (u) for every u ≥M . Besides,
the map w : u 7→ W (u)/u is lower semicontinuous and positive on (0,M ] by (HW1) and
(HW2), and since lim infu→0w(u) > 0 by (HW5), w is necessarily bounded from below
on (0,M ] by some contant c > 0. As a consequence Wε(u) ≥ δus if u ≥ εNM and
Wε(u) ≥ cεN(s−1)u if u ≤ εNM , hence:

∀u ∈ R, Wε(u) ≥ δ(us ∧ cε−N(1−s)u).

Proof of Theorem 5.1. By (HW4), there exists a constant C such that fWε ≤ Cfs for every
ε, and since fWε does not depend on the x variable and converges pointwise to fs, (U) is
satisfied and our Γ− lim sup result stated in Proposition 4.2 yields

MHfs ≥ Γ(C′b)− lim sup
ε→0

Eε.

Fix δ ∈ (0, 1). By Lemma 5.2, there exists cδ such that

∀x, u, ξ, fWε (x, u, ξ) ≥ δ(|ξ|2 + (us ∧ cδε−N(1−s)u) =: f δε (x, u, ξ).

It is easy to check that f δε satisfies (H1), (H2) and (H5) for every ε > 0. Moreover f δε ↑ δfs
and (f δε )′−(·, 0+, 0) = δcδε

−N(1−s) ↑ +∞ = (δfs)′−(·, 0+, 0) as ε → 0, thus (H8) holds for
the family (f δε )ε>0, and by applying our Γ − lim inf result stated in Proposition 4.1 to the
energies Eδε induced by f δε we get:

Γ(C′0)− lim inf Eε ≥ Γ(C′0)− lim inf Eδε ≥MH−
δfs .

We get the result by taking the limit δ → 1, noticing that (fs)′−(·, 0+, 0) = +∞, so that
H−δfs = Hδfs = δHfs and MH−

δfs = MδHfs = δMHfs .

Remark 5.3. We recover the Γ-convergence results of [BDS96] and [Dub98] when s ∈ (−2, 1)
under slightly more general assumptions: besides (HW2) and (HW3), the authors impose
the existence of a nontrivial slope limu→0

W (u)
u ∈ (0,+∞) and a regularity condition (either

W is of class C1 or continuous and nondecreasing close to 0), which are stronger than
(HW1), (HW4) and (HW5). Let us stress however that these works also tackle the cases
s < −2 in any dimension, where the exponent ρ has to be fixed to ρ(−2, N), and the case
s = −2 in dimension one, where a logarithmic factor must be introduced, replacing ε−ρ with
ε−ρ(−2,1)|log ε|−1 = ε−1/2|log ε|−1. This implies that in our model we get a trivial Γ-limit
when s ≤ −2, namely Hfs ≡ +∞ on (0,+∞).
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