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A general theory of “interface responses” in discrete composite d-dimensional systems for 
operators with two-body interactions is presented. It is shown that the “interface responses” 

of all the internal and external interfaces of any composite system are the linear superposi- 

tion of the responses to a coupling operator of all individual interfaces and of the responses 

to a cleavage operator of the corresponding ideal free surfaces of the same but non-inter- 

acting subsystems. The response function and its elements between two space points of the 

system are given by a new simple general equation as a function of these “interface 

responses” and of the bulk response functions of each subsystem contained in the complete 

real system. The present paper establishes this new general two-body theory of interface 

responses for surfaces, interfaces, adsorbates, membranes, superlattices, defects of any kind 

and dimension, . and for the first time, to the knowledge of the author, for any d-dimen- 

sional composite system. The presentation of the theory is followed here by a few general 

applications. 

0167-5729/86/$13.65 0 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



To my wife 

Marie-Franqoise 

and our children 

Laetitia, Marie-Luure, 

Fraqois and Coralie 



L. Dobrzynski / Interface response theov of discrete composrte systems 121 

Contents 

Preface 

1. General introduction 

2. The theory 

2.1. Introduction 
2.2. Topology of a composite physical system 

2.2.1. Definitions 
2.22. Examples of systems with interfaces 

2.3. Response functions in an infinite system 

2.3.1. Definitions 

2.3.2. Examples 
2.3.2.1. Examples of d-dimensional ensembles 

2.3.2.2. Examples of operators 

2.4. One ideally truncated surface 
2.4.1. Definition of two independent ideally truncated systems 

2.4.2. Surface response operators 

2.5. Ideally truncated surfaces 

2.5.1. Definitions 
2.5.2. Two-surfaces response operators 

2.5.3. J-surfaces response operators 

2.6. Interfaces between two different subsystems 

2.6.1. Definitions 

2.6.2. Interface response operators 

2.6.3. J interfaces between two different subsystems 

2.7. One adsorbed system on another one 

2.7.1. Definitions 

2.7.2. Response operators 

2.7.3. Disconnected adsorptions of one subsystem on another one 

2.7.3.1. Adsorption on K disconnected voids 

2.7.3.2. Adsorption of K clusters 

2.8. One membrane between two different systems 

2.8.1. Definitions 

2.8.2. Membrane response operators 

2.8.3. K disconnected membranes 

2.9. Any real composite system 
2.10.Different methods for including defects in a real system 

2.10.l.The bulk-surface method for defects 

2.10.2.The surface method for defects 

2.10.3.The perturbed bulk method for defects in composite systems 

2.11.The alternative general equation 

3. A few general applications 

3.1. Introduction 
3.2. The elements of the response function 

3.2.1. General relations 

3.2.2. Summary and other relations between g and G 

3.3. Interface states 
3.4. Density of states 

3.4.1. Total densities of states versus response functions 

3.4.2. Local densities of states 

123 

124 

125 

125 

125 

125 

126 

126 

126 

127 

127 

127 

127 
127 

127 
129 

129 

130 

130 

131 

131 

132 

133 

133 

133 

134 

135 

135 

135 

136 

136 

137 

138 
138 

139 

139 

140 

140 

141 
142 

142 

143 

143 

144 
144 

145 

145 

146 



122 L. Dobrzynski / Interface response the-my of discrete composite systems 

3.4.3. Variation of the total density of states 

3.4.3.1. General result 

3.4.3.2. Particular results 

3.4.3.2.1. In the complementary to D,‘d’ space 

3.4.3.2.2. The case of specular symmetry through Mid’ 

3.4.3.2.3. When one uses only surface response functions in G 

3.4.3.3. Conservation of the number of states 

3.5. Variations of additive functions 

3.6. Interface reflection and transmission 

3.7. Response to an external stimulus 

3.8. Symmetry and super-pericdicity 

3.8.1. Symmetries 

146 

146 

149 

149 

150 
150 

150 

151 

151 

153 

153 

153 

154 

156 
3.8.2. Interface super-periodicities 

4. Prospectives 

Short literature survey on crystal interface response functions 156 

Acknowledgements 156 

References 157 



L. Dobrzynski / Interface response theoty of discrete composite systems 123 

Preface 

The present issue of Surface Science Reports is different in character 
compared with previous issues of the Journal. The manuscript is written in the 
style of a first chapter of a monograph on “Interface Responses”. It presents a 
new general and simple theory of “Interface Responses” in discrete composite 
d-dimensional systems for operators with two-body interactions. 

This self-contained text can be read even by undergraduate students, 
without need for interruption to consult references. However a short literature 
survey on crystal interface response functions is given at the end. 
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1. General introduction 

Consider any composite system and an operator h, both defined in a 
d-dimensional discrete space. The inverse g of this operator is usually called 
response or Green function associated to h. 

When the operator h describes two-body interactions within the system, 
then the response function g is a function of two space positions x and x’. Its 
complete knowledge is equivalent to the complete knowledge of the operator 
h. However a complete knowledge of h and of all its properties is not easy in a 
composite system. On the other hand, it is much easier to calculate and to 
understand all the properties of the corresponding bulk and ideal free surface 
operators and response functions for each of the homogeneous subsystems of 
the composite system. 

The bulk response function of one subsystem has inside the space of 
definition of this subsystem the elements of the response function of the 
corresponding infinite homogeneous subsystem. 

The ideally cleaved free surface response function of one subsystem can be 
obtained directly for systems with a small number of particles or from the 
corresponding bulk response function once one defines the ideal truncation of 
the corresponding infinite system. 

A reference response function G can be defined for any composite system 
as a block diagonal operator. Each of the independent blocks of this operator 
is either the bulk or the ideal surface response function of the corresponding 
subsystem inside its space of definition. 

The present theory relates the response function g of any composite system 
to its reference block diagonal response function G, through two equivalent 
universal equations 

g(/+ A) = G, 

or 

(I+ K)g= G. 

The “interface response” operators A and A’ are completely defined from 
the knowledge of the reference response function G and from those of the 
two-body interactions of the operator h at all the interfaces, I is the unity 
operator. 

An easy way to construct these “interface response” operators consists in 
constructing the composite system out of the corresponding non-interacting 
subsystems. First one may define for each subsystem a cleavage operator 
which cuts in an infinite subsystem, the ideally cleaved free surface subsystem 
one needs. Then one binds these independent subsystems by coupling oper- 
ators. These cleavage and coupling operators are easily written down once one 
knows the interaction at all the interfaces. 
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The knowledge of the reference response function G and of the cleavage 
operators enables the “ideal surface response operators” to be written down. 
In a similar manner are defined the “surface-interface coupling response 
operators”. And the “interface response” operators A and A’ are just the 

linear superposition of these ideal surface and surface-interface coupling 
response operators. 

Two slightly different and simpler methods for including localized defects 
in any composite system are also proposed within the frame of the same 
theory. 

It is well known that the bulk and surface response functions associated 
with operators like Hamiltonians, dynamical matrices,. . . , contain all the 
physical information associated with these operators and these systems; for 
example: the spectrum of excitations in condensed matters, the response to 
applied stimulus, . . . . In the same manner, the response functions g associ- 
ated to an operator h of a composite system enables one to work out all 
physical properties of this system associated to this operator. 

The general theory will be established in the next section. Then a few 
general applications will be given in section 3. 

2. The theory 

2.1. Introduction 

The two general equivalent equations of “interface response” theory will be 
demonstrated in this section 2 for an operator of any composite system 
contained in a discrete d-dimensional space. 

Section 2.2 is devoted to a few simple considerations about the topology of 
composite systems and section 2.3 to the definition of response functions in 
infinite systems. These basic definitions enables then the “interface response 

operators” and response functions to be addressed for: one ideally truncated 
surface (section 2.4), several ideally truncated surfaces (section 2.5), interfaces 
between two different subsystems (section 2.6), one adsorbed system on 
another one (section 2.7), one membrane between two different systems 
(section 2.8), any composite system (section 2.9), defects of any kind and 
dimension in a composite system (section 2.10). 

Finally, in section (2.11) the alternative equivalent general equation of this 
theory will be established. 

2.2. Topology of a composite physical system 

2.2.1. Definitions 
Consider any composite system. It is contained in a finite domain Dcd) and 

can be considered as being made up of N different subsystems. Each of these 
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subsystems is contained in a subdomain D,‘“), 1 5 i 5 N. In what follows D>“) 
is a discrete-in-space domain. 

Define at the periphery of each domain D/“) an interface domain Mid). The 
ensemble of all Mid) will be called the interface domain Mcd). When the 
subdomain Dj“) is made up of disconnected pieces or is in contact with 
several other subdomains or pieces of subdomains, then its interface domain 
Mid) is composed of J interfaces M(d), 1 SJ 6 J. 

(‘d, The position of: all interfaces Mij (1 s i s N, 1 SJ 5 J) within the inter- 
face M!d), of all interfaces M!d) 
Mcd) and all D,‘“) 

within the total interface domain Mcd) and of 
within the domain of existence Dcd) of the system under 

consideration defines the region of existence in DLd) of the real system under 
consideration. 

Note that an interface is a boundary domain and that it is defined in a 
space having the same dimensions as the domain this interface bounds. 

.2.2.2. Examples of systems with interfaces 
In classical 3D geometry a volume is bounded by a 2D surface. This notion 

of a surface is generalized here and called an interface of zero thickness. The 
widely used notion of a 2D surface bounding a 3D volume is purely fictitious 
in physics. Any real physical system considered in real 3D space is bound by a 
3D interface, which can be viewed as a surface of finite thickness. Note that 
this definition of an interface contains the classical definition of a 2D surface 
in a 3D geometry. 

In what follows, the word surface will be reserved to ideally cleaved free 
surfaces. When the constituent properties of the system will be changed near 
the surface from their bulk values in a domain Mid), the name interface will be 
used for this perturbed surface. 

2.3. Response functions in an infinite system 

2.3.1. Definitions 
Consider any operator H, defined in the infinite d-dimensional space D,!$_ 

This means that the d component discrete position x in this space is defined 
in the infinite d-dimensional volume of DLd). 

Define the response function GO associated to HO by 

H,, . GO = I, in DA’), 

where I is the unity operator. 

(2.1) 

In what follows we will consider the same operators H, and G,, for N 
different systems. HO and GO will therefore be labelled by an index 1 5 i 5 N, 
and will be written as H,,(i, i) and G,(i, i), both defined in DLd). 



L. Dobrzynski / Inierface response theory of discrete composite systems 121 

2.3.2. Examples 

2.3.2.1. Examples of d-dimensional ensembles. The lD, 2D and 3D real spaces 
are common. The 4D space when one adds the time to the three real space 
coordinates is also classical in relativity theory. The d > 4 spaces used in phase 
transition theories and in statistical mechanics are more sophisticated. 

Let us insist here that in the theory which follows the position vector x in 
any d-dimensional space is a discrete variable. 

2.3.2.2. Examples of operators. Two common examples of operators in time 
invariant response theories are: Hamiltonians for electrons, dynamical matrices 
for phonons, defined in lD, 2D or 3D real spaces. 

In relativity theory, operators can be defined in the 4D space, which adds 
the time t to the three real space components of x. 

2.4. One ideally truncated surface 

2.4.1. Definition of two independent ideally truncated systems 
Start from an infinite system contained in D&‘). Assume that the range of 

interactions between the particles and the fields contained in DA’) and 
entering in the operator Ha is limited in space. Then, by cleavage create two 
independent subensembles D{“) and Dj“). In order that these two systems be 
without mutual interactions, one has to cut all interactions between their two 
boundary domains or interfaces Mid) and Mid), whose extension in space 
depends on the range of mutual interactions of the particles and the fields. 

One of these two independent subensembles may be finite and the other 
semi-infinite in space; or both may be semi-infinite. Fig. 1 illustrates these 
considerations in 2D real space. 

2.4.2. Surface response operators 
The cleavage described in section 2.4.1 is represented by an operator V,. 

Then H, becomes 

h,=H,+ V,, inDid), (2.2a) 

although 

l&(x, x’) =O, for {x, x’} E {Mid), Mid)}, (2.2b) 

where we use the well know mathematical symbols: { } for ensemble, E for 
belonging to and P for not belonging to. 

Define the corresponding resolvant operator g,, by 

h,.g,=/, inOLd), 

then define 

A, = V,G,,, in DLd). 

(2.3) 

(2.4) 
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a 
b 

Fig. 1. Domains D12) and D4’) bounded respectively by their “interfaces” Mi2’ and Mi2’; 
M12) E D$” and M$*) E Di”. The interface domain M (2) - { Mi2), Mi2’ }. (a) The case of one finite 

domain Di2’ in contact with a semi-infinite one Di’) and (b) the two domains in contact are 

semi-infinite. 

These definitions, together with those of eq. (2.1) lead directly to 

G,.(l+A,)=G,, inDAd). 

After cleavage 

(2-s) 

h,(x, x’)=O for {x, x’} EDjd), i=lor3. (2.6) 

The two independent systems cannot respond to another, and 

ga( x, x’) = 0 for {x, x’} 4 Dj”), i = 1 or 3. 

So, eq. (2.5) can be written as 

(2.7) 

g;(/+A,)=G,, inDjd),i=10r3. (2.8) 

In this equation enter only elements of go, A,, and Go within the same domain 
Dcd), although the calculation of the elements of A, defined in Djd) has to be 
done from eq. (2.4) within DLd). 

In what follows A, is called the ideal surface response operator and is such 
that 

A,( x, x’) = 0 for x $E Mid), 

because of eqs. (2.2b) and (2.4). 

(2.9) 

In what follows this surface response operator A, defined in Djd) will enter 
the calculation of the interface response operators of all the composite 
systems. Call it therefore 

A,(i, i), in Djd). (2.10a) 
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And in the case where a system has J disconnected free surfaces, the elements 
of A,(i, i) between for example the interfaces MC) and MI,d,, are needed and 

are written 

A,(& ij’). (2.10b) 

The same type of notation will be used for the other operators which appear 

in this theory. 

2.5. Ideally truncated surfaces 

2.5.1. Definitions 

Start from an infinite system contained in DA’). As described in section 2.4, 
create now in D$“) one infinite system bounded by two disconnected “inter- 

faces” M$y) and M 5:) to two empty domains Di”) and Dj”). Fig. 2a illustrates 

this in two dimensions, in the general case of two interfaces of finite volume. 
The case of a slab having two parallel interfaces is the other possibility 
depicted by fig. 2b. 

Remember that here the interface domain is 

a b 

Fig. 2. Domains Di*‘, D$*’ and Dj*‘. The domain D, (*I is bounded by two disconnected interfaces 

My? and M, (2) in contact with the domains DC2’ 1 and D$*’ bounded respectively by Ml*’ and Mf). 

(a) The case of a finite domain D2 (*) in contact with a finite domain Di2’ and a semi-infinite one 

Di’). (b) A slab domain Di*’ m contact with two semi-infinite domains D{*’ and D$*). 
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The cleavage which produces the two free surfaces bounding the system 
described in section 2.5.1 is done by an operator 

v,, + vo*, defined in DA’), (2.12) 

although it has non-zero elements only in the space of the interfaces. 
Wsl, (j = 1 or 2) is the cleavage operator which creates the j free surface. 
The operator H, of this infinite system in Did) becomes ha, for the finite 

system described here, with 

&=H,,+ yOi+ V&, inDid). (2.13) 

2.5.2. Two-surfaces response operators 
Then as in section 2.4, define 

A,, = (V,, + Wo2)G,,, in Did), 

where G, was defined by eq. (2.1). 

(2.14) 

Define also the response function g,, by 

h,, . go2 = I, in Did). 

These definitions lead also here to 

(2.15) 

gaz(/+ A,,) = Go, in Dp). (2.16) 

As in section 2.4, it is straightforward to see that in order to obtain the 
elements gS2 of go2 inside Did), one needs only to know the elements GS2 of G, 
and A,, of A,, inside Did). One can then rewrite eq. (2.16) as 

g,,(l+ As2) = Gs2, in Did). (2.17) 

In what follows A,, is called the two-surfaces response operator. 
Note that A,, has non-zero elements only between a point situated in M$t) 

or M$z) and any point situated in D$“). Equivalently 

As2(x, x’) = 0, for x FE M’;‘). (2.18) 

2.5.3. J-surfaces response operators 
The above results of section 2.5.2 can be easily generalized to a system with 

J disconnected free surfaces. 
Define 

M’;” = { M’;), . . . , M;;’ ,...,M:d:}, 

then the cleavage operator 

(2.19) 

in Did). (2.20) 



L. Dobrzynski / Interface response theory of discrete composite systems 131 

Finally define the J-surfaces response operator A,, defined in D$“), but 
constructed in DAd) from 

in Did). (2.21a) 

Note that 

A,,( x, x’) = 0, for x @ Mid). (2.21b) 

Finally the response operator gSJ of this system can be obtained from 

&(I+ A,,) = GS.,, in Did’, (2.22) 

where 

G,, = 69 inside Did) 

0, outside Did) 
(2.23) 

2.6. Interfaces between two different subsystems 

2.6. I. Definitions 
In section 4, the response operators for two independent and complemen- 

tary in Dz) systems of the same nature were obtained. This procedure can, of 
course, be repeated for a system of a different nature. 

Now replace in Did) the original physical system by a new one, but leaving 
them independent. In what follows, their respective operators will be labelled 
by the index i = 1 or 3. Define (2 X 2) block diagonal matrices between the 
domains Did) and D, cd) for all the operators of these two independent systems 
limited by their ideally cleaved surface 

0 
) A,(=) ’ 

) i 

, g, = gs,yl’ ’ ), in D$). 
S&(33) 

(2.24) 

The index i = 1 or 3 refers to the corresponding operators defined in Dj”) in 
section 2.4 and 0 is the operator zero. 

Note that 

h, . g, = I, in DLd), 

g,(/+ A,) = G,, in Did). 

(2.25) 

(2.26) 
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Couple now these two different and independent systems by an operator W, 
which adds to h, and define it by 

h, = h s + VI, in Dcd). cc (2.27) 

2.6.2. Interface response operators 
The corresponding resolvant operator gt is defined by 

h,-g,=/, inDLd). (2.28) 

From the above definitions, one obtains at once 

g,(l+ Vrg,) = g,, in DAdI. (2.29) 

Multiply eq. (2.29) from the right by I + A, and use eq. (2.26), to obtain 

g,(/+A,)=G,, inDid), (2.30) 

where 

I+ A, = (I+ WIgs)(/+ A,), in DM). (2.31) 

Use eq. (2.26) to obtain 

A,=A,+ V,G,, inDid). (2.32) 

So the interface response operator A, is the linear superposition of the ideal 
surface response operator A, (eq. (2.24) and of the interface-surface response 
operator 

A,, = WIGS, in DM). (2.33) 

Let us make more explicit this interface response operator A, by writing 

in Did), (2.34) 

as a (2 X 2) matrix between the two subsystems. Then 

A = A&L) 

i 

0 

A(33) + i i 

“r(11) &(13) G,(D) 0 
I 

&(31) &(33) ii i G,(33) ’ 
in Dcd) 

0 0 
(2.35) 

Note that Vt has non-zero elements only in the space of 

Mcd) E {Mid), Mid) } , (2.36a) 

and that 

A,( n, x’) = 0, for x 4 Mcd’. (2.36b) 

The extension in space, respectively Mid) and M’;‘) of the cleavage op- 
erators which created the two independent subsystems may be smaller than 
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the extension in space of the coupling operator Vr. Then one has to redefine 

Mid’ and M’;“, in agreement with the largest extension and the above result 

still holds. 

2.6.3. J interfaces between two different subsystems 
The results of section 2.6.2 can be easily generalized to a system with J 

disconnected interfaces between two different subsystems. 
Define 

Mcd) = { Ml;‘, . . . , M$“, . . . , Ml;)}, i=lor3, (2.37) 

and the coupling operator 

Wr, = c VrJ, in DAdI. (2.38) 
j=l 

Define also the J-interfaces response operator A,,, defined in Did’ as 

A,, = & + &GS2_,, in DAd), (2.39) 

where A,, is the 2 J-surfaces response operator defined for the J disconnected 
surfaces of each subsystem like in section 2.5.2 and GSZJ is the corresponding 
bulk response operator of both subsystems without interactions through their 
J interfaces. Note that 

AIJ(x, x’) = 0, for x E Mcd). (2.40) 

Finally the response operator grJ of this system with J interfaces can be 
obtained from 

grJ( I + A,,) = GszJ, in DAd). (2.41) 

2.7. One adsorbed system on another one 

2.7.1. Definitions 

Couple the system with two disconnected free surfaces defined in section 5, 
to the finite or semi-infinite complementary-in-space surface system defined in 
section 4. We create in this manner {see fig. 2) either a coupled finite system 
with another finite one adsorbed on it in {D{“), Did)} or a semi-infinite 
system with an adsorbed finite one adsorbed on it in {Did), D,‘“)}. In both 
cases the adsorbate has a free surface in contact with the vacuum. The case of 
an open interface (fig. 2b) between these two subsystems is a simple example 
of a semi-infinite system with an adsorbate. 

Before switching on the coupling between these two independent systems, 
define (2 x 2) block diagonal matrices between the adsorbate and the sub- 
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strate, in the same manner as in section 2.6.1 and inside 

Dcd) = {Did), Dj”)}, i = 1 or 3, (2.42) 

inDcd), i=lor3. 

(2.43) 

The indices (22) or (ii) = (11) or (33) refer to the corresponding operators 
defined respectively in D$“) (section 2.5) and in Did) (section 2.4). 

Note that 

h,, . gj3 = I, in Dcd), (2.44) 

g,,(/+ A,,) = G,, in Dcd). (2.45) 

Couple now these two different and independent systems by an operator WI, 
defined in 

{M!#, Mid)} or {Ml;), Mid)}, (2.46a) 

depending on whether the adsorbate is coupled with the finite D$“) system or 
with the semi-infinite D$“) one. 

The operator of interest in this section will be 

hA = h,, + VI, in Dcd). (2.46b) 

2.7.2. Response operators 

The resolvant operator gA is defined here also as 

h, 1 gA = I, in Dcd). (2.47) 

From the above definitions, it follows at once that 

gA(I+ vrgS3) = gS3, in Dcd). (2.48) 

Multiply this equation from the right by I+ A,, and use eq. (2.45) to obtain 

g,.(/+A,)=G,,, inDcd), (2.49) 

where the adsorbate response operator A, is given by 

A, = A, + VtG,, in Dcd). (2.50) 

WIGS will be called the ideal surface adsorbate response operator. 
Let us work out a more explicit expression of A, in the form of (2 X 2) 

matrices between the two different subsystems 

A = A&(22) 
A 

i 

0 
0 A,(ii) + i i 

in Dcd), (2.51) 
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where the subscript s2 reminds one of the fact that the adsorbate had two 

disconnected ideal surfaces. 
Note that 

A*( x, x’) = 0, for x 4 MCd), (2.52a) 

where 

M’d’ = M$f, M$;), M(d) -{ , , }, i=lor3. (2.52b) 

2.7.3. Disconnected adsorptions of one subsystem on another one 
In the same manner as in sections 2.5.3 and 2.6.3, one can write down easily 

the generalization of the results of section 2.7.2 to J disconnected adsorptions 
of one subsystem on another one. Let us distinguish here two cases. 

2.7.3.1. Adsorption on K disconnected voids. Inside the infinite D&‘) space, the 
system 3 may have K disconnected voids on which may be adsorbed the same 

adsorbate 2. 
Define 

M$$)= {M$ ,..., M$$ ,..., M$$L}, j=ior2, (2.53) 

Mjd’ = { MS;),. ..,M$,. . .,M$dK)}, (2.54) 

and the coupling operator 

G= 5 “Ik, in DCd). (2.55) 
k=l 

The K adsorption response operator A,, is then defined in Dcd) by 

A AK = As3K + VIKGsjK, in Dcd). (2.56) 

This is an easy generalization of eq. (2.39). Here also as in eqs. (2.52) 

A,,(x, x’) = 0, for x E Mcd). (2.57) 

And the response operator gAK for this system with adsorption of K discon- 
nected voids is given by 

gAK( I + A,,) = GsxK, in Dcd). (2.58) 

2.7.3.2. Adsorption of K clusters. On the surface of the finite Did) system or 
of the semi-infinite Di”) system it is possible to adsorb one or several finite 
clusters of another system. These finite clusters have the same properties as the 
Did) system, but will be called here D.$$ such that 

Did)= {Di;) ,..., D@ ,..., ~ja}. (2.59) 



136 L. Dobrzynski / Interface response theory of discrete composite systems 

These clusters when adsorbed on the D,‘“) system, i = 1 or 3, will have with 
this system an interface of contact 

Mid) = { M$;), . . . , M$;), . . . , ~$2 } (2.60a) 

and 

Mid) = { Mid), . . . , M$), . . . , M$) } , i = 1 or 3. 

Define here also the corresponding coupling operator 

“UC= ? FK, in Dtd), 
k=l 

(2.60b) 

(2.61) 

and the K clusters response operator 

A,, = AsZK + VIKGszK, in DCd), (2.62) 

where AszK and GsZK are defined as in section 2.6.3. 
The response operator gcK of this system with K adsorbed clusters will here 

also be given by 

gCK(/+ AcK) = GszK, in Dtd). (2.63) 

2.8. One membrane between two different systems 

2.8.1. Definitions 

We couple the system with two disconnected free surfaces defined in 
section 2.5, to the two complementary in D, cd) finite and semi-infinite different 
systems defined in section 2.4. See fig. 2 for an illustration in two dimensions. 

This way we create one finite Dad) membrane separating the finite (or 
semi-infinite) Did) system from the semi-infinite Did) one. 

Before switching on the coupling between these three independent systems, 
let us define (3 X 3) block diagonal matrices between these three Dj”) (i = 
1, 2, 3) domains 

, in Did), (2.64a) 

Gs (11) 0 0 

GA= i 0 G&2) 0 , in Did), 

0 0 G,(33) 

(2.64b) 

, in DAd), (2.64~) 
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i 

9stw 0 0 

$4= 0 g,,(22) 0 , in Did), (2.64d) 

0 0 9, (33) 

where the h,(ii), G,(ii), A,(ii) and g&(ii) were obtained for i = 1 and 3 in 
section 2.4 and the h,,(22), gz2(22), A,,(22) and gS2(22) in section 2.5. 

Note also that 

h,.g,= 1, in DAd), (2.65) 

g,,(l+ A,,) = Gs4, in DAdI. (2.66) 

Couple now these three different and independent systems by an operator 
V,, defined inside the two interfaces 

1 Mgd’, M(2L)}, (2.67a) 

{ M$;), Mid)} _ (2.67b) 

The operator of interest here will therefore be 

h, = h, + V,, in DAd), (2.68) 

with 

V,= V,(2, 1) VM(2, 2) V,(2, 3) , in DAdI. 

i 

V,(L 1) V,(L 2) 0 

(2.69) 

0 V,(3,2) V,(3, 3) 1 

We supposed that their is no direct coupling between the systems D[“) and 
Did’. However, if such a direct coupling would exist in some special cases, 
then all what follows can be easily generalized by introducing the l/,(13) and 
V,(31) elements in (2.69). 

2.8.2. Membrane response operators 

The resolvant operator gM is defined here also as 

h,-gm=I, inDLd). (2.70) 

From the above definitions, it is straightforward to show that 

g,(/+ VErIgs4) = gS4, in DAd). (2.71) 

Multiply eq. (2.71) from the right by I + A,, and use eq. (2.65) to show that 

ghl(/+ A,) = Gs4, in DA’), (2.72) 

where the membrane response operator is 

A,=A,,+ V,G,, inDAd). (2.73) 

Call V,G, the membrane-two-surfaces response operator. 
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Let us write out a more explicit form of A, 

Am 0 0 

A,= i 0 4,w 0 
0 0 A, (33) 

&.4(11) Kr(12) 0 
+ 

i 

v, (21) v, (22) v, (23) 

0 Cl(32) 0 

in Dcd), 

Gs 01) 0 0 

0 Gs2 (24 0 > 
0 0 G,(33) ! 

(2.74) 

where the subscript s2 reminds us that we build up the membrane from a 
system with two disconnected ideal surfaces. Note that 

AM( x, x’) = 0, for x +G Mcd). (2.75) 

2.8.3. K disconnected membranes 
As in sections 2.5.3, 2.6.3 and 2.7.3, it is easy to generalize the results of 

section 2.8.2 to a system with K disconnected membranes of one system 

D$“)= (~1;) ,._., ~;;t) ,..., D@}, (2.76) 

separating finite pieces of another system 

D$“)= {D$ ,..., D$ ,..., D$}, (2.77) 

from a third system D$“). 
Here it is also possible to define a K membranes response operator 

A MK = As4K + “MKGs4K, (2.78) 

in the same manner as in eqs. (2.39), (2.56) and (2.62). 
The response function gMK of this system with K disconnected membranes 

is given by 

9rvlKV+&lK) = GS&U (2.79) 

where 

A,,(x, x’) = 0, for x E MCd’, 

MCd) being the space of all interfaces. 

(2.80) 

2.9. Any real composite system 

Any real composite system D cd) formed out of N different subsystems D(“), 
1 s i 5 N, can be constructed out of the different systems defined in sections 
2.4 to 2.8. Let us define the domains of existence of this system, of its 
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subsystems and of its interfaces MidI and subinterfaces M$jd’. Call Mcd) the 
domain of all interfaces. 

Construct as (N x N) matrices: A,, the response of all ideal surfaces of all 

non-interacting subsystems; I!, the operator, which couples these non-inter- 
acting subsystems and G = GsN the bulk response of all these subsystems but 
contained inside their domain of existence. Then define the response of all 
interfaces and surfaces of the real composite system under study as 

A = A,, + V,G, in DC“). (2.81) 

It is obvious from the considerations developed above that the response 
operator g of this system can be obtained from 

g.(/+A)=G, inD(‘j). 

Note also that the interface response operator A, is such that 

(2.82) 

A(x, x’) = 0, for x 4 Mcd). (2.83) 

Thus we showed that the response operator g of any real composite system is 
given by the general equation (2.81), as a function of the bulk responses G 
defined inside the domain of existence of each subsystem and of an interface 
response operator A. This operator A can be easily constructed as a linear 
superposition of the ideal surface response operator A,, of all non-interacting 
subsystems and of the surface-interface response operator V,G (eq. (2.81)). 

2.10. Different methods for including defects in a real system 

2. IO. 1. The bulk-surface method for defects 
All defects in any real composite system can be included into the above 

theory in the manner described above. A few examples will illustrate this. 
An atomic vacancy in a solid can be studied as an ideally truncated internal 

surface as described in section 2.4 on which one adsorbs a few shells of atoms 
with perturbed properties (section 2.7). 

A substitutional impurity in a solid can be studied as an interface between 
two different systems (section 2.6). 

An interstitial or in general an intercalated atom, compound or layer can 
also be treated in the above manner. One would first have to define fictitious 
internal free surfaces in the system and then introduce into these voids the 
intercalated system. 

The substitutional impurities and the intercalated systems can be cut out of 
the corresponding infinite systems, in order to have in G the bulk response 
function of these infinite systems defined inside their domain. 

The real free surface can also be constructed as an ideally cleaved free 
surface on which one adsorbs a few perturbed layers. 
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Dislocations, grain boundaries,. . . , any defect of any dimensions can be 
modelled along the lines described above. 

The method proposed until now seems certainly to be the easiest way to 
obtain response functions for real composite systems constructed out of 
important pieces of bulk materials. However, the few examples of this section 
suggest that this bull-surface method for defects can be improved when one 
has to deal with small dimensional defects. 

2.10.2. The surface method for defects 

In many cases, it is easier to calculate the response function g,(ii) of a 
finite subsystem D!d) with ideal surfaces, rather than the bulk response 
function G,(C) of the corresponding infinite system. This is true for one atom 
or a small cluster of atoms, one atomic layer or a slab of a few atomic layers, 
for example. 

Then it is more convenient to leave in the reference block diagonal response 
function G, this g,(ii) rather than to use eq. (2.8) in order to eliminate g,(ii) 
to the benefit of G,(ii). 

It is straightforward to see that the general equations (2.81) and (2.82) 
remain valid in this surface method for defects, once one includes in eq. (2.81) 

A,( ii) = 0, in Mid) (2.84) 

and in G, the block g,(C) rather than the block G,(ii). 

2.10.3. The perturbed bulk method for defects in composite systems 
Often some properties of the operator h of a real system are perturbed. This 

is for example the case of the interactions near localized defects, which can be 
described by assuming that the defects are due to modifications of the 
properties of the system. It is indeed the classical Dyson way for calculating 
the response function of a system perturbed by a localized defect. Let us call 
VP this perturbation of /I and note that VP can be the sum of several 
perturbations affecting any part of the domain Dcd), including its interface 
domain Mcd). We write 

/?,=/r+ yp. (2.85) 

Due to this perturbation VP, the response function g will be changed into a 
new response function g, such that 

9#+ v,g> = 9. (2.86) 

Multiply this equation from the right by I + A and use eq. (2.81) to obtain 

g&+Ar) = G, (2.87) 

with 

A,=A+ YpG. (2.88) 
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These results show that the general equation (2.82) remains valid for this 
treatment of perturbative defects, when redefining the general interface re- 
sponses A of eq. (2.81) as 

A=A,,+ (VI+ Vp)G, inDCd). (2.89) 

Note that the interface domain Mcd) is increased by the domains affected by 
the perturbations VP. 

Remember that s was defined (eq. (2.85)) as the perturbation of h. If these 
defects affect only the bulk properties of each subsystem then q perturbs only 
the ZE,H,(ii), but, in general VP can also be a perturbation of the interface 
domain Mcd). 

When is it better to use for the study of defects in real systems this 
perturbed bulk method rather than the ones given before? It is advantageous 
to use in each specific case the one which gives the simplest calculations. In 
particular it is clear that when only the properties of one atom or of one 
translationally invariant atomic layer are perturbed, then the method of this 
section should be the simplest one. 

2. I I. The alternative general equation 

Instead of defining the response functions like in eqs. (2.1) and (2.3), one 
may define them equivalently as 

G,, . Ho = I, in DA’), 

g,,.h,= 1, in DAd’. 

Then eqs. (2.4) and (2.5) can be written equivalently as 

(2.90a) 

(2.90b) 

A; = G&, in DLd), (2.91a) 

(I+ Ab)gO = G,,, in DAd’. (2.91b) 

And with the help of eq. (2.7), one can also write 

(/+A’,)g,=G,, inDjd), i=lor3, (2.92) 

as an equivalent symmetrical form of eq. (2.8) giving the response g, of an 
ideal finite or semi-infinite system as a function of G, and A:. Recall that G, 
is the bulk response function confined inside Did). The equivalent surface 
response operator A’, has also non-zero elements only inside Djd), but these 
elements have to be calculated from eq. (2.91a) in DAd). 

Note that 

A:( x, x’) = 0, for x’ 4 M!“). (2.93) 

All the above results for systems bounded’by one or several surfaces can be 
rewritten in the same manner and especially eqs. (2.17) and (2.22). 
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It is also straightforward to show that eq. (2.30) for a system with one 
interface can also be written as 

(I+ A;)g, = G,, in DA’), (2.94) 

where the equivalent interface response operator is 

A; = A: + G,W,, in D,!$. (2.95) 

It is clear then that the general equation (2.82) has an alternative equivalent 
general form 

(l+A’)g= G, (2.96) 

with an equivalent to eq. (2.89) interface response operator 

A’=A’,,+ G(W,+ v,), (2.97) 

and the same definitions for G, Vi and VP as before. 

3. A few general applications 

3.1. Introduction 

In section 2 were obtained two general and equivalent equations 

g(/+A)=G, inDCd), (3.1) 
(I + A’)g = G, in Dcd), (3.2) 

relating the response function g of any composite system to a reference block 
diagonal response function G. This G can be constructed for some of its 
blocks out of the bulk response function of the corresponding infinite subsys- 
tems and for some others out of the ideal surface response function of these 
subsystems. 

These response functions g and G are related through the interface 
response operators 

A=A,+(V,+ Vp)G, inDCd), (3.3) 
or 
A’=A’,+G(W,+ V,), inDcd). (3.4) 

A, and A: are the block diagonal ideal surface response operators. Each block 
A,(C) is defined in the space Dj”’ of the subsystem as in section 2.4. 
Remember that the block A,(ii) = 0, when the corresponding block in G is 
the ideal free surface g,(ii) rather than the bulk G,(ii). 

W, is the operator which couples all the independent subsystems and I$ is 
the operator which describes a perturbation (due to defects for example) of the 
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operator h of the composite system. These two operators have non-vanishing 
elements only in the space Mcd) of all interfaces. 

These equations shall be used now to derive a few general applications of 
this theory. In section 3.2, two equivalent expressions will be given for the 
elements of the response function g. Section 3.3 will deal with the new states 
due to the interfaces. Section 3.4 is devoted to the density of states and section 
3.5 to the thermodynamical functions of any composite and perturbed system. 
Section 3.6 is about interface reflection and transmission and section 3.7 about 
the response to an external stimulus. Section 3.8 is on symmetries of the 
system and superperiodicities due to the interfaces. 

3.2. The elements of the response function 

3.2.1. General relations 
In many applications the elements g(x, x’), (x, x’) E DCd) of the response 

function g are needed. It is possible to obtain them as a function of the 
elements of the basic response function G and of those of the interface 
response operator A or A’. Remember that 

A(x, x’) = 0, for x E Mcd), (3.5) 

A’(x, x’) = 0, for x’ E MCd). (3.6) 

It is therefore helpful to introduce the following, in general “rectangular 
matrices” 

A(MD) and A’(DM), 

which give all non-vanishing elements of A for x E Mcd) and x’ E Dcd) and 
those of A’ for x E Dcd) and X’ E Mcd). 

The same notation can also be used for the other operators and especially 
the response functions g and G. 

Then eqs. (3.1) and (3.2) can be rewritten as 

g(DD) + g(DM) A(MD) = G(DD), (3.7) 

g(DD) + A’(DM) g(MD) = G(DD). (3.8) 

Let us introduce 

A(MM) = /(MM) + A(MM), (3.9) 

A’(MM) = /(MM) + A’(MM). (3.10) 

Then with the help of eqs. (3.7) and (3.8), one also has 

g(DM) A(MM) = G(DM), (3.11) 

A’(MM) g(MD) = G(MD). (3.12) 

A and A’ are regular matrices within the interface space Mcd). Their inverses 
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A-’ and A’-l can be calculated as inverse matrices and relations (3.11) and 
(3.12) provide 

g(DM) = G(DM) A-l(MM), (3.13) 

g(MD) = A’-‘(MM) G(MD). (3.14) 

Putting these results into eqs. (3.7) and (3.8) one obtains two general results 
for the elements of the response function g 

g(DD) = G(DD) - G(DM) A-l(MM) A(MD), (3.15) 

g(DD) = G(DD) - A’(DM) A’-‘(MM) G(MD). (3.16) 

3.2.2. Summary and other relations between g and G 
The elements of the response function g are given as a function of the 

elements of the reference response function G and of the interface response 
operators A and A’ by the general equations (3.15) and (3.16). The elements 
of g for which one point is in the interface domain Mcd) can even be more 
directly obtained out of eqs. (3.13) and (3.14). 

Let us also remark that by mutual combination of eqs. (3.13)-(3.16) many 
other relations between the elements of g and G can be worked out. It is in 
particular possible to eliminate in some of these relations the explicit depen- 
dence on A and A’. 

It is in particular straightforward to show with the help of eqs. (3.13) and 
(3.15) or (3.14) and (3.16), that 

g(DD) = G(DD) + g(DM) g-‘(MM) g(MD) 

- G(DM) G-‘(MM) G(MD). (3.17) 

In section 3.4 this relation will prove to be useful for the study of the 
variations of the total density of states. 

However, for the calculation of the elements of g, eqs. (3.13)-(3.16) seem to 
be the simplest ones as they give the elements of g as a function only of the 
known functions G and A (or A’). 

3.3, Interface states 

Many operators take the following form 

H,=El-I$,, inDid). (3.18) 

The diagonalization of A, in discrete spaces provides the eigenvalues E of this 
operator. 

From the definition (2.1) of the resolvant operator g,, associated to HO, it is 
obvious that when H,, has the form (3.18) that GO is also a function of E and 
that the poles of G,(E) are the eigenvalues of H,. 
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Similarly, the corresponding operator h of any real system with interfaces, 

can be written as 

h=E/-h, inDcd), 

in the space Dcd) of definition of the real system under study. 

(3.19) 

And the poles of the resolvant operator g(E) associated to h by 

h.g= I, in Dcd), (3.20) 

will obviously be the eigenvalues of R. 
Returning now to eqs. (3.13)-(3.16), one sees at once that the poles of g are 

the poles of G plus those of A-’ or A’-‘. So the eigenvalues of the operator A 
of any real system are the eigenvalues of the bulk operators &(ii) if the 
corresponding subsystems are represented by the bulk G,(ii) in G, and those 
of the ideal surface operators h,(ii) if the corresponding subsystems are 
represented by the surface g,(ii) in G, plus new eigenvalues due to the poles of 
A - ’ or A’- ‘. These new poles are then given by 

detIA(E)I =O, inMCd), (3.21a) 

&A’(E), =O, in MCd). (3.21b) 

Remember that A(E) and A’(E) are defined within the interface space Mcd). 
Then these new poles of g are the new interface eigenvalues or eigenstates of 
the composite system. 

3.4. Density of states 

3.4.1. Total densities of states versus response functions 
For the operator given by eq. (3.18) it is usual to define a total bulk density 

of states per unit volume by 

no,(E) = Tr 6(H,(i, i)), in D&‘), (3.22) 

where Tr is the usual notation for the trace of a matrix and S(&,) is the usual 
Kronecker’s 6 function of &,. The index i reminds one that it is the bulk 
density of states of the i subsystem. 

Define 

G;(E)= limG,(Efic), inDid), 
C-+0 

and use the symbolic relationship 

(3.23) 

lim 
6-0 

I 
___ = lim 

X - 
X+ icl c-0 x* + /c* 

to show that 

in6( X) (3.24) 

n,,(E) = -7~~ ’ Im Tr G,+(ii; E), in DLd). (3.25) 
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In the same manner as in eq. (3.22), one defines the total density of states 
of any composite system per unit volume by 

n(E) = Tr S(h), in Dcd). (3.26) 

And as above, after having defined 

gf( E) = lii;g( E + iz), in Dcd), (3.27) 

one can write 

n(E) = -+rr- ’ Im Tr g’(E), in Dcd). (3.28) 

3.4.2. Local densities of states 

Considering eq. (3.28) one sees that the total density of states n(E) is the 
sum of local densities of states n (E, x): 

n(E) = xn(E, x), XE Dcd’, (3.29) 
X 

with 

n(E, x)= -r-l Im g+(Elx, x), LED. (3.30) 

In particular eqs. (3.30) and (3.13) or (3.14) enable one to easily calculate 
the local density of states at an interface point 

n(E, x) = -iImCG+(x, x’) A-‘(x’, x), {x, x’} EM(~), (3.31) 
x’ 

or 

n(E, x) = - iImCA’-‘(x, x’) G(x’, x), {x, x’} E Mcd). (3.32) 
X’ 

3.4.3. Variation of the total density of states 

3.4.3.1. General result 

Another useful entity is the variation of the total density of states between 
the reference system represented by G+(E) and the real composite system 
represented by g+(E). 

Remember that the reference response function G+ may be constructed for 
some of the subsystems i out of a block of bulk response functions GS+(ii) in 
D!d) (1 I i s N’) and for other subsystems i’ out of a block of surface 
reiponsefunctions g:(i’i’) in D,!“) (N’ c i’ s IV). What then is the physical 
meaning of 

n,(E) = --r-l Im Tr G+(E), in Dcd), (3.33) 
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or 

n,(E)=-i,$ImTrGz(ii)-$, E ImTr@(i’i’), in Dtd). 
r=l r,=N’+1 

(3.34) 

The first term in eq. (3.34) is nothing else than the sum of the total bulk 
density of states per unit volume of all i subsystems. This tends to exactness 
when the number of particles contained in the finite domain Djd) is large 
enough to be able to replace the Tr or summation over x by an integration 
over the volume of Dj”). This cannot be done for subsystems having a small 
number of particles, one adatom for example. For such subsystems, it is easier 
to obtain directly the surface response function g,(i’i’) which for the example 
given is nothing else than the response function of the isolated atom before 
adsorption. The second term in eq. (3.34) gives therefore the densities of states 
per unit volume of all free surface finite subsystems i’. It is indeed more 
meaningful for subsystems with a small number of particles to use as reference 
this surface density of states rather than the bulk density of states of the 
corresponding infinite system. 

Having clarified the meaning of the reference total density of states n,(E) 
per unit volume of the composite system, one may now ask: How can the 
variation of the total density of states. (eqs. (3.28) and (3.33)) 

n(E) -n&Y) = -?7- ’ Im Trig+(E) - G+(E) 1, in DCd), (3.35) 

between the composite system and the corresponding reference one be ob- 
tained? 

With the help of eq. (3.17), this density of states variation can be written as 

n(E) -n,(E) = --m-‘(f - T), in DCd), (3.36) 

with 

r = Im Tr 1 g(DM) g-‘(MM) g(MD) 1, 

and 

in Dcd), (3.37) 

T = Im Tr I G(DM) G-‘(MM) G(MD) 1, in DCd). (3.38) 

In expressions (3.37) and (3.38) and in what follows, we omit to write 
explieitly the index + in g+ and G+. 

Note that G is formed out of independent blocks for each subsystem Did)_ 
Therefore 

T= ; T,(i) + g T,(P), in Dcd), (3.39a) 
i=l 

with 

i,=N’+1 

T,(i) = Im Tr lG,(D,M,) GS-‘(M,M,) G,(M,D,) ( (3.39b) 
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T2(i’) = Im Tr 1 G,(D,,M,,) g,‘(M,,M,,) G,(M,,D,.) 1, in DCd). (3.39c) 

T,(i) is formed out of the G,(ii) which are truncated within D,‘“) bulk 
response functions G,(ii). To such truncated operators, the theorem of the 
cyclic invariance of the trace does not in general apply. Then T,(i) has to be 
calculated in the form of eq. (3.39b). T’(i’) is formed out of the ideal surface 
response functions g,(ii) which are complete within D,‘“). This term has the 
same form as t in eq. (3.37), which is formed out of the complete response 
function g within DCd). Therefore, analyse f and the result can be easily 
transposed for T2(i’). 

Apply to the complete within DCd) operator appearing in the right-hand 
side of eq. (3.37) the theorem of the cyclic invariance of the trace 

t = Im Tr 1 g-‘(MM) g(MD) g(DM) (. (3.40) 

Take the derivative versus E of eq. (3.20), where h has the form of eq. 
(3.19), to obtain 

g(MD)g(DM) = -dg(MM)/dE. (3.41) 

Use the general property of any operator (or matrix) B 

Tr Be’ dB/dE = d(ln det 1 Bl)/dE, 

and rewrite with the help of these last two properties, eq. (3.40) as 

t = -1m d(ln det (g(MM) ()/dE, 

or 

(3.42) 

(3.43) 

t = -d(arg det lg(MM) I)/dE. 

With the help of eq. (3.11) this is equivalent to 

t = d[arg det 1 A(MM) (-arg det lG(MM) J]/dE, 

and remembering that G is a block diagonal matrix 

(3.44) 

(3.45) 

t = d 
I 
arg det lA(MM) (- E arg det IG(M,M,)) /dE, 

i=l 1 
where 

(3.46) 

G(M,M;) = 
G,(M,M,) = G,,(M,M,) for 1 s i s N’, 

gs(M,Mi > for N’<igN. 
(3.47) 

Repeating the same demonstration as above for T2(i’), eq. (3.39c), one also 
obtains 

T’(i’) = -d(arg det (gS(M,,Mi,) J)/dE. (3.48) 
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Finally going back to eq. (3.36) with the results (3.39), (3.46) and (3.48) 
provides 

where 

n(E) = -arg det IA 1, 

and T,(i) is given by eq. (3.39b). 

(3.50) 

Note that when going from eq. (3.44) to eq. (3.45), it is possible to use eq. 
(3.14) rather than eq. (3.13). 

Then, the general result (3.49) remains valid with 

n(E) = -arg det JA’(MM) 1. (3.51) 

3.4.3.2. Particular results 

3.4.3.2.1. In the complementary to Did) space. In order to seek for a simpler 
expression of T,(i), eq. (3.39b), define D,‘,“’ as the space complementary to 
D!d) in Dcd) and D:$) as the space D!d) without Mid). Then for the bulk 
r&ponse f&ction G,(ii) in DA’) one may write 

Im Tr IGO(DiM,) G;‘(M,M,) GO(M,Di) 1 

= T,(i) + Im Tr IG~(D,,M,) GG’(M,Mi) Go(MiDi,) 1, (3.52) 

T,(i) = Im Tr (G,(M,M,) G;‘(M,M,) GO(MiMi) 

+Go(Di,M;) Gi’(MiMi) Ga(MiDi,) I. (3.53) 

The left-hand side part of eq. (3.52) can also be transformed as t from eq. 
(3.37) to eq. (3.44). Then eq. (3.52) becomes 

T,(i) = -d(arg det G,,(M,M,))/dE 

-1m Tr lGO(Di,Mi.) G;‘(M,M,) GO(MiDi,) 1. (3.54) 

This expression of T,(i) may be easier to compute that those of eq. (3.39b), 
when in particular the extension in space of Di, cd) is smaller than those of its 
complementary D,‘“). 

Note also that eq. (3.53) can be obviously rewritten as 

T,(i) = Im Tr G,(M,M,) + Im Tr lG,,(D,,M,) Gi’(M,M,) G,(M,D,,) 1. 

(3.55) 
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3.4.3.2.2. The case of specular symmetry through Midi. In the special case 
when the infinite system i has specular symmetry through the interface Mid), 
then the last terms in eqs. (3.54) and (3.55) are equal and then 

T,(i) = 4 Im Tr G,(M,M,) - 5 d(arg det ) GO(M,Mi) J)/dE. (3.56) 

The general result of eq. (3.49) takes for those subsystems i with specular 
symmetry through the interface M,cd) in DAd) a much simpler form. 

3.4.3.2.3. When one uses only surface response functions in G. There exist cases 
where it is simpler to construct the whole reference response function G out of 
surface response functions g,(ii). Then the general result (3.49) takes the 
simple form 

n(E)-na(E)=m-‘dn(E)/dE. (3.57) 

This is also the case when one studies as a perturbation a defect in an 
infinite system, then one uses the bulk response function G, of this system and 
A reduces to just V,G,, and A’ to G,V,. 

In these cases, one has here in DLd) the well known in D$) phase shift 
q(E) method. 

Note also that if a new interface state given by eq. (3.21a) appeared at a 
value of E = El at which 

argdetIA(MM)l =nr, n=O,l,..., 

then eq. (3.57) implies that n(E) must show a discontinuous jump of + r at 
E = E,. Similarly if a discrete state E = Ed (due to one adatom for example) 
disappeared when going from the reference system to the real one, then n(E) 
must show a discontinuous jump of -r at E = E,. 

3.4.3.3. Conservation of the number of states 

When the number of independent degrees of freedom is not changed when 
going from the reference system to the real composite one, then the total 
number of states is conserved. This implies that 

J 
+m(n(E) -nR(E) 1 dE=O. (3.58) 

--M 

This is the most usual case. One may however wish to compare two systems 
which differ in their degrees of freedom (addition or removal of particles for 
example). This can also be studied within the frame of this theory, but one 
must count in the second member of eq. (3.58) the number N, of degrees of 
freedom gained or lost. 

In particular, when the variation of the density of states takes the simple 
form of eq. (3.57) then the above considerations imply 

1 - 7T j_rdEq = Ns, (3.59) 
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or 

7r-l l?j(-tcc) -?I(-cc) 1 =N,. 

151 

(3.60) 

3.5. Variations of additive functions 

Define an additive function F of the composite system by 

F= 
/ 

+mdEf(E) n(E), (3.61) 
--m 

and FR of the reference system by 

FR = 
1 

+wdEf(E) nR(E). (3.62) 
--oo 

In these expressions f(E) may be any function of E and of other 
parameters, like the temperature and the pressure p. F and FR can be for 
example usual thermodynamical functions, like the free energy, the specific 
heat, the entropy, . . . . 

Define the variation of the additive functions between the real and the 
reference system by 

F-F,= 
I +mdEf(E) In(E) -nR(E) I. (3.63a) 

-cc 

So the general result (3.49) for the variation of the density of states enables 
the variation of any additive function to be calculated. These variations may 
be important physical entities like for example the surface and interface 
energies, specific heats, entropies, . . . . 

In the special cases when the general result (3.49) reduces to the phase-shift 
one of eq. (3.57), the variation of F becomes 

F-F,= 
I 

+mdEf(E)w. 
-cc 

Integrating by part, one obtains 

F- FR= if(E) v(E)111 - ;/_+;dE%&(E). 

(3.63b) 

(3.63~) 

When there is no change of the number of degrees of freedom between the 
reference and real systems (N, = 0), then with the help of eq. (3.60) 

F-F,= -1 j +mdEdf(E) 

77 -* 
TV(E). (3.63d) 

3.6. Interface reflection and transmission 
Define the eigenvectors I Ic/) and I q) of the operators h and fi in 
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respectively the composite and the reference systems. These eigenvectors are 
given by 

(R-E/)($)=0, inDcd), (3.64) 

(A-E/))\k)=O, inDcd). (3.65) 

fr is the block diagonal operator of the reference system. 
Compare now these two equations with the ones we solved before 

(h- E/)g= I, in Dcd’, (3.66) 

(A-E/)G=I, inDcd). (3.67) 

The general demonstration of section 2, which led us to the results (3.15) 
and (3.16) from eqs. (3.66) and (3.67) can be repeated in the same manner 
when starting from eqs. (3.64) and (3.65). This enables us to write the 
following relations between the eigenvectors of the composite and the refer- 
ence systems 

I#) = 1 ‘k) - /I’d’-’ ) !I!)) (3.68) 

I+)= I\k)-GA-kG-‘I*). (3.69) 

In the same manner as in eqs. (3.15) and (3.16), G is formed out of blocks i 
of either the bulk or the surface response functions within D,‘“), ) ‘k) is also 
formed out of blocks i of either the bulk or the surface eigenvectors within 
Did), respectively ( ‘k,(i)) or ( G,(i)) given by 

(&ii)-E/)(‘$(i))=O, (3.70) 

or 

(h,(ii) - EI) l+,(i)) = 0. (3.71) 

Of course, in eqs. (3.68) and (3.69), the operators acting on 19) have to be 
calculated in the same base as the eigenvectors I ‘k) and I +). 

These relations between the eigenstates I !P) of the reference system built 
up of independent blocks and those I 4) of the real composite system provide 
two equivalent manners to study the interface reflection and transmission. 

For example when a wave represented by the bulk state ( !Ps( i)) is launched 
on the interface j separating the subsystem i from another subsystem i’, the 
corresponding reflection amplitude fR from the eigenstate I es(i)) into another 
eigenstate I q:(i)) by the interface j is 

(\k,‘(ij)If, I\k,(ij))= -(~~(ij)(A’A’-‘(am), inMf,d), (3.72) 

or the equivalent expression one gets from eq. (3.69). In eq. (3.72) I *k(g)) 
represents the value of the eigenstate 1 ‘P$(i)) within Mjy’. When the wave 
I \k,(i)) is for example a plane wave launched on a plane interface studied 

with eigenvalues taking into account the invariance of translation parallel to 
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the interface, then in eq. (3.72) enters only one value for the 1 !Ps(ij)). But for 
interfaces of general shape, the reflections by different points of the interface 
are not in general equivalent. From eqs. (3.68) and (3.69) one can study the 
reflection amplitude by one interface point or by composition the reflection 
amplitude by several or all points of the interface j or even by all the 
interfaces bounding the i subsystem. 

In the same way, the transmission amplitude fr from an eigenstate ( ‘k,(i)) 
into an eigenstate ) ‘k,‘(i’)) of any other subsystem i’ through a common 
interface j is 

(qi(i’j)) fT Iqs(ij))= -(!P~(i’j)In’A’-‘I*s(ij)), 

in M(d), M!F) 
1 12 ‘J ‘I 

(3.73) 

or the equivalent expression one gets from eq. (3.69). 
The same consideration as above for the reflection can be done here for the 

transmission. In particular eqs. (3.68) and (3.69) enables one to obtain the 
transmission from one subsystem D!“) into any other (not necessarily adjacent 
to D!d)) subsystem D,!d). 

A$ a summary define the equivalent scattering operators 

S’= -A/A’-‘, (3.74) 

S= -GA-kG-‘, (3.75) 

which enables one to study any reflection or transmission from some eigen- 
states of the reference system into the same or other eigenstates of this 
reference system. 

3.7. Response to an external stimulus 

When the composite system under study is submitted to an external 
stimulus I F(x)) such that eq. (3.65) becomes 

hi*)+ IF)=O. (3.76) 

Then from eq. (3.66) the response to this external stimulus is 

IV = -SlJ?. (3.77) 

This relation shows that the knowledge of the response operator g enables 
us to obtain the response ) !P) of the system to any external stimulus I F). 

3.8. Symmetry and super-periodicity 

3.8. I. Symmetries 
Before applying the above results to any specific system, it is very helpful to 

take advantage of all its symmetries like, for example, time invariance, time 
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reversal, translation invariance along one or several space directions, reflec- 
tion, rotation symmetries, all point group symmetries, _ . . . In other words, it is 
very useful to use group theory to reduce as much as possible the dimensions 
of the operators H and h, and hence G and g of respectively the reference 
and composite systems. 

As the group theory methods to reduce the dimensions of operators and 
matrices are well known, it is not necessary to dwell on these methods here. 

On the other hand, the supersymmetries due to periodical interfaces are less 
common and will be developed further in what follows. 

3.8.2. Interface super-periodicities 
Some composite systems are built out of periodical arrangements of two or 

more different subsystems. Consider such an infinite supersystem in Did). 
First the super unit cell of this system has to be precised. From this super-cell 
the whole infinite super system can be constructed by elementary translations. 

Let x0 be any point within the super unit cell Did) and R the general 
translation vector which enables the whole supersystem to be constructed 

R = g n,R,, (3.78) 

where R, is the unit translation vector in the direction xl, n, are positive or 
negative integers and d’ (1 s d’ 6 d) gives the order of the super-periodicity. 

Due to this super-translation symmetry, it is possible to define the follow- 
ing Fourier transforms 

9(4; no, xh) = cg(x,, xh + R) eQ‘R, (3.79) 
R 

G(q; ~0, xb) = zG(x,, x&+ R) e”‘R, (3.80) 
R 

A(% x0, xb) = zA(x,, x6 + R) e”‘R, 
R 

A’(q; ~0, &) = CA'(x,, xb + R) eQ.R, 
R 

where 

1x0, xb} E DLd’, 

(3.81) 

(3.82) 

(3.83) 

Did) being the super unit cell. Note also that from the above Fourier 
transforms of A and A’, one defines in the same manner A(q; x0, XL) and 

A’(q; ~0, x6) within the space M, cd) of those interfaces which are contained in 
the unit cell DA”). 

The propagation vector q is contained within the first Brillouin zone 
associated with the super unit cell. 
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Finally the general equations (3.1) and (3.2) can be rewritten with the help 
of eqs. (3.79)-(3.82) as 

G(q) - I I+ A(q) I = G(q), (3.84) 

1 I + A’(q) 1 .g(q) = G(q), in DA”). (3.85) 

All the other equations demonstrated in this section 3 can also be used for 
these Fourier transformed functions. 

So for a supersystem, one can obtain from the Fourier transformed equa- 
tions (3.15) or (3.16) the elements of g(q; x0, xb) in DAd). In the same 
manner, the Fourier transformed equations (3.21), will provide the eigenstates 
of the supersystem as a function of the propagation vector q. Similarly one 
may obtain the function of q densities of states. One has to sum over q if one 
wants the total densities of states and the variation of additive functions. One 
may also study other properties like interface reflection and transmission or 
response to external stimulus with this g(q; x,,, xb) response function. 

However if one wants to address problems associated for example with 
some effects due to defects or to free surfaces of supersystems, one needs to 
know the response function g in the whole Did’ space. This function can be 
obtained by the inverse Fourier transformation of eq. (3.79) 

9(x,, x;) = Cg(q; x0, x6 + R) e-“R. (3.86) 
4 

However this Fourier transformation may not be the easiest way to obtain g 
in the whole DAd) space. Other techniques well known for the calculation of 
the response functions in infinite lattices may prove to be more efficient. For 
example the transfer matrix method may be easily adapted to the supersystem. 
In order to illustrate this, consider supersystems of dimension d’ = 1. In this 
case q is the propagation vector k, perpendicular to the interfaces and the 
real space translation vector 

R=nR. 

is also perpendicular to the interfaces. 

(3.87) 

Suppose one has also translational invariance in directions parallel to the 
interfaces and one Fourier analyses also all operators appearing in eqs. 
(3.79)-(3.86) according to this invariance. All these operators become then a 
function of the propagation vector q, to the interfaces. 

One can always write the operator h of such a supersystem in a general 
tridiagonal form by defining subblock diagonal parts in h interacting with just 
its first nearest neighbour subblocks. 

Let X,,, and X& be the positions within the super unit cell of one of these 
blocks. In general X0, represents a certain range of values of X0,. Then A, A’, 
G and g can also be written within this X, representation as subblocks 
labelled by X,, and X6,. 
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Define then a transfer matrix R(k,,) between two identical interfaces. Using 
its definition in eq. (3.1) provides us with matrix equations for R. These 
equations can be solved inside Mid) and the transfer matrix is then obtained. 
Once these results are reported in the original matrix equation, one obtains the 
matrix elements of 9 between any two points in Did). 

A similar procedure can also be used together with eq. (3.2). 
More generally an infinite periodic supersystem is an infinite bulk system 

with a large unit cell. Then all the usual methods used for the study of bulk 
systems with small unit cells can be utilized for the study of such supersys- 
terns. 

4. Prospectives 

A new unified and simple theory of interface responses is proposed in this 
paper for any composite system in a d-dimensional discrete space. 

It will be used in forthcoming papers to rederive in a simpler and unified 
manner many known analytical response functions and to obtain new ones as 
well. Many physical properties obtained with the help of these functions will 
be also given. This shall be done within lattice dynamics, electronic and 
magnetic theories of solids, for surfaces, interfaces, adsorbates, periodic inter- 
faces (superlattices), membranes, defects, . . . . 

Short literature survey on crystal interface response functions 

The literature on response functions in discrete materials limited by a free 
surface is very large. Let us cite here only a few early papers [l-9], review 
papers and books [lo-131. These functions provide also a suitable way for the 
study of adsorption [5,7,11,12,13]. 

The surface response functions were used for the investigation of crystalline 
interfaces between two semi-infinite media, also first on simple phonon [14], 
electron [15] and magnon [16] models and then for more realistic ones; see for 
example the reviews [17-191. 

A few papers appeared also on response functions in crystalline super- 
lattices made out of a periodic repetition of two different slabs [20-231. 

A recent theory of incomplete crystals, surfaces, defects, interfaces and 
layered structures is also in press [24]. 

Acknowledgements 

During the preparation of this paper the author has benefited from very 
stimulating and helpful discussions with F. Garcia-Moliner and V. Velasco. 



L. Dobrzynski / Interface response theory of discrete composiie systems 157 

He thanks them also for their hospitality and for communication of their 
unpublished crystal theories of defects, quantum well ABC and superlattices 
AB. He is deeply indebted to the Centre National de la Recherche Scientifique 
for their continuous support and for providing the necessary help during the 
author’s stay in Madrid. 

References 

[l] L.N. Rosenzweig, Uch. Zap. Hark. Gos. Univ. Tr. Fir. Mat. Otdel 2 (1950) 19. 

[2] J. Koutecky, Phys. Rev. 108 (1957) 13. 

[3] A.A. Maradudin and J. Melngailis, Phys. Rev. 173 (1964) A1188. 

[4] R.A. Brown, Phys. Rev. 156 (1967) 889. 

[5] L. Dobrzynski, Ann. Phys. (Paris) 4 (1969) 637. 

[6] S.G. Davison and J.D. Levine, Solid State Phys. 25 (1970) 1. 

[7] G. Allan, Ann. Phys. (Paris) 5 (1970) 169. 

[8] SW. Mtisser and K.H. Rieder, Phys. Rev. B2 (1970) 3034. 

[9] D. Kalstein and P. Soven, Surface Sci. 26 (1971) 85. 

[lo] A.A. Maradudin, E.W. Montroll, G.H. Weiss and I.P. Ipatova, Theory of Lattice Dynamics 

in the Harmonic Approximation (Academic Press, New York, 1963 and 1971). 

[ll] P. Lenglart, L. Dobnynski and G. Leman, Ann. Phys. 7 (1972) 407. 

[12] A.A. Maradudin, R.F. Wallis and L. Dobrzynski, in: Surface Phonons and Polaritons, Vol. 3 

of the Handbook of Surfaces and Interfaces, Ed. L. Dobrzynski (Garland, New York, 1980). 

[13] G. Allan, in: Handbook of Surfaces and Interfaces, Vol. 2, Ed. L. Dobtzynski (Garland, New 

York, 1978) p. 299. 

[14] P. Maxi and L. Dobr-zynski, Surface Sci. 34 (1973) 119. 

[15] E. Foo and H. Wang, Phys. Rev. BlO (1974) 4819. 

[16] B. Djafari-Rouhani and L. Dobrzynski, J. Phys. (Paris) 36 (1975) 835. 

[17] B. Djafari-Rouhani, L. Dobrqnski and P. Maxi, Ann. Phys. (Paris) 6 (1981) 259. 

[18] J. Pollman, Advan. Solid State Phys. 20 (1980) 117. 

[19] J. Pollman and A. Mazur, Thin Solid Films 104 (1983) 257. 

[20] L. Dobrqnski, B. Djafari-Rouhani and 0. Hardouin Duparc, J. Electron Spectrosc. Related 

Phenomena 30 (1983) 119. 

[21] B. Djafari-Rouhani, L. Dobnynski and P. Maxi, Phys. Rev. B31 (1985) 7739. 

[22] P. Maxi, L. Dobrzynski, B. Djafari-Rouhani and J.O.A. Idiodi, Surface Sci. 166 (1986) 301. 

[23] L. Dobrzynski, B. Djafari-Rouhani and H. Puszkarski, Phys. Rev. B33 (1986) 3251. 

[24] F. Garcia-Moliner and V. Velasco, Progr. Surface Sci., in press. 


