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Mass concentration in rescaled first order
integral functionals

Antonin Monteil* Paul Pegon!

January 7, 2022

We consider first order local minimization problems min [px f(u, Vu) under
a mass constraint [px u =m € R. We prove that the minimal energy function
H(m) is always concave on (—o0,0) and (0,+00), and that relevant rescalings
of the energy, depending on a small parameter ¢, I'-converge in the weak topol-
ogy of measures towards the H-mass, defined for atomic measures ), m;d,, as
> H(m;). We also consider space dependent Lagrangians f(z,u, Vu), which
cover the case of space dependent H-masses >, H(x;, m;), and also the case of
a family of Lagrangians (f.). converging as ¢ — 0. The I'-convergence result
holds under mild assumptions on f, and covers several situations including ho-
mogeneous H-masses in any dimension N > 2 for exponents above a critical
threshold, and all concave H-masses in dimension N = 1. Our result yields in
particular the concentration of Cahn-Hilliard fluids into droplets, and is related
to the approximation of branched transport by elliptic energies.
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Notation

B,(z) open ball of radius r centered at x;
B, open ball B,(0);
M(RY)  set of finite signed Borel measures on R
M (RY)  set of finite positive Borel measures on RY;
o4t Borel measure A — (A —z) if p € M(RY) and z € RY;
cpp  Borel measure 7_,(uL B) if B is the ball B,(z);
I, o, 1 weak convergence of measures, i.e. weak-x convergence in duality with
the space Co(R™) of continuous functions vanishing at infinity;
I, R 1 narrow convergence of measures, i.e. weak-x convergence in duality with
thhe space of continuous and bounded function Cy(R);
Y set of increasing maps o : N — N;

o1 X 09 01,09 € X are such that o1([n, +o0]) C 02(N) for some n € N.

1 Introduction

1.1 Setting

Let N € N* and let f : RV x R x RY — [0, +0c] be a Borel function. Consider the following
energy functional, defined for any fixed = € R" on the set of finite Borel measures M (R™)
on RY by
z,u(y), Vu dy ifuewh! RV),
ex(u) = | Jun f@,u(y), Vu(y)) dy loc (R™) 1)
+o00 otherwise.

The minimization of this energy energy under a mass constraint gives rise to the notion of
minimal cost function, defined by

Hj(z,m) = inf {5}6@) s ue Wbl n LYRY) such that /

u= m} €10, 400]. (1.2)
RN



Note that the minimization can be restricted to non-negative functions when m > 0 and
non-positive functions when m < 0, as explained in Remark 2.2.
As a preliminary result, which deserves interest on its own, we will establish the following:

Theorem 1.1. Let x € RY. The map m — H(z,m) is concave non-decreasing on (0, +00).
If we further assume that f(x,0,0) =0 then Hy(x,0) =0 and Hy(x,-) is either identically
+00 on (0,400) or continuous on [0, +00) ; it is in particular lower semicontinuous on R .
A similar statement holds on (—o0,0].

The proof is very simple and works with no further assumptions on f.

Our main purpose is to prove that under some conditions, if (f:)->0 is a family of functions
fo : RV xR x RN — [0, +00] converging pointwise to f as € — 0, then the rescaled energy
functionals &, defined for each & > 0 on M(RY) by

z,eNu(z), N IVu(z))e Nde ifue whH RN ,
ey = L = 0@, S vute) WEY

400 otherwise,

I-converge as ¢ — 0, for the narrow or weak convergence of measures, to the Hy-mass,
defined on M(RY) by (see Definition 2.3):

MHf(u) = /RN Hf(x,u({a:}))dHO(x) + /RN H}(x,OJr)dui(a:) + . H}(x,O*)duei(a;).

where © = u® + u? is the decomposition of u into its atomic part u® and its diffuse part

u?, and u? = ui — u? is the decomposition of u? into positive and negative parts, and

H}(x,Oi) = lim,, o+ Hf‘(nml"m) € [0, 4+00].

This kind of singular limit in integral functionals is reminiscent of several variational mod-
els with physical relevance which have been the object of intensive mathematical analysis,
such as Cahn-Hilliard fluids with concentration on droplets [ | or on singular inter-
faces [ |, toy models for micromagnetism and liquid crystals like Aviles-Giga | ]
and Landau-de Gennes | |, or Ginzburg-Landau theory of supraconductivity [ ]

The fact that M/ is expected to be the I-limit of &, is due to the following observation:
if B,(20) C RN and wu(z) == e Nv.(e 7 (z — x0)), then fBr(xO) U = fBr/E ve and

/ o fa(a:,ENug(x),ENHVug(x))E*N dz = fe(zo + ey, ve(y), Vue(y)) dy,
B, o B'r/s

so that the energy contribution of a mass m > 0 contained in a ball B, (zg) should be of the
order of H¢(xg, m), where r is arbitrary.

Nevertheless, it is not true in general that M*s is the I-limit of the functionals & (see
Section 1.3 below). We will need a couple of assumptions on f and f. detailed in the next
section.

1.2 Assumptions and main result

Our first two assumptions are rather standard and guarantee the sequential lower semicon-
tinuity of the functionals £¥%,



(Hy) f:RY xR xRY — [0, +00] is lower semicontinuous,

(Ha) f(z,u,-) is convex for every x € RY u € R.

In order for vanishing parts to have no energetic contribution, we will impose
(Hs) f(x,0,0) =0 for every z € RV,

We also need continuity in the spatial variable,
(Hy) f(-,u,€) is continuous for every u € Ry, & € RV,

Next, we need a compactness assumption which ensures relative compactness in the weak
topology of WI})’(’;(RN ) for sequences of bounded energy €¥ and bounded mass; it will also
be needed in obtaining lower bounds for the energy (see Proposition 3.8):

(Hs) there exist a, 8 € (0,+00), p € (1,+00) such that for all (z,u,&) € RY x Ry x RY,
f('rvuag) > a|£|p - BU

We also impose a condition on the slope of f(z,-,€) at the origin which will be needed
in order to identify the initial slope of Hy(x,-) (see Section 2.3), and rules out some non-
trivial scale invariant Lagrangians for which the expected I'-convergence result fails (see
Section 1.3),

(Hg) for every mg € RV,

fL(:UO,O:tg 0) — lim inf f(‘/l"v U,é) > limsup sup f(x07u7p(|u|)€)
(2u.)=(20,0£,0)  |ul w0t |¢[<1 |ul

LA

with p =0 if N =1 and for some p € C((0, 1], (0, +00)) satisfying
—) dy<+4oo if N >2.
/0 (/y p(t))

Since our aim is not to care much about the dependence on z, we shall impose a spatial
quasi-homogeneity condition:

(H7) there exists C' < 400 such that for every 2,y € RV, u € R, £ € RV,
fly,uw, &) < C(f(z,u,§) +u).

Last of all, we need the family of functions f. : RY x R x RY — [0, +00] to converge
towards f in a suitable sense, namely, we assume

(Hg) f-71 fand fé,,(-,Oi,O) + f.(-,0%,0) as € — 0.

Notice that this assumption is empty if f. does not depend on €.
Our main result is the following:

Theorem 1.2. If (f.)c>0 satisfies (Hg) with each f. satisfying (H;)-(Hs) and the limit f
satisfying (Hg)-(Hy), then M5 is the T'-limit as € — 0 of the functionals &., defined in
(1.3), for both the weak convergence and the narrow convergence of measures.

In particular, as a I'-limit, the functional M*f must be lower semicontinuous for the weak
convergence of measures (and so for the narrow convergence as well). This implies that H
is lower semicontinuous on RY x R (see Proposition 2.5).

We point out that for the I' — limsup, we need weaker assumptions on f. and f (see
Proposition 4.2), which will be useful for some applications (see Section 5.5).



1.3 Examples, counterexamples and applications

We start with two counterexamples, justifying the importance of (Hg) and (Hs), and we then
provide several examples satisfying our assumptions. Decomposing measures into positive
and negative parts, allows us to restrict our attention to positive measures, which we will do
in all our examples. This can be thought as taking Lagrangians such that f(z,u,&) = 400
when u < 0.

Scale invariant Lagrangians. In the particular case where f. = f and f(x,u,§) =
1
wPU759) ¢ with p € (1, N) and p* = 2| we find that

= ¥
1
E(u) = flx,eNu, eV vu)e™N :/ u_p(l_F)\Vu]p = Ep(u),
RN RN
i.e. the rescaled energies £ do not depend on € > 0. A scaling analysis also shows that
D
the associated cost function satisfies H;(m) = m!'~~ Hy(1). Moreover, it can be seen

that 0 < Hy(1) < +o0, which implies that the I'-limit of £, which is nothing but the lower
semicontinuous relaxation of ¢, does not coincide with My, . Considering the perturabation
of f given by f(x,u, &) = f(z,u, £)+|€P, we find a Lagrangian satisfying all our assumptions
except (Hg) (note that |£|P is needed in (Hs)), and such that the associated rescaled energies
do not I'-converge to M Hj (see Section 5.1). Hence, an assumption like (Hg) is required in
our I'-convergence result. We will even see that the lower semicontinuity of Hy and My,
is not guaranteed without (Hg).

Lagrangians giving energy to vanishing functions. By assumption (H3) no energy
is given to any part where a function u vanishes. It is a necessary condition for M/ to
be lower semicontinuous (a necessary condition to be a I'-limit) and not identically +oo.
Indeed if M7 is lower semicontinuous and finite for some measure v € M(R™) then thanks
to Theorem 2.1 we know that M7 (tu) < M7 (u) for every t € (0,1) and thus M*s(0) <
lim inf,_,o+ M7 (tu) < M7 (u) < +o0o. Thus M is not identically +oo if and only if
MH5(0) < +o0, i.e. [on Hy(2,0)dH (z) < +oo. But since Hy(z,0) = (+00) x f(z,0,0)
this can only happen if f(-,0,0) = 0. This justifies imposing (Hj).

Concave H-masses in dimension one. Consider the energy
Er(u) = / |Vul|? + c(u) with Lagrangian  f(x, u, &) = |€]? + c(u).
RN

In dimension N = 1, it is shown in [ | that for any concave continuous function H
with H(0) = 0, there exists a suitable ¢ > 0 such that H; = H. As explained in Section 5.2,
Theorem 1.2 implies that the rescaled energies

E(u) = f(eNu, NIV = / N2 Vu? + e Ne(eNu). (1.5)

RN RN
I'-converge to M| leading to an elliptic approximation of any concave H-mass in dimension
one. In dimension N > 2, we will show that H; must be concave on (0,+400), and strictly
concave after the possible initial interval where it is linear (see Proposition 2.8) ; however, we
have no solution to the inverse problem, consisting in characterizing the class of attainable
cost functions H = Hy for Lagrangians f satisfying our assumptions.



Homogeneous H-masses in any dimension. We consider the functional

&) = [ T = [ [VaPrut p>1ose (400 (1.6)
RN RN
Then, the rescaled energies

&) = [ HENu IV /R VN 4 Ny

I'-converge to a non-trivial multiple of some a-mass M® := M“?" where the exponent
a=Q1-2+5)010-3+ +)7! ranges over (1 — NLH, 1] when (s, p) varies in its range and

N > 2. More cases, with details, are given in Section 5.3.

Cahn-Hilliard approximations of droplets models. Following the works of | ;
|, we consider the functionals

W (1) = /RN P (W () + £ Vul?), (1.7)

where W (t) ~i 400 t° for some exponent s € (—2,1). As shown in Section 5.5, we way
rewrite these functionals to fit our general framework, and recover known I'-convergence
results, under slightly more general assumptions, as stated in Theorem 5.1. The I'-limit is
a nontrivial multiple of the a-mass with o = %

Elliptic approximations of Branched Transport. The energy of Branched Transport
(see | | for an account of the theory), in its Eulerian formulation, is an H-mass defined
this time on vector measures w whose divergence is also a measure,

Hw:: i x 1(13 /.’B+ 'LUJ_ .
MY (w) = [ 0@)ar' @)+ [ @0 dut, (1)

where w = ¢ - H'LY 4+ wt is the decomposition of w into its 1-rectifiable and 1-diffuse
parts (see Section 5.4 for more details). An elliptic approximation of Modica-Mortola type
has been introduced in [ | for H(m) = m®,a € (0, 1), and their I'-convergence result in
dimension d = 2 has been extended to any dimension in | | by a slicing method which
relates the energy of w to the energy of its slicings. The same slicing method, together with
Theorem 1.2, would allow to prove the I'-convergence of the functionals

Jra fe(z, e Hw|(x), 4| Vw|(z))e! =4 dz  if w € WI})’CI(Rd,Rd),

gs(w) = { (1'9)

400 otherwise,

toward Mlqu for Lagrangians f. — f satisfying (H;)—(Hg), thus covering a wide range of
concave H-masses.



1.4 Structure of the paper

In Section 2, we prove the concavity of the cost function Hy with respect to the mass variable
m in full generality (Theorem 2.1), we establish useful properties of general H-masses, and
we identify the slope at the origin of Hy in terms of f under our assumption (Proposition 2.6
and Proposition 2.7). In Section 3, we apply a concentration-compactness principle to
provide a profile decomposition theorem for sequences of positive measures (Theorem 3.2),
which is used to obtain our main lower bound for the energy &; (Proposition 3.10) and
also yields an existence criterion for profiles with minimal energy under a mass constraint
(Proposition 3.12). Section 4 is dedicated to proving lower and upper bounds on the rescaled
energies & (Proposition 4.1 and Proposition 4.2) that imply in particular our main T'-
convergence result (Theorem 1.2). Last of all, in Section 5, we provide several examples of
energy functionals that fall into our framework, as summarized in the previous section.

2 Minimal cost function and H-mass

In this section, we study the properties of general H-masses, of costs Hy associated with
general Lagrangians f, and we relate the slope of Hy at m = 0 to that of f at (u,£) = (0,0)
in the variable u, under particular conditions.

2.1 Concavity and lower semicontinuity of the cost function
Our concavity result stated in Theorem 1.1 is a consequence of:

Theorem 2.1. Let f: R, x RN — [0, +00] be Borel measurable and for every m € Ry,

H¢(m) = inf {Ef(u) = /RN fu,Vu) : ue VVI})’CI(RN,RJF), /RNU = m} (2.1)

Then Hy is either identically +00 on (0,400), or it is continuous, concave, non-decreasing
on (0,400) with lim,, o+ H¢(m) = 0.

The fact that Theorem 2.1 implies Theorem 1.1 is due to the following remark.

Remark 2.2. The minimization in (1.2) can be restricted to non-negative (resp. non-positive)
functions when m > 0 (resp. m < 0). For instance fix z € RY, m > 0, and take u € I/Vlicl N
LY(RY) such that [pnvu =m. If u =uy — u_ is the decomposition of u € T/Vlicl N LY(RY)
into positive and negative parts, then £f(u) = & (uy) + E(u-), with g(u,§) = f(z,u,§)
and g(u,§) = f(x, —u, =) for (u,§) # (0,0), §(0,0) = 0. In particular £f(u) > Hy(my) +
Hg(m_) where my+ = [pnus+. Since Hy is non-decreasing on (0,+o0c) and Hjy is non-
negative, we have thus £f(u) > Hy(m) since my > m. A similar reasoning holds for
non-positive functions when m < 0.

Note that, considering Lagrangians f taking infinite values, Theorem 2.1 covers the case
where we have a constraint (u, Vu) € A, where A C R x RY is Borel measurable.

Proof. We first prove that Hy is concave on (0,400). Let m > 0 and u € VVli)C1 (RN, R,)
such that f]RN u = m. We pick a non-zero vector v € RN and for every t € R, we set

u'(-) = u(- + tv) and

uAu'() =inf{u(),w'()},  wVvu'()=sup{u(),u' ()}



We have u A ul +u VvV ut = u+ ut. Hence

/u/\ut—l—/ u\/ut—2/ u=2m. (2.2)
RN RN RN

Moreover, it is standard that u A u! = u — (u' —u)_ € I/Vlloc1 (RN) with V(u Aul) = Vu
a.e. in {u <u'} and V(u Aul) = Vul ae. in {u > u}. Since uVul = u+ul —uAul, we
have similar identities for u V u!, and we obtain

Ef(unul) +Ep(uvul) = Ep(u) + Ep(uh) = 2E5(u). (2.3)
Now, let M : t — fRN uAul. In view of (2.2), (2.3), and by definition of H, we have proved
Hy(M($)) + Hp(2m — M(2)) < 265(u) (2.4)

Now, by continuity of translations in L' and since the map (x,y) + x A y is Lipschitz on
R?, we have that M is continuous on R with M (0) = m. Moreover lim; ., M(t) = 0 by
dominated convergence. So, by the intermediate value theorem M (R) D (0, m]. Hence, we
have proved H¢(0) + Hp(2m — 0) < 2E¢(u) for every 6 € (0, m]. Taking the infimum over u
such that [pn u = m, we obtain

H¢(0)+ Hi(2m —0)

< Hg¢(m), VO € (0,m],

2
that is, H is midpoint concave on (0, +00). Since H; is also bounded below (by 0), we can
deduce that Hy is concave (0,400) (see | , Section 72]).

We now justify that if Hy(m) < +oo for some m > 0, then lim,, ,o+ Hy(m) = 0. By
concavity, this will imply that Hy is finite, continuous and non-decreasing on (0, +00). Let
u € Wli’cl(RN,]RJr) such that [px u=m >0 and £¢(u) < 400, and set

ty =sup{t >0 : M(t) >0} € [0,+00], where M(t) :/ u Al
RN
Since M is continuous with M (0) = fRN u > 0 and limy_, 1o M(t) = 0 as seen above, we

have that ¢, € (0, +o00], lim;—;, M () = 0 and M (¢) does not vanish near t,. Moreover, if
t, = 400, since u’ — 0 locally in measure, by dominated convergence,

limsup Hy(m) < limsup &;(u A u') = lim sup/ f(u, Vu) + / f(u, Vu) = 0.
{u<ut}

m—0t+ t—4o00 t—+o00 {u=t>u}

If t, < +00, we have uAu'* = 0 a.e. and u* — u'* locally in measure as t — t, by continuity
of translation in L'. Thus using dominated convergence again,

limsup Hf(m) < limsup &f(u A u') = lim sup/ f(u, Vu) + / f(u, Vu)
{u<ut}

m—0+ t— ()~ t— ()~ {u—t>u}

= / f(u, Vu) +/ f(u, Vu).
{u<ut*} {u=t*>u}

Besides,

+oo>/ f(u,Vu)—i—/ f(u,Vu):Sf(u/\ut*):f(0,0) X (+00),
{u<ut+} {u=t*>u}

which implies that f(0,0) =0 = Hf(0) and limsup,,, g+ Hs(m) = 0. O



2.2 H-transform and H-mass

Definition 2.3. Let H : RN xR — [0, +-00] be a Borel measurable function having left /right
slopes at the origin defined for each z € RN by

H(2,0%) = lim 2&™)

m—0*t ]m\

€ [0, 4+00]. (2.5)

We define the H-transform of a finite signed Borel measure u € M(RY) as:
H(u) = H(,u({-})) H+H'(,0 )uf + H'(-,07)ul,

where v = u® 4 u? is the decomposition of u into its atomic part u® and its diffuse (or non-
atomic) part ud, ud = ui — u? is the Hahn decomposition of u¢ into positive and negative
parts.

The H-mass of u is then defined as the total variation of H(u), that is:

MH (u) = H(z,u({z})) dHO(z) + / H'(z,0™) dui(:c) + H'(z,07) dud (z).
RN RN RN

M (u) is a natural spatially non-homogeneous extension (depending on the position x)
of the H-mass of k-dimensional flat currents' from Geometric Measure Theory, introduced

by [ | (see also the more recent works | ; D).
From | ], we have the following result®:
Proposition 2.4 (] 1). Assume that H : RN x R — [0, +o0] is lower semicontinuous

and that for each x € RN, H(x,0) = 0 and the map m +— H(z,m) is concave on (0, +00) and
(—00,0). Then M is sequentially lower semicontinuous on M(RY) for the weak topology.

From another work from the same authors | , Theorem 3.2], we know that under some
further assumptions on H, M is the relaxation for the weak topology of the functional

H
Matom .
+00 otherwise.

() = { le H(z;ym;) ifu= Zle m;d,, with k € N*, ; € RN m; € R,

We need a slightly different result®, namely that for any function H : RV x R — [0, +o0]
satisfying all the assumptions of Proposition 2.4 exept the lower semicontinuity, the re-
laxation of M for the narrow sequential convergence is M*ise, where Hg. is the lower
semicontinuous envelope of H, which can be expressed as

Hyge(z,m) = sup{G(x,m) : G < H with G lower semicontinuous.}. (2.6)

It is straightforward to check that if H(z,0) = 0 and H(z,-) is concave on (—o0,0) and
(0, +00), then these properties hold also for Hi.

Tn the case k = 0, since signed measures are merely O-currents with finite mass.

2In the notations of this paper, we take = 0 and f(z, s) = |s|?; we have ¢, ,(z,0) = 0 and ¢y ,(z, s) = +00
if s #0.

3In | , Theorem 3.2], H is assumed to be lower semicontinuous and the authors make a further coercivity
assumption (assumption (3.5) in the paper) that we want to avoid.



Proposition 2.5. Let H : RY xR — [0, +00] be a function such that for each x € RN,
H(z,0) = 0 and the map m +— H(xz,m) is concave on (0,4+00) and (—00,0). Then, the
sequentially lower semicontinuous envelope of M in the narrow topology of M(RY) is
given by MHise namely we have:

atom

atom

M e = sup{F F <MI  F sequentially narrowly l.s.c. on M(RN)}. (2.7)

We point out that for a general H, for M to be sequentially lower semicontinuous (for
the narrow topology) it is necessary that H is Isc on RY x (0, +o00). However, neither the
subadditivity of H in m nor its lower semicontinuity on RY x R, are necessary. Indeed,
M is sequentially lower semicontinuous if for instance H(z,m) = +o0o when x # 0,m > 0,
H(x,0) =0 when x # 0 and H (0, -) is any lower semicontinuous function. Nevertheless the
mass-subadditivity and lower semicontinuity would be necessary if H did not depend on z.

Proof of Proposition 2.5. Since Hig is lower semicontinuous and mass-subadditive, we know
from Proposition 2.4 that Msc is sequentially lower semicontinuous in the weak topology
hence also in the narrow topology of M(RY). Since Mse < M “we deduce that M
is lower or equal than the right hand side in (2.7).

In order to prove the opposite inequality, we take F' : M(RY) — R the sequentially lower
semicontinuous envelope of M in the narrow topology. We shall see that F' < M,

We first prove that F < M2k = For this, we let u = Sk mib,, be a finitely atomic
positive measure and we let u, = Y%, M0z, ,, Where for each i € {1,...,k}, (Tin)nen
is a sequence of points converging to x; and m;, is a sequence of non-negative numbers
converging to m; such that His(x;, m;) = limy, 00 H(zipn, mip). Then (u,)nen converges
narrowly to u and, by lower semicontinuity,

k k
F(u) < hm mf F(u,) < hm mf ME  (u,) = nh_)ngozle(xm,mm) = ;Hlsc(a:i,mi),
— P
so that F(u) < M (1) as wanted.

We now prove that F < Mic, Let u € M(RY), let u = u® + u be the decomposition
of u into its atomic part u® = S , m;d,,, with k € NU {400} (here, k = 0 if there is no
atom), and its diffuse part u?, and let u® = ui —u? be the decomposition of u? into positive
and negative parts. We then discretize ul by taking n € N*, a partition (Q?)ie{lww(nQn)N}
of [-n,n)N by means of cubes of the form Q7 = ¢ +27"[—1,1)" with ¢! € RY, and we

define
nAk (n2" (77,2” ) N

Un ._Zmlészr Z u (QF)6zn + Z L(Q1dyr,

where for each i € {1,...,(n2")N}, 27, y? € QP are some points such that
Hi (2',07) = inf Hy'(2,07), Hyg/(y!,07) = mf Hlsc (x,07). (2.8)
er r€EQ

Such points exist since Q' is compact and since by concavity,

H;
Hlsc,(-ra Oi) = Sup ISC(:U, m)

, 2.9
ST (29)
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so that H]_(-,0F) are lower semicontinuous as suprema of lower semicontinuous functions.

The sequence (up)pen converges narrowly to u. We deduce using in turn the lower
semicontinuity of the functional F', the inequality F(u) < Milgcm( ), the subadditivity of
Hie(z,-), (2.9), (2.8), and the monotone convergence, that

nAk (n2m)N (n2m)N
()<I%£fZHBC i, m;) + Z; Hye(}, uf (QF)) + Z; Hye(yf', u (Q7)),

nAk (n2m)N (n2m)N

<hnH_1>£fZHlsc zi,m;) + ; Hy' (=7}, 07)ul (QF) + ; Hy' (g7, 07 )ud (QF)
nAk (n2m)N

<hnn_1>£fZHlsc iy my;) + Z / Hy (z,0" )du++ o Hlsc'(x,O_)dui

= ;Hlsc(a:i,mi) +/]RN HlSC/(a:,Oﬂduff_ —I—/}RN H]SC/(CC,Oi)d’U,Ci

= MHse (). O

2.3 Slope at the origin of the minimal cost function

Proposition 2.6. Let f : Ry x RN — [0,400] be a lower semicontinuous function such
that £(0,0) =0, with N > 2. For every function p € C((0,1],(0,400)) such that

Al(/yl[j;)Ndy<+oo, (2.10)

the function Hy defined in (2.1) satisfies

H
lim G <limsup sup M (2.11)
m—0t M u—0t geSN-1 u

Proof. For every y > 0, we let

1
F(y):/ o € 10+ocl.

The function F is decreasing, and belongs to C*((0,1]) and L™ ((0,1]) by assumption. We
now consider the solution of the ODE v, = —p(v.), with v-(0) = ¢, given by

(r) = F~YF(e) +r), if0<r< F(0)— F(e),
0 it 7 > F(0) — F(e).

Notice that v, € I/Vli)cl (R4 ) because it is nonincreasing and bounded, hence it has finite total
variation, and it is of class C! except possibly at r. == F(0) — F(e), where 1t has no jump.
As a consequence the radial profile defined by u.(z) := v:(|z|) belongs to Wloc (RY) and we

11



compute, using the change of variables s = v.(r) (i.e. 7 = F(s) — F(¢)) and an integration
by parts combined with monotone convergence.

0
€ s N s) — NT¢
i [ O ds_[JF()NF(g)) D
a1y [T (F(s) = F(e)N
_|SN 1‘ 0 N ds e—0 0

The equality on the last line holds because lim; o+ [; (F — F(¢))N < +oo (since F €
LY ((0,1])), hence limy o t(F(t) — F(¢))" exists by existence of the limit in the previous
line, and it must be zero (again, because F' € LY ((0,1])).

Moreover, since supjg 4o V= = €,

s = [ [ 5o e @ s me s T2
0 Jsh u<e,lg=1 U
By assumption, we deduce that
H
timsup 0 < timsup £ < timsup sup L0220 -
m—o0t+ M e—0t M u—0+ £eSN-1 U

In dimension N = 1, we need no other assumption than H < +o00, as stated below.

Proposition 2.7. Let f : Ry xR — [0, 4+00] be Borel measurable. The function Hy defined
by (2.1) (with N = 1) is either identically infinite on (0,+00), or it satisfies (2.11) with
p=0.

Proof. One can assume that there exists u € W/li’cl(]R,]RJr) with 0 < [pu < +oo and
E(u) < 400. In particular, up to changing the value of u on a negligible set, u is continuous
on R. Let € € (0,supg u), set Az :== {x : u(x) = €} which is non-empty by the intermediate
value theorem and integrability of u, and define
inf A, if inf A; > —o0,
A =
: any point in (—oo, —e 1) N A,  otherwise,
sup A, if sup A. < +0o0,
be = .. _1 .
any point in (¢7,400) N A:  otherwise.
By continuity and integrability of u, u(a:) = u(b:) = ¢ and u < € on R\ [a., bs]. Moreover

ag,be converge to points —oco < a < b < +o00, hence u = 0 on R\ (a,b) and by dominated
convergence, since Vu = 0 a.e. on {u = 0},

+oo > lim u+ f(u, Vu) = f(0,0) L(R\ (a,b)).
e—0t R\ [ac,be]
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Notice that this limit is necessary zero. Let m > 0. If € is small enough, then fR\[aE by U <M
so that we can take R. > 0 such that eR. = m — fR\[aa b U- We then define

u(x) if z < a,
ue(z) =<¢e if a, <z < ae + Re,
u(be + x — (ac + Re)) if x> ac + Re,

so that [ ve = m. Moreover,

g(ve) = S(U>R\ [a€7 be]) + Rsf(€7 O)'

m+o(1)

Hence, as R, = as € — 0,

Hf(m) = lim Supg(vs) = mlim sup M

e—0t e—0t €

2.4 Strict concavity of the cost function in dimension N > 2

We show that in dimension N > 2, the cost function must be strictly concave away from
the possible initial interval where it is linear:

Proposition 2.8. Assume that N > 2 and that f : RN x R x RN — [0, +-00] satisfies (H;),
(Hs), (Hs) and (Hg). Let

my =sup{m >0 : Hg(xo,-) is linear on [0,m]},

where zg € RN is fized. Then, Hy(wo,-) is strictly concave on (ms,+00). A similar state-
ment holds on R_.

A similar result does not hold in dimension 1 since any continuous concave function
H :Ry — Ry with H(0) = 0 can be written as H = Hy with f satisfying all our assumptions
(H;)—(Hg) (see Section 5.2).

In the rest of this section, we will systematically ommit the dependence on xg of H (2o, m)
since x is fixed.

We denote by M/, the set of minimizers of mass m € R :

M= {u € VVli)’Cl(RN,RQ : Ef(u) = Hy(m) and u= m}. (2.12)

RN
The proof of Proposition 2.8 is based on the following observation:

Lemma 2.9. Let f : Ry x RN — [0,+00] be Borel measurable and let u; € M, with
m; € Ry fori = 1,2. Let also uy := min{uj,us}, u* := max{uj,us}, my := fRN Us and
m* = [pn u*. If Hy is affine on [my, m*] then u, € M{, and u* € ./\/lfn*.

Proof of Lemma 2.9. We use the same observations as in the proof of Theorem 2.1. In
particular, we have m, + m* = my + my; since Hy is affine on [m., m*], it yields

Hy(my) + Hp(m") = Hy(mq) + Hy(ma).
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But we have also
Hy(my) + Hp(m*) < Ep(uy) + Ep(u*) = Ep(wr) + Ep(ug) = Hy(ma) + Hy(ma),

so that the inequalities we used, i.e. Hy(m.) < Ef(ux) and Hy(m*) < Ef(u*), are actually
equalities. O

We also use an elementary Sobolev type inequality:

Lemma 2.10. Let N > 2, p € (1,400) and w C RN be a bounded open set. For every
u€ Wil (R x w),

=1 Ou
/w||u(-,x’)]Loo(R) dz’ < lull prruw) + lw| 7 HaileLp(]Rxw)'

Proof of Lemma 2.10. We prove the lemma when u € C'(R x w); the general case follows
by approximation. For every x1,y; € R, 2/ € w, we have
1 0u

no_ / o ’
u(zy, ') = u(yr, ') + . 8x1(t’x)dt'

By averaging in the variable y;, we deduce

z1+1 1+ 9
(1, 2)] < lu(y, o) dyr + |t 2| dt.
oy — L 1 8.1?1

1—3 T1—35
The result follows from Holder inequality after integrating over w. O

Proof of Proposition 2.5. Assume by contradiction that the concave function Hy is not
strictly concave on (m,,+00) which means that there exists m € (m,+o0) and > 0
such that Hy is affine on [m —n,m + n]. (Note that n < m — m, by definition of m,.)
Moreover, we will see in Proposition 3.12 that ./\/l£l is not empty. We let u € ./\/lgl
As before, we shall use the notations A and V for the minimum and maximum; we also

let (e1,...,ex) be the canonic basis of RY. Since the translation operator u + u(- + 7)
is continuous in L'(RY) (for every 7 € R¥), since the map (z,y) — x Ay is Lipschitz on
RY x R¥, and since the set M, +2 is compact in L' up to translations in view of the proof
of Proposition 3.12, we deduce that there exists 7y > 0 such that

|[u Au(- + Te2)|[L1@ny >m forall 7 € (0,70) and u € M{n+g. (2.13)
We now construct by induction a sequence (t,)nen in Ry and a sequence (up)ney in M,
such that

tnp1 > tn +710 and  un(z) < U(z) AU(x 4 they) Vz e RY, (2.14)

where we have set
U(x) := esssupu(z + tey).
teR
To this aim, we first set ug := u and tg = 0. Then, if we assume that ¢,, and u,, are con-
structed as before, we first pick an 7.} € R, such that vy, := u,Vu,(-+7}e1) satisfies Jpn vn =
m + &, which is possible since 77 < m, as we argued in the proof of Theorem 2.1. Similarly,
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we pick a 72 € Ry such that w41 1= vy, A v, (- + T2e2) satisfies Jgn tng1 = m, and we set
tny1 = tp + 72. By Lemma 2.9, v, € an_irﬁ and u, € M7 . By (2.13), we have 72 > 79,
2

thus insuring the first condition in (2.14). For the second condition, we observe that for all
r=(r1,2') € RV,

Upt1(x) < sulg Un (7 + ter) A un(x +teg + 72e0) < U(x) AU (x + thyies),
te
where in the last inequality we have used the induction hypothesis (2.14).
We now show that the sequence (u,L"),cn is vanishing which will contradict the com-
pactness of /\/l,f; in L' up to translations.
For this, we let (21 )ren be a sequence in R and (un,, )ken be a subsequence of (uy,)nen
such that

lim sup sup / Uy = lim Upy, -
n—00 RN Jz+[0,1)N k=00 Jz 4[0,1)N

By (Hs), we have g—ﬁ € LP(RY). Using this fact, the estimate (2.14), and Lemma 2.10
with w a unit cube in RY~!, we obtain

U

lim Up,, < liminf UN /
k=00 Jg 4+[0,1)N k—=oo [y, +0,1)N ThHtn, e2+[0,1)N

u
8901

LP({O<(mxk>-e2<1})>
ou
ox1

< ﬁkng};}f(||u||L1({os<m—xk>-e2g1}> +

N h’gggf (‘uHLl({tnkS(Jz—:ck)~62§tnk+1}) +

LP({tnkS(m—xk).eggtnk—&-l})) ’
and the conclusion follows since the sequences (xy - €2)ken and (tn, + 2 - €2))ken cannot be
both bounded as limy_;o t, = 00. O

3 Lower bound for the energy and existence of optimal profiles

Our main tool to localize the energy and obtain a lower bound relies on a profile decompo-
sition for bounded sequences of positive measures, which is reminiscent of the concentration
compactness principle of P.-L. Lions. This differs from classical strategies to localize the en-
ergy which are based on suitable cut-offs. Naturally, this concentration compactness result
also provides a criterion for the existence of optimal profiles in (1.2).

3.1 Profile decomposition by concentration compactness

We prove a profile decomposition theorem for bounded sequences of positive measures over
RN which is essentially equivalent to [ , Theorem 1.5] in the Euclidean case. We
have added an extra information on mass conservation that will be useful, and provide a
self-contained simple proof. We start with a definition.

Definition 3.1. A sequence of positive measures (fi,)nen € M4 (RY) is vanishing if

sup pn(Bi(x)) —— 0.
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Any bounded sequence of positive measures over RY may be decomposed (up to subse-
quence) into a countable collection of narrowly converging “bubbles” and a vanishing part,
accounting for the total mass of the sequence, as stated in the following theorem.

Theorem 3.2. For every bounded sequence (i, )nen of positive Borel measures on RY, there
exists a subsequence (n)neo(vy, 0 € ¥, a non-decreasing sequence of integers (kn)peq(n) con-
verging to some k € NU {400}, a sequence of non-trivial positive Borel measures (p*)o<i<k,
and for every n € o(N), a collection of balls (B! )o<i<k, centered at points of supp pn such
that, writing for all n € o(N),

fin = pib, + i, where pb, = > LB}, (3.1)
0<i<kn

c .
(A) bubbles emerge: (cpi fin)neo () + pt for every i < k%
n n—oo

(B) bubbles split: ming<;<j<r,, dist(B%, Bl) — >+,
(C) bubbles diverge: ming<;<y, diam(BY) — > +oo,
(D) the bubbling mass is conserved: ||ul|| v So<ickllit]l,

(E) the remaining part is vanishing: supgepn py(B1(x)) — 0.

Before proving Theorem 3.2, we introduce the “bubbling” function of a sequence of finite
signed measures (fin)nen:

C/
(i nen) = sup Ll = (7 Ho(e)en =2 1, 0 €5, 70 ERY (W)} (32)

Although we will use this function on signed measures, we will start from a sequence of
positive measures and use the following characterization of vanishing sequences, which holds
only in the case of positive measures:

Lemma 3.3. A sequence (pn)nen of finite positive measures is vanishing if and only if
m((kn)nen) = 0.

Cl
Proof. Assume that (pn)nen is vanishing and that (7_s, , Ho(r))ren —% 4 for some 0 € X
and some sequence of points (7, () )een. Then, for every x € RN,

w(Bi(x)) < llgnl)g}f T—2,0) Mo (l) (Bi(z)) = llgﬂ_l)lolgf Ho(0) (Bi(z + xo’(@))) =0,

i.e. =0 and thus m((ue)een) = 0.
Conversely, if (iy,)nen is not vanishing, then there exists € > 0, o € X a sequence of points
(Zn)neo@) in RY such that p,(Bi(zyn)) > € for every n € o(N). Up to further extraction,

C/
one can assume that (7_g_, fig(e))een = e M(RY). We have

p#(B1(0)) > lmsup 7y, fig(e) (B1(0)) = Hmsup (0 (B1(24())) = € > 0,

f—00 {— 00

which entails m((ue)een) > € > 0. O
*Recall that cpp = (x — x — y)y(uL B) if B = B,(y) and u € M(RY).
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Proof of Theorem 3.2. If (fin)nen is vanishing, then we take o = Id and k& = 0, so that
Po(ry = He = py, (A) to (D) are empty statements and (E) is satisfied since (in)nen is
vanishing. Assume on the contrary that (u,)nen is not vanishing. We shall construct the
bubbles by induction and prove their properties in several steps.

Step 1: construction of bubbles centers. At first step (step 0), since m((pn)nen) > 0, there
exists o9 € ¥ and a sequence of points (#9),eq,(n), Such that

cl . 1
(r—apindncoo(y 2 10 € MBY) with (|2 = Sm((an)ner)- (3:3)

We then set 0 := p, — 7,0 u° and we continue by induction, starting from the sequence
(u%)nEUO(N). More precisely? assume that for a fixed step k — 1 € N, for every ¢ € N with
0 < i < k—1, we have built z' € M(RY), 0; € %, points (z,)ne0, v and sequences
() neos () € M(RY) such that for every i,

oi S 051, (3.4)
fhy = pn— Y i, (Vn€oi(N)),
0<j<i
i—1 Co. i
(T—z%:un )nEcri(N) — U, (36)
i 1 i
HM H > im«Mn)nEai(N)) >0, (37)

where 01 = Id, (u;!) = (n). If m((uﬁ_l)n@kil(N)) = 0, we stop; otherwise, we pro-
ceed to the next step k to build oy, ¥, (wﬁ)nEUk(N), (k) as we did at step k = 0, start-
ing with (Mﬁil)nEU;@_l(N)' Either the induction stops at some step k — 1 € N for which

m((:u'fl_l)nEUk,l(N)) = 0 or the previous objects are defined for every i € N, in which case
we let k = +o0.

Step 2: splitting of bubbles centers. We prove that

lim  dist(z’,2)) = 400 for every i,j € Nwith 0 <j <i<k. (3.8)
0i(N)>n—o0
Indeed, assume by contradiction that there is a first index 7 < k such that for some jy < 1,
(dist(2,, 20°)) neq; () is not divergent. In particular, there exists o < o; such that (], —
L) o) — T € RY. Moreover, (dist(x%,xib))negim) — oo, for every j < i, j # Jjo
by minimality of ¢ and the triangle inequality dist(x7,27°) < dist(z?,z%) + dist(z},, 270).
Notice by (3.5) that for every n € o(N),
P b= T =T = Y T
Jo<j<i
hence taking the translation 7_ ,

- - . ,
Toabn = Tyo_oe (T_jaohd ™ = p?) = 3 7, i,
and passing to the weak limit, knowing that /0 — 2 — —x and dist(2},2%) — +oo for
Jo < <t
ph=1_g (@ — )y — Y 0=0.

Jo<j<i
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) c
This contradicts the fact that (17_,: i neamy — 1 # 0 and proves (3.8).
Step 3: weak convergence of bubbles. From (3.6) we get

N . i
Tai My = TgiHn — Z T_zi4ad Hs (3.9)
0<j<i

and by (3.8), the sum converges weakly to 0, and so
C/ .
(T_ai Hn)neo(N) =yt for every i € N with i < k. (3.10)

Step 4: construction of the bubbles with mass conservation. We now construct the extraction
o € ¥ that we need by induction: we set 0(0) = 0 and, assuming that ¢(0) < --- < o({—1),
with ¢ € N*, have been constructed, we set o(¢) := n with n € oynrp_1(N) large enough so
that n > o(¢ — 1) and for every i < £ Ak,

pn(Be(ay,)) < [lu'll +27°, (3.11)
and
orgjlgz dist(zy,, ) > 4¢. (3.12)

Such an n exists by (3.8) and (3.10), noticing that pu, (By(z%)) = (T_gi #n)(Be). Then for
each n =o({), £ € N, we set k, = { A k, and for each i € {0,...,k, — 1},

B! = By(a%).
Finally, for every n € o(N), we decompose p,, as expected:

fin = g1, + iy, where b = Y~ p, LBy,
0<i<kn
Let us check the four first items (A )—(D). Notice that (C) is fulfilled because diam(BfT( e)) =
¢ — +ooasl — oo, and (B) because of (3.12). Since for every i < k, lim,(n)55,00 diam(B;,) =
+00 and cp;i pn = (T_gi (unL By,)) for every n € 0i(N), (¢pi fin)neo(n) converges weakly to
p' by (3.10), and together with (3.11) it implies that

o
(eBi tin)neomy) — ',

i.e. (A) is satisfied. Moreover, by (3.11) again,

limsup 3 o (Big) < 3 il +timsup(e AR)27 = 37 (]
£=00 0<i<hy () 0<i<k =00 0<i<k

and since k, — k, by Fatou’s lemma we have,

> Il <liminf 37 page) (Br),
0<i<k 0<i<kqy(e)

which proves (D) because 20<i<ka Ma(é)(Bf,(e)) = Hﬂg(g)||~
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Step 5: vanishing of the remaining part, proof of (E). By Lemma 3.3, it suffices to prove
that m((i;)neomy)) = 0. We claim that:

m((/jrjz)nEU(N)) < m((iuiz)nEUi(N))a for every i € N with ¢ <k, (313)

which concludes since m((#ﬁ)neak,l(l\!)) =0 if k < oo, and m((p},))neo;av) — 0 as i — oo
if k = co. Indeed, if k = oo, we have by (3.7) and (D),

1 7 7 . .
3 2 )ace) < DIl = Hm g | < liminfuego| < oo
S 1€

Let us show (3.13). Let ¢ = o and (7n),es(v) be a sequence of points such that

C/
(T—an ) nesy) — p € M(RN).

We need to prove that [|u| < m((p)neo,av)) for every i < k. Assume without loss of
generality that ||| > 0. Then for every i < k,

(dist(zp, x;))neﬁ(N) — 0. (3.14)

Otherwise, up to subsequence, (dist(z,, %)), would be bounded by some constant M, and
for every r > 0, '
(T bin)(Br) < pi (Brina(23)) —=— 0,

n—oo

because Y is supported on RN \ Up<jck, BY, and B,y (zl) C Bl for n large enough by
(E). Hence p would be 0, a contradiction. Up to further extraction, one can assume that
(T—2, ln)nes(n) converges weakly to a measure fi € M(RN). Since p? < pn, we have p < fi.
Moreover by (3.5), for every i < k and n € &(N) large enough,

i _ . J
T—wnln = T—zpln — Z Tyl — g M
0<j<i

.
and because of (3.14) the sum converges weakly to 0, so that 7_, ul — [, and consequently,

lall < 12l < m((n)neoav),

which is what had to be proved.

Step 6: re-centering of the bubbles at points of supp pi,. By (3.10), (7_zi pin)neo(yy converges
weakly to the non-trivial measure p; for every ¢ < k, thus

R;/2:= limsup dist(supp pin,z’) < +oo0. (3.15)
o(N)sn—+oo

Therefore, for every n large enough, there is a point %, such that |z} — &% | < R; and & €
supp fin,. After a further extraction, one may assume that for every i, |28, — 7| < R; < rP
with diam B}, = 2r}, for every n, and (2}, — &,),eo(v) converges to some p; € RY. Finally,
we set 7' == " — R; and B!, := B(&,7") C B'. After replacing the balls B by B’ (B) and

(C) are satisfied by definition. Notice that (7_zi tin)neo(n) converges weakly to fi* == 7’
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with, [ = [}l], and lim sup, ez, nl] = lim sup,, i (B3) < lin sup,, n(BL) = [l hence
(A) holds. Besides, using Fatou’s lemma,

timsup 3 g (BL) < limsup 3 o (BL) = 3]

i<k i<k i<k
< thmf,un( i) < hmmf Z pin(BE)
i<k i<kn

so that lim,, 35, 4, pin(BL) = 32| | and (D ) is satisfied. In particular, limy, 3°; pn(BL\
Bi) =limp >, pin(BL) — limy Y5 g pin(BL) = 0 and (E) holds as well. O

Remark 3.4. If the sequence of families of balls (B! )o<;<, satisfies the conclusion of the
theorem, i.e. (A)—(E), then it is also the case for any family of balls (B )o<i<, with the
same centers as those of B! and with smaller but still divergent radii (i.e. satisfying (C)).
It can be easily seen following the arguments at Step 6 of the proof.

3.2 Lower bound by concentration compactness

We will first establish a lower bound for the minimal energy along vanishing sequences de-
fined on varying subsets of RY. We say that a sequence of Borel functions (uy,),en, each de-
fined on some open set 2,, C RY, is vanishing if the sequence of measures (Jun] N Ly )nen
is vanishing in the sense of Definition 3.1, namely if |lu,|| Ll (9, — 0asn — oo, where

Ll .(Q) is the set of uniformly locally integrable functions on the open set €2, i.e. Borel
functions u on 2 such that

lull: (@ = sup / | < +o0. (3.16)
z€RN JON(z+[0,1)N)

It will be convenient to first extend our Sobolev functions to a neighbourhood 5 of 2 where

for every § > 0 and every set X C R, we have set

X5 = {z e RY : dist(z, X) < 6}.

We will need to consider sufficiently regular domains for which we have an extension operator
wtrnLl (Q) - WhPnLL  (Qs). We will only apply it to domains with smooth boundary,
in which case we can use a reflexion technique. Since we want quantitative estimates, we will
use the notion of reach of a set X C RV (see | ]). We say that X has positive reach if
there exists 0 > 0 such that every x € X; has a unique nearest point 7(x) on X. The greatest
d for which this holds is denoted by reach(X) and the map * € Xygaen(x) = 7(7) € X is
called the nearest point retraction.

Ezample 3.5. Assume that Q is a perforated domain B\ |JF_; B where the B? are disjoint
closed balls included in some open ball BY (possibly B® = RY). Then,

reach(0Q) = inf{radius(B?) : i =0,...,k} U {dist(OB*,0B%) : i # j}.

By | , Theorem 4.8], we have

i) if z,y € X5 with 0 < § < &g := reach(X), then |r(z) — 7(y)| < 5;536|a: -1,
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ii) if z € X and D, is the intersection of X, cucn(x) With the straight line crossing 02
orthogonally at z, then 7(y) = z for every y € D,.

Lemma 3.6 (Extension). Let  C RY be an open set such that its boundary 0Q is C!
with positive reach. Then, for every § € (0,reach(9dR)), every p € [1,400) and every
u € LY N WIP(Q), there evists u € L* N W1P(Qs) such that u = u a.e. on Q, and

1l Ly < Allullr)y,  Nullzy, @) < Allulley, @) 1Vl < AlVullre @),

uloc

with a constant A < +o0o depending only on N,§ and reach(052).

Proof. Let o : (002)s — (0Q)s be the reflexion through 09, defined by o(z) = 27 (x) — =.
By the properties i) and ii) of the nearest point retraction, we have that ¢ = o~! (simply
because 7(o(x)) = m(x)) and o is L-Lipschitz with a constant L < +oo depending on § and
reach(02) only.

We define 4 by 4 = v on Q and @ = uo o on Qg \ Q°. This map is well defined since
o(2\ Q) C Q. Indeed, if we had z,0(x) € Qs \ ©, then the line segment [z, o(z)] would
meet 02 orthogonally at its center m(z), and would remain out of Q elsewhere, because
otherwise there would exist a point y belonging either to 0QN (z, 7(z)) or 90N (7w(x), o (x))
thus contradicting the definition of 7(x). Such a situation is not possible for a C! boundary.

Moreover, by the change of variable formula and the chain rule, u satisfies the desired
estimates since o is bi-Lipschitz with its Lipschitz constants controlled in terms of ¢ and

reach(9Q). O

We will need a localized version of the Gagliardo—Nirenberg—Sobolev inequality in a par-
ticular case:

Lemma 3.7. Let Q@ C RY be an open set such that O is C' with positive reach, let
p € [1,+00), let 1 > p(1 + =), and assume that r < % when p < N. Then for every
u € L' N WhP(Q),

Juler@y < CUIVulliny + Il @) Tl .
where o € (0,1] is the unique parameter such that + = oz(}lj — %)+ (1—a), and the constant
C < +o0 depends on N,r,p and reach(092).

Proof of Lemma 5.7. We let u € L' N W1P(Q) and we extend u to u € L' N W1P(Qs) as
in Lemma 3.6, with § := reach(£2)/2. By the Gagliardo—Nirenberg—Sobolev inequality (see

[ ]) on the hypercube Qs = [—j—ﬁ, \/%)N, we have

lll (@) < ClIVEllFn@ulEl i, + CllallL @y

We then cover  with the hypercubes Qs(c) = ¢+ Q5 C €5 centered at points ¢ on the grid

C:=QnNdzZN. Since a > NLH, we can check that

-1
ra:% > p. (3.17)

®Note that @ is not defined on 92, but this set is negligible.

21



By superadditivity of s +— s» and of s — s we obtain

lull ey < D _llalzr @y

ceC

< ZHVUHLP (Qs(c)) HUHLl Q5(c ) T ClHﬂHEl(Qa(C))
ceC

_ _ 1 1—
< C" |Vl lalls ) + Ol o Il %,

ulo

< C"(IVull oy + llulla) ™ el %y =
Proposition 3.8. Assume that f : RY x R x RN — [0, 4+o00] satisfies (H;) and (Hs) for
some p € (1,400). Consider a vanishing sequence (un)nen in VVli)’Cl(Qn,Ri), where the
Q, C RN are open sets with C' boundary and such that inf,ey reach(0Q,) > 0, and a
sequence (®,)nen of Borel maps ®, : Q, — RN such that SUPyeq,, |Pn(y) — 20| — 0 as
n — oo for some xy € RV, If 6, = an up, > 0 for every n and (0, )nen s bounded, then:

hmmf/ f(® s un(y), Vuy(y)) dy > fl(mo,Oi,O),

nHJroo

where f' (zo,0%,0) was defined in (1.4).

Proof of Proposition 3.8. Suppose for example that u, > 0 a.e. for every n. Without loss
of generality, we may assume after extracting a subsequence that:

1

0, f(q)n(y)a Un(y)a vun(y)) dy + 0, < +o0. (3'18)

K —sup

We consider the sequence of measures (v, )neny € My (RY x R x RY) defined by

1
Up = 9—(<I>n,un, Vaun)s(un LYLQ,), n €N

We are going to show in several steps that v, S, (20,0,0) and deduce the result. It suffices
to show that the three projections v, = (7*)sy, @ € {1,2,3} converge narrowly to d,,, do
and Jp respectively. Indeed, this would imply that (v,) converges narrowly to a measure
concentrated on (xg,0,0), hence to d(20,0,0) Since the v, are probability measures. First of
all, since (v,) has bounded mass and (6,,) is bounded, we may take a subsequence (not

C/
relabeled) such that v, - v and 6,, — 6 as n — oo for some v € M (RY x R x RY) and
6> 0.

Cl
Step 1: v} — §,,. This is a direct consequence of the fact that v, is concentrated on
®,,(RY) for every n and dist(®,(RY),zq) as n — oo.

C/
Step 2: v2 = §y. By (3.18) and our assumption (Hj), there is a constant K7 > 0 with

/ |Vu,|P < Kl/ Up, Vn €N (3.19)
n Qn
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We deduce from Markov’s inequality, and Lemma 3.7 applied with r = p(1 + %), corre-
sponding to o = NLH, that

1 1

v2([n, +00)) = 0, Un =9, "
{un>n} {un=n}
< = / Up,
geglmwwm@wﬂwmm)H%W1%»
!
A

where in the last inequality, we have used the identity ar = p and (3.19).
Since (up )nen is vanishing and (6, ),en is bounded, the last term in the previous inequality

c
goes to zero as n — oo and it follows that v2 — §y.

C/
Step 3: v3 = §y. Fix M > 0 and n > 0. One has by (3.19),

1 1 1
V,?;([M, +00)) = / Uy < — Uy, + / Up,
On J{|Vun|>M} On J {un<n}nf|Vun|> M} On J {un>n}

SgﬁWWMZMD+ﬁMﬁmD

GMP

< T2, +oc)),

/IV%V+VQm+mD

By the previous step, we know that lim, 1o v/2([n, +00)) = 0, hence taking the superior
limit as n — +o0o then  — 0 we get lim,, 1 o 3 ([M, +00)) = 0. Since this is true for every

c/
M > 0 we obtain v — d.

Step 4: conclusion. By the previous steps, we deduce that v, N 0(20,0,0) @8 n — +00. We
define g : RN xRy x RN — [0, +-00] as the lower semicontinuous envelope of RY x R% xRN 3
(x,u,§) — %f(x,u,ﬁ). By (Hy), we have g(z,u,§) = %f(:c,u,{) if uw >0, and by (1.4), we
have g(z,0,0) = f" (x,07,0) for every 2 € RY. Hence, by lower semicontinuty of g and
weak convergence of (v,), we get

¢TL5 s n
hmmf/ f(®p,tn, Vuy) > hmlnf/ wun
{un>0}

n—oo Up,

n—oo

~limint [ g(,u,€) dva (@, u, €)
RN xRxRN
> /]RN g(m,u,f) dé(wo,0,0) = f/—($070+70)5

which ends the proof of the lemma. O

As a corollary, we may now relate the slope at 0 of Hy to that of f.
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Corollary 3.9. Assume that f : RN x R x RV — [0, 4-00] satisfies (H;), (Hs) for some
p € (1,400) and (Hg). Fiz x € RN. If either N > 2 or (N = 1 and Hs(x,-) # +oo on
R%), then HY(x,0%) = f (x,0%,0).

Proof. The inequality H (=, 0%) < £ (2,0%,0) is a consequence of (Hg), Proposition 2.6 and
Proposition 2.7, and the converse inequality H'(z, 0%) > f'(x,0%,0) comes from Proposi-
tion 3.8. O

We now establish our main energy lower bound along sequences with bounded mass (not
necessarily vanishing):

Proposition 3.10. Assume that (f-)e0 is a family of functions f. : RV xRxRY — [0, +-o0]
satisfying (H;), (Hp), (Hs) and (Hg) for some limit f. Let (en)nen be a sequence of
positive numbers going to zero, (Ry)nen and (rp)nen be two sequences in (0,+o0] such
that limy, oo 7 = limp oo Ry — 7 = 400, (Up)nen be a sequence of functions u, €
VVli)’Cl(BRn,Ri) with finite limit mass m = lim,_,s me Up, and (Pp)nen be a sequence
of Borel maps ®,, : Bg, — RN such that

sgp |D (y) — 0] —=0 for some zo € RN, (3.20)
YELR,

Then there exists a family (u')o<i<k of functions in VVli)C1 (RN, R.) with k € NU{+oo}, such
that m; == [pn u' € RY for every i, and

m=my + Z m;  with my, > 0, (3.21)
0<i<k

lim inf fer (s i, Vun) > mo f1 (0, 0%, 0) + Z /

(2 7

it/ 2, e f(zo,u', Vu'). (3.22)
Proof. Suppose for example that u, > 0 a.e. for every n. We first assume, up to sub-
sequence, that the left hand side of (3.22) is a limit. We apply the profile decomposition
Theorem 3.2 to the sequence of positive measures i, = u, El%r where, without loss of gen-
erality, we assume the extraction ¢ to be the identity for conveyhience, and we use the same
notation as in Theorem 3.2. In particular, for each bubble B! = B, (x8), with 0 < i < ky,
we have x}l € supp iy, C B,.,. By assumption, we have lim,,_,o (R, — r,) = +00; hence, up
to reducing the radii of the balls B! if necessary, in such a way that their radii still diverge
(see Remark 3.4), we can assume that

B!, C Bp,_1, 0<i<ky,. (3.23)

For each 0 < i < ky, we let ul, := u,(- + z¢). Assuming without loss of generality that
the left hand side of (3.22) is finite, we get that the sequence (uf),, is bounded in T/Vli’f(RN )
by (Hs). Hence, after a further extraction if needed, we get that (uf)ney — u’ weakly in
I/Vlif (RN) for some limit u?, for every 0 < i < k = limk,,. Setting m; = Jon u® for every 1,

by (D) in Theorem 3.2, we have

My =M — E m; = lim Up,.
n—oo i
0<i<k Brp\Uo<i<k, B}
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Fix € > 0. We decompose the energy as

fa(q)nvun’vun) = / fa(q)naunyvun)

Br, Br, \Uo<i<ky, B},

/ L@+t ub Vel (3.24)
O<z<kn
Note that the domains Q, == Bg, \ Up<i<x B!, satisfy inf,cnreach(9$,) > 0 as noticed in

Example 3.5, thanks to (3.23) and (B), (C) in Theorem 3.2. Hence, applying Proposition 3.8
to the Lagrangian f., we obtain

liminf/ fe(Pry Uy, V) > my(f2)" (20,07, 0). (3.25)
n—+00 i
Br,, \Uo<i<k, B
Moreover, by lower semicontinuity of integral functionals (see [ , Theorem 4.1.1]), in

view of (3.20), we have for each i with 0 <7 < k,

lim inf/ fe(® zt),ul, Vb)) > fe(zo,u’, V). (3.26)

n—0o0 RN
Finally, by (3.24), (3.25), (3.26), (Hg) and by monotone convergence, we deduce that

timind [ fo (@0, Vaa) 2 lim (mo(£2))(20,0°,0) / (o, o, Vu) )
0<z<k

n—o00 Br e—0t

= my f’ (20,07,0) / f( zo, u', Vu) O
O<z<k

3.3 Existence of optimal profiles

For the existence of an optimal profile in (1.2), we need a criterion that rules out splitting
and vanishing of minimizing sequences:

Lemma 3.11. Let H : Ry — Ry be a concave function. Then H is subadditive, and if for
some 0 < 8 <m one has H(m) = H(m —6) + H(), then H is linear on (0,m).

Proof. By concavity, t — @ is non-increasing. Hence,
H H H(o
07) (o gy ) _ ()

H(m —0)
m m 0 '

H(m)=1¢6 p—

+ (m —0)

But, by assumption, the last inequality is an equality which means that HTm = 5~ =
%. In particular, the monotone function ¢ @ must be constant on [0, m], i.e. H

must be linear on [, m]. By concavity this is only possible if H is linear on [0, m). O

We can now state and prove our existence result:
Proposition 3.12. Assume that f : RY x R x RV — [0, +o00] satisfies (H;), (Hz), (Hs)
and (Hg). Let z9 € RY and m € Ry (resp. m € R_). If H¢(xo,-) is not linear on

[0,m] (resp. [m,0]), then (1.2) admits a solution u € VVIOC (]RN), i.e. [Jenu = m and
Jan f(@o,u, Vu) = Hy(zo,m), such that uw >0 (resp. u <0) in RN
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Proof. We consider the case m > 0, the case m < 0 can then be deduced by considering

f(z,u, &) = f(z,—u,§). By Remark 2.2, the admissible class in (1.2) can be reduced to non
negative functions. In particular, if m = 0, then v = 0 is the only solution. If m > 0, we
apply Proposition 3.10 in the following situation: f. = f, R, = +o0, ®,, = z0, (Un)nen i8
a minimizing sequence for the minimization problem in (1.2), and (ry,)nen is a sequence of
positive radii going to +oo such that lim,, . f B, Un =M. We obtain

Hy(zo,m) > myf (20,07,0)+ > / f(zo,u’, Vu'),
0<i<k /RN
with k € NU {400}, u’ € WLP(RN,Ry) and m = Yg;op ms +my, where m; = [pn u'. By
Proposition 2.6 and Proposition 2.7, in view of our assumption (Hg), we have f’ (x¢,07,0) >
H}(:L‘O, 0). Moreover, by Theorem 2.1, we have mvH}(:UO, 0) > Hy(xg,my). Hence, by
definition of Hy,

Hy(xo,m) > Hy(zo,my) + > Hp(wo, my).
0<i<k

Since the concave function H(zo,-) is not linear on [0,m], by Lemma 3.11, we have either
k =1 and m, = 0, and we are done, or k = 0 and m = m,. But in the latter case,
we would have Hy(zo,m) = mH}(x0,0) which implies that the monotone function ¢

w is constant on [0,m], i.e. that Hf(xo,-) is linear on [0,m]. This contradicts our

assumption. ]

4 T'-convergence of the rescaled energies towards the H-mass

We establish lower and upper bounds for the I' — lim inf and I" — lim sup respectively, from
which we deduce the proof of our main I'-convergence result. The upper bound on the
I' — lim sup holds under more general assumptions and will be needed in Section 5.5.

4.1 Lower bound for the I — lim inf
Given a Borel function f:RY x R x RY — [0, +-00], we define for every (z,m) € RY x R,
Hy (z,m) == Hy(x,m) A (f.(z,0%,0)|m]), if £m >0, (4.1)

recalling that Hy is defined in (1.2) and f"(x,0%,0) in (1.4), with the usual convention
(£00) x 0 = 0. Notice that under (Hg), in view of Proposition 2.6 and Proposition 2.7 we
have H; (z,m) = Hy(z,m).

Proposition 4.1. Assume that (f-).0 is a family of functions f- : RN x Rx RN — [0, 4+-o0]
satisfying (H;), (Hz), (Hs) and (Hg) where f = limo_o f-. Let (en)nen be a sequence of
positive numbers going to zero, (un)nen be a sequence in T/Vlicl (RN), and let

en(x) = fo (x,eNun(x), N VU, (2))e, N, zeRY,

C/ C!
be the energy density of un. If up LY =2 u e M(RN) and e, LV -2 e € M(RY), then
e > Hj (u). (4.2)

In particular, T'(C{)) — liminf._,o & > M.
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Proof of Proposition 4.1. Set H = H . Let us assume first that u, > 0 a.e. for every n.
To obtain (4.2), it is enough to prove that for every zo € RY,

e({zo}) = H(wo, u({zo}))- (4.3)
and that if ¢ € suppu is not an atom of u, then
B
lim sup ¢(Br(0)) > H'(z0,0™), (4.4)

r—ot w(Br(z0))

Indeed (4.3) implies that e > (H(u))® (the atomic part of the measure H(u)) while (4.4)
implies that e > H'(-,0")u? = (H(u))?, by Radon-Nikodym theorem (see | , Theo-
rem 2.22]); these two relations yield e > (H (u))® + (H(u))? = H(u) as required.

We fix xg € suppu and proceed in several steps.

Step 1: blow-up near xy. We first take two sequences of positive radii (Ry)peny — 0 and
(r¢)een such that for every £ € N, r, € (0, Ry),

e(9Br, (x0)) = u(@B,, (x0)) =0, (4.5)
and
o CBR(20) L o(B(a))

B By (m)) ~ R Ba(a)) (4.6)

This last property is obtained by taking first a sequence (pg)¢ such that

limsupM = lim M
R—0t+ U(BR(.T())) {—00 U<Bpe (wo)) ’

then using monotone convergence the measures to get first r, then Ry such that 0 < rp <
Ry < pe, w(By,(w0)) > (1 =27 )u(By, (z0)) and e(Bg,(z0)) = (1 —27")e(B, (20)).

By weak convergence and (4.5), according to [ , Proposition 1.62 b)], we have for
every £ € N,
nlgrolo en(Br,(z0)) = e(Br,(z9)) and lim Up, = u(By,(20)).

n—o00 B’“l (x0)
Hence, there exists an extraction (ng)seny € % such that

Ry—ry

lim —* = +oo and lim +o0, (4.7)
{—00 €né £—o0 6?12
satisfying the following conditions:
u({zo}) = lim un,, e({wo}) = lim en, (Bg,(20)), (4.8)
{—00 By, (x0) £—00
and
B n, (B
Jim sup e(Br,(%0)) _ 1. ene(Br,(20)) (4.9)

tso00 U(Br(70)) f=c fBW(xQ)u”Z

27



We may rewrite the mass and energy in terms of the re-scaled map v, defined by

ve(y) = el un, (v0 +en,y), y RN, LEN (4.10)
as follows:
/ U, —/ Vg, (4.11)
By, (z0) BE—1T
ny 4
and
eny(Br,(70)) = /B Jen, (0 + €0y, v0(y), Voe(y)) dy. (4.12)
E_lRé

e

Step 2: proof of (4.3). By Proposition 3.10, we have

e({zo}) = elgrglo eny (Br,(0)) > muy f.(20,07,0) + Z H¢(xo,my). (4.13)
0<i<k

Here k € NU {400} and m = my, + >g<;<f Mi, with m; >0, m, > 0 and

m = lim ve = u({zo}).
l—o0 B
ETLZ ’I‘é
Since the function H = Hf_, defined in (4.1), is the infimum of two functions which are
concave in the mass m, it is itself concave in m hence subadditive. From (4.13) we thus
arrive at

e({zo}) > H(xo,my) + Z H(xg,m;) > H(wo,mv + Z mz) = H(xo,u({x0})).
0<i<k 0<i<k

Step 3: proof of (4.4). Fix € > 0 and assume that m = u({zo}) = 0. In that case, we apply
Proposition 3.8 to the sequence of functions (vy)een defined on the sets 0y = Bs*lw and the
ne

function f. to get, thanks to (Hg):

lim sup (Br(zo)) = lim en,(Br,(20))
R0t WBR(20))  f=0e fBrg(mo) Uny

{—o0

. 1
> lim inf / fe(xo + EneY, ve(y), Vue(y))
fB 1 Ve —1

€ny 7L Eny 7L

> (fa)i($070+,0).
Taking the limit ¢ — 07, we deduce by (Hg) and (4.1):
- e(Br(wo)) / + / +
limsup ————=% > f' (x0,07,0) > H'(x0,07). 4.14
R0+ w(Br(zo)) ( ) ( ) (1)

In view of the discussion at the beginning of the proof, we have now proved (4.2).
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Step 4: proof of (4.2) for signed (uy,),. Notice that the preceding reasoning for non negative
uy, applies also to the case of non-positive u,,. Let us handle the case where the (u,)’s may
change sign. We simply apply the above cases to the positive and negative parts ((uy)+)n
which converge weakly (up to subsequence) to some measures u* € M (RY) which satisfy
u=u"t—u",sothate > H(:l:ui). We know that the positive and negative parts u+ of u are
optimal decompositions in the sense that v = uy —u_ with uy < u*, and we have uy L u_.
By monotonicity of the H-transform, due to Theorem 2.1, e > H(+u%) > H(4u+), and
since H(uy) L H(—u_), we get

e>H(uy)+ H(—u_) = H(u).

Step 5: lower bound for the I" — liminf. We justify that (4.2) implies the lower bound
['(C)) — liminf. o & > M. Indeed, fix u € M(RY) and consider a family (u.).~o weakly
converging to u as € — 0. We need to show that M (u) < liminf. ,o&-(u.). Assume with-
out loss of generality that the inferior limit is finite and take a sequence of positive numbers
(en)nen — 0 such that this inferior limit is equal to lim, o &, (e, ). Now the energy
density e, associated to u, = uc, has bounded mass and up to extracting a subsequence
one may assume that it converges weakly to some measure e € M (RY). By the previous
steps, e > H(u), and by lower semicontinuity and monotonicity of the mass:

tim inf € () = lim nlleal > el > 1w = M7 (w) 0

e—0t

4.2 Upper bound for the I' — lim sup

In this section, we introduce the following substitute for (Hg), where f, (f:)e>0 are Borel
maps from RY x R — R to [0, +oc]:

(U) there exists C' < 400 such that for every z,y € RV, u € R and ¢ € RY,

limsup fe(z + ey, u,§) < f(z,u,§) and  fo(y,u,§) < O(f(z,u,§) +u) Ve >0.

e—0t

Proposition 4.2. Assume that f,(f-)es0 satisfy (U) and (Hs). If u € M(RYN), then there

¢
exists (ug)e>0 € VVli)’C1 (RN such that u. LY = u when € — 0 and which satisfies

lim sup & (u.) < MHsse(y),
e—07t

where Hy oo < Hy stands for the lower semicontinuous and mass-subadditive envelope of
Hy, defined in (2.6). In other words, we have I'(C}) — limsup,_,o & < M fise,

Proof of Proposition 4.2. Let F =T(Cp) —limsup,_,q&. As an upper I-limit, F is sequen-
tially lower semicontinuous in the narrow topology. Hence, by Proposition 2.5, it is enough
to prove that F(u) < Mf(u) whenever u is finitely atomic. Let u = Y.F , m;d,, with
keN, m; € R, 2; € RN, and assume without loss of generality that x; # xj when i # j
and M*s (u) < +00. Fix > 0. For each i = 1,..., k, there exists u; € VVI})C1 (R™) such that
Jen wi =mi and [pn f(@i, us, Vi) < H(xi,m;) +n. We define for every i = 1,...,k,

ul(z) = e Nu(e Yo — ), zeRY, (4.15)
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and
u. =sup{u’ : i=1,...,k}, (4.16)

which converge narrowly as measures to u as € — 0. We have by change of variables:

k k
Ee(ue) < ng(ué) = Z/N fe(xi + ex,ui, V).
i=1 i=1 7R

Using our assumption (U) and the dominated convergence theorem, one gets as ¢ — 0:

k k
F(u) < limsup & (ue) <Z [z, ui, Vug) Z (i, m4) 4+ kn = M2 (u) 4 kn.
e—0 i—1 /RN i=1
The conclusion follows by arbitrariness of 1 > 0. O

4.3 Proof of the main I'-convergence result

We now explain how Theorem 1.2 follows from Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.2. The lower bound I'(C))) — liminf._,o & > M5 follows from Propo-
sition 4.1, and the upper bound I'(C}) —lim sup,_,q & < M#s1s¢ from Proposition 4.2, where
the assumption (U) is a consequence of (Hy), (H7) and (Hg). In the case N = 2, by Propo-
sition 2.6 and assumption (Hg), we have H; = Hy, and Hy > Hy s by definition, so that
both I' — liminf and I" — limsup (for weak and narrow topologies) coincide. In the case
N =1, by Proposition 2.7 either we have again H, = Hy on RN xRy by (Hg) and (Hz), or
we have H¢(zg,-) = 400 on (0, +00) for some xy € R. In that case, by (H7) and Remark 2.2
we necessarily have & (u) = 400 for every u such that [pxu > 0, and Hy(x,-) = H(zo,-)
on R, for every z € R. It implies that both I' — liminf and I" — lim sup (for the weak and
narrow topologies) coincide with® X{0}y = M on M (RY). Similarly, they coincide on
finite negative measures. O

5 Examples, counterexamples and applications

5.1 Scale-invariant Lagrangians and necessity of assumption (Hg)

Our assumption (Hg) is not very standard, but we need a condition of this type in order to
get T-convergence of the rescaled energies & towards M7 as shown by the following class
of scale-invariant Lagrangians:

Vg ifu >0,

(5.1)
else,

WP
fe(@,u,§) = f(u,§) with ﬂ%@:{o

where p € (1,N), N € N* and p* = A’;Np By straightforward computations, & (u) =

= [on f(u, V) for every £ > 0 and u € WLP(RN) in that case.

Sxc(x) =0 if z € C and +oco otherwise.
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Moreover, the associated cost function H is not trivial. Indeed, applying the Gagliardo—
Nirenberg—Sobolev inequality,

(L) e[ mor), wer awii@y),

1

to the function” v = u?*, we obtain that for every u € I/Vll 1(RN Ry) N LYRY),

= P » P
(o)™ = () foy #1900 = () 29
RN p {u>0} p

Hence, for every m > 0, we have H¢(m) > 0, and even Hf(m) < 400 since any function
u = vP", with v € WHP(RN R,), has finite energy. Replacing u by mu in the infimum
defining Hy in (1.2), we actually obtain

Hy(m) =m'"NHf(1), 0< Hs(1) < +o0. (5.2)

In that case, it is clear that the I-limit of £&. = £ in the weak or narrow topology of M (RY),
that is the lower semicontinuous relaxation of £;, does not coincide with MH7; indeed, the
first functional is finite on diffuse measures whose density has finite energy, while the second
functional is always infinite for non-trivial diffuse measures since H } (0) = 4o0.

These scaling invariant Lagrangians are ruled out by our assumption (Hg). All the other
assumptions are satisfied except (Hs). Note that the following perturbation of f,

Flu,€) = (1 + "5 D) g

satisfies all the assumptions except (Hg), and provides a counterexample to the I'-convergence.
Indeed, M Hp 2 My, is still infinite on diffuse measures, while (the relaxation of) &y is finite
for any d1ﬂ"use measure whose density has finite energy.

We stress that an assumption like (Hg) is actually needed, even for the lower semicontinu-
ity of the function Hy — recall that if My, is a I'-limit, then it must be lower semicontinuous
by | , Proposition 1.28], which in turn implies that the function Hy is lower semicon-
tinuous by Proposition 2.5. Indeed, consider the Lagrangians

fla,u,&) = (14?5 ) g

with p € CO(RY, (1, N)) such that p(0) = p € (1,N) and p(x) > p when x # 0. Then, we
have H;(0,m) = ml_%H(l), but H¢(x,-) = 0 if  # 0 as can be easily seen via the change
of function eNu(e-), with £ > 0 small.

5.2 General concave costs in dimension one

It has been proved in | ] that for any continuous concave function H : Ry — R with
H(0) = 0, there exists a function ¢ : Ry — Ry such that ¢(0) = 0, u — @ is lower
semicontinuous and non-increasing on (0, 4+00), and for every m > 0,

:inf{/|u’|2+c(u) : uevvl})j(R,R+),/u:m}.
R R

1
£3

7 Actually, we apply it to v. = ¢.(u) where ¢. is a suitable approximation of (-)?* and take ¢ — 0.
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The Lagrangians of the form f-(z,u,&) = |¢|? + ¢(u), in dimension N = 1, satisfy all our
assumptions (Hj)—(Hg), hence our I'-convergence result stated in Theorem 1.2 yields the
I'-convergence of the functionals

E(u) = /]Rs:?)|u’|2 + c(iu)’ u e WH(R,R,),

towards M for both the weak and narrow convergence of measures. Therefore, we may
find an elliptic approximation of any concave H-mass. Let us stress that c is determined
in | | from H through several operations including a deconvolution problem, but no
closed form solution is given in general; nonetheless, an explicit solution is provided if ¢ is
affine by parts.

In higher dimension N > 2, Proposition 2.8 tells us that the class of functions H = Hy
with f satisfying (H;)—(Hg) is smaller, namely, H must satisfy:

H is linear on [0, m.],

Im, >0, { (5.3)

H is strictly concave (my, +00).

We have no positive or negative answer to the inverse problem, consisting in finding f
satisfying our assumptions such that Hy = H, for a given continuous concave function
H : Ry — Ry satisfying (5.3).

5.3 Homogeneous costs in any dimension

In this section, we provide Lagrangians f to obtain the a-mass M® := M*?*" in any dimen-
sion N for a wide range of exponents, including super-critical exponents o € (1 — %, 1}.

We counsider for every p € [1,+00),s € (—00,1] and N € N*, the energy defined for every
u € VVli’Cl(RN,]R_i_) by

Enps(u) = /]RN Inps(u, Vu) = /RN]Vu\p + u®. (5.4)

Notice that for p > 1, fn s satisfies all our hypotheses (H;)-(Hg) (without dependence on
z), (Hg) holding in dimension N > 2 with p(t) = ¢ for example. Thus by Theorem 1.2 the
re-scaled energies I'-converge to the Hy,  -mass.

One may compute Hy, _ substituting u by v such that u = mANv(A) in (1.2), where

s/p—1

A =mTFN—N/r (5.5)

Straightforward computations give [y v =1if [px u=m, and

N 1 +
Enp,s(u) = m?( ’p’S)SN;D,s(U)a where «(N,p,s) = 1-s4 L

SEZRRSARS
Z|=| 2o

thus

Hyps(m) = cN,p,SmO‘(N’p’S), where ¢y ps = Hnps(1).
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We look for cases when the cost is non-trivial, i.e. neither identically zero nor infinite on
(0, +00). Take an auxiliary exponent g € [1,4+00) and « € [0, 1] such that 1 = ag+ (1 —«)s.
By Holder inequality,

« -«
Joor= Jo = (L) (L)
RN RN RN RN

Moreover, choosing ¢ € (1,p*) if p < N and any ¢ € (1,400) if p > N, by the Gagliardo—
Nirenberg—Sobolev inequality, for every u € VVi)Cl NLY RN Ry),

1

r -
([ )" =lulr < CIValull”,

with 5 € (0,1) such that é =7 (zl) — %) + (1 — /). Hence,

gafB

1—ga(1-0) »
Uat) = (fuloer)
RN RN

l-a
(L)
RN
and the cost is non-zero for every m > 0.

In the case s € [0,1], any u = v" with v € C}(RY) is a competitor with finite energy,
thus Enp s is non-trivial for every p € [1,400). In the case s < 0, consider the competitor
u:x v (1—lz|)] for v > 0 to be fixed later. Then [pn|VulP < 400 if and only if
t = (1—t)0~DPisintegrable at 1, i.e. (y—1)p > —1 <= v > 1—1/p, and f{u>0} u® < 400
if and only if vs > —1 <= 7 < —1/s. Therefore, one may find v > 0 satisfying both
conditions, and ensure that Hy, is non-trivial, if

—p <s5<0.
To summarize, we have shown that Hy, _ is non-trivial if:
s € (—=p,1].
Since a = a(N, p, ) is monotone in s, one may easily compute the range of a. If p and N

are fixed, o ranges over (ﬁ, 1} when s € (—p’, 1]. Notice that when N =1 we obtain

the whole range o € (0, 1], and at least the range {1 — %, 1} for every p in dimension N > 2.

Finally, we obtain a range o € (1 — NLH, 1} when p ranges over (1 4 oo) in dimension N.

5.4 Branched transport approximation: H-masses of normal 1-currents

Branched Transport is a variant of classical optimal transport (see | ] and Section 4.4.2
therein for a brief presentation of branched transport, and | | for a vast exposition)
where the transport energy concentrates on a network, i.e. a 1-dimensional subset of R,
which has a graph structure when optimized with prescribed source and target measures.
It can be formulated as a minimal flow problem,

min {M{{(w) sdiv(w) = p — M+}7
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where pu* are probability measures on R, H : R x Ry — R, is mass-subadditive, and
the H-mass M’ is this time defined for finite vector measures w € M(R% R?) whose
distributional divergence is also a finite measure; in the language of currents, it is called a
1-dimensional normal current. Any such measure may be decomposed into a l-rectifiable
part 6¢ - H'LY where 6(x) > 0 and &(z) is a unit tangent vector to ¥ for Hl-a.e. z € 2,
and a 1-diffuse part w' satisfying |w'|(A) = 0 for every l-rectifiable set A:

w =0 Hiy +wh.

The H-mass is then defined by:
M (w /H x,0(x)) dH! (2 / H'(z,0) djwh]|. (5.6)

In the case H(z,m) = m® with 0 < a < 1, a family of approximations of these functional
has been introduced in | ):

Jpa € VW + 2 wl?  if w e WL2(RERY),

(5.7)
400 otherwise,

gﬁ,e(w) = {

with 8 = %, 71 =(d—-1)(1—-«) and v2 = 3 —d+ o(d — 1). It has been shown
in [ ; ] that the functionals Fg . I'-converge as ¢ — 0T, in the topology of weak
convergence of u and its divergence, to a non-trivial multiple of the a-mass M§ := M with
H(xz,m) = m® in dimension d = 2. The result extends to any dimension d, by [ l,
thanks to a slicing method that relates the energy £5 . with the energy of the sliced measures
u = (w - V)4 supported on the slices V, = {x € R? : z-v = a} ~ RY, for any given unit
vector v € R%, defined by

Es.(u) :/ 1|Vl + = |ul.
]RN

The functionals é_’ﬂ,g I-converge as ¢ — 07, in the weak-x topology of Cj, to ¢cM® for
some non-trivial ¢, as shown in Section 5.3, and one may recover every a-mass in this way
for a € (33 ;11, 1}, and in particular every so-called super-critical exponents for Branched
Transport in dimension d, that is o € (1 —1/d, 1].

The same slicing method would allow to extend our I'-convergence result stated in The-

orem 1.2 to functionals defined on vector measure

Ee(w) = {fRd fe(z, e Hw|(x), | Vw|(z))e! =4 dx  if w € Wll 1(Rd R%),

(5.8)
400 otherwise,

for Lagrangians f. — f fitting the framework of Theorem 1.2. The expected I'-limit, for
the weak topology of measures and their divergence measure, would be the functional Mflf ,
with Hj defined in (1.2). Note that this approach would provide approximations of H-
masses for more general continuous and concave cost functions H : Ry — R, satisfying
H(0)=0. By [ |, we would obtain all such H-masses when N = 1 (corresponding to
d=2).
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5.5 A Cahn-Hilliard model for droplets

Following the works [ | in the one-dimensional case and | ] in higher dimension,
we consider functionals on M (RY) of the form:

/ (W () + e[ Vul2) if ue WELRN,R,),
RN

We(u) = (5.9)

400 otherwise,

where W : Ry — Ry is a Borel function satisfying W (t) ~y— 400 u® for some exponent
s € (—oo,1). In | ; ], it is in particular proven, under some assumptions on
the slope of W at 0 and its regularity, that the family (W;).>o I'-converges to a non-trivial

. 1-s/2+s/N , N(1—
multiple of the a-mass, o = %, when s € (=2,1) and p = p(s, N) = m
In this section, we recover this I'-convergence result using our general model.

Replacing € with & := e(N+2+N(1=5) and noticing that 1 — p = M_%, one gets for
every u € VVllocl (RN, R,):

We(u) = / 8_N(1_S)W(u) + 5N+2|Vu\2 = /
RN

ox ([5NSW(5_N5Nu)] + |5N+1Vu|2> g~

= YV (2, eNu, eNHVu)eV,
RN
where fIV is defined for every x € RV u € Ry, ¢ € RY by
FV (w0, €) = We(u) + €7 and - We(u) = MW (e Vu).

Therefore if we take f- = f2V in our general model (1.3) we exactly get W: = .. The fact
that W (u) ~ u® as u — 400 implies that W, converges pointwise to the map ks : u — u® if
u > 0, ks(0) = 0, hence fIV converges to fs : (z,u,&) — ks(u) + [£]2.

Theorem 5.1. Assume that W : Ry — Ry satisfies:

(HW1) W is lower semicontinuous,
(HW32) {W =0} = {0},

(HW3) W(u) ~y—sto0 u® for some s € (—oo, 1),

w
(HW,) sup ﬂ < 400,
u>0 U’

(HW5) 0 < liminf 2.

u—0t u
Then (Ws)eso T-converges to M*ss | for both topologies Cly and Cj, and if s € (—2,1] then

1—s/24s/N

MHss is a nontrivial multiple of M where o = T=s/241/N -

To prove this theorem, we start with a simple lemma.

Lemma 5.2. Assume that W satisfies (HW1)—(HW5). Then for every 6 € (0,1), there
exists cg € (0,400) such that for every e > 0 and every u € Ry,

S(uP A cse NI=9)y) < We(u). (5.10)
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Proof. Fix 6 € (0,1). There exists M > 0 such that du® < W (u) for every u > M. Besides,
the map w : u — W(u)/u is lower semicontinuous and positive on (0, M] by (HW;) and
(HW3), and since liminf, ,ow(u) > 0 by (HW5), w is necessarily bounded from below
on (0, M] by some contant ¢ > 0. As a consequence We(u) > du® if u > ¢V M and
We(u) > ceNG=Dy if 4 < eN M, hence:

VueR, W(u)>6(usAceN079)qy). O

Proof of Theorem 5.1. By (HW,), there exists a constant C' such that f/V < Cf, for every
e, and since fV does not depend on the z variable and converges pointwise to fs, (U) is
satisfied and our I' — lim sup result stated in Proposition 4.2 yields

M > T(C)) — limsup &..

e—0

Fix 0 € (0,1). By Lemma 5.2, there exists ¢s such that
Vo, u, & WV (20, 6) > 6(1€12 4 (u® A cse T NITw) = oz, u, €).

It is easy to check that f® satisfies (H;), (Hz) and (H;) for every € > 0. Moreover f 1 4 f,
and (f3)(-,07,0) = dcse V19 1 400 = (6f,)"(-,0%,0) as ¢ — 0, thus (Hg) holds for
the family (fg)€>0, and by applying our I' — lim inf result stated in Proposition 4.1 to the
energies £2 induced by f? we get:

I'(Ch) — liminf & > T(Cl) — liminf & > Moz,

We get the result by taking the limit § — 1, noticing that (fs)"(-,0%,0) = +oo, so that

Hy, = Hsy, = 0Hy, and Mose = M1 = gMHrs. O
Remark 5.3. We recover the I'-convergence results of | ] and | | when s € (—2,1)
under slightly more general assumptions: besides (HW3) and (HW3), the authors impose

the existence of a nontrivial slope lim,_,¢ Wl(bu) € (0,400) and a regularity condition (either

W is of class C! or continuous and nondecreasing close to 0), which are stronger than
(HWy), (HW,) and (HW5). Let us stress however that these works also tackle the cases
s < —2 in any dimension, where the exponent p has to be fixed to p(—2, N), and the case
s = —2 in dimension one, where a logarithmic factor must be introduced, replacing e~* with
e P(=2Dloge|~! = e~ 1/2|loge|~!. This implies that in our model we get a trivial I'-limit
when s < —2, namely Hy, = +00 on (0, +00).
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