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We provide irreducibility criteria for compositions of multivariate polynomials over a field K, of the form f (X 1 , . . . , X r-1 , g(X 1 , . . . , X r )), with f, g ∈ K[X 1 , . . . , X r ], for the case that f , viewed as a polynomial in X r , has leading coefficient divisible by the k th power of an irreducible polynomial p(X 1 , . . . , X r-1 ) of sufficiently large degree with respect to X r-1 , with k coprime to deg r f and deg r g.

Introduction

An important class of irreducibility criteria refers to compositions of polynomials, and one may find many such classical results in the univariate case in the works of Schur [START_REF] Brauer | Über Irreduzibilitätskriterien von I. Schur und G. Pólya[END_REF], Pólya [START_REF] Pólya | Aufgaben und Lehrsätze aus der Analysis[END_REF], Ille [START_REF] Ille | Einige Bemerkungen zu einem von G. Pólya herrührenden Irreduzibilitätskriterium[END_REF], Flügel [START_REF] Flügel | Lösung der Aufgabe 226[END_REF], A. Brauer, R. Brauer and Hopf [START_REF] Brauer | Über die Irreduzibilität einiger spezieller Klassen von Polynomen[END_REF], followed by the works of Wegner [START_REF] Wegner | Über die Irreduzibilität einer Klasse von ganzen rationalen Funktionen[END_REF], Dorwart and Ore [START_REF] Dorwart | Criteria for the irreducibility of polynomials[END_REF], Seres [START_REF] Seres | Lösung und Verallgemeinerung eines Schurschen Irreduzibilitätsproblems für Polynome[END_REF], [START_REF] Seres | Über die Irreduzibilität gewisser Polynome[END_REF], [START_REF] Seres | Irreducibility of Polynomials[END_REF] and Győry [START_REF] Győry | Sur l'irreducibilité d'une classe des polynômes. I[END_REF], [START_REF] Győry | Sur l'irreducibilité d'une classe des polynômes. II[END_REF], [START_REF] Győry | On the irreducibility of a class of polynomials. III[END_REF], [START_REF] Győry | On the irreducibility of a class of polynomials[END_REF], [START_REF] Győry | On the irreducibility of neighbouring polynomials[END_REF]. More recent irreducibility criteria for compositions of polynomials can be found in papers by Győry, Hajdu and Tijdeman [START_REF] Győry | Irreducibility criteria of Schur-type and Pólya-type[END_REF], Ayad [START_REF] Ayad | Irreducibility of f(u(x), v(y))[END_REF], and also in [START_REF] Bonciocat | Irreducibility results for compositions of polynomials with integer coefficients[END_REF], [START_REF] Bonciocat | Irreducibility criteria for compositions of polynomials with integer coefficients[END_REF] and [START_REF] Bonciocat | Some Pólya type irreducibility criteria for multivariate polynomials[END_REF]. One of the most influential results in the study of multivariate polynomials and their specializations is the famous Hilbert Irreducibility Theorem [START_REF] Hilbert | Uber die Irreduzibilität ganzer rationaler Funktionen mit ganzahligen Koeffizienten[END_REF]. There are many fundamental results on this subject obtained in the last decades, and here we will only refer the reader to the works of Castillo and Dietmann [START_REF] Castillo | On Hilbert's irreducibility theorem[END_REF], Cavachi [START_REF] Cavachi | On a special case of Hilbert's irreducibility theorem[END_REF], Corvaja [START_REF] Corvaja | Rational fixed points for linear group actions[END_REF], Dèbes [START_REF] Dèbes | G-fonctions et théorème d'irréductibilité de Hilbert[END_REF], [START_REF] Dèbes | Parties hilbertiennes et progressions géométriques[END_REF], [START_REF] Dèbes | On the irreducibility of the polynomials p(t m , y)[END_REF], [START_REF] Dèbes | Hilbert subsets and s-integral points[END_REF] and [START_REF] Dèbes | Reduction and specialization of polynomials[END_REF], Dèbes and Walkowiak [START_REF] Dèbes | Bounds for Hilbert's irreducibility theorem[END_REF], Dvornicich and Zannier [START_REF] Dvornicich | Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynoomial maps)[END_REF], Fried [START_REF] Fried | On Hilbert's irreducibility theorem[END_REF], Langmann [START_REF] Langmann | Der Hilbertsche Irreduzibilitätssatz und Primzahlfragen[END_REF], Morita [START_REF] Morita | A note onthe Hilbert Irreducibility Theorem[END_REF], Müller [START_REF] Müller | Finiteness results for Hilbert's irreducibility theorem[END_REF], Sprindžuk [START_REF] Sprindzuk | Arithmetic specializations in polynomials[END_REF] and Zannier [START_REF] Zannier | Hilbert irreducibility above algebraic groups[END_REF]. Some of these results give a deep insight on the difficult problem of testing the irreducibility for compositions of multivariate polynomials. For instance, in [START_REF] Dèbes | On the irreducibility of the polynomials p(t m , y)[END_REF] Dèbes has characterised the polynomials F (X, Y ) that are irreducible over a number field K and such that for some t ∈ K the specialized polynomials F (t m , Y ) are reducible in K[Y ] for infinitely many integers m. As a consequence, he showed that if F is absolutely irreducible, and t is neither a strict power in K, nor of the form -4w 4 or -w 2 with w ∈ K, then F (t m , Y ) is irreducible in K[Y ] for infinitely many integers m.

Inspired by some work of Fried [START_REF] Fried | On Hilbert's irreducibility theorem[END_REF] and Langmann [START_REF] Langmann | Der Hilbertsche Irreduzibilitätssatz und Primzahlfragen[END_REF] on Hilbert's irreducibility theorem, Cavachi [START_REF] Cavachi | On a special case of Hilbert's irreducibility theorem[END_REF] proved that a linear combination pf 1 (X) + f 2 (X) with f 1 , f 2 relatively prime polynomials with rational coefficients and deg f 2 < deg f 1 , must be irreducible over Q for all but finitely many prime numbers p. An explicit lower bound for these primes, depending on the degrees of f 1 and f 2 and on their coefficients, was then obtained by Cavachi, Vâjâitu and Zaharescu [START_REF] Cavachi | A class of irreducible polynomials[END_REF]. One way to study compositions of polynomials f • g(X) over unique factorization domains, with f (X) = a n X n + • • • + a 1 X + a 0 and a 0 a n = 0, say, is to regard them as linear combinations of relatively prime polynomials, by writing

f • g(X) = a n f 1 (X) + f 2 (X), with f 1 = g n and f 2 = a n-1 g n-1 + • • • + a 1 g + a 0 .
Here f 1 and f 2 are relatively prime, and in order to adapt Cavachi's method, information on the canonical factorization of a n proves to be helpful in many cases. This idea of writing compositions of polynomials as linear combinations of two relatively prime polynomials was also used in the multivariate case [START_REF] Bonciocat | Irreducibility results for compositions of polynomials in several variables[END_REF], [START_REF] Bonciocat | From prime numbers to irreducible multivariate polynomials[END_REF], [START_REF] Bonciocat | Irreducibility criteria for compositions of multivariate polynomials[END_REF], and moreover, similar techniques have been useful to study the more general concept of multiplicative convolutions of polynomials [START_REF] Bonciocat | A Capelli type theorem for multiplicative convolutions of polynomials[END_REF]. For instance, the following irreducibility criterion for compositions of bivariate polynomials that uses this idea was proved in [START_REF] Bonciocat | Irreducibility results for compositions of polynomials in several variables[END_REF].

Theorem A ([5, Corollary 4]) Let K be a field and let f (X, Y ) = a 0 + a 1 Y + • • • + a m Y m , g(X, Y ) = b 0 + b 1 Y + • • • + b n Y n , with a 0 , . . . , a m , b 0 , . . . , b n ∈ K[X], a 0 a m b n = 0. If a m = pq with p, q ∈ K[X], p irreducible over K, and deg p > max{(m -1) deg q, (n -1) deg q + mn deg b n } + max 0≤i≤m-1 deg a i , then the polynomial f (X, g(X, Y )) is irreducible over K(X).
Here and henceforth, we say that a polynomial

F (X, Y ) = a 0 + a 1 Y + • • • + a m Y m with a 0 , . . . , a m ∈ K[X] is irreducible over K(X) if it can not be written as a product of two polynomials F 1 , F 2 ∈ K[X, Y ] with deg Y F 1 ≥ 1 and deg Y F 2 ≥ 1.
We note that such a polynomial F irreducible over K(X) is allowed to have a non-constant factor in K[X], and if the coefficients a i (X) are relatively prime, then F is actually irreducible in K[X, Y ].

A Newton polygon method allowed one to generalize in [START_REF] Bonciocat | Irreducibility criteria for compositions of multivariate polynomials[END_REF] the results from [START_REF] Bonciocat | Irreducibility results for compositions of polynomials in several variables[END_REF], by considering the case when the leading coefficient a m of f is of the form p k q with p, q ∈ K[X], p irreducible over K, q not divisible by p, and k ≥ 1 a suitable positive integer. One such result, that extends Theorem A, is the following.

Theorem B ([8, Theorem 1.1]) Let K be a field, let f (X, Y ) = a 0 + a 1 Y + • • • + a m Y m , g(X, Y ) = b 0 +b 1 Y +• • •+b n Y n , with a 0 , . . . , a m , b 0 , . . . , b n ∈ K[X], m ≥ 1, n ≥ 1, a 0 a m b n = 0, and let d = max{i : i < m, a i = 0}. If a m = p k q with p, q ∈ K[X], p is irreducible over K, qa d b n is not divisible by p, gcd(k, n(m -d)) = 1, and 
k deg p > max{(m -1) deg q, (n -1) deg q + mn deg b n } + max 0≤i≤d deg a i , then the polynomial f (X, g(X, Y )) is irreducible over K(X).
The proof of Theorem B relies on the following lemma, which might be of independent interest or useful in other applications. Regard f and g as polynomials in Y with coefficients in K[X], and let p(X) ∈ K[X] be an irreducible polynomial that divides none of the leading coefficients of f and g. Let k be any positive integer prime to d. If f (X, Y ) + p(X) k g(X, Y ) may be written as a product of two polynomials

f 1 , f 2 ∈ K[X, Y ] with deg Y f 1 ≥ 1 and deg Y f 2 ≥ 1,
then one of the leading coefficients of f 1 and f 2 , regarded as polynomials in Y with coefficients in K[X], must be divisible by p k , and the other one must be prime to p.

The aim of this paper is to extend the results from [START_REF] Bonciocat | Irreducibility results for compositions of polynomials in several variables[END_REF] and [START_REF] Bonciocat | Irreducibility criteria for compositions of multivariate polynomials[END_REF] by providing results similar to Theorem B for the case when k is coprime to mn. Unlike Theorem B, the results in this paper will not use Lemma 1.1, whose proof relies on a Newton polygon argument, but instead will benefit from a simultaneous analysis of some resultants associated to the alleged factors of f (X, g(X, Y )). Our first such results, that complement Theorems A and B, are:

Theorem 1.2. Let K be a field, and f (X, Y ) = a 0 + a 1 Y + • • • + a m Y m , g(X, Y ) = b 0 + b 1 Y + • • • + b n Y n , with m ≥ 1, n ≥ 1, a 0 , . . . , a m , b 0 , . . . , b n ∈ K[X], a 0 a m b n = 0. If f as a polynomial in Y is irreducible over K(X), a m = p k q with p, q ∈ K[X], p irreducible over K, gcd(k, n) = 1, and deg p > mn deg b n + min{deg q, max 0≤i≤m-1 deg a i } + (n -1) • max{deg q, max 0≤i≤m-1 deg a i }, then the polynomial f (X, g(X, Y )) is irreducible over K(X). Theorem 1.3. Let K be a field, let f (X, Y ) = a 0 + a 1 Y + • • • + a m Y m , with m ≥ 1, a 0 , . . . , a m ∈ K[X], a 0 a m = 0. If a m = p k q with p, q ∈ K[X], p is irreducible over K, gcd(k, m) = 1, and deg p > min{deg q, max 0≤i≤m-1 deg a i } + (m -1) • max{deg q, max 0≤i≤m-1 deg a i }, then the polynomial f (X, Y ) is irreducible over K(X).
In order to avoid in Theorem 1.2 the assumption that f is irreducible over K(X), we may obviously combine Theorems 1.2 and 1.3, to obtain the following result:

Theorem 1.4. Let K be a field, and f (X, Y ) = a 0 + a 1 Y + • • • + a m Y m , g(X, Y ) = b 0 + b 1 Y + • • • + b n Y n , with m ≥ 1, n ≥ 1, a 0 , . . . , a m , b 0 , . . . , b n ∈ K[X], a 0 a m b n = 0. Assume that a m = p k q with p, q ∈ K[X], p irreducible over K, gcd(k, mn) = 1, and let us denote min{deg q, max 0≤i≤m-1 deg a i } by A and max{deg q, max 0≤i≤m-1 deg a i } by B. If deg p > A + max{mn deg b n + (n -1)B, (m -1)B}, then the polynomial f (X, g(X, Y )) is irreducible over K(X).
As we shall see in the proofs, in the statements of Theorems 1.2, 1.3 and 1.4 we don't need to explicitly ask q to be not divisible by p, for when the polynomials that we are testing are not linear in Y , this will be an immediate consequence of the inequalities imposed on deg p.

We note that for deg q ≥ max 0≤i≤m-1 deg a i , the bound on deg p in Theorem 1.4 that guarantees the irreducibility of f (X, g(X, Y )) coincides with the bound in Theorem A and the bound on k deg p in Theorem B, being larger otherwise. Roughly speaking, the explanation for a generally larger bound needed for deg p is the following. If we don't know that k is prime to n(m -d) as required in Theorem B, and we assume that

f (X, g(X, Y )) is reducible, say f (X, g(X, Y )) = f 1 (X, Y )f 2 (X, Y ) with deg Y f 1 ≥ 1 and deg Y f 2 ≥ 1, then if we view f 1 and f 2 as polynomials in Y with coefficients in K[X],
we may not use Lemma 1.1 to deduce that one of the leading coefficients of f 1 and f 2 will necessarily be prime to p. However, if instead we know that k is prime to mn, then as we shall see in the proof, the multiplicity of p in the canonical decomposition of the leading coefficient of one of the alleged factors f 1 and f 2 would be sufficiently small to still ensure the irreducibility of f (X, g(X, Y )), but at the cost of a larger bound on deg p. We also note that here too, as in Theorems A and B, the conclusion on the irreducibility of f (X, g(X, Y )) over K(X) in Theorem 1.4 will obviously force the irreducibility of f (X, Y ) over K(K).

A simple instance of Theorem 1.4 may be easily obtained if we assume that a 0 , . . . , a m-1 , q, b n ∈ K, since in this case the condition on deg p will be automatically satisfied for any irreducible polynomial p ∈ K[X].

Corollary 1.5. Let K be a field, m, n and k be positive integers,

f (X, Y ) = a 0 + a 1 Y + • • • + a m-1 Y m-1 + p k qY m ,
with a 0 , . . . , a m-1 , q ∈ K, p ∈ K[X], p irreducible over K, a 0 q = 0, and let g(X, Y

) = b 0 + b 1 Y + • • • + b n Y n with b 0 , . . . , b n-1 ∈ K[X], b n ∈ K, b n = 0. If gcd(k, mn) = 1, then the polynomial f (X, g(X, Y )) is irreducible over K(X).
Some immediate consequences of these results are the following corresponding irreducibility criteria for polynomials in r ≥ 2 variables X 1 , . . . , X r over K. For any polynomial f ∈ K[X 1 , . . . , X r ] we will denote by deg r f the degree of f viewed as a polynomial in X r with coefficients in K[X 1 , . . . . . . , X r-1 ]. With this notation, one has the following results, which follow by Theorems 1.2, 1.3 and 1.4 if we write Y for X r , X for X r-1 and if we replace the field K with the field generated by K and the variables X 1 , . . . , X r-2 .

Theorem 1.6. Let K be a field, r ≥ 2, and let

f (X 1 , . . . , X r ) = a 0 + a 1 X r + • • • + a m X m r , g(X 1 , . . . , X r ) = b 0 + b 1 X r + • • • + b n X n r , with m ≥ 1, n ≥ 1, a 0 , . . . , a m , b 0 , . . . , b n ∈ K[X 1 , . . . , X r-1 ], a 0 a m b n = 0. If f as a polynomial in X r is irreducible over K(X 1 , . . . , X r-1 ), a m = p k q with p, q ∈ K[X 1 , . . . , X r-1 ], p viewed as a polynomial in X r-1 is irreducible over K(X 1 , . . . , X r-2 ), gcd(k, n) = 1, and deg r-1 p > mn deg r-1 b n + min{deg r-1 q, max 0≤i≤m-1 deg r-1 a i } + (n -1) • max{deg r-1 q, max 0≤i≤m-1 deg r-1 a i }, then the polynomial f (X 1 , . . . , X r-1 , g(X 1 , . . . , X r )) is irreducible over K(X 1 , . . . , X r-1 ). Theorem 1.7. Let K be a field, r ≥ 2, and let f (X 1 , . . . , X r ) = a 0 +a 1 X r +• • •+a m X m r , with m ≥ 1, a 0 , . . . , a m ∈ K[X 1 , . . . , X r-1 ], a 0 a m = 0. If a m = p k q with p, q ∈ K[X 1 , . . . , X r-1 ], p as a polynomial in X r-1 is irreducible over K(X 1 , . . . , X r-2 ), gcd(k, m) = 1, and deg r-1 p > min{deg r-1 q, max 0≤i≤m-1 deg r-1 a i } + (m -1) • max{deg r-1 q, max 0≤i≤m-1 deg r-1 a i },
then f viewed as a polynomial in X r is irreducible over K(X 1 , . . . , X r-1 ).

In a similar way, by combining Theorems 1.6 and 1.7 in order to remove the condition that f as a polynomial in X r is irreducible over K(X 1 , . . . , X r-1 ), one obtains:

Theorem 1.8. Let K be a field, r ≥ 2, and let f (X 1 , . . . , X r ) = a 0 + a 1 X r + • • • + a m X m r , g(X 1 , . . . , X r ) = b 0 + b 1 X r + • • • + b n X n r , with m ≥ 1, n ≥ 1, a 0 , . . . , a m , b 0 , . . . , b n ∈ K[X 1 , . . . , X r-1 ], a 0 a m b n = 0. Assume that a m = p k q with p, q ∈ K[X 1 , . . . , X r-1 ], p viewed as a polynomial in X r-1 is irreducible over K(X 1 , . . . , X r-2 ), gcd(k, mn) = 1, and let us denote min{deg r-1 q, max 0≤i≤m-1 deg r-1 a i } by A and max{deg r-1 q, max 0≤i≤m-1 deg r-1 a i } by B. If deg r-1 p > A + max{mn deg r-1 b n + (n -1)B, (m -1)B}, then the polynomial f (X 1 , . . . , X r-1 , g(X 1 , . . . , X r )) is irreducible over K(X 1 , . . . , X r-1 ).
One may also easily rephrase Corollary 1.5 to obtain the following corresponding result for polynomials in r ≥ 2 variables over K.

Corollary 1.9. Let K be a field, r ≥ 2, and let f (X 1 , . . . , X r ) = a 0 + a

1 X r + • • • + a m X m r , g(X 1 , . . . , X r ) = b 0 +b 1 X r +• • •+b n X n r , with m ≥ 1, n ≥ 1, a 0 , . . . , a m-1 , b n ∈ K[X 1 , . . . , X r-2 ], b 0 , . . . , b n-1 ∈ K[X 1 , . . . , X r-1 ], a 0 a m b n = 0. If a m = p k q with p ∈ K[X 1 , . . . , X r-1 ], q ∈ K[X 1 , . . . , X r-2 ],
p viewed as a polynomial in X r-1 is irreducible over K(X 1 , . . . , X r-2 ) and gcd(k, mn) = 1, then the polynomial f (X 1 , . . . , X r-1 , g(X 1 , . . . , X r )) is irreducible over K(X 1 , . . . , X r-1 ).

We note here that a result similar to Theorem 1.7 with a more restrictive condition on deg r-1 p has been proved in Corollary 1.2 in [START_REF] Bonciocat | Irreducibility criteria for the sum of two relatively prime multivariate polynomials[END_REF], where, instead of compositions of polynomials, sums of relatively prime multivariate polynomials are studied by slightly different techniques.

In the proof of our results we will need the following famous result by Capelli, which is a fundamental tool to study the canonical factorization for compositions of polynomials:

Theorem. Let K be a field, f, g ∈ K[X], f irreducible over K, f (α) = 0. If g(X) -α can = K(α) const • r i=1 φ i (X) e i , then f • g(X) can = K const • r i=1 N K(α)/K φ i (X) e i .
In particular, the degree of every irreducible factor of f • g must be a multiple of deg f .

Here

F can = K const • r i=1
φ i (X) e i means that the φ i 's are irreducible over K and prime to each other. We mention here that Capelli [START_REF] Capelli | Sulla riduttibilità delle equazioni algebriche, Nota prima[END_REF] proved this result for K ⊂ C, Rédei [START_REF] Rédei | Algebra[END_REF] proved it for the case of a separable f , and in its general form, this result first appeared in the book of Schinzel [START_REF] Schinzel | Selected topics on polynomials[END_REF] (see also [START_REF] Schinzel | Polynomials with special regard to reducibility[END_REF]). The proofs of the main results are presented in Section 2 below.

Proof of the main results

We will actually prove the following result, consisting of two parts, the first one having as a particular case an irreducibility criterion for f (X, Y ), which is precisely Theorem 1.3. Its second part is Theorem 1.2, and uses most of the proof of the first part, together with the crucial information on the degrees of the irreducible factors of f (X, g(X, Y )) provided by Capelli's Theorem.

Theorem 2.1. Let K be a field, let f (X, Y ) = a 0 + a 1 Y + • • • + a m Y m , g(X, Y ) = b 0 + b 1 Y + • • • + b n Y n , with a 0 , . . . , a m , b 0 , . . . , b n ∈ K[X], m ≥ 1, n ≥ 1, a 0 a m b n = 0. If a m = p k q with p, q ∈ K[X], p is irreducible over K, gcd(k, mn) = 1, and deg p > m 2 n deg b n + min{deg q, max 0≤i≤m-1 deg a i } + (mn -1) • max{deg q, max 0≤i≤m-1 deg a i },
then f (X, g(X, Y )) is irreducible over K(X). The same conclusion holds in the wider range

deg p > mn deg b n + min{deg q, max 0≤i≤m-1 deg a i } + (n -1) • max{deg q, max 0≤i≤m-1 deg a i },
and with the weaker condition gcd(k, n) = 1, provided that we already know that f is irreducible over K(X).

Proof: First of all, we note that f (X, g(X, Y )) is obviously irreducible over K(X) for m = n = 1 without any restriction on k and deg p, being linear in Y . Therefore in what follows we will assume that mn > 1. By our assumption on deg p we see in particular that deg p > deg b n , and since mn > 1, we also deduce that deg p > deg q, so p qb n . Now let us assume to the contrary that f (X, g(X, Y )) is reducible, say

f (X, g(X, Y )) = F 1 (X, Y )F 2 (X, Y ) with F 1 , F 2 ∈ K[X, Y ], deg Y F 1 ≥ 1, deg Y F 2 ≥ 1,
and let t 1 ∈ K[X] and t 2 ∈ K[X] be the leading coefficients of F 1 and F 2 respectively, viewed as polynomials in Y . Then, by comparing the leading coefficients in this equality we obtain

t 1 t 2 = a m b m n = p k qb m n . (1) 
Let us write now t 1 = p α t 1 and t 2 = p β t 2 with α, β non-negative integers and t 1 , t 2 ∈ K[X], p t 1 t 2 . By (1) and the fact that p qb n we must have

α + β = k (2)
and

t 1 t 2 = qb m n . (3) 
We note that we may also write

f (X, g(X, Y )) = h(X, Y ) + p(X) k q(X)g(X, Y ) m , with h(X, Y ) = a 0 (X) + a 1 (X)g(X, Y ) + • • • + a m-1 (X)g(X, Y ) m-1
. Now, since a 0 (X) = 0, we deduce that h(X, Y ) and g(X, Y ) m are algebraically relatively prime as polynomials in Y , so the same must hold for g m (X, Y ) and F 1 (X, Y ), and also for g m (X, Y ) and F 2 (X, Y ). As a consequence, by considering g, F 1 and F 2 as polynomials in Y with coefficients in K[X], the resultants R(g m , F 1 ) and R(g m , F 2 ), must be nonzero elements of K[X].

At this point we introduce a nonarchimedean absolute value | • | on K(X), as follows. We first fix a real number ρ > 1, and for any polynomial F (X) ∈ K[X] we define |F (X)| by the equality

|F (X)| = ρ deg F (X) . (4) 
Then we extend this absolute value | • | to K(X) by multiplicativity. Thus for any

Q(X) ∈ K(X), Q(X) = F 1 (X) F 2 (X) , with F 1 (X), F 2 (X) ∈ K[X], F 2 (X) = 0, we let |Q(X)| = |F 1 (X)| |F 2 (X)|
. We notice that for any non-zero element z of K[X] one has |z| ≥ 1. In particular, since the resultants R(g m , F 1 ) and R(g m , F 2 ) are non-zero elements of K[X], we must have

|R(g m , F 1 )| ≥ 1 and |R(g m , F 2 )| ≥ 1.
(

) 5 
In the sequel, we will estimate |R(g m , F 1 )| and |R(g m , F 2 )| in a different way. More precisely, we will first choose a fixed algebraic closure of K(X), say K(X), and then we will fix an extension of the absolute value | • | to K(X), which will also be denoted by | • |. If we consider now the factorization of F 1 (X, Y ) and F 2 (X, Y ) over K(X), say

F 1 (X, Y ) = t 1 (Y -α 1 ) • • • (Y -α r ) and F 2 (X, Y ) = t 2 (Y -β 1 ) • • • (Y -β s ) with α 1 , . . . , α r , β 1 , . . . , β s ∈ K(X), r, s ≥ 1, then we have |R(g m , F 1 )| = |t 1 | mn 1≤j≤r |g m (X, α j )| and |R(g m , F 2 )| = |t 2 | mn 1≤j≤s |g m (X, β j )|. (6)
We note that since g and h are relatively prime as polynomials in Y , we have g(X, α j ) = 0, h(X, α j ) = 0 and also g(X, β j ) = 0, h(X, β j ) = 0. All that remains now is to prove that our assumption on the size of deg p actually forces one of the inequalities |R(g m , F 1 )| < 1 and |R(g m , F 2 )| < 1 to hold, which contradicts [START_REF] Bonciocat | Irreducibility results for compositions of polynomials in several variables[END_REF]. To do this, we will first need to find upper bounds for |g m (X, α j )|, 1 ≤ j ≤ r and for |g m (X, β j )|, 1 ≤ j ≤ s.

To this end, let us consider the factorization of f (X, Y ) over K(X), say

f (X, Y ) = a m (X)(Y -γ 1 ) • • • (Y -γ m ),
with γ 1 , . . . , γ m ∈ K(X). Thus, for any i ∈ {1, . . . , m} one has

0 = f (X, γ i ) = a 0 (X) + a 1 (X)γ i + • • • + a m (X)γ m i . (7) 
In the sequel it will be, as in [START_REF] Bonciocat | Irreducibility criteria for compositions of multivariate polynomials[END_REF], more convenient to make use of a parameter in order to derive a reasonably sharp and simple condition on deg p which will force at least one of the inequalities |R(g m , F 1 )| < 1 and |R(g m , F 2 )| < 1 to hold. So let us fix an arbitrarily chosen real λ ≥ 0 and assume that

|a m | > ρ λ • max 0≤j≤m-1 |a j |. (8) 
Then for any i ∈ {1, . . . , m} one has

|γ i | < ρ -λ m . (9) 
Indeed, since our absolute value also verifies the triangle inequality, we deduce in view of ( 7) that for each i ∈ {1, . . . , m} we have

0 ≥ |a m | • |γ m i | -|a 0 + • • • + a m-1 γ m-1 i | ≥ |a m | • |γ m i | -max 0≤j≤m-1 |a j | • |γ i | j . Therefore, if |γ i | > 1 we further obtain 0 ≥ |γ i | m-1 (|a m | • |γ i | -max 0≤j≤m-1 |a j |) > |γ i | m-1 (|a m | -ρ λ • max 0≤j≤m-1 |a j |) > 0, while if 1 ≥ |γ i | ≥ ρ -λ m we obtain 0 ≥ |a m | • ρ -λ -max 0≤j≤m-1
|a j | > 0, again a contradiction.

We will now return to (6) and obtain upper bounds for |g m (X, α j )| and |g m (X, β j )|. Fix an index j ∈ {1, . . . , r} and recall that f (X, g(X, α j )) = 0. Therefore there exists an index i ∈ {1, . . . , m}, depending on j, for which g(X, α j ) = γ i , which in view of [START_REF] Bonciocat | Some Pólya type irreducibility criteria for multivariate polynomials[END_REF] shows that we must have |g(X,

α j )| < ρ -λ m , so |g m (X, α j )| < ρ -λ , (10) 
uniformly, for each j = 1, . . . , r. Similarly, if we fix now an index j ∈ {1, . . . , s} and recall that f (X, g(X, β j )) = 0, one may find an index i ∈ {1, . . . , m}, depending on j, for which g(X, β j ) = γ i , which in view of [START_REF] Bonciocat | Some Pólya type irreducibility criteria for multivariate polynomials[END_REF] shows that we must have |g(X,

β j )| < ρ -λ m , so |g m (X, β j )| < ρ -λ , (11) 
uniformly, this time for each j = 1, . . . , s. Using now (3), ( 6), ( 10) and ( 11 Noting that ( 8) is satisfied for some ρ > 1 as soon as

k deg p + deg q > λ + max 0≤i≤m-1 deg a i , (12) 
we see that in order to obtain a contradiction, it will be sufficient to search for a λ as small as possible that satisfies [START_REF] Brauer | Über Irreduzibilitätskriterien von I. Schur und G. Pólya[END_REF] and also at least one of the inequalities

λ ≥ mn(α deg p + deg q + m deg b n ) r , (13) 
λ ≥ mn(β deg p + deg q + m deg b n ) s . (14) 
At this point we will adapt an idea from [START_REF] Bonciocat | An irreducibility criterion for the sum of two relatively prime polynomials[END_REF] and make use of our key assumption that k and mn are coprime. We first observe that in view of ( 2) and the fact that r + s = mn, we have

(kr -mnα) + (ks -mnβ) = k(r + s) -mn(α + β) = kmn -mnk = 0.
Without loss of generality we may assume that kr -mnα ≥ ks -mnβ. We will conclude that none of kr -mnα and ks -mnβ can be zero. Indeed, if one of these numbers is zero, the other one must be zero too. So let us suppose that kr = mnα and ks = mnβ. As k and mn are coprime, both α and β must be divisible by k, which by (2) will force one of α and β to be zero. This obviously cannot hold, since it would further force one of the integers kr and ks to be zero, a contradiction. Therefore, there exists a positive integer δ such that kr -mnα = δ and ks -mnβ = -δ. In other words, even if we cannot deduce by any other means that one of α and β is zero (which is the case if k and m(n -d) are coprime, as in Theorem B), the fact that k and mn are coprime forces α to be sufficiently small so that kr -mnα is positive, which will still allow us to obtain a contradiction and prove the irreducibility of f (X, g(X, Y )). Taking this into account, one may transform inequalities ( 13) and ( 14) into

λ ≥ k - δ r deg p + mn r deg q + m 2 n r deg b n , (15) 
λ ≥ k + δ s deg p + mn s deg q + m 2 n s deg b n . (16) 
We see that a suitable candidate for λ is obviously the right member in [START_REF] Castillo | On Hilbert's irreducibility theorem[END_REF], so one obtains the desired contradiction if

k deg p + deg q > k - δ r deg p + mn r deg q + m 2 n r deg b n + max 0≤i≤m-1 deg a i , or, equivalently, if δ • deg p > mn deg q + m 2 n deg b n + r max 0≤i≤m-1 deg a i -deg q . (17) 
Now, without any aditional information on r and δ, we may use the fact that 1 ≤ r ≤ mn -1 and δ ≥ 1, so if max 0≤i≤m-1 deg a i > deg q it suffices to choose r = mn -1 in [START_REF] Cavachi | A class of irreducible polynomials[END_REF], which leads to

deg p > deg q + m 2 n deg b n + (mn -1) max 0≤i≤m-1 deg a i , while for max 0≤i≤m-1 deg a i ≤ deg q it suffices to choose r = 1, leading to deg p > (mn -1) deg q + m 2 n deg b n + max 0≤i≤m-1 deg a i .
We observe that we may write the two inequalities above for deg p in the closed form

deg p > m 2 n deg b n + min{deg q, max 0≤i≤m-1 deg a i } + (mn -1) • max{deg q, max 0≤i≤m-1 deg a i },
so if deg p satisfies this inequality, the polynomial f (X, g(X, Y )) (and hence f (X, Y ) too) must be irreducible over K(X), and this completes the proof of the first part of the theorem.

For the second part of the theorem, if we know that f (X, Y ) as a polynomial in Y is irreducible over K(X), then obviously f (X, b 0 (X) + b 1 (X)Y ) must also be irreducible over K(X) for every b 0 , b 1 ∈ K[X] with b 1 = 0. We may therefore assume that n > 1, which allows us to deduce again that p qb n . The proof goes then as in the first part, except that in this case we have deg Y F 1 = r ≥ m and also deg Y F 2 = s ≥ m, since by Capelli's Theorem, the degree in Y of every irreducible factor of f (X, g(X, Y )) must be a multiple of m. Therefore, in this case we know that m ≤ r ≤ mn -m. Moreover, when we try to prove as before that none of kr -mnα and ks -mnβ can be zero, the fact that r and s are multiples of m allows us to only ask k to be coprime to n, instead of mn as in previous case. Even more, we observe that in this case the non-zero integers kr -mnα and ks -mnβ are multiples of m, hence δ ≥ m, so we deduce by ( 17) that here it suffices to ask deg a i }, so if this inequality holds, the polynomial f (X, g(X, Y )) must be irreducible over K(X). This completes the proof of the theorem. Remark 2.2. We note here that the conditions on deg p in the statements of both Theorems 1.2 and 1.4 do not depend on k, b 0 , b 1 , . . . , b n-1 , so our conclusion on the irreducibility of f (X, g(X, Y )) will hold once we choose p, b n and a 0 , . . . , a m-1 to satisfy the inequalities in the statements of Theorems 1.2 and 1.4, respectively, then choose an arbitrary k coprime to n, or to mn respectively, and let b 0 , b 1 , . . . , b n-1 vary independently.

m deg p > m deg q + m 2 n deg b n + (mn -m) max
We will end with a couple of examples. 1) Let F 2 be the field with two elements, and let us consider the family of polynomials f k (X, Y ) ∈ F 2 [X, Y ] given by f k (X, Y ) = 1 + XY + (X + 1)Y 2 + Y 3 + (X 4 + X + 1) 2k+1 Y 4 .

Here m = deg Y f = 4, a 0 = 1, a 1 = X, a 2 = X + 1, a 3 = 1 and a 4 = p 2k+1 q with p(X) = X 4 + X + 1 and q = 1. Since min{deg q, max 0≤i≤3 deg a i } = 0 and max{deg q, max 0≤i≤3 deg a i } = 1, the inequality on deg p in the statement of Theorem 1.3 is obviously satisfied. Therefore, as p is irreducible over F 2 and gcd(2k + 1, m) = 1, for any nonnegative integer k the polynomial f k (X, Y ) is irreducible in F 2 [X, Y ] (being primitive as polynomial in Y ).

2) Let K be a field and p ∈ K[X] an irreducible polynomial. Then for any positive integers k, m, n with k coprime to mn, the bivariate polynomials F (X, Y ) = 1 + (p(X) + Y ) mn-n + p(X) k (p(X) + Y ) mn are irreducible over K(X). To see this, we observe that we may write F as F (X, Y ) = f (X, g(X, Y )), with f (X, Y ) = 1 + Y m-1 + p(X) k Y m and g(X, Y ) = (p(X) + Y ) n . The irreducibility of F follows now by Corollary 1.5.

Lemma 1 . 1 .

 11 ([10, Lemma 1.6]) Let K be a field and let f, g ∈ K[X, Y ] be two polynomials with deg Y g = n and deg Y f = n -d, d ≥ 1.

  ), and recalling the definition of our absolute value | • |, we obtain |R(g m , F 1 )| < ρ mn(α deg p+deg q+m deg bn)-λr , |R(g m , F 2 )| < ρ mn(β deg p+deg q+m deg bn)-λs .

deg

  a i > deg q, andm deg p > (mn -m) deg q + m 2 n deg b n + m max 0≤i≤m-1 deg a i . if max 0≤i≤m-1 deg a i ≤ deg q.After division by m, we see that in this case we may write these two inequalities on deg p in the closed formdeg p > mn deg b n + min{deg q, max 0≤i≤m-1 deg a i } + (n -1) • max{deg q, max 0≤i≤m-1

Proof of Theorem 1 . 3 :

 13 One immediately obtains Theorem 1.3 by taking g(X, Y ) = Y in the first part of Theorem 2.1.
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