
HAL Id: hal-03517065
https://hal.science/hal-03517065v1

Submitted on 7 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exascale machines require new programming paradigms
and runtimes

Georges da Costa, Thomas Fahringer, Juan-Antonio Rico-Gallego, Ivan
Grasso, Atanas Hristov, Helen D. Karatza, Alexey Lastovetsky, Fabrizio

Marozzo, Dana Petcu, Georgios L. Stavrinides, et al.

To cite this version:
Georges da Costa, Thomas Fahringer, Juan-Antonio Rico-Gallego, Ivan Grasso, Atanas Hristov, et al..
Exascale machines require new programming paradigms and runtimes. Supercomputing Frontiers and
Innovations , 2015, 2: Special Issue on Sustainability in Ultrascale Computing Systems in cooperation
with NESUS (2), pp.6-27. �10.14529/jsfi150201�. �hal-03517065�

https://hal.science/hal-03517065v1
https://hal.archives-ouvertes.fr

To link to this article : DOI : DOI:10.14529/jsfi150201
URL : http://dx.doi.org/10.14529/jsfi150201

To cite this version : Da Costa, Georges and Fahringer, Thomas and
Rico-Gallego, Juan-Antonio and Grasso, Ivan and Hristov, Atanas and
Karatza, Helen D. and Lastovetsky, Alexey and Marozzo, Fabrizio and
Petcu, Dana and Stavrinides, Georgios L. and Talia, Domenico and
Trufio, Paolo and Astsatryan, Hrachya Exascale machines require new
programming paradigms and runtimes. (2015) Supercomputing
Frontiers and Innovations, vol. 2 (n° 2). pp. 6-27. ISSN 2409-6008

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 16839

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Exascale Machines Require New Programming Paradigms and

Runtimes

Georges Da Costa1, Thomas Fahringer2, Juan-Antonio Rico-Gallego3, Ivan

Grasso2, Atanas Hristov4, Helen D. Karatza5, Alexey Lastovetsky6,

Fabrizio Marozzo8, Dana Petcu7, Georgios L. Stavrinides5, Domenico

Talia8, Paolo Trunfio8, Hrachya Astsatryan9

c© The Authors 2017.

Extreme scale parallel computing systems will have tens of thousands of optionally

accelerator-equipped nodes with hundreds of cores each, as well as deep memory hierarchies and

complex interconnect topologies. Such exascale systems will provide hardware parallelism at multi-

ple levels and will be energy constrained. Their extreme scale and the rapidly deteriorating reliabil-

ity of their hardware components means that exascale systems will exhibit low mean-time-between-

failure values. Furthermore, existing programming models already require heroic programming and

optimization efforts to achieve high efficiency on current supercomputers. Invariably, these efforts

are platform-specific and non-portable. In this article, we explore the shortcomings of existing

programming models and runtimes for large-scale computing systems. We propose and discuss

important features of programming paradigms and runtimes to deal with exascale computing sys-

tems with a special focus on data-intensive applications and resilience. Finally, we discuss code

sustainability issues and propose several software metrics that are of paramount importance for

code development for ultrascale computing systems.

Keywords: programming models, ultrascale, runtimes, extreme scale.

Introduction

Ultrascale systems are envisioned as large-scale complex systems joining parallel and dis-

tributed computing systems that will be two to three orders of magnitude larger than today’s

systems reaching millions to billions elements. New programming models and runtimes will be

necessary to use efficiently these new infrastructures. To achieve results on this front, the Eu-

ropean Union funded the COST Action Nesus IC1305 [72]. Its goal is to establish an open

European research network targeting sustainable solutions for ultrascale computing, aiming at

cross fertilization among HPC, large-scale distributed systems and big data management. The

network contributes to gluing together disparate researchers working across different areas and

provides them with a meeting ground to exchange ideas, identify synergies and pursue common

activities in research topics, such as sustainable software solutions (applications and system

software stack), data management, energy efficiency and resilience.

One key element on the ultrascale front is the necessity of new sustainable programming

and execution models in the context of rapid underlying computing architecture changing. There

is a need to explore synergies among emerging programming models and runtimes from HPC,

distributed systems and big data management communities. To improve the programmability of

1University of Toulouse, Toulouse, France
2University of Innsbruck, Innsbruck, Austria
3University of Extremadura, Badajoz, Spain
4UIST, Orhid, Republic of Macedonia
5Aristotle University of Thessaloniki, Thessaloniki, Greece
6University College Dublin, Dublin, Ireland
7West University of Timisoara, Timisoara, Romania
8University of Calabria, Rende CS, Italy
9National Academy of Sciences of Armenia, Yerevan, Armenia

future systems, the main changing factor will be the substantially higher levels of concurrency,

asynchrony, failures and heterogeneous architectures.

At different levels, teams of scientists are tackling this challenge. The goal of the European

Cost Action Nesus is to establish an open European research network. One of the key elements

this action will target is the proposal and implementation of novel programming paradigms

and runtimes in order to make the ultrascale a reality. On the other hand, the main objective

of the European Exascale Software Initiative [73] is to provide recommendations on strategic

European actions with a particular focus on software key issues improvement, cross cutting

issues advances and gap analysis. The common goal of these two different actions, is to provide

a coherent agenda for research, but also establish a code and regulation at a European level, in

order to reach ultrascale computing.

At the international level, the goal of the International Exascale Software Project [74] is

also to provide an international common vision for cooperation in order to reach ultrascale:

“The guiding purpose of the IESP is to empower ultra-high resolution and data-intensive sci-

ence and engineering research through the year 2020, by developing a plan for: (a) a common,

high-quality computational environment for petascale/exascale systems and (b) catalyzing, co-

ordinating and sustaining the effort of the international open source software community to

create that environment as quickly as possible”.

This article explores programming models and runtimes required to facilitate the task of

scaling and extracting performance on continuously evolving platforms, while providing resilience

and fault-tolerant mechanisms to tackle the increasing probability of failures throughout the

whole software stack. However, currently no programming solution exists that satisfies all these

requirements. Therefore, new programming models and languages are required towards this

direction. The whole point of view on application will have to change. As we will show, the current

wall between runtime and application models leads to most of these problem. Programmers will

need new tools but also new way to assess their programs. As we will see, data will be a key

concept around which failure-tolerant high number of micro-threads will be generated using

high-level information by adaptive runtime.

This article is structured as follows: the next section describes the requirements from the

programmability point of view for extra large-scale systems such as ultrascale systems. The

second section describes how data shift the paradigm of processor-centric management toward

a data-centric one in next generation systems. The third section describes how resilience will

be of critical importance, since faults and reconfiguration will be a recurring element in such a

large-scale infrastructure. The fourth section presents the elements required to reach sustainable

software development, whereas the final section concludes this article.

1. Improved programmability for extra large-scale systems

Supercomputers have become an essential tool in numerous research areas. Enabling future

advances in science requires the development of efficient parallel applications, which are able to

meet the computational demands. The modern high-performance computing systems (HPCS)

are composed of hundreds of thousand computational nodes. Due to the rapidly increasing scale

of those systems, programmers cannot have a complete view of the system. The programmability

strongly determines the overall performance of a high performance computing system. It is a

substrate over which processors, memory and I/O devices are exchanging data and instructions.

It should have high scalability, which will support the development of the next generation exas-

cale supercomputers. Programmers also need to have an abstraction that allows them to manage

hundreds of millions to billions of concurrent threads. Abstraction allows organizing programs

into comprehensible fragments, which is very important for clarity, maintenance and scalability

of the system. It also allows increasing of programmability by defining new languages on top

of the existing language and, by defining completely new parallel programming languages. This

makes abstraction an important part of most parallel paradigms and runtimes. Formerly, com-

puter architectures were designed primarily for improved performance or for energy efficiency.

In future exascale architectures, one of the top challenges will be enabling a programmable en-

vironment for the next generation architectures. In reality, programmability is a metric, which

is really difficult to define and measure. The next generation architectures should minimize the

chances of parallel computational errors while relieving the programmer from managing low-level

tasks.

In order to explore this situation more precisely, one aim of this research is to investigate

the limitations of current programming models along-with evaluations of promises of hybrid

programming model to solve these scaling-related difficulties.

1.1. Limitations of the current programming models

Reaching exascale in terms of computing nodes requires the transition from current control

of thousands of threads to billions of threads as well as the adaptation of the performance models

to cope with an increased level of failures. One simple model that is used to program at any

scale is a utopian idea as proved in the last twenty years of ’standardized’ parallel computing.

Unfortunately the exascale has become the reason for improving programming systems, as exist-

ing programming models implementations, more than a reason for a change in the programming

models. This approach was classified by Gropp and Snir in [2] as evolutionary. According to

their view, the five most important characteristics of the programming models that are affected

by the exascale transition are: the thread scheduling, the communications, the synchronization,

the data distribution and the control views.

1.1.1. Limitations of message passing programming model

The current vision on exascale system is at the moment to exploit distributed memory par-

allelism, and therefore the message passing model is likely to be used at least partially. Moreover

the most popular system implementation of the model, MPI, has been shown to run with mil-

lions of cores for particular problems. MPI is based upon standard sequential programming

languages, augmented with low-level message passing constructs, forcing users to deal with all

aspects of parallelization, including the distribution of data and work to cores, communication

and synchronization. MPI primarily favors static data distribution and is consequently not well

suited to deal with dynamic load balancing.

However, it has been shown that the all-to-all communication algorithms used in the message

passing models are not scalable (most commonly used implementations often assume a fully

connected network and have dense communication patterns) while all-to-some, one-sided or

sparse communication patterns are more reliable.

Furthermore, parallel I/O is a limiting factor in the MPI systems, showing that the current

MPI-IO model should be reconsidered. In particular the limitations are related to the collective

access to the I/O request and the data partitioning.

1.1.2. Limitations of shared-memory programming models

The exascale system is expected to handle hundreds of cores in the one CPU or GPU. Using

shared-memory systems is a feasible alternative to message passing in the case of medium size

parallel systems in order to reduce the programming overhead as is moving the parallelization

burden from the programmer to the compiler.

The most popular shared-memory system, OpenMP, is following a parallelism control model

that does not allow the control of data distribution and uses non-scalable synchronization mech-

anism like locks or atomic sections. Moreover, the global view of data leads easily to non-efficient

programming as encouraging synchronization joins of all threads’ remote data accesses similar

to the local ones.

The emerging Partitioned Global Address Space model (PGAS) is trying to overcome the

scalability problems of the global shared-memory model [3]. The PGAS model is likely to have

benefit where non-global communication patterns can be implemented with minimal synchro-

nization and overlap of computation and communication. Moreover, the scalability of I/O mech-

anisms in PGAS depends only on the scalability of the underlying I/O infrastructure and is not

limited by the model. However, the scalability is limited to thousands of cores (with the excep-

tion of X10 which is implementing an asynchronous PGAS model). The load balancing is still

an open issue for the systems that implement the model. Furthermore, it is not possible yet to

sub-structure threads into subgroups.

1.1.3. Limitations of heterogeneous programming

Clusters of heterogeneous nodes composed of multi-core CPUs and GPUs are increasingly

being used for High Performance Computing due to the benefit in peak performance and

energy efficiency. In order to fully harvest the computational capabilities of such architectures,

application developers often employ a combination of different parallel programming paradigms

(e.g. OpenCL, CUDA, MPI and OpenMP). However, heterogeneous computing also poses

the new challenge of how to handle the diversity of execution environment and programming

models. The Open Computing Language [60] introduces an open standard for general-purpose

parallel programming of heterogeneous systems. An OpenCL program may target any OpenCL-

compliant device and today many vendors provide an implementation of the OpenCL standard.

An OpenCL program comprises a host program and a set of kernels intended to run on a

compute device. It also includes a language for kernel programming, and an API for transferring

data between host and device memory and for executing kernels.

Single node hardware design is shifting to a heterogeneous nature. At the same time many

of today’s largest HPC systems are clusters that combine heterogeneous compute device archi-

tectures. Although OpenCL has been designed to work with multiple devices, it only considers

local devices available on a single machine. However, the host-device semantics can be po-

tentially applied to remote, distributed devices accessible on different compute nodes. Porting

single-node multi-device applications to clusters that combine heterogeneous compute device

architectures is not straightforward and in addition it requires the use of a communication layer

for data exchange between nodes. Writing programs for such platforms is error prone and te-

dious. Therefore, new abstractions, programming models and tools are required to deal with

these problems.

1.2. Exascale promise of the hybrid programming model

Using a message passing model for the inter-node parallelism and a shared-memory pro-

gramming model for intra-node parallelism is nowadays seen as a promising path to reach the

exascale. The hybrid model is referred as MPI+X, where X represents the programming model

that supports threads. The most common X is OpenMP, while there are options for X, like

OpenACC.

However, restrictions on the MPI+X model are still in place, for example how MPI can be

used in a multi-threaded process. In particular, threads cannot be individually identified as the

source or target of MPI messages, or an MPI barrier synchronize the execution of the processes

but does not guarantee their synchronization in terms of memory views. The proposal to use

MPI Endpoints in all-to-all communications from [4] is a step forward in order to facilitate high

performance communication between multi-threaded processes.

Furthermore, combining different programming styles like message passing with shared mem-

ory programming lends itself to information hiding between different layers that may be impor-

tant for optimization. Different runtime systems involved with these programming models lack

a global view that can have a severe impact on the overall performance.

However, the biggest problem of MPI+X is the competition for the resources like bandwidth

(accessing memory via the inter-node interconnect) [2]. Furthermore, an important obstacle is

the memory-footprint and efficient memory usage, as the available memory per core or node is

not expected to scale linearly with the number of cores and nodes, and the MPI+X functionality

must cope with the expected decrease of space per core or node.

Multitasking is a mean to increase the ability to deal with fluctuations in execution of

the threads due to the fault handling or power management strategies. PGAS+multitasking is

providing a programming model analogous with MPI+X.

In exascale system storage and communication hierarchies will be deeper than the current

ones. Therefore it is expected that the hierarchical programming models should replace the

current two level ones [1].

The one-side communication model enables programming in a shared-memory-like program-

ming style. In MPI it is based on the concept of a communication window to which the MPI

processes in a communicator statically attach contiguous segments of their local memory for

exposure to other processes; the access to the window is granted by synchronization operations.

The model separates the communication operations and synchronization for data consistency,

allowing the programmer to delay and schedule the actual communications. However the model

is criticized for being difficult to be used efficiently.

1.2.1. Innovative programming for heterogeneous computing systems

In recent years, heterogeneous systems have received a great amount of attention from

the research community. Although several projects have been recently proposed to facilitate

the programming of clusters with heterogeneous nodes [54–59, 68, 69], none of them combines

support for high performance inter-node data transfer, support for a wide number of different

devices and a simplified programming model.

Kim et al. [56] proposed the SnuCL framework that extends the original OpenCL seman-

tics to heterogeneous cluster environments. SnuCL relies on the OpenCL language with few

extensions to directly support collective patterns of MPI. Indeed, in SnuCL the programmer is

responsible to take care of the efficient data transfers between nodes. In that sense, end users of

the SnuCL platform need to have an understanding of MPI collective calls semantics in order

to be able to write scalable programs.

Also other works have investigated the problem of extending the OpenCL semantics to

access a cluster of nodes. The Many GPUs Package (MGP) [69] is a library and runtime system

that using the MOSIX VCL layer enables unmodified OpenCL applications to be executed on

clusters. Hybrid OpenCL [68] is based on the FOXC OpenCL runtime and extends it with a

network layer that allows the access to devices in a distributed system. The clOpenCL [59]

platform comprises a wrapper library and a set of user-level daemons. Every call to an OpenCL

primitive is intercepted by the wrapper which redirects its execution to a specific daemon at

a cluster node or to the local runtime. dOpenCL [55] extends the OpenCL standard, such

that arbitrary compute devices installed on any node of a distributed system can be used

together within a single application. Distributed OpenCL [54] is a framework that allows the

distribution of computing processes to many resources connected via network using JSON

RPC as a communication layer. OpenCL Remote [58] is a framework which extends both

OpenCL’s platform model and memory model with a network client-server paradigm. Virtual

OpenCL [57], based on the OpenCL programming model, exposes physical GPUs as decoupled

virtual resources that can be transparently managed independent of the application execution.

An innovative approach to program clusters of nodes composed of multi-core CPUs and

GPUs has been introduced through libWater [71], a library-based extension of the OpenCL

programming paradigm that simplifies the development of applications for distributed hetero-

geneous architectures.

libWater aims to improve both productivity and implementation efficiency when paral-

lelizing an application targeting a heterogeneous platform by achieving two design goals: (i)

transparent abstraction of the underlying distributed architecture, such that devices belonging

to a remote node are accessible like a local device; (ii) access to performance-related details

since it supports the OpenCL kernel logic. The libWater programming model extends the

OpenCL standard by replacing the host code with a simplified interface. libWater also comes

with a novel device query language (DQL) for OpenCL device management and discovery. A

lightweight distributed runtime environment has been developed which dispatches the work

between remote devices, based on asynchronous execution of both communications and OpenCL

commands. libWater runtime also collects and arranges dependencies between commands in

the form of a powerful representation called command DAG. The command DAG can be

effectively exploited to improve the scalability. For this purpose a collective communication

pattern recognition analysis and optimization has been introduced that matches multiple single

point-to-point data transfers and dynamically replaces them with a more efficient collective

operation (e.g. scatter, gather and broadcast) supported by MPI.

Besides OpenCL-based approaches, also CUDA solutions have been proposed to simplify

distributed systems programming. CUDASA [66] is an extension of the CUDA programming

language which extends parallelism to multi-GPU systems and GPU-cluster environments.

rCUDA [61] is a distributed implementation of the CUDA API that enables shared remote

GPGPU in HPC clusters. cudaMPI [62] is a message passing library for distributed-memory

GPU clusters that extends the MPI interface to work with data stored on the GPU using

the CUDA programming interface. All of these approaches are limited to devices that support

CUDA, i.e. NVidia GPU accelerators, and therefore they cannot be used to address heteroge-

neous systems which combines CPUs and accelerators from different vendors.

Other projects have investigated how to simplify the OpenCL programming interface. Sun

et. al [65], proposed a task queuing extension for OpenCL that provides a high-level API based on

the concepts of work pools and work units. Intel CLU [75], OCL-MLA [53] and SimpleOpencl [70]

are lightweight API designed to help programmers to rapidly prototype heterogeneous programs.

A more sophisticated approach was proposed in [67]. OmpSs relies on compiler technologies

to generate host and kernel code from a sequential program annotated with pragmas. The

runtime of OmpSs internally uses a DAG with the scope of scheduling. However, the DAG is

not dynamically optimized as done by libWater.

2. Data-intensive programming and runtimes

The data intensity of scientific and engineering applications forces the expansion of exascale

system. It puts a focus on architectures, programming models, runtime systems improvement

on data intensive computing. A major challenge is to utilize the available technologies and

large-scale computing resources effectively to tackle the scientific and societal challenges. This

section describes the runtime requirements and scalable programming models for data-intensive

applications, as well as new data access, communication, and processing operations for data-

intensive applications.

2.1. Next generation MPI

MPI is the most widely used standard [10] in the current petascale systems, supporting

among others the message passing model. It has proven high performance portability and scal-

ability [9, 17], as well as stability over the last 20 years. MPI provides a (nearly) fixed number

of statically scheduled processes with a local view of the data distributed across the system.

Nevertheless, ultrascale systems are not going to be built scaling incrementally from current

systems, which probably will have a high impact on all levels of the software stack [2, 18]. The

international community agrees that changes need to be done in current software at all levels.

Future parallel and distributed applications push to explore alternative scalable and reliable

programming models [13].

Current HPC systems need to scale up by three orders of magnitude to meet exascale. While

a sharp rise in the number of nodes of this magnitude is not expected, the critical growth will

come from the intra-node capacities. Fat nodes with a large number of lightweight heterogeneous

processing elements, including accelerators, will be common in the ultrascale platforms, mixing

parallel and distributed systems. In addition, memory per core ratio is expected to decrease,

while the number of NUMA nodes will grow to alleviate the problem of memory coherence

between hundreds of cores [16]. On the software side, weak scaling of applications running on such

platforms will demand more computation resources to manage huge volumes of data. Nowadays

MPI applications, most of which are built using the bulk-synchronous synchronization model [11]

as a sequence of communication and computation over the interchanged data stages, will continue

to be important, but multi-physics and adaptive meshing applications, with multiple components

implemented using different programming models, and with dynamic starting and finalization of

such components, will become common in ultrascale. Apart from the most regular applications,

this synchronization model is already a strangle point.

In this scenario, programming models need to face multiple challenges to efficiently exploit

resources with a high level of programmability [14]: scalability and parallelism increase, energy

efficient resource management and data movement, and I/O and resilience in applications among

others.

MPI has successfully faced the scalability challenge at petascale with the so-called hybrid

model, represented as MPI+X, meaning MPI to communicate between nodes and a shared

memory programming model (e.g. OpenMP for shared memory and OpenACC for accelerators)

inside a node. This scheme provides with load balancing and reduces the memory footprint

and data copies in shared memory, and it is likely to continue in the future. Notwithstanding,

increase in node scale, heterogeneity and complexity of integration of processing elements will

demand improved techniques for balancing the computational load between potentially large

number of processes running kernels composing the application [24].

Increasing imbalances in large-scale applications, aggravated by hardware power manage-

ment, localized failures or system noise, require synchronization-avoiding algorithms, adaptable

to dynamic changes in the hardware and the applications. An example is the collective algo-

rithms based on a non-deterministic point-to-point communication pattern, and able to capture

and deal with relevant network properties related to heterogeneity [23]. The MPI specification

provides support to mitigate load imbalance issues through the one-sided communication model,

non-blocking collectives, or the scalable neighbor collectives for communication along the virtual

user defined topology. In the meanwhile, specification and implementation scalability issues have

been detected [17]. They need to be either avoided, as the use of all to all inherently non-scalable

collectives, or improved, as initialization or communicator creation, in exascale applications.

To support the hybrid programming model, MPI defines levels of thread-safety. Lower lev-

els are suitable for bulk-synchronous applications, while higher levels require synchronization

mechanisms, which lead current MPI libraries to a significant performance degradation. Com-

munication endpoints [19] mechanism is a proposal to extend the MPI standard for reducing

contention inside a single process by allowing to attach threads to different endpoints for sending

and receiving messages.

Big data volumes and the power consumed in moving data across the system makes data

management one of the main concerns in future systems. In the distributed view, the common

methodology of reading data from a centralized filesystem, spreading it over the processing

elements and writing the results is energy and performance inefficient, and failure prone. Data

will be distributed across the system, and the placement of MPI processes in a virtual topology

needs to adapt to the data layout to improve the performance, which will require better mapping

algorithms. MPI addresses these challenges in shared memory by a programming model based

on shared data windows accessible by processes in the same node, hence avoiding horizontal data

movement inside the node. However, lack of data locality awareness leads to vertical movement of

data across the memory hierarchy, which degrades performance. For instance, the communication

buffers received by MPI processes and the access by the local OpenMP threads for computing

on them will need smarter scheduling policies. Data-centric approaches are needed for describing

data in the system and apply the computation where such data resides [12, 15].

Another critical challenge for MPI to support exascale systems is the resilience, a cross-

cutting issue affecting the whole software stack. Current checkpointing/restart methods are

insufficient for future systems under a failure ratio of a few hours and in the presence of silent

errors, and traditional triple modular redundancy (TMR) is not affordable in an energy efficient

manner. New techniques of resilient computing have been proposed and developed, also in the

MPI context [5, 6]. One proposal for increasing resilience to node failures is to implement mal-

leable applications, able to adapt their execution to the available resources in the presence of

hardware errors, and avoiding the restart of the application [7].

Alternatives to MPI come from the Partitioned Global Address languages (PGAs) and High

Productivity Computing Systems (HPCS) programming languages. PGAs programming models

provide a global view of data with explicit communication as CAF [38] (Co-Array Fortran), or

implicit communication as UPC [40] (Unified Parallel C). However, static scheduling and poor

performance issues make them currently far from replacing the well established and successful

MPI+X hybrid model. Moreover, OpenMP presents problems with nested parallelism and ver-

tical locality, so the possibility of MPI+PGAs has been, and continues to be evaluated [8, 22]

to provide a programming environment better suited to the future platforms. HPCS languages,

such as a Chapel [63] and X10 [64], provide a global view of data and control. For instance,

Chapel provides programming constructions at different levels of abstraction. It includes fea-

tures for computation-centric parallelism based on tasks, as well as data-centric programming

capabilities. For instance, the locale construction describes the compute nodes in the target

architecture and allows to reasoning about locality and affinity, and to manage global views of

distributed arrays.

2.2. Runtime requirements for data-intensive applications

Developing data-intensive applications over exascale platforms requires the availability of

effective runtime systems. This subsection discusses which functional and non-functional require-

ments should be fulfilled by future runtime systems to support users in designing and executing

complex data-intensive applications over large-scale parallel and distributed platforms in an

effective and scalable way.

The functional requirements can be grouped into four areas: data management, tool man-

agement, design management, and execution management [39].

Data management. Data to be processed can be stored in different formats, such as relational

databases, NoSQL databases, binary files, plain files, or semi-structured documents. The runtime

system should provide mechanisms to store and access such data independently from their

specific format. In addition, metadata formalisms should be provided to describe the relevant

information associated with data (e.g., location, format, availability, available views), in order

to enable their effective access, manipulation and processing.

Tool management. Data processing tools include programs and libraries for data selection,

transformation, visualization, mining and evaluation. The runtime system should provide mech-

anisms to access and use such tools independently from their specific implementation. Also in

this case metadata should be provided to describe the most important features of such tools

(e.g., their function, location, usage).

Design management. From a design perspective, three main classes of data-intensive appli-

cations can be identified: single-task applications, in which a single sequential or parallel process

task is performed on a given data set; parameter sweeping applications, in which data are ana-

lyzed using multiple instances of a data processing tool with different parameters; workflow-based

applications, in which data-intensive applications are specified as possibly complex workflows.

A runtime system should provide an environment to effectively design all the above-mentioned

classes of applications.

Execution management. The system should provide a parallel/distributed execution envi-

ronment to support the efficient execution of data-intensive applications designed by the users.

Since applications range from single tasks to complex workflows, the runtime system should

cope with such a variety of applications. In particular, the execution environment should provide

the following functionalities, which are related to the different phases of application execution:

accessing the data to be processed; allocating the needed compute resources; running the appli-

cation based on the user specifications, which may be expressed as a workflow; allowing users

to monitor an applications execution.

The non-functional requirements can be defined at three levels: user, architecture, and

infrastructure.

From a user point of view, non-functional requirements to be satisfied include:

• Data protection. The system should protect data from both unauthorized access and in-

tentional/incidental losses.

• Usability. The system should be easy to use by users, without the need of undertaking any

specialized training.

From an architecture perspective, the following principles should inspire system design:

• Openness and extensibility. The architecture should be open to the integration of new

data processing tools and libraries; moreover, existing tools and libraries should be open

for extension and modifications.

• Independence from infrastructure. The architecture should be designed to be as indepen-

dent as possible from the underlying infrastructure; in other terms, the system services

should be able to exploit the basic functionalities provided by different infrastructures.

Finally, from an infrastructure perspective, non-functional requirements include:

• Heterogeneous/Distributed data support. The infrastructure should be able to cope with

very large and high dimensional data sets, stored in different formats in a single site, or

geographically distributed across many sites.

• Availability. The infrastructure should be in a functioning condition even in the presence

of failures that affect a subset of the hardware/software resources. Thus, effective mecha-

nisms (e.g., redundancy) should be implemented to ensure dependable access to sensitive

resources such as user data.

• Scalability. The infrastructure should be able to handle a growing workload (deriving from

larger data to process or heavier algorithms to execute) in an efficient and effective way, by

dynamically allocating the needed resources (processors, storage, network). Moreover, as

soon as the workload decreases, the infrastructure should release the unneeded resources.

• Efficiency. The infrastructure should minimize resource consumption for a given task to

execute. In the case of parallel/distributed tasks, efficient allocation of processing nodes

should be guaranteed. Additionally, the infrastructure should be highly utilized so to

provide efficient services.

Even though several research systems fulfilling most of these requirements have been devel-

oped, such as Pegasus [25], Taverna [26], Kepler [27], ClowdFlows [28], E-Science Central [29],

and COMPSs [30], they are designed to work on conventional HPC platforms, such as clusters,

Grids, and - in some cases - Clouds. Therefore, it is necessary to study novel architectures,

environments and mechanisms to fulfill the requirements discussed above, so as to effectively

support design and execution of data-intensive applications in future exascale systems.

2.3. Scalable programming models for data-intensive applications

Data-intensive applications often involve a large number of data processing tools that must

be executed in a coordinated way to analyze huge amount of data. This section discusses the need

for scalable programming models to support the effective design and execution of data-intensive

applications on a massive number of processors.

Implementing efficient data-intensive applications is not trivial and requires skills of parallel

and distributed programming. For instance, it is necessary to express the task dependencies and

their parallelism, to use mechanisms of synchronization and load balancing, and to properly

manage the memory and the communication among tasks. Moreover, the computing infrastruc-

tures are heterogeneous and require different libraries and tools to interact with them. To cope

with all these problems, different scalable programming models have been proposed for writing

data-intensive applications [31].

Scalable programming models may be categorized based on their level of abstraction (i.e.,

high-level and low-level scalable models) and based on how they allow programmers to create

applications (i.e., visual or code-based formalisms).

Using high-level scalable models, the programmers define only the high-level logic of applica-

tions while hiding the low-level details that are not fundamental for application design, including

infrastructure-dependent execution details. The programmer is helped in application definition

and the application performance depends on the compiler that analyzes the application code and

optimizes its execution on the underlying infrastructure. Instead, low-level scalable models allow

the programmers to interact directly with computing and storage elements of the underlying

infrastructure and thus to define the applications parallelism directly. Defining an application

requires more skills and the application performance strongly depends on the quality of the code

written by the programmer.

Data-intensive applications can be designed through visual programming formalism, which

is a convenient design approach for high-level users, e.g. domain-expert analysts having a limited

understanding of programming. In addition, a graphical representation of workflows intrinsically

captures parallelism at the task level, without the need to make parallelism explicit through

control structures [32]. Code-based formalism allows users to program complex applications

more rapidly, in a more concise way, and with higher flexibility [33]. The code-base applications

can be defined in different ways: i) with a language or an extension of language that allows to

express parallel applications; ii) with some annotations in the application code that permits the

compiler to understand which instructions will be executed in parallel; and iii) using a library

in the application code that adds parallelism to application.

Given the variety of data-intensive applications (from single-task to workflow-based) and

types of users (from end users to skilled programmers) that can be envisioned in future exascale

systems, there will be a need for scalable programming models with different levels of abstractions

(high-level and low-level) and different design formalisms (visual and code-based), according to

the classification outlined above. Thus, the programming models should adapt to user needs by

ensuring a good trade-off between ease in defining applications and efficiency of executing them

on exascale architectures composed by a massive number of processors.

2.4. New data access, communication, and processing operations for

data-intensive applications

This subsection discusses the need for new operations supporting data access, data ex-

change and data processing to enable scalable data-intensive applications on a large number of

processing elements.

Data-intensive applications are software programs that have a significant need to process

large volumes of data [21]. Such applications devote most of their processing time to run I/O

operations and to exchange and move data among the processing elements of a parallel comput-

ing infrastructure. Parallel processing of data-intensive applications typically involves accessing,

pre-processing, partitioning, aggregating, querying, and visualizing data which can be processed

independently. These operations are executed using application programs running in parallel on

a scalable computing platform that can be a large Cloud system or a massively parallel machine

composed of many thousand processors. In particular, the main challenges for programming

data-intensive applications on exascale computing systems come from the potential scalability

and resilience of mechanisms and operations made available to developers for accessing and man-

aging data. Indeed, processing very large data volumes requires operations and new algorithms

able to scale in loading, storing, and processing massive amounts of data that generally must

be partitioned in very small data grains on which analysis is done by thousands to millions of

simple parallel operations.

Evolutionary models have been recently proposed that extend or adapt traditional parallel

programming models like MPI, OpenMP, MapReduce (e.g., Pig Latin) to limit the communica-

tion overhead (in the case of message-passing models) or to limit the synchronization control (in

the case of shared-models languages) [2]. On the other hand, new models, languages and APIs

based on a revolutionary approach, such as X10, ECL, GA, SHMEM, UPC, and Chapel have

been developed. In this case, novel parallel paradigms are devised to address the requirements

of massive parallelism.

Languages such as X10, UPC, GA and Chapel are based on a partitioned global address

space (PGAS) memory model that can be suited to implement data-intensive exascale applica-

tions because it uses private data structures and limits the amount of shared data among parallel

threads. Together with different approaches (e.g., Pig Latin and ECL) those models must be

further investigated and adapted for providing data-centered scalable programming models use-

ful to support the efficient implementation of exascale data analysis applications composed of

up to millions of computing units that process small data elements and exchange them with a

very limited set of processing elements. A scalable programming model based on basic opera-

tions for data intensive/data-driven applications must include operations for parallel data access,

data-driven local communication, data processing on limited groups of cores, near-data synchro-

nization, in-memory querying, group-level data aggregation, and locality-based data selection

and classification.

Supporting efficient data-intensive applications on exascale systems will require an accurate

modeling of basic operations and of the programming languages/APIs that will include them.

At the same time, a significant programming effort of developers will be needed to implement

complex algorithms and data-driven applications such that used, for example, in big data analysis

and distributed data mining. Programmers must be able to design and implement scalable

algorithms by using the operations sketched above. To reach this goal, a coordinated effort

between the operation/language designers and the application developers would be very fruitful.

3. Resilience

As exascale systems grow in computational power and scale, failure rates inevitably increase.

Therefore, one of the major challenges in these systems is to effectively and efficiently maintain

the system reliability. This requires to handle failures efficiently, so that the system can continue

to operate with satisfactory performance. The timing constraints of the workload, as well as the

heterogeneity of the system resources, constitute another critical issue that must be addressed

by the scheduling strategy that is employed in such systems. Therefore, the next generation

code will need to be resistant to failures. Advanced modeling and simulation techniques are the

basic means of investigating fault tolerance in exascale systems, before performing the costly

prototyping actions required for resilient code generation.

3.1. Modeling and simulation of failures in large-scale systems

Exascale computing provides a large-scale, heterogeneous distributed computing environ-

ment for the processing of demanding jobs. Resilience is one of the most important aspects of

exascale systems. Due to the complexity of such systems, their performance is usually examined

by simulation rather than by analytical techniques. Analytical modeling of complex systems is

difficult and often requires several simplifying assumptions. Such assumptions might have an

unpredictable impact on the results. For this reason, there have been many research efforts in

developing tractable simulation models of large-scale systems.

In [34], simulation models are used to investigate performance issues in distributed systems

where the processors are subject to failures. In this research, the author considers that failures

are a Poisson process with a rate that reflects the failure probability of processors. Processor

repair time has been considered as an exponentially distributed random variable with a mean

value that reflects the average time required for the distributed processors to recover. The

failure/ repair model of this paper can be used in combination with other models in the case of

large-scale distributed processors.

3.2. Checkpointing in exascale systems

Application resilience is an important issue that must be addressed in order to realize the

benefits of future systems. If a failure occurs, recovery can be handled by checkpoint-restart

(CPR), that is, by terminating the job and restarting it from its last stored checkpoint. There

are views that this approach is not expected to scale efficiently to exascale, so different mecha-

nisms are explored in the literature. Gamell et al. in [35] have implemented Fenix, a framework

for enabling recovery from failures for MPI-based parallel applications in an online manner (i.e.

without disrupting the job). This framework relies on application-driven, diskless, implicitly-

coordinated checkpointing. Selective checkpoints are created at specific points within the appli-

cation, guaranteeing global consistency without requiring a coordination protocol.

Zhao et al. in [36] investigate the suitability of a checkpointing mechanism for exascale

computers, across both parallel and distributed filesystems. It is shown that a checkpointing

mechanism on parallel filesystems is not suitable for exascale systems. However, the simulation

results reveal that a distributed filesystem with local persistent storage could enable efficient

checkpointing at exascale.

In [37], the authors define a model for future systems that faces the problem of latent

errors, i.e. errors that go undetected for some time. They use their proposed model to derive

optimal checkpoint intervals for systems with latent errors. The importance of a multi-version

checkpointing system is explored. They conclude that a multi-version model outperforms a single

checkpointing scheme in all cases, while for exascale scenarios, the multi-version model increases

efficiency significantly.

Many applications in large-scale systems have an inherent need for fault tolerance and

high-quality results within strict timing constraints. The scheduling algorithm employed in such

cases must guarantee that every job will meet its deadline, while providing at the same time

high-quality (i.e. precise) results. In [41], the authors study the scheduling of parallel jobs in a

distributed real-time system with possible software faults. They model the system with a queu-

ing network model and evaluate the performance of the scheduling algorithms with simulation

techniques. For each scheduling policy they provide an alternative version which allows impre-

cise computations. They propose a performance metric which takes into account not only the

number of jobs guaranteed, but also the precision of the results of each guaranteed job. Their

simulation results reveal that the alternative versions of the algorithms outperform their respec-

tive counterparts. The authors employ the technique of imprecise computations, combined with

checkpointing, in order to enhance fault tolerance in real-time systems. They consider mono-

tone jobs that consist of a mandatory part, followed by an optional part. In order for a job to

produce an acceptable result, it is required that at least the mandatory part of the job must be

completed. The precision of the results is further increased, if the optional part is allowed to be

executed longer. The aim is to guarantee that all jobs will complete at least their mandatory

part before their deadline.

The authors employ application-directed checkpointing. When a software failure occurs dur-

ing the execution of a job that has completed its mandatory part, there is no need to rollback

and re-execute the job. In this case, the system accepts as its result the one produced by its

mandatory part, assuming that a checkpoint takes place when a job completes its mandatory

part. According to the research findings in [41], in large-scale systems where many software fail-

ures can occur, scheduling algorithms based on the technique of imprecise computations could

be effectively employed for the fault-tolerant execution of parallel real-time jobs.

3.3. Alternative programming models for fault tolerance in exascale systems

However, programming models that enable more appropriate recovery strategies than CPR

are required in exascale systems. Towards this direction, Heroux in [42] presents the following

four programming models for developing new algorithms:

• Skeptical Programming (SkP): SkP requires that algorithm developers should expect

that silent data corruption is possible, so that they can develop validation tests.

• Relaxed Bulk-synchronous Programming (RBSP): RBSP is possible with the in-

troduction of MPI 3.0.

• Local Failure, Local Recovery (LFLR): LFLR provides programmers with the ability

to recover locally and continue application execution when a process is lost. This model

requires more support from the underlying system layers.

• Selective Reliability Programming (SRP): SRP provides the programmer with the

ability to selectively declare the reliability of specific data and compute regions.

The User Level Failure Mitigation (ULFM) interface has been proposed to provide fault-

tolerant semantics in MPI. In [43], the authors present their experiences on using ULFM in a

case study to exploit the advantages and difficulties of this interface to program fault-tolerant

MPI applications. They found that ULFM is suitable for specific types of applications, but it

provides few benefits for general MPI applications.

The issue of fault-tolerant MPI is also considered in [44]. Due to the fact that the system

kills all the remaining processes and restarts the application from the last saved checkpoint when

an MPI process is lost, it is expected that this approach will not work for future extreme scale

systems. The authors address this scaling issue through the LFLR programming model. In order

to achieve this model, they design and implement a software framework using a prototype MPI

with ULFM (MPI-ULFM).

4. Code sustainability and other metrics

Software designers for supercomputers face new challenges. Their code must be efficient

whatever the underlying platform is while not wasting computing time for crossing abstraction

layers. Several tools presented in the previous sections provide designers and programmers with

tools to abstract from the underlying hardware while achieving the maximum performance.

The clear goal to achieve is to increase the raw performance of supercomputers, but it is not

anymore the simple the faster, the better. Two reasons show that taking care of raw performance

is no more sufficient:

• Life of code is way longer than hardware life;

• Other metrics (energy, plasticity, scalability) become more and more important.

4.1. Life cycle of codes

HPC world is comprised of a few widely used codes that serve as base library and a majority

of ad-hoc codes often mainly designed and programmed by non-computer scientists.

As an example for the first category, in the scientific computing domain, which aims at

constructing mathematical models and numerical solution techniques for solving problems arising

in science and engineering, Scalapack [51] is a largely used library of high-performance linear

algebra routines for parallel distributed memory machines. It is a base of large-scale scientific

codes and can run on nearly every classical supercomputers. It encompasses BLAS (Basic Linear

Algebra Subprograms) and pBLAS (parallel BLAS) libraries. This package is comprised of old

C and Fortran codes and was first released in 1979 from NASA [52] for BLAS and 1996 for

Scalapack [51]. In the last version (version 2.0.2, May 2012) large parts of code are still dating

from the first version of 1996, being raw computing code in Fortran or higher level code in C.

This version also contains code from nearly every year from 1996 to 2012. This code was able

to evolve up to present days due to the community of users behind it. Most other less used

libraries or software did not have this chance. But even this library has several sustainability

problems such as new hardware architectures: Several supercomputer projects are planning to

use GPU [50] or ARM [49] processors instead of classical standard x86 ones.

Concerning the second category the difficulties are even higher, as a large number of codes

has been tested and evaluated only on a handful of supercomputers. Their scalability is un-

known on different networks or memory topologies for example. In this case, these codes are not

sustainable as they require a major rewrite to run on new architecture.

Hence new programming paradigms such as skeletons [47], or YML [48] are needed to reach

sustainable codes that run efficiently on the latest generation of supercomputers. Concerning

exascale computing the situation is even more dire as the exact detail of these architectures is

still cloudy.

4.2. New metrics

Further away from sustainability of the code itself, other metrics are important for designers

and programmers. Power consumption of supercomputers is reaching thresholds that prevent

them from continuing to grow like before [46]. The main three metrics that programmers have

to confront are:

• Raw power consumption: Depending on the particular instructions, library, memory and

network access patterns, application will consume different power consumption at partic-

ular time and different overall energy for the same work;

• Scalability : The capability of scaling up is key as future exascale systems will be composed

of hundreds of thousands of cores;

• Plasticity : It is the capability of the software to adapt to the underlying hardware archi-

tecture (ARM/x86/GPU, network topology, memory hierarchy,. . .) but also to reconfigure

itself by changing the number of allocated resources or migrating between architectures at

runtime.

At the moment most tools to provide insight on the code to programmers are aiming toward

raw computing performance or memory and network usage. Only a few tools exist to provide

feedback to programmers on such needed metrics. Valgreen [45] offers to give insight on the

power consumption of codes for example. But at the moment manual evaluation is needed in

order to evaluate these metrics for any code.

Conclusion

In this article we explored and discussed programming models and runtimes required for

scalable high performance computing systems that comprise a very large number of processors

and threads. Currently no programming solutions exist that satisfy all the main requirements

of such systems. Therefore, new programming models are required that support data local-

ity, minimize data exchange and synchronization, while providing resilience and fault-tolerant

mechanisms in order to tackle the increasing probability of failures in such large and complex

systems.

New programming models and languages will be a key component of exascale systems. Their

design and implementation is one of the pillars of the future exascale strategy that is based on

the development of massively parallel hardware, small-grain parallel algorithms and scalable

programming tools. All those components must be developed to make that strategy effective

and useful. Furthermore, in order to reach actual sustainability, code must reinvent itself and

be more independent of the underlying hardware.

One main element will be to create new communication channels between runtime software

and development environment. Indeed the latter have all relevant high-level information con-

cerning application structure and adaptation capabilities but they are usually lost when the

time to actually run the application comes.

As exascale systems grow in computational power and scale, their resilience becomes in-

creasingly important. Due to the complexity of such systems, fault tolerance must be achieved

by employing more effective approaches than the traditional checkpointing scheme. Even though

many alternative approaches have been proposed in the literature, further research is required

towards this direction.

Finally, a way to provide higher abstraction from design time to execution time that will

be investigated is to extend MPI standards to support this abstraction and to provide higher

scalability support.

The work presented in this article has been partially supported by EU under the COST

program Action IC1305, “Network for Sustainable Ultrascale Computing (NESUS)”.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela, Mara

J. Garzarn, David Padua, and Christoph von Praun, Programming for parallelism and

locality with hierarchically tiled arrays. In Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming (PPoPP ’06). ACM, 48-57,

2006. DOI: 10.1145/1122971.1122981.

2. William Gropp, Marc Snir. Programming for exascale computers. Computing in Science and

Engineering, 15(6):27–35, 2013. DOI: 10.1109/mcse.2013.96.

3. John Jenkins, James Dinan, Pavan Balaji, Nagiza F. Samatova, and Rajeev Thakur. En-

abling fast, noncontiguous GPU data movement in hybrid MPI+GPU environments. In

IEEE International Conference on Cluster Computing (CLUSTER), pages 468–476, 2012.

DOI: 10.1109/cluster.2012.72.

4. Jesper Larsson Träff, Antoine Rougier, and Sascha Hunold. Implementing a classic: Zero-

copy all-to-all communication with MPI datatypes. In 28th ACM International Conference

on Supercomputing (ICS), pages 135–144, 2014. DOI: 10.1145/2597652.2597662.

5. G. Bosilca, A. Bouteiller, and F. Cappello. MPICH-V: Toward a scalable fault tolerant MPI

for volatile nodes. In ACM/IEEE Supercomputing Conference, page 29. IEEE, 2002. DOI:

10.1109/sc.2002.10048.

6. G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI. Parallel

Computing, 27(11):1479–1495, October 2001. DOI: 10.1016/s0167-8191(01)00100-4.

7. C. George and S. S. Vadhiyar. ADFT: An adaptive framework for fault tolerance on large

scale systems using application malleability. Procedia Computer Science, 9:166–175, 2012.

DOI: 10.1016/j.procs.2012.04.018.

8. J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur. Hybrid parallel programming

with MPI and unified parallel C. in Proceedings of the 7th ACM international conference

on Computing frontiers, CF ’10, 2010. DOI: 10.1145/1787275.1787323.

9. P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur,

and J. L. Träff, MPI on millions of cores. Parallel Processing Letters, vol. 21, no. 1, pp.

45–60, 2011. DOI: 10.1142/s0129626411000060.

10. MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0 (September 4 2012).

11. Jerry Eriksson, Radoslaw Januszewski, Olli-Pekka Lehto, Carlo Cavazzoni, Torsten Wilde

and Jeanette Wilde. System Software and Application Development Environments. PRACE

Second Implementation Phase Project, D11.2, 2014.

12. D. Unat, J. Shalf, T. Hoefler, T. Schulthess, A. Dubey et. al. Programming Abstractions for

Data Locality. White Paper, PADAL Workshop, 28-29 April, 2014, Lugano Switzerland.

13. S. Amarasinghe, M. Hall, R. Lethin, K. Pingali, D. Quinlan, V. Sarkar, J. Shalf, R. Lucas,

and K. Yelick. ASCR programming challenges for exascale computing. Report of the 2011

workshop on exascale programming challenges, University of Southern California, Informa-

tion Sciences Institute, July 2011.

14. R. Lucas et. al. Top Ten Exascale Research Challenges. DOE ASCAC Subcommittee Report,

February 2014.

15. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: a unified platform for

task scheduling on heterogeneous multicore architectures. Concurrency and Computation:

Practice & Experience, 23(2):187–198, February 2011. DOI: 10.1002/cpe.1631.

16. Ang, J. A., Barrett, R. F., Benner, R. E., Burke, D., Chan, C., Cook, J., Donofrio, D., Ham-

mond, S. D., Hemmert, K. S., Kelly, S. M., Le, H., Leung, V. J., Resnick, D. R., Rodrigues,

A. F., Shalf, J., Stark, D., Unat, D. and Wright, N. J. Abstract Machine Models and Proxy

Architectures for Exascale Computing. Proceedings of the 1st International Workshop on

Hardware-Software Co-Design for High Performance Computing. Co-HPC ’14, New Orleans,

Louisiana. IEEE Press 978-1-4799-7564-8, pages: 25-32. 2014. DOI: 10.1109/co-hpc.2014.4.

17. R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk,

J. Larsson Träff. MPI at Exascale. Department of Energy SciDAC workshop, Jul, 2010.

18. J. Dongarra et al. The International Exascale Software Project roadmap. International Jour-

nal of High Performance Computing Applications, 25:3–60, 2011.

19. J. Dinan, R. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, R. Thakur. En-

abling communication concurrency through flexible MPI endpoints. International Jour-

nal of High Performance Computing Applications, volume 28, pages 390-405. 2014. DOI:

10.1177/1094342014548772.

20. J. Carretero, J. Garcia-Blas, D. Singh, F. Isaila, T. Fahringer, R. Prodan, G. Bosilca,

A. Lastovetsky, C. Symeonidou, H. Perez-Sanchez, J. Cecilia. Optimizations to Enhance

Sustainability of MPI Applications. Proceedings of the 21st European MPI Users’ Group

Meeting, EuroMPI/ASIA ’14, Kyoto, Japan, 2014. DOI: 10.1145/2642769.2642797.

21. I. Gorton, P. Greenfield, A. Szalay, R. Williams. Data-intensive computing in the 21st

century. IEEE Computer, 41 (4), 30-32. DOI: 10.1109/mc.2008.122.

22. European Commission EPiGRAM project (grant agreement no 610598).

http://www.epigram-project.eu.

23. K. Dichev, F. Reid, A. Lastovetsky. Efficient and Reliable Network Tomography in Het-

erogeneous Networks Using BitTorrent Broadcasts and Clustering Algorithms. Proceedings

of the International Conference on High Performance Computing, Networking, Storage and

Analysis (SC12). Salt Lake City, Utah, USA. 2012. IEEE Computer Society Press, ISBN:

978-1-4673-0804-5, pp. 36:1–36:11. DOI: 10.1109/sc.2012.52.

24. Z. Zhong, V. Rychkov, A. Lastovetsky. Data Partitioning on Multicore and Multi-GPU Plat-

forms Using Functional Performance Models. IEEE Transactions on Computers, PrePrints.

DOI: 10.1109/TC.2014.2375202.

25. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,

G. B. Berriman, J. Good, et al. Pegasus: A framework for mapping complex scientific

workflows onto distributed systems. Scientific Programming, 13(3):219–237, 2005. DOI:

10.1155/2005/128026.

26. K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-Reyes,

I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva

de la Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble. The Taverna workflow suite:

designing and executing workflows of Web Services on the desktop, web or in the cloud.

Nucleic Acids Research, 41(W1):W557–W561, July 2013. DOI: 10.1093/nar/gkt328.

27. B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,

and Y. Zhao. Scientific workflow management and the Kepler system. Concurrency and

Computation: Practice and Experience, 18(10):1039–1065, 2006. DOI: 10.1002/cpe.994.

28. J. Kranjc, V. Podpecan, and N. Lavrac. ClowdFlows: A Cloud Based Scientific Workflow

Platform. In P. Flach, T. Bie, and N. Cristianini, editors, Machine Learning and Knowledge

Discovery in Databases, LNCS 7524: 816–819. Springer, Heidelberg, Germany, 2012. DOI:

10.1007/978-3-642-33486-3 54.

29. H. Hiden, S.Woodman, P.Watson, and J. Cala. Developing cloud applications using the e-

Science Central platform. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 371(1983), January 2013. DOI: 10.1098/rsta.2012.0085.

30. F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi, R. Sirvent,

D. Talia, and R. M. Badia. ServiceSs: An Interoperable Programming Framework for the

Cloud. Journal of Grid Computing, vol. 12, n. 1, pp. 67-91, 2014. DOI: 10.1007/s10723-013-

9272-5.

31. J. Diaz, C. Munoz-Caro and A. Nino. A Survey of Parallel Programming Models and Tools

in the Multi and Many-Core Era, Parallel and Distributed Systems, IEEE Transactions on

, vol.23, no.8, pp.1369-1386, Aug. 2012. DOI: 10.1109/tpds.2011.308.

32. K. Maheshwari and J. Montagnat. Scientific workflow development using both visual and

script-based representation. In Proceedings of the 2010 6th World Congress on Services,

SERVICES ’10, pages 328–335, Washington, DC, USA, 2010. DOI: 10.1109/services.2010.14.

33. F. Marozzo, D. Talia, P. Trunfio, “JS4Cloud: Script-based Workflow Programming for

Scalable Data Analysis on Cloud Platforms”. Concurrency and Computation: Practice and

Experience, Wiley InterScience, 2015. DOI: 10.1002/cpe.3563.

34. H. D. Karatza. Performance analysis of a distributed system under time-varying workload

and processor failures. Proceedings of the 1st Balkan Conference on Informatics (BCI’03),

Nov. 2003, Thessaloniki, Greece , pp. 502–516.

35. M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar. Exploring automatic,

online failure recovery for scientific applications at extreme scales. Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis

(SC’14), Nov. 2014, New Orleans, USA, pp. 895–906. DOI: 10.1109/sc.2014.78.

36. D. Zhao, D. Zhang, K. Wang, and I. Raicu. Exploring reliability of exascale systems through

simulations. Proceedings of the High Performance Computing Symposium (HPC’13), Apr.

2013, San Diego, USA, pp. 1–9.

37. G. Lu, Z. Zheng, and A. A. Chien. When is multi-version checkpointing needed? Proceedings

of the 3rd Workshop on Fault-tolerance for HPC at Extreme Scale (FTXS’13), Jun. 2013,

New York, USA, pp. 49–56. DOI: 10.1145/2465813.2465821.

38. Numrich, Robert W., and John Reid. Co-Array Fortran for parallel programming. ACM

Sigplan Fortran Forum. Vol. 17. No. 2. ACM, 1998. DOI: 10.1145/289918.289920.

39. F. Marozzo, D. Talia, P. Trunfio. Cloud Services for Distributed Knowledge Discovery. In:

Encyclopedia of Cloud Computing, S. Murugesan, I. Bojanova (Editors), Wiley-IEEE, 2016.

40. El-Ghazawi, Tarek, and Lauren Smith. UPC: unified parallel C. Proceedings of the 2006

ACM/IEEE conference on Supercomputing. ACM, 2006. DOI: 10.1145/1188455.1188483.

41. G. L. Stavrinides and H. D. Karatza. Fault-tolerant gang scheduling in distributed real-

time systems utilizing imprecise computations. Simulation: Transactions of the Soci-

ety for Modeling and Simulation International, vol. 85, no. 8, 2009, pp. 525–536. DOI:

10.1177/0037549709340729.

42. M. A. Heroux. Toward resilient algorithms and applications. arXiv:1402.3809, March 2014.

43. I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, and B. R. de Supinski. Evaluating

user-level fault tolerance for MPI applications. Proceedings of the 21st European MPI

Users’ Group Meeting (EuroMPI/ASIA’14), Sep. 2014, Kyoto, Japan, pp. 57–62. DOI:

10.1145/2642769.2642775.

44. K. Teranishi and M. A. Heroux. Toward local failure local recovery resilience model

using MPI-ULFM. Proceedings of the 21st European MPI Users’ Group Meeting (Eu-

roMPI/ASIA’14), Sep. 2014, Kyoto, Japan, pp. 51–56. DOI: 10.1145/2642769.2642774.

45. Leandro Fontoura Cupertino, Georges Da Costa, Jean-Marc Pierson. Towards a generic

power estimator. In : Computer Science - Research and Development, Springer Berlin /

Heidelberg, Special issue : Ena-HPC 2014, July 2014. DOI: 10.1007/s00450-014-0264-x.

46. Shalf, John, Sudip Dosanjh, and John Morrison. Exascale computing technology challenges.

High Performance Computing for Computational Science–VECPAR 2010. Springer Berlin

Heidelberg, 2011. 1-25. DOI: 10.1007/978-3-642-19328-6 1.

47. Cole, Murray. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal

parallel programming. Parallel computing 30 (3), Elsevier 2004: pages 389-406. DOI:

10.1016/j.parco.2003.12.002.

48. Petiton, S., Sato, M., Emad, N., Calvin, C., Tsuji, M., and Dandouna, M. Multi level

programming Paradigm for Extreme Computing. In SNA+ MC 2013-Joint International

Conference on Supercomputing in Nuclear Applications+ Monte Carlo, 2014. EDP Sciences.

DOI: 10.1051/snamc/201404305.

49. Ramirez, A. (2011). European scalable and power efficient HPC platform based on low-

power embedded technology. On-Line. Access date: March/2012. URL: http://www.

eesi-project.eu/media/BarcelonaConference/Day2/13-Mont-Blanc_Overview.pdf.

50. Nukada, Akira, Kento Sato, and Satoshi Matsuoka. Scalable multi-gpu 3-d fft for tsub-

ame 2.0 supercomputer. Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. IEEE Computer Society Press, 2012. DOI:

10.1109/sc.2012.100.

51. Choi, Jaeyoung, James Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Ostrouchov, An-

toine Petitet, Ken Stanley, David Walker, and R. Clinton Whaley. ScaLAPACK: A portable

linear algebra library for distributed memory computers—Design issues and performance. In

Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science,

pp. 95–106. Springer Berlin Heidelberg, 1996. DOI: 10.1007/3-540-60902-4 12.

52. Lawson, Chuck L., Richard J. Hanson, David R. Kincaid, and Fred T. Krogh. Basic lin-

ear algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software

(TOMS) 5, no. 3 (1979): 308–323. DOI: 10.1145/355841.355847.

53. OCL-MLA, http://tuxfan.github.com/ocl-mla/.

54. Bariş Eskikaya and D Turgay Altilar, “Distributed OpenCL Distributing OpenCL Platform

on Network Scale”, IJCA 2012, pp. 26–30.

55. Philipp Kegel, Michel Steuwer and Sergei Gorlatch, “dOpenCL: Towards a Uniform Pro-

gramming Approach for Distributed Heterogeneous Multi-/Many-Core Systems” IPDPS

Workshops 2012. DOI: 10.1109/ipdpsw.2012.16.

56. Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo and Jaejin Lee,

“SnuCL: an OpenCL framework for heterogeneous CPU/GPU clusters”, ICS 2012. DOI:

10.1145/2304576.2304623.

57. Shucai Xiao and Wu-chun Feng, “Generalizing the Utility of GPUs in Large-Scale Hetero-

geneous Computing Systems”, IPDPS Workshops, 2012. DOI: 10.1109/ipdpsw.2012.325.

58. Ridvan Özaydin and D. Turgay Altilar, “OpenCL Remote: Extending OpenCL Platform

Model to Network Scale”, HPCC-ICESS 2012. DOI: 10.1109/hpcc.2012.117.

59. Alves Albano, Rufino Jose, Pina Antonio and Santos Luis Paulo, “Enabling task-level

scheduling on heterogeneous platforms”, Workshop GPGPU, 2012.

60. Khronos OpenCL Working Group, “The OpenCL 1.2 specification”, 2012, http://www.

khronos.org/opencl.

61. José Duato, Antonio J. Peña, Federico Silla, Rafael Mayo and Enrique S. Quintana-Ort́ı,

“rCUDA: Reducing the number of GPU-based accelerators in high performance clusters”,

HPCS 2010. DOI: 10.1109/hpcs.2010.5547126.

62. Orion S. Lawlor, “Message passing for GPGPU clusters: CudaMPI”, CLUSTER 2009. DOI:

10.1109/clustr.2009.5289129.

63. Chamberlain, Bradford L., David Callahan, and Hans P. Zima. Parallel programmability and

the chapel language. International Journal of High Performance Computing Applications

21.3 (2007): 291-312. DOI: 10.1177/1094342007078442.

64. Charles, Philippe, et al. X10: an object-oriented approach to non-uniform cluster computing.

ACM Sigplan Notices 40.10 (2005): 519-538. DOI: 10.1145/1103845.1094852.

65. Sun Enqiang, Schaa Dana, Bagley Richard, Rubin Norman and Kaeli David, “Enabling

task-level scheduling on heterogeneous platforms”, WORKSHOP GPGPU 2012. DOI:

10.1145/2159430.2159440.

66. Magnus Strengert, Christoph Müller, Carsten Dachsbacher and Thomas Ertl, “CUDASA:

Compute Unified Device and Systems Architecture”, EGPGV 2008.

67. Bueno Javier, Planas Judit, Duran Alejandro, Badia Rosa M., Martorell Xavier, Ayguade

Eduard and Labarta Jesus, “Productive Programming of GPU Clusters with OmpSs”,

IPDPS 2012. DOI: 10.1109/ipdps.2012.58.

68. Ryo Aoki, Shuichi Oikawa, Takashi Nakamura and Satoshi Miki, “Hybrid OpenCL: Enhanc-

ing OpenCL for Distributed Processing”, ISPA 2011. DOI: 10.1109/ispa.2011.28.

69. A. Barak, T. Ben-Nun, E. Levy and A. Shiloh, “A Package for OpenCL Based Hetero-

geneous Computing on Clusters with Many GPU Devices”, Workshop PPAC 2010. DOI:

10.1109/clusterwksp.2010.5613086.

70. Simple-opencl http://code.google.com/p/simple-opencl/.

71. Ivan Grasso, Simone Pellegrini, Biagio Cosenza, Thomas Fahringer. “libwater: Heteroge-

neous Distributed Computing Made Easy”, ACM International Conference on Supercom-

puting, Eugene, USA, 2013. DOI: 10.1145/2464996.2465008.

72. Nesus European Cost Action IC1305 http://www.nesus.eu/.

73. NCF, Peter Michielse, and Patrick Aerts NCF. “European Exascale Software Initiative”.

74. Dongarra, Jack. “The international exascale software project roadmap”. International Jour-

nal of High Performance Computing Applications (2011): 1094342010391989. APA.

75. Computing Language Utility, Intel Corporation, http://software.intel.com/.

