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This paper is the first in a series which aims at: (a) giving a proof that the associator relations between multizeta values imply the double shuffle and regularization (DSR) ones, alternative to that of the second-named author's 2010 paper; (b) enhancing Racinet's construction of a torsor structure over the Q-scheme of DSR relations to an explicit bitorsor structure.

In this paper, we revisit Racinet's original DSR formalism, whose main character is an algebra coproduct, called the harmonic coproduct, and we introduce a variant which is a module coproduct; we explain the 'de Rham' nature of this formalism and construct a 'Betti' counterpart of it; we show how both formalisms can be interpreted in terms of geometry, following the ideas of Deligne and Terasoma's unfinished 2005 preprint; we use Bar-Natan's interpretation of associators as functors from the category of parenthesized braids to that of chord diagrams to show that any associator relates the Betti and de Rham geometric objects, both in the 'algebraic' and in the 'module' setups; we derive that any associator relates the Betti and de Rham algebra coproducts, as well as their module counterparts. These results will be used in the next parts of the series. V,(1),DR (µ,g) and aut W,(1),DR (µ,g) 3.2. The module automorphisms aut V,(10),DR (µ,g) and aut M,(10),DR (µ,g) 3.3. The isomorphisms comp V,(1) (µ,Φ) , comp W,(1) (µ,Φ) , comp V,(10) (µ,Φ) and comp M,(10) (µ,Φ) 3.4. Relation with comparison isomorphisms

Introduction 0.1. The context. 0.1.1. The bitorsor of mixed Tate motives over Z. [DeG] contains the construction of a Q-linear neutral Tannakian category T := MT(Z) Q of mixed Tate motives over Z, equipped with 'Betti' and 'de Rham' fiber functors ω B , ω DR : T → Vec Q to the category of finite dimensional Q-vector spaces. It gives rise to a Q-scheme Isom ⊗ T (ω B , ω DR ) : k → Isom ⊗ T (ω B ⊗ k, ω DR ⊗ k), and to 'motivic Galois' Q-group schemes Aut ⊗ T (ω ? ) : k → Aut ⊗ T (ω X ⊗ k), for ? ∈ {B, DR} (denoted G ? in [DeG]), k running over Q-algebras. Then Isom ⊗ T (ω B , ω DR )(k) is equipped with commuting free and transitive actions of Aut ⊗ T (ω DR )(k) from the left, and of Aut ⊗ T (ω B )(k) from the right. The triple formed by this set and these two groups is a bitorsor, meaning that the set is equipped with commuting left and right, free and transitive actions of the groups, and the assignment of the triple to k is then a bitorsor Q-scheme.

The category T is closely connected with the family of real numbers known as multiple zeta values (MZVs), which are given by (0.1.1)

∀s ≥ 1, k 1 ≥ 1, . . . , k s-1 ≥ 1, k s ≥ 2, ζ(k 1 , . . . , k s ) = 0<n1<•••<ns 1 n k1 1 • • • n ks s ;
it follows from their integral expressions that these numbers, as well as 1 2πi, are periods of mixed Tate motives.

0.1.2. The bitorsor of associators. Combining [Dr] and [LeM], one can exhibit a family of algebraic relations satisfied by the MZVs and 2πi, the 'associator relations'. The corresponding Q-scheme is the scheme 2 of associators M; it is equipped with commuting free and transitive actions of affine Q-group schemes GT and GRT (the Grothendieck-Teichmüller group scheme and its graded version) from the left and from the right, so that M is a bitorsor Q-scheme.

In [An], it is explained that there is a bitorsor Q-scheme morphism Isom ⊗ T (ω B , ω DR ) → M, i.e., a morphism between these Q-schemes, together with compatible Q-group scheme morphisms Aut ⊗ T (ω B ) → GT and Aut ⊗ T (ω DR ) → GRT.

0.1.3. The double shuffle torsor. In [IKZ, R] (see also [G]), another family of algebraic relations satisfied by MZVs and 2πi was exhibited, the 'double shuffle and regularization' (DSR) relations. The corresponding Q-scheme was constructed in [R]: it is a functor 3 DMR DR,B := (k → µ∈k × {µ} × DMR µ (k)), which is equipped with a free and transitive left action of a Q-group scheme DMR DR := (k → k × (DMR 0 (k), ⊛)), therefore with a torsor Q-scheme structure. An interpretation of DMR DR in terms of a stabilizer group was obtained in [START_REF] Enriquez | A stabilizer interpretation of double shuffle Lie algebras[END_REF]. 0.1.4. Relations between the associator and double shuffle schemes. The unfinished preprint [DeT], based on the ideas of Deligne's letter to Racinet (April 21, 2001), contains an attempt at 1 We set i := √ -1. 2 An affine Q-scheme (resp., Q-group scheme) X can be identified with a representable functor from the category of Q-algebras to that of sets (resp. groups), denoted k → X(k), for k running over Q-algebras.

3 DMR stands for the French 'double mélange et régularisation'.

constructing a Q-scheme inclusion M → DMR DR,B , using constructions involving the categories of perverse sheaves over the moduli space M 0,4 and M 0,5 .

In [F3], a Q-scheme inclusion M → DMR DR,B was constructed; a compatible Q-group scheme inclusion GRT op → DMR DR can be constructed, so that this Q-scheme inclusion can be upgraded to a Q-torsor inclusion. This work is based on the construction, based on bar-complex techniques and the combinatorics of multiple polylogarithms, of explicit linear forms on the algebra U (p 5 ), in which the associator relations take place, and on study of the interaction of these linear forms with the associator relations.

0.2. The motivation and objectives of the series of papers. The main motivation of this series of papers are (1) to gain a better understanding of the inclusion M ⊂ DMR DR,B , in particular whether it is an equality (2) making explicit the bitorsor structure of DMR DR,B . In order to reach (1), it seems useful to obtain a conceptual interpretation of this inclusion.

The objectives of the series of papers are therefore: (a) to extend the interpretation of the group DMR DR in terms of a stabilizer ( [START_REF] Enriquez | A stabilizer interpretation of double shuffle Lie algebras[END_REF]) to the torsor DMR DR,B , for which the ideas of [DeT] will prove to be useful; (b) to give a proof of the inclusion M → DMR DR,B based on this interpretation and on the interpretation of M obtained in [BN]; (c) to enhance the torsor structure of DMR DR,B into a bitorsor structure.

The material of the series is distributed as follows: the present part I is preparational; part II ( [START_REF] Enriquez | The Betti side of the double shuffle theory. II. Double shuffle relations for associators[END_REF]) will be devoted to objectives (a) and (b), and part III ( [START_REF] Enriquez | The Betti side of the double shuffle theory[END_REF]) to objective (c).

0.3. The contents of the present paper (part I of the series). After treating categorical and topological preliminaries (Part 1), we revisit the DSR formalism and construct its Betti counterpart (Part 2); interpret both formalisms in terms of braids and moduli spaces (Part 3); and derive the compatibility of their main constituents with associators (Part 4). The corresponding compatibility statements are Theorem 10.9 (compatibility of harmonic algebra coproducts with associators) and Theorem 11.13 (compatibility of harmonic module coproducts with associators). These statements will play a key role in the next papers of the series and should be viewed as the main results of the present paper. The necessary material for understanding their formulation is to be found in: § §9.1 and 9.2 (associators and their Γ-functions), § §1.1 and 1.3 (definitions of the algebra ŴDR and of the module MDR ), § §1.2 and 1.3 (definitions of the de Rham harmonic algebra coproduct ∆W,DR and of its module version ∆M,DR ), § §2.1 and 2.5 (definitions of the algebra ŴB and of the module MB ), § §2.3 and 2.5 (definitions of the Betti harmonic coproduct ∆W,B and of its module version ∆M,B ), and §3.3 (definitions of the algebra isomorphism comp In this section, we introduce various symmetric monoidal categories of k-modules and functors relating them. This material will be used through the rest of the paper.

Definition 0.1. (1) k-mod gr is the category where objects are Z-graded k-modules and where morphisms are k-module morphisms of degree 0;

(2) k-mod fil is the category where objects are pairs (M, i → F i M ), where M is a k-module and i → F i M is a map Z → {k-submodules of M}, which is decreasing (i.e. F i M ⊃ F i+1 M for i ∈ Z), and where the set of morphisms from (M, i → F i M ) to (N, i → F i N ) is the set of k-module morphisms f : M → N , which are compatible with the filtrations on both sides. We denote by F i f : F i M → F i N the induced k-module map corresponding to i ∈ Z;

(3) k-mod gr,+ is the full subcategory of k-mod gr of bounded below Z-graded k-modules, i.e.

of modules M = ⊕ i∈Z M i , such that there exists i(M ) ∈ Z, such that M i = 0 for i < i(M );

(4) k-mod fil,+ is the full subcategory of k-mod fil of pairs (M, i → F i M ), such that there exists i(M ) ∈ Z, such that F i(M ) M = M ;

(5) k-mod top is the full subcategory of k-mod fil,+ of pairs (M, i → F i M ), such that the map M → lim ←i M/F i M is a k-module isomorphism, i.e. M is complete for the topology defined by i → F i M .

Functors. There are tautological functors to each category from each of its full subcategories.

We will denote some of these functors as follows taut fil,+ top : k-mod top → k-mod fil,+ and taut fil,+ gr,+ : k-mod gr,+ → k-mod fil,+ .

There is also an 'associated graded' functor gr : k-mod fil → k-mod gr , which takes (M, i → F i M ) to gr(M ) := ⊕ i∈Z gr i (M ), where gr i (M ) := F i M/F i+1 M for i ∈ Z. It induces a functor gr : k-mod fil,+ → k-mod gr,+ .

For each α ∈ Z, there are functors F α : k-mod fil → k-mod fil,+ and (-) ≥α : k-mod gr → k-mod gr,+ , defined by F α (M, i → F i M ) := (F α M, i → F i M ∩ F α M ), and

M ≥α := ⊕ i≥α M i for M = ⊕ i∈Z M i .
Finally, there is a 'completion' functor (-) ∧ : k-mod fil,+ → k-mod top , given by (M, i →

F i M ) → (lim ← - j M/F j M, i → lim ← - j F i M/F j M )
; it gives rise to a functor (-) ∧ •taut fil,+ gr,+ : k-mod gr,+ → k-mod top .

A diagram of all these functors and categories is as follows gr,+ (f ) : k-mod gr,+ → k-mod top is exact. 2) If f is a morphism in k-mod fil,+ such that the morphism gr(f ) in k-mod gr,+ is injective, then the morphism f in k-mod top is injective.

Proof. 1) Let 0 → A → B → C → 0 be an exact sequence in k-mod gr,+ . Then for each k ∈ Z,

its degree k component 0 → A k → B k → C k → 0 is exact. The image of 0 → A → B → C → 0 by (-) ∧ • taut fil,+ gr,+ is the sequence 0 → (⊕ k<0 A k ) ⊕ ( k≥0 A k ) → (⊕ k<0 B k ) ⊕ ( k≥0 B k ) → (⊕ k<0 C k ) ⊕ ( k≥0 C k ) → 0, which is then exact.
2) Let f : M → N be a morphism in k-mod fil,+ with gr(f ) injective. Let i 0 := min(i(M ), i(N )).

For any k ≥ i 0 , the map f ≤k : M/F k M → N/F k N induced by f is compatible with the filtrations on both sides induced by the images of F i M and F i N , i ≤ k. The associated graded map is ⊕ k-1 i=i0 gr i (f ), which is injective. Therefore f ≤k is injective. So f is injective as well. □ Symmetric monoidal structures. Each of the categories from Definition 0.1, (1)-( 4), is equipped with a symmetric monoidal structure, induced at the level of objects by the tensor product of kmodules. The category k-mod top is also equipped with a symmetric monoidal structure arising from the completed tensor product (M, i

→ F M ) ⊗(N, i → F N ) := (lim ← - j (M ⊗ N )/F j (M ⊗ N ), i → lim ← - j F i (M ⊗ N )/F j (M ⊗ N )).
For X, Y objects in k-mod top , one has therefore X ⊗Y = (taut fil,+ top (X) ⊗ taut fil,+ top (Y )) ∧ . The functors in the previous paragraphs are then all monoidal.

Part 2. The de Rham and Betti frameworks of double shuffle theory

In this part, we recall from [R] the DSR formalism and complement it by the introduction of a harmonic module coproduct ∆ M,DR ( §1). We construct a variant of this formalism, where its basic ingredient, the free algebra in two generators, is replaced by the group algebra of the free group in the same number of generators ( §2). We then construct families of isomorphisms relating the various ingredients of the formalism of §1 with their counterparts of §2 ( §3). The formalism of §1 (resp. §2) is called 'de Rham' (resp. 'Betti') for reasons explained in §3.4.

The de Rham framework of double shuffle theory

We recall from [R] the basic formalism of double shuffle theory. Its main ingredients are:

k-bialgebras (V DR , ∆ V,DR ) and (W DR , ∆ W,DR ), a k-coalgebra (M DR , ∆ M,DR ), related by an algebra inclusion W DR → V DR and a V DR -module structure on M DR , inducing a free rank one W DR -module structure on M DR , compatible with the coproducts; completions of all these structures; and a "Γ-function" map

G( VDR ) → k[[t]],
where the source is the set of group-like elements of the completion of VDR .

We introduce the algebra and module structures in §1.1, the coproducts in §1.2, the completions in §1.3, the Γ-function map in §1.4. We explain the relation with the formalism of [R] in §1.5.

1.1. The algebras V DR , W DR and the module M DR . Let f 2 be the free Z-graded k-Lie algebra over generators e 0 and e 1 of degree 1 and let

V DR := U f 2 be its enveloping algebra; it is a Z-graded algebra whose components of degree < 0 vanish, therefore an algebra in k-mod gr,+ .

Then

W DR := k ⊕ (U f 2 )e 1 ⊂ U f 2 = V DR
is a Z-graded subalgebra of V DR , hence a subalgebra of it in k-mod gr,+ .

The quotient k-module

M DR := V DR /V DR e 0
is an object in k-mod gr,+ ; it is a left module over V DR , and by restriction also over W DR .

Denote by 1 DR the class of 1 ∈ V DR in M DR . The map

(1.1.1) (-) • 1 DR : V DR → M DR , a → a • 1 DR
is a surjective morphism in k-mod gr,+ , and its kernel is equal to (U f 2 )e 0 . It follows from the

direct sum decomposition U f 2 = k ⊕ (U f 2 )e 0 ⊕ (U f 2 )e 1 that M DR is free of rank one as a W DR -module, generated by 1 DR . We denote by (1.1.2) W DR → M DR , a → a • 1 DR the corresponding isomorphism of W DR -modules.
1.2. The coproducts ∆ V,DR , ∆ W,DR and ∆ M,DR . We denote by ∆ V,DR :

V DR → (V DR ) ⊗2
the enveloping algebra coproduct; it is determined by the conditions that e 0 , e 1 are primitive.

One shows that W DR is freely generated by the elements y n := -e n-1 0 e 1 , where n ≥ 1. One denotes by

∆ W,DR : W DR → (W DR ) ⊗2
the algebra morphism determined by

(1.2.1) ∀n ≥ 1, ∆ W,DR (y n ) = y n ⊗ 1 + 1 ⊗ y n + n-1 k=1 y k ⊗ y n-k ;
it equips W DR with a Hopf algebra structure.

We denote by

∆ M,DR : M DR → (M DR ) ⊗2
the k-module morphism determined by the conditions that ∆ M,DR (1 DR ) = (1 DR ) ⊗2 , and that it is compatible with the module structures on both sides and with the algebra morphism ∆ W,DR .

Then (M DR , ∆ M,DR ) is a cocommutative and coassociative coalgebra.

Remark 1.1. As a Hopf algebra, (W DR , ∆ W,DR ) is isomorphic to the universal enveloping algebra U (g DR ) of the free Lie algebra g DR with generators (u k ) k≥1 , the isomorphism being given by g 

DR [[t]] k≥1 t k u k → log(1 + k≥1 t k y k ) ∈ W DR [[t]]. 1.3. Completions. The pairs (V DR , ∆ V,DR ), (W DR , ∆ W,DR ) (resp. (M DR , ∆ M,DR ))
→ k[[t]] × , g → Γ g , where (1.4.1) Γ g (t) := exp n≥1 (-1) n+1 n (g|e n-1 0 e 1 )t n ∈ k[[t]] ×
and where g → ((g|w)) w is the map VDR → k {words in e0,e1} such that the identity g = w (g|w)w holds.

1.5. Relation with double shuffle theory. In order to explain how the above material is used in the theory of double shuffle relations between the MZVs given by (0.1.1), we introduce

the notation VDR C , MDR C (resp. V DR Q ) for the spaces VDR , MDR (resp. V DR ) when k = C (resp. k = Q).
The series ϕ KZ ∈ C A, B × from §2 in [Dr] can be viewed as an element of ( VDR C ) × via the isomorphism given by A → e 0 , B → e 1 . It is a generating series for the MZVs, namely [LeM] and [F1], Proposition 3.2.3).

ϕ KZ = 1 + m,k1,...,km>0,k1>1 (-1) m ζ(k 1 , . . . , k m )w(k 1 , . . . , k m ), where w(k 1 , . . . , k m ) is an explicit element in e k1-1 0 e 1 • • • e km-1 0 e 1 + e 1 V DR Q + V DR Q e 0 (see
The double shuffle relations between MZVs can be formulated as follows (see [R]):

(1) ϕ KZ is group-like for the coproduct ∆V,DR ;

(

2) Γ -1 φKZ (-e 1 ) • ϕ KZ • 1 DR ∈ MDR C
is group-like for the coproduct ∆M,DR .

The correspondence between the present formalism and that of [R] is as follows.

this paper e 0 , e 1 V DR , VDR ∆ V,DR , ∆V,DR W DR , ŴDR ∆ W,DR , ∆W,DR [R] x

0 , -x 1 k x 0 , x 1 , ∆, ∆ k ⊕ k x 0 , x 1 x 1 , ∆ ⋆ , ∆⋆ k x 0 , x 1 degree completion M DR , MDR ∆ M,DR , ∆M,DR (-) • 1 DR : V DR → M DR , (-) • 1 DR : VDR → MDR k x 0 , x 1 /k x 0 , x 1 x 0 , ∆ ⋆ , ∆⋆ π Y : k x 0 , x 1 → k x 0 , x 1 /k x 0 , x 1 x 0 , degree completion degree completion

The Betti framework of double shuffle theory

We construct a Betti version of the double shuffle formalism from §1. The analogues of V DR , W DR and M DR are a pair of filtered k-algebras V B , W B , and a filtered k-module M B ( §2.1).

An algebra presentation of W B is established in §2.2, and used in §2.3 to define a Hopf algebra coproduct ∆ W,B on W B as well as a coassociative coproduct ∆ M,B on M B ; a Hopf algebra coproduct ∆ V,B on V B is also defined. In §2.4, we show the compatibility of the coproducts with the filtrations, and we relate the resulting associated graded objects with the material of §1. We define the corresponding topological Hopf algebras and coassociative coalgebra in §2.5.

2.1.

The algebras V B , W B and the module M B . Let F 2 be the free group with generators

X 0 , X 1 . Let V B := kF 2
be its group algebra. It is equipped with a decreasing algebra filtration

V B = F 0 V B ⊃ F 1 V B ⊃ • • • , where for i ≥ 0, F i V B is the i-th power of the augmentation ideal V B + of V B = kF 2 . Then W B := k ⊕ V B (X 1 -1) ⊂ V B
is a subalgebra of V B ; it is equipped with the induced filtration given by ∀i ≥ 0,

F i W B := F i V B ∩ W B .
Then V B is an algebra in k-mod fil,+ and W B is a subalgebra.

The quotient k-module

M B := V B /V B (X 0 -1)
is a left module over V B , and by restriction over

W B . Let 1 B be the class of 1 ∈ V B in M B .
The map

(-) • 1 B : V B → M B , a → a • 1 B
is surjective, with kernel (kF 2 )(X 0 -1). The k-module M B is equipped with a decreasing filtration given by

F i M B := (F i V B ) • 1 B for i ≥ 0, compatible with the filtrations of V B and W B . Therefore M B is a V B -module and a W B -module in k-mod fil,+ .
Lemma 2.1 (Proposition 6.2.6 in [Wei]). Let G be the free group over generators g 1 , . . . , g n , let ZG be its group algebra with coefficients in Z and let (ZG) 0 be the augmentation ideal of this algebra. Then (ZG) 0 is freely generated, as a left ZG-module, by the family (g 1 -1, . . . , g n -1).

The proof in [Wei] relies on the following statement (not explicitly stated there)

∀N ≥ 1, #{g ∈ G | g = 1, (g) < N } = #{(g, i) ∈ G × [[1, n]] | (g) < N, (gg i ) < N }
which may be proved by counting arguments. Here is an alternative proof of this lemma.

Alternative proof of Lemma 2.1.

There is a unique morphism of left ZG-modules

a : (ZG) ⊕n → (ZG) 0 , (f 1 , . . . , f n ) → n i=1 f i (g i -1).
It follows from [Fox], equation (2.3) (see also the argument in Proposition 6.2.6 from [Wei])

that the map a is surjective.

The injectivity of a may then be established in two ways.

(First proof of injectivity of a.) In [Fox], endomorphisms ∂ ∂gi (i ∈ [[1, n]]) of the Z-module ZG are constructed. These endomorphisms are characterized by the following properties:

∂ ∂gi (1) = 0, ∂ ∂gi (g j ) = δ ij (j ∈ [[1, n]]), and ∂ ∂gi (uv) = u ∂ ∂gi (v)+ ∂ ∂gi (u) (v) for u, v in ZG, where : ZG → Z is the counit map (augmentation). These properties imply the identities ∂ ∂gi (f (g j -1)) = δ ij f for f ∈ ZG, i ∈ [[1, n]]. As a consequence, the Z-module map b : (ZG) 0 → (ZG) ⊕n , f → ( ∂ ∂g 1 f, . . . , ∂ ∂g n f ) is such that b•a = id.
It follows that a is injective and therefore an isomorphism of ZG-modules.

(Second proof of injectivity of a.) Let Z x 1 , . . . , x n be the ring of formal series in noncommutative variables x 1 , . . . , x n , with coefficients in Z. The group morphism G → Z x 1 , . . . , x n

×

given by g i → 1 + x i for i ∈ [[1, n]] gives rise to an algebra morphism r : ZG → Z x 1 , . . . , x n , which is injective (see [Bbk], Ch. 2,Sec. 5,no. 3,Thm. 1). The map r • a :

ZG ⊕n → Z x 1 , . . . , x n is given by (f 1 , . . . , f n ) → n i=1 r(f i )x i and is therefore equal to the com- posed map ZG ⊕n r ⊕n → Z x 1 , . . . , x n ⊕n φ → Z x 1 , . . . , x n , where ϕ is given by (r 1 , . . . , r n ) → n i=1 r i x i . This map is injective, as is r ⊕n , which implies that r • a is injective, showing the injectivity of a. □ Lemma 2.1 implies the direct sum decomposition (2.1.1) V B = k1 ⊕ V B (X 1 -1) ⊕ V B (X 0 -1) = W B ⊕ V B (X 0 -1),
which implies that M B is free of rank one as a W B -module, generated by the class 1 B of 1 ∈ kF 2 . We denote by

(2.1.2) W B → M B , a → a • 1 B
the corresponding isomorphism of W B -modules.

Presentation of the algebra W

B . Set for k ∈ Z, ξ + k := X k 0 (X 1 -1), and ξ - k := X k 0 (X -1 1 -1).
These are elements of W B ⊂ kF 2 .

Lemma 2.2. The algebra W B is the algebra whose generators are (ξ + k ) k∈Z , (ξ - k ) k∈Z , and relations are

(2.2.1) ∀k ∈ Z, ξ + k ξ - 0 = ξ - k ξ + 0 = -ξ + k -ξ - k .
Proof. Let A be the associative non-commutative algebra generated by (ξ + k ) k∈Z , (ξ - k ) k∈Z divided by the two-sided ideal generated by the relation given in (2.2.1).

One checks that there is an algebra morphism

f : A → k ⊕ kF 2 (X 1 -1) = W B , uniquely determined by ξ + k → X k 0 (X 1 -1) and ξ - k → X k 0 (X -1 1 -1).
We will prove that f is an algebra isomorphism.

Let us first prove that f is surjective. For this, it will suffice to prove that for any word w in X ±1 0 , X ±1 1 , there exists a polynomial without constant term P w over a set of noncommutative variables

{( ξ+ k ) k∈Z , ξ- 0 } indexed by Z {0}, such that w • (X 1 -1) = P w ((ξ + k ) k∈Z , ξ - 0 ).
We argue by induction on the length |w| of w. If w = 1, then P w = ξ+ 0 . Assume the statement for |w| < n and let w be a word of length n. Then w = gw ′ , where

g ∈ {X ±1 0 , X ±1 1 } and w ′ has length n -1. If g = X ±1 1 , then w • (X 1 -1) = X ±1 1 w ′ (X 1 -1) = P w ((ξ + k ) k∈Z , ξ - 0 ),
where

P w := (1 + ξ± 0 )P w ′ . If g = X ±1 0 , then w • (X 1 -1) = X ±1 0 w ′ (X 1 -1) = P w ((ξ + k ) k∈Z , ξ - 0 ),
where we set

P w := k∈Z ξ+ k±1 (P w ′ ) + k -ξ+ ±1 (1 + ξ- 0 )(P w ′ ) - 0 ,
in which the expressions (P w ′ ) + k and (P w ′ ) - 0 have the following meaning: for P a polynomial in the noncommutative variables ( ξ+ k ) k∈Z , ξ-0 without constant term, (P ) + k and (P ) - 0 are the polynomials in the same variables such that

P = k∈Z ξ+ k (P ) + k + ξ- 0 (P ) - 0 .
This proves that f :

A → k ⊕ kF 2 (X 1 -1) is surjective.
To prove that f is injective, we will: a) equip the vector space A[t ±1 ] with an algebra structure * , such that

A → A[t ±1 ], a → a ⊗ 1 is an algebra morphism; b) construct an algebra isomorphism F : A[t ±1 ] → kF 2 ; c) check that F extends f , in the sense that the following diagram commutes (2.2.2) A f / / _ -⊗1 k ⊕ kF 2 (X 1 -1) _ A[t ±1 ] F / / kF 2
The above diagram implies that f is injective, which finally implies that it is an isomorphism.

(a) Construction of an algebra structure on

A[t ±1 ]. Let k ( ξ± k ) k∈Z + be the ideal of k ( ξ± k ) k∈Z generated by the generators ( ξ± k ) k∈Z . We have a direct sum decomposition k ( ξ± k ) k∈Z = k ⊕ k ( ξ± k ) k∈Z + . Left multiplication induces a linear isomorphism (⊕ k∈Z (k ξ+ k ⊕ k ξ- k )) ⊗ k ( ξ± k ) k∈Z ∼ → k ( ξ± k ) k∈Z + , therefore there is a linear automorphism T of k ( ξ± k ) k∈Z + , uniquely determined by (2.2.3) ∀k ∈ Z, ∀a ∈ k ( ξ± k ) k∈Z , T ( ξ± k a) = ξ± k+1 a.
Let I be the two-sided ideal of k ( ξ± k ) k∈Z generated by (2.2.1). Then

I ⊂ k ( ξ± k ) k∈Z + . Set A + := k ( ξ± k ) k∈Z + /I, then A = k ⊕ A + . Let V ⊂ k ( ξ± k ) k∈Z + be the linear span of all ξ+ k ξ- 0 + ξ+ k + ξ- k and ξ- k ξ+ 0 + ξ+ k + ξ- k , for k ∈ Z. Then I = V • k ( ξ± k ) k∈Z + k ( ξ± k ) k∈Z + • V • k ( ξ± k ) k∈Z . It follows from the definition of T that T ±1 maps the subspace k ( ξ± k ) k∈Z + • V • k ( ξ± k ) k∈Z to itself. Moreover, for any a ∈ k ( ξ± k ) k∈Z , one has T ±1 (( ξ+ k ξ- 0 + ξ+ k + ξ- k )a) = ( ξ+ k±1 ξ- 0 + ξ+ k±1 + ξ- k±1 )a, T ±1 (( ξ- k ξ+ 0 + ξ+ k + ξ- k )a) = ( ξ- k±1 ξ+ 0 + ξ+ k±1 + ξ- k±1 )a, which implies that T ±1 maps V • k ( ξ± k ) k∈Z to itself. All this implies that T ±1 (I) ⊂ I, so T (I) = I. It follows that T induces a linear automorphism of A + . Relation (2.2.3) then implies:
(2.2.4) for P, P ′ ∈ A + and a ∈ Z, we have T a (P P ′ ) = T a (P )P ′ .

We now define a bilinear map * :

A[t ±1 ] ⊗2 → A[t ±1 ]
as follows:

1) for a, b ∈ Z, (1 ⊗ t a ) * (1 ⊗ t b ) = 1 ⊗ t a+b ; 2) for a ∈ Z, P ∈ A + , (1 ⊗ t a ) * (P ⊗ t b ) := T a (P ) ⊗ t b , (P ⊗ t a ) * (1 ⊗ t b ) := P ⊗ t a+b , 3) for a, b ∈ Z, and P, Q ∈ A + , (P ⊗ t a ) * (Q ⊗ t b ) := (P • T a (Q)) ⊗ t b ,
where • is the product in A + .

It then follows from a case analysis, using (2.2.4), that

(2.2.5) the product * defines an associative algebra structure on

A[t ±1 ].
(b) Construction of an algebra isomorphism (A[t ±1 ], * ) kF 2 . The elements 1⊗t and 1⊗t -1 of (A[t ±1 ], * ) are mutually inverse; so are the elements 1 + ξ + 0 and 1 + ξ - 0 of A, and therefore the elements

(1 + ξ + 0 ) ⊗ 1 and (1 + ξ - 0 ) ⊗ 1 of A[t ±1
]. All this implies that there is an algebra morphism

G : kF 2 → (A[t ±1 ], * )
uniquely determined by

X ±1 0 → 1 ⊗ t ±1 , X ±1 1 → (1 + ξ ± 0 ) ⊗ 1.
One checks that the algebra homomorphism f : A → k ⊕ kF 2 (X 1 -1) restricts to a morphism of algebras without unit

f + : A + → kF 2 (X 1 -1),
and that the following diagram commutes

A + f + / / T kF 2 (X 1 -1) X0•- A + f + / / kF 2 (X 1 -1)
Define now a linear map

F : A[t ±1 ] → kF 2 by 1 ⊗ t a → X a 0 , P ⊗ t b → f + (P )X b 0 for a, b ∈ Z, P ∈ A + . Then: 1) for a, b ∈ Z, F (1 ⊗ t a )F (1 ⊗ t b ) = X a 0 X b 0 = X a+b 0 = F (1 ⊗ t a+b ) = F ((1 ⊗ t a ) * (1 ⊗ t b )); 2) for a ∈ Z, P ∈ A + , F (1 ⊗ t a )F (P ⊗ 1) = X a 0 f + (P ) = f + (T a (P )) = F (T a (P ) ⊗ 1) = F ((1 ⊗ t a ) * (P ⊗ 1)), F (P ⊗ 1)F (1 ⊗ t a ) = f + (P )X a 0 = F (P ⊗ t a ) = F ((P ⊗ 1) * (1 ⊗ t a )); 3) for a, b ∈ Z, P, Q ∈ A + , F (P ⊗ t a )F (Q ⊗ t b ) = f + (P )X a 0 f + (Q)X b 0 = f + (P )f + (T a (Q))X b 0 = f + (P T a (Q))X b 0 = F (P T a (Q) ⊗ t b ) = F ((P ⊗ t a ) * (Q ⊗ t b )).
All this implies that F is an algebra morphism A[t ±1 ] → kF 2 . Let us now show that the algebra morphisms F, G are mutually inverse.

We have

F • G(X ±1 0 ) = F (1 ⊗ t ±1 ) = X ±1 0 , F • G(X ±1 1 ) = F ((1 + ξ ± 0 ) ⊗ 1) = 1 + F (ξ ± 0 ⊗ 1) = 1 + f + (ξ ± 0 ) = 1 + (X ±1 1 -1) = X ±1 1 , so F • G = id kF2 . Similarly, G • F is an algebra endomorphism of (A[t ±1 ], * ).
Given the structure of * , a collection of generators of this algebra is given by {g ⊗ 1, 1 ⊗ t ±1 }, where g runs over a collection of algebraic generators of A, so such a collection of algebraic

generators is {(ξ ± k ⊗ 1) k∈Z , 1 ⊗ t ±1 }. One has G • F (ξ ± k ⊗ 1) = G(f + (ξ ± k )) = G(X k 0 (X ±1 1 -1)) = G(X 0 ) * k * (G(X ±1 1 ) -1) = (1 ⊗ t ±1 ) * k * (ξ ± 0 ⊗ 1) = ξ ± k ⊗ 1, so G • F = id A[t ±1 ] .
(c) Diagram involving f and F . The commutation of (2.2.2) follows from the definition of

F . □
Lemma 2.2 leads to the following presentation:

Proposition 2.3. The associative k-algebra W B is generated by the unity element 1 and the elements

Y + n := (X 0 -1) n-1 X 0 (1 -X 1 ) (n > 0), (2.2.6) Y - n := (X -1 0 -1) n-1 X -1 0 (1 -X -1 1 ) (n > 0), X 1 and X -1 1 ,
with defining relations

(2.2.7) X 1 X -1 1 = X -1 1 X 1 = 1.
Proof. By the presentations in the previous lemma, we have

ξ - k = -ξ + k (1 + ξ - 0 ) and ξ + k = -ξ - k (1 + ξ + 0 )
, from which we can deduce that A is generated by ξ + k and ξ - -k for k ⩾ 0 with defining equation (2.2.1) only for k = 0.

It is immediate to see that (Y + n ) n>0 (resp. (Y - n ) n>0
) can be expressed by linear combinations of (ξ + n ) n>0 (resp. (ξ - n ) n>0 ) and vice versa and that the equation (2.2.1) for k = 0 is equivalent to (2.2.7), from which our claim follows. □ 2.3. The coproducts ∆ V,B , ∆ W,B and ∆ M,B . We denote by ∆ V,B : V B → (V B ) ⊗2 the group algebra coproduct; it is determined by the condition that the elements X ±1 0 , X ±1 1 are group-like.

Proposition 2.4. There is a unique algebra morphism

∆ W,B : W B → (W B ) ⊗2 such that (2.3.1) ∆ W,B (X ±1 1 ) = X ±1 1 ⊗X ±1 1 , ∆ W,B (Y ± k ) = Y ± k ⊗1+1⊗Y ± k + k ′ ,k ′′ >0,k ′ +k"=k Y ± k ′ ⊗Y ± k ′′ for any k ≥ 1.
It equips W B with a cocommutative Hopf algebra structure with antipode given by

X ±1 1 → X ∓1 1 , Y ± k → a≥1 (-1) a k1+•••+ka=k Y ± k1 • • • Y ± ka .
Proof. The relations between the generators (see Proposition 2.3) are obviously preserved, therefore ∆ W,B is well-defined. One directly checks the cocommutativity and coassociativity of ∆ W,B . One also checks that for t a formal parameter, the series 1 + k≥1 t k Y ± k are group-like. It follows that ∆ W,B admits the announced antipode. □

We denote by

∆ M,B : M B → (M B ) ⊗2
the k-module morphism determined by the conditions that ∆ M,B (1

B ) = (1 B ) ⊗2
, and that it is compatible with the module structures on both sides and with the algebra morphism ∆ W,B .

Then (M B , ∆ M,B ) is a cocommutative and coassociative coalgebra.

Remark 2.5. If g is a Lie algebra and Γ is a group acting on g by Lie algebra automorphisms, then the semidirect product U (g) Γ is equipped with a cocommutative Hopf algebra structure, defined by the conditions that the elements of g are primitive and the elements of Γ are grouplike. The Hopf algebra (W B , ∆ W,B ) is isomorphic to U (g B ) Z, with g B the free Lie algebra over generators (U ±,(ℓ) k

) k≥1,ℓ∈Z and the action of Z on g B being given by 1

• U ±,(ℓ) k = U ±,(ℓ+1) k .
The isomorphism is given by g

B [[t]] k≥1 t k U ±,(ℓ) k → X ℓ 1 •log(1+ k≥1 t k Y ± k )•X -ℓ 1 ∈ W B [[t]], Z ±1 → X ±1 1 ∈ W B .
Remark 2.6. The automorphism of V B induced by

X i → X -1 i , i = 0, 1 restricts to a Hopf algebra automorphism θ of (W B , ∆ W,B ) such that X ± 1 → X ∓ 1 and Y ± k → Y ∓ k for k > 0.
2.4. Filtrations and associated graded objects.

2.4.1. Associated graded object of (V B , ∆ V,B ). Recall the decreasing algebra filtration of the algebra V B (see §2.1). The associated graded algebra gr(

V B ) = ⊕ n≥0 gr n (V B ) = ⊕ n≥0 F n V B /F n+1 V B
is generated in degree 1; according to [Bbk], chap. 2, §5, no. 4, Theorem 2, there is an isomorphism of graded algebras

gr(V B ) ∼ → V DR , gr 1 (V B ) [X i -1] → e i ∈ (degree 1 part of V DR ) ⊂ V DR .
The algebra morphism ∆ V,B : V B → (V B ) ⊗2 is then compatible with the filtrations on both sides, and the associated graded algebra morphism coincides with ∆ V,DR : V DR → (V DR ) ⊗2 .

2.4.2. Filtration on (W B , ∆ W,B ) and associated graded object. Recall the decreasing algebra filtration of the algebra W B (see §2.1).

Lemma 2.7. For n ≥ 1, one has

F n W B = F n-1 V B • (X 1 -1) (equality of subspaces of V B ). Proof. Set e ± i := X ±1 i -1 ∈ V B for i = 0, 1. By (2.1.1), one has (2.4.1) V B + = V B • e + 0 ⊕ V B • e + 1 , which implies (2.4.2) ∀n ≥ 0, F n V B = (V B + ) n = (a1,...,an)∈{0,1} n V B e + a1 V B • • • V B e + an .
Since

F n V B is a right ideal in V B , one has F n V B = F n V B • V B , which together with (2.4.2) implies (2.4.3) ∀n ≥ 0, F n V B = (a1,...,an)∈{0,1} n V B e + a1 V B • • • V B e + an V B .
Let n ≥ 1. (2.4.2) implies

F n V B = (a1...,an-1) ∈{0,1} n-1 V B e + a1 V B • • • V B e + an-1 V B e + 0 + (a1...,an-1) ∈{0,1} n-1 V B e + a1 V B • • • V B e + an-1 V B e + 1 ,
which together with (2.4.1) and (2.4.3) for n replaced by n -1 implies (2.4.4)

F n V B = 0 ⊕ F n-1 V B • e + 0 ⊕ F n-1 V B • e + 1 ⊂ k1 ⊕ V B • e + 0 ⊕ V B • e + 1 = V B .
As

F n W B = F n V B ∩ (k1 ⊕ 0 ⊕ V B • e + 1 ), one obtains F n W B = F n-1 V B • e + 1 □
Proposition 2.8. The morphism of graded algebras gr(W B ) → gr(V B ) induced by the compatibility of the inclusion W B ⊂ V B with the filtrations is injective. The image of gr(W B ) under

the isomorphism gr(V B ) V DR is equal to W DR ⊂ V DR .
Proof. The injectivity of the map gr(W B ) → gr(V B ) follows from the fact that the filtration of

W B is induced by that of V B . We have W B = k ⊕ F 1 W B , which implies that (2.4.5) gr(W B ) = k1 ⊕ gr(F 1 W B ) ⊂ V DR , where gr(F 1 W B ) ⊂ ⊕ n>0 V DR n . The sequence of linear maps V B -•(X1-1) -→ F 1 W B ⊂ V B is
compatible with the filtrations whose nth steps are given by F n V B , F n+1 W B , and F n+1 V B . The associated graded sequence of maps

V DR gr(V B ) → gr(F 1 W B ) → gr(V B ) V DR is given by V DR → V DR , x → xe 1 . It follows
from Lemma 2.7 that the first map gr(V B ) → gr(F 1 W B ) is surjective. All this implies the identification gr(F 1 W B ) V DR e 1 , which together with (2.4.5) implies the claim. □

We now describe explicitly the filtration of

W B . Set e ± i := X ±1 i -1 ∈ V B for i = 0, 1, ∀a + , a -≥ 0, y ± a+,a-:= (e + 0 ) a+ (e - 0 ) a-e ± 1 ∈ W B ,
and

∀a ≥ 1, V a := Span k (y ϵ a+,a-|a + + a -≥ a -1, ∈ {+, -}) ⊂ W B . Lemma 2.9. 1) For n ≥ 1, F n W B is equal to the sum k≥1 a1,...,a k |a1+•••+a k ≥n V a1 • • • V a k of products (for the algebra structure of W B ) of subspaces of W B .
2)

F 0 W B = W B = k1 ⊕ F 1 W B .
Proof. One has V B = k1 ⊕ F 1 V B and W B ⊃ k1, which implies 2). Let n ≥ 1. By Lemma 2.7,

F n W B = F n-1 V B • e + 1 . Since X 1 is invertible in V B , one has V B • X -1 1 = V B , which together with (2.4.3) implies F n-1 V B • X -1 1 = F n-1 V B . All this together with X -1 1 • e + 1 = -e - 1 implies (2.4.6) F n W B = F n-1 V B • e + 1 + F n-1 V B • e - 1 .
One has V B + = s≥1 ((a1,ϵ1),...,(as,ϵs))∈({0,1}×{+,-}) s k • e ϵ1 a1 The fact that e + 0 and e - 0 commute implies that the right-hand side of this equality can be identified with the sum of subspaces announced in 1). □ Define linear maps

ξ ± : k[t, t -1 ] → W B , f → ξ ± (f ) := f (X 0 )(X ±1 1 -1).
Lemma 2.10. For a ≥ 1, one has

V a = ξ + (((t -1) a-1 )) + ξ -(((t -1) a-1 )) ⊂ W B ,
where

((t-1) a-1 ) := (t-1) a-1 k[t, t -1 ] ⊂ k[t, t -1 ] is the ideal of k[t, t -1 ] generated by (t-1) a-1 . Proof. For a ′ , a ′′ ≥ 0, one has y ± a ′ ,a ′′ = ξ ± ((-t -1 ) a ′′ (t -1) a ′ +a ′′ ), therefore V a = ξ + (W a ) + ξ -(W a )
, where

W a := Span{t -a ′′ (t -1) a ′ +a ′′ |a ′ , a ′′ ≥ 0, a ′ + a ′′ ≥ a -1} ⊂ k[t, t -1 ].
One has

W a = (t -1) a-1 • Span(1, . . . , t 1-a ) + (t -1)Span(1, . . . , t -a ) + (t -1) 2 Span(1, . . . , t -a-1 ) + • • • = (t -1) a-1 • Span(1, . . . , t 1-a ) + Span(t, t -a ) + Span(t 2 , . . . , t -a-1 ) + • • • = ((t -1) a-1 ).

□

Lemma 2.11. For any k ∈ Z, one has

(2.4.7) ∆ W,B (X k 0 (1-X 1 )) = X k 0 (1-X 1 )⊗1+1⊗X k 0 (1-X 1 )+ k-1 i=1 X i 0 (1-X 1 )⊗X k-i 0 (1-X 1 ), (2.4.8) ∆ W,B (X k 0 (1-X -1 1 )) = X k 0 (1-X -1 1 )⊗1+1⊗X k 0 (1-X -1 1 )- k i=0 X i 0 (1-X -1 1 )⊗X k-i 0 (1-X -1 1 ),
where for A an abelian group, for f : Z → A be a function and for a, b ∈ Z, we set

(2.4.9) b k=a f (k) :=      f (a) + • • • + f (b) if b ≥ a, 0 if b = a -1, -f (a -1) -• • • -f (b + 1) if b < a -1
Proof. Let t be a formal parameter. As we have seen, the series s ± (t) := 1 + k≥1 t k Y ± k are group-like for ∆ W,B . One computes these series as follows

s ± (t) = 1 + tX ±1 0 {1 -t(X ±1 0 -1)} -1 (1 -X ±1 1 ) = (1 + t -tX ±1 0 ) -1 (1 + t -tX ±1 0 X ±1 1 ) = s± (u),
where u := t/(1 + t) and s± (u

) := (1 -uX ±1 0 ) -1 (1 -uX ±1 0 X ±1 1 )
. It follows that the series s± (u) are group-like. Together with their expansions s± (u) = 1 + k≥1 u k X ±k 0 (1 -X ±1 1 ), this implies (2.4.7) for k ≥ 1 and (2.4.8) for k ≤ -1. Since X ±1 1 are group-like, (2.4.7) for k is equivalent to (2.4.8) for -k, which implies (2.4.7) for k ≤ -1 and (2.4.7) for k ≥ 1 . Finally, (2.4.7) and (2.4.8) for k = 0 are direct consequences of the fact that X ±1 1 are group-like. □ Lemma-Definition 2.12. The assignments

f → t ′ f (t ′′ )-t ′′ f (t ′ ) t ′ -t ′′ , f → t ′ f (t ′ )-t ′′ f (t ′′ ) t ′ -t ′′ define linear maps k[t, t -1 ] → k[t ′ , (t ′ ) -1 , t ′′ , (t ′′ ) -1 ].
We denote by

Op ± : k[t, t -1 ] → k[t, t -1 ] ⊗2
the composition of this linear map with the isomorphism of their target algebra with k[t, t -1 ] ⊗2

given by t

′ → t ⊗ 1, t ′′ → 1 ⊗ t.
Proof. For a ∈ Z, the image of t a by the first map is

-t ′ t ′′ (t ′a-2 + • • • + t ′′a-2 ) if a ≥ 1, and (t ′ t ′′ ) a (t ′-a + • • • + t ′′-a
) if a ≤ 0, which implies the result in this case. The result in the second case follows from the identity ∀f

∈ k[t, t -1 ], Op + (f ) + Op -(f ) = f ⊗ 1 + 1 ⊗ f . □ Lemma 2.13. The map ∆ W,B : W B → (W B ) ⊗2 is such that ∀f ∈ k[t, t -1 ], ξ ± (f ) → ξ ± (f ) ⊗ 1 + 1 ⊗ ξ ± (f ) + (ξ ± ) ⊗2 (Op ± (f )).
Proof. Let k ∈ Z and f := t k . Then

ξ + (f ) = X k 0 (X 1 -1) → ξ + (f ) ⊗ 1 + 1 ⊗ ξ + (f ) - k-1 i=1 X k-i 0 (X 1 -1) ⊗ X i 0 (X 1 -1) = ξ + (f ) ⊗ 1 + 1 ⊗ ξ + (f ) + (ξ + ) ⊗2 (- k-1 i=1 t ′k-i t ′′i ) = ξ + (f ) ⊗ 1 + 1 ⊗ ξ + (f ) + (ξ + ) ⊗2 ( t ′ f (t ′′ ) -t ′′ f (t ′ ) t ′ -t ′′ ),
which implies the result in the case of ξ + . The result for ξ -follows from this, from ξ

-(f ) = -ξ + (f )X -1
1 , and from the relation between Op + and Op -(see proof of Lemma 2.12). □ Lemma 2.14. For n ≥ 2, each of the maps Op ± defined in Lemma-Definition 2.12 takes

((t -1) n-1 ) (see Lemma 2.10) to n-1 a=1 ((t -1) a-1 ) ⊗ ((t -1) n-a-1 ). Proof. Assume that f ∈ ((t -1) n-1 ), that is f (t) = (t -1) n-1 a(t), with a(t) ∈ k[t ±1 ]. Then t ′ f (t ′′ ) -t ′′ f (t ′ ) t ′ -t ′′ = t ′ (t ′′ -1) n-1 a(t ′′ ) -t ′′ (t ′ -1) n-1 a(t ′ ) t ′ -t ′′ = (t ′′ -1) n-1 t ′ a(t ′′ ) -t ′′ a(t ′ ) t ′ -t ′′ + t ′′ a(t ′ ) (t ′′ -1) n-1 -(t ′ -1) n-1 t ′ -t ′′
The second term of the last line belongs to the announced space n-1 a=1 ((t -1) a-1 ) ⊗ ((t -1) n-a-1 ), while the first term belongs to k[t, t -1 ] ⊗ ((t -1) n-1 ), which is contained in this space. This proves the result in the case of Op + . This and the relation between Op + and Op - (see proof of Lemma 2.12) imply the result in the case of Op -. □ Proposition 2.15. The morphism ∆ W,B is compatible with the filtration of W B , in other

words, if n ≥ 0, then ∆ W,B (F n W B ) ⊂ a,b≥0|a+b=n F a W B ⊗ F b W B .
Proof. Lemmas 2.10, 2.13 and 2.14 imply that ∀a ≥ 1, ∆

W,B (V a ) ⊂ V a ⊗ 1 + 1 ⊗ V a + a ′ ,a ′′ ≥1,a ′ +a ′′ =a V a ′ ⊗ V a ′′ .
The result then follows from Lemma 2.9. □ Proposition 2.16. The associated graded morphism of ∆ W,B : W B → (W B ) ⊗2 with respect to the filtrations of both sides identifies with ∆ W,DR : W DR → (W DR ) ⊗2 under the isomorphisms

gr(W B ) W DR .
Proof. This follows from the fact that the elements y n , n ≥ 1 generate W DR , from the second part of (2.3.1) for ± = +, and from the fact that for n ≥ 1, the class of

Y + n = X 0 (X 0 - 1) n-1 (1 -X 1 ) ∈ F 1 W B in gr 1 (W B ) is e n-1 0 • (-e 1 ) = y n . □ 2.4.3. Associated graded object of (M B , ∆ M,B ). Recall the decreasing filtration M B = F 0 M B ⊃ F 1 M B ⊃ • • • on the k-module M B , where for i ≥ 0, F i M B = F i V B • 1 B (see §2.1).
Lemma 2.17. For i ≥ 0, one has

F i M B = F i W B • 1 B . Proof. For i ≥ 1, one has F i V B •1 B = F i-1 V B (X 0 -1)+F i-1 V B (X 1 -1) •1 B = F i-1 V B (X 0 - 1) • 1 B + F i-1 V B (X 1 -1) • 1 B = F i-1 V B (X 1 -1) • 1 B = F i W B • 1 B
, where the first (resp. last) equality follows from (2.4.4) (resp. Lemma 2.7).

□ Lemma 2.18. (M B , ∆ M,B
) is a coalgebra in k-mod fil,+ ; its image under gr is the coalgebra

(M DR , ∆ M,DR ) in k-mod gr,+ .
Proof. The first statement follows from Proposition 2.15 and from ∆ M,B (1

B ) = (1 B ) ⊗2 . The morphism (-) • 1 B : V B → M B in k-mod fil,+ induces a morphism V DR = gr(V B ) gr((-)•1B) → gr(M B ). If one equips V B with the shifted filtration F n (V B [1]) := F n-1 (V B ), then (-)•(X 0 -1) : V B [1] → V B is a morphism in k-mod fil,+ , such that the composed morphism V B [1] (-)•(X0-1) → V B (-)•1B → M B is zero. Applying gr, one obtains that the composed morphism V DR [1] (-)•e0 → V DR → gr(M B ) is zero, therefore a morphism M DR → gr(M B ).
By Lemma 2.17, the map One checks that M B is a module in k-mod fil,+ over V B , therefore over W B , and that the image of this module structure under gr is the module structure of M DR over V DR and W DR in k-mod gr,+ . (2.1.1) with filtrations that MB is free of rank one as a ŴB -module.

W B → M B , x → x • 1 B is an isomorphism in k-mod fil,+ , therefore it gives rise to an isomorphism gr(W B ) → gr(M B ). The following diagram commutes (2.4.10) gr(W B ) gr((-)•1B) ≃ / / gr(M B ) W DR ≃ (-)•1DR / / ≃ O O M DR O O which implies that M DR → gr(M B ) is an isomorphism. In the following diagram gr(W B ) ⊗2 (gr((-)•1B)) ⊗2 ≃ / / gr(M B ) ⊗2 gr(W B ) gr((-)•1B) ≃ / / gr(∆ W,B ) f f gr(M B ) gr(∆ M,B ) 8 8 W DR (-)•1DR ≃ / / ∆ W,DR x x ≃ O O M DR ∆ M,DR & & ≃ O O (W DR ) ⊗2 ((-)•1DR) ⊗2 ≃ / / ≃ O O (M DR ) ⊗2 ≃ O O

Completions. Extending the above definitions of

F k X B by F k X B := X B for k < 0 and X ∈ {V, W, M}, the pairs (V B , ∆ V,B ), (W B , ∆ W,B ) (resp. (M B , ∆ M,B ))
It follows from §2.4.1, Proposition 2.16, and Lemma 2.18 that the image of the pair (X B , ∆ X ,B ) by the functor gr :

k-mod fil,+ → k-mod gr,+ (see §1) is (X DR , ∆ X ,DR ) for X ∈ {V, W, M}.

Fake comparison isomorphisms

In § §1 and 2, we introduced parallel 'de Rham' and 'Betti' structures, namely an inclusion of topological algebras ŴDR → VDR (resp. ŴB → VB ), and a surjective VDR -module (resp. VB -module) morphism (-)

• 1 DR : VDR ↠ MDR (resp. (-) • 1 B : VB ↠ MB ), in which VDR (resp. VB )
is the left regular module over itself. We introduce automorphisms of the de Rham algebra structures in §3.1, and of the de Rham module structures in §3.2. In §3.3, we define isomorphisms between the various Betti and de Rham structures. In §3.4, we relate these isomorphisms with the Betti-de Rham comparison isomorphisms, either of the fundamental group of M 0,4 with basepoint 1, or of the fundamental groupoid of the same space with respect to the pair of basepoints ( 1, 0).

The algebra automorphisms aut

V,(1),DR (µ,g) and aut

W,(1),DR (µ,g)

.

For (µ, g) ∈ k × × G( VDR ),
we denote by aut V,(1),DR (µ,g) the automorphism of the topological k-algebra VDR given by aut V,(1),DR (µ,g)

: e 0 → g • µe 0 • g -1 , e 1 → µe 1 .
One checks that this automorphism restricts to an automorphism of the subalgebra ŴDR ⊂ VDR , which we denote aut W,(1),DR (µ,g)

.

The module automorphisms aut

V,(10),DR (µ,g) and aut

M,(10),DR (µ,g)

. For (µ, g) ∈ k × ×G( VDR ).

Denote by aut

V,(10),DR (µ,g) the automorphism of the topological k-module VDR given by

(3.2.1) ∀v ∈ VDR , aut V,(10),DR (µ,g) (v) := aut V,(1),DR (µ,g) (v) • g.
One checks that aut .

The isomorphisms comp

V,(1)

(µ,Φ) , comp W,(1) (µ,Φ) , comp V,(10) (µ,Φ) and comp M,(10) (µ,Φ) .
There is a unique isomorphism iso V : VB → VDR of topological k-algebras, defined by the condition X i → exp(e i ) for i = 0, 1. This isomorphism restricts to an isomorphism of topological k-algebras

iso W : ŴB → ŴDR .
There is a commutative diagram

(3.3.1) VB iso V / / -•(X0-1) VDR -•(exp(e0)-1) VB iso V / / VDR
The cokernels of the endomorphisms -•(exp(e 0 )-1) and -•e 0 of VDR coincide as -•(exp(e 0 )-

1) = (-•e 0 )•(-• exp(e0)-1 e0
) and -• exp(e0)-1 e0 is a linear automorphism. Taking vertical cokernels of the above diagram, we obtain a k-module isomorphism iso M : MB → MDR which is moreover compatible with the algebra isomorphism iso V . Let (µ, g) ∈ k × ×G( VDR ). Composing the algebra automorphism aut W,(1),DR (µ,g) (resp. aut V,(1),DR (µ,g) ) of ŴDR (resp. VDR ) with the algebra isomorphism iso W (resp. iso V ), we obtain algebra isomorphisms

(3.3.2) comp W,(1) (µ,g) = aut W,(1),DR (µ,g) • iso W : ŴB → ŴDR , comp V,(1) (µ,g) = aut V,(1),DR (µ,g) • iso V : VB → VDR . Composing the k-module automorphism aut V,(10),DR (µ,g) (resp. aut M,(10),DR (µ,g) ) of VDR (resp. MDR ) with the k-module isomorphism iso V (resp. iso M ), one obtains k-module isomorphisms (3.3.3) comp V,(10) (µ,g) := aut V,(10),DR (µ,g) •iso V : VB → VDR , comp M,(10) (µ,g) := aut M,(10),DR (µ,g) •iso M : MB → MDR ,
which are compatible with the previous algebra isomorphisms.

Lemma 3.1. Let (µ, g) ∈ k × × G( VDR ). Then (3.3.4) ∀v B ∈ VB , comp V,(10) (µ,g) (v B ) = comp V,(1) (µ,g) (v B ) • g.
Proof. This follows from the definitions of comp

V,(1) (µ,g) (see second part of (3.3.2)), of comp V,(10) (µ,g)
(see first part of (3.3.3)), and from (3.2.1), with v being replaced by iso V (v B ).

□ Lemma 3.2. Let (µ, g) ∈ k × × G( VDR ). Then the following diagram commutes VB comp V,(10) (µ,g) / / (-)•1B VDR (-)•1DR MB comp M,(10) (µ,g) / / MDR Proof. This follows from comp X ,(10) (µ,g) = aut X ,(10),DR (µ,g) • iso X for X ∈ {V, M}, from iso M • ((-) • 1 B ) = ((-) • 1 DR ) • iso V , and from aut M,(10),DR (µ,g) • ((-) • 1 DR ) = ((-) • 1 DR ) • aut V,(10),DR (µ,g) (see §3.2). □ 3.4.
Relation with comparison isomorphisms.

3.4.1. Recall from §0.1.1 the notation T = MT(Z) Q and the motivic Galois group schemes DeG]). By [An], there is an inclusion of Q-group schemes Aut ⊗ T (ω ? ) ⊂ G ? , where G ? is the Q-group scheme defined in [START_REF] Enriquez | The Betti side of the double shuffle theory. II. Double shuffle relations for associators[END_REF], §1.6 for ?=DR and [EF3], §2.1 for ?=B.

Aut ⊗ T (ω ? ) for ? ∈ {B, DR} ([
3.4.2. For H a Q-group scheme, denote by H-mod the tensor category of its finite-dimensional linear representations. An object of H-mod is then a pair (V, ρ) where V is a finite dimensional Q-vector space and ρ : H → GL(V ) is a morphism of Q-group schemes. For ? ∈ {B, DR}, there is a sequence of tensor functors G ? -mod res ?

→ Aut ⊗ T (ω ? )-mod T where the first functor is induced by restriction and the second is the Tannaka equivalence (see [DeG], §2.1). Its composition with ω ? is the forgetful functor forget :

G ? -mod→ Vec Q . 3.4.3. For ? ∈ {B, DR}, set V?, (1) 
Q := ( V? Q , (µ, g) → aut V,(1),?
(µ,g) ) and V?,(10)

Q := ( V? Q , (µ, g) → aut V,(10),? (µ,g)
) (see § §3.1 and 3.2 for ?=DR and [EF3], §2.2 for ?=B). By [START_REF] Enriquez | The Betti side of the double shuffle theory. II. Double shuffle relations for associators[END_REF], §1.6 (?=DR), and [START_REF] Enriquez | The Betti side of the double shuffle theory[END_REF], §2.2 (?=B), these are pro-objects in G ? -mod. Denote by m ? the product of V?

Q and recall that ∆V,? denotes its coproduct. The category Pro(G ? -mod) of pro-objects in G ? -mod is equipped with a tensor product, and (m ? , ∆V,? ) defines a Hopf algebra structure on V?,(1)

Q in
Pro(G ? -mod), as well as a module-coalgebra structure over it on V?,(10) Q in the same category (this meaning that V?,(10)

Q is a left V?, (1) 
Q -module and a coassociative coalgebra, the left action morphism being a coalgebra morphism), both Hopf algebra and coalgebra structures being cocommutative.

3.4.4. Denote by M ∨ the dual of an object M of Pro(G ? -mod); this is an object in the category Ind(G ? -mod) of ind-objects in G ? -mod. Then ( V?,(1)

Q ) ∨ and ( V?, (10) 

Q

) ∨ are objects in Ind(G ?mod); in this category, ( V?,(1)

Q
) ∨ is a commutative Hopf algebra and ( V?,(10)

Q
) ∨ is a commutative algebra-comodule over it.

3.4.5. In the rest of §3.4, we set X := P 1 -{0, 1, ∞} and denote by 0, 1 the vectors d/du at points 0, 1 of P 1 (with coordinate z = u + iv). These are base points at infinity in X. For

x, y ∈ {0, 1}, let P y,x (X) be the motivic path space from x to y (see [DG], §4.3).

3.4.6. The images of ( V?,(1)

Q ) ∨ and ( V?, (10) 

Q

) ∨ in Ind(T ) by Ind(res ? ) are respectively isomorphic to O(P 1,1 (X)) and O(P 1,0 (X)) in the notation of [DG], Rem. 4.23, the former being equipped with its commutative Hopf algebra structure in Ind(T ) and the latter with its commutative algebra-module structure over it, both structures corresponding to the T -group scheme structure of P 1,1 (X) and to the T -torsor structure over it of P 1,0 (X) (see [DG], §5).

3.4.7. For x, y ∈ {0, 1}, prounipotent Q-group schemes π DR 1 (X, x) and π alg,unip 1 (X, x) are defined in [De], §10.5, as well as torsors π DR 1 (X, y, x) and π alg,unip 1 (X, y, x); we use the notation π B 1 instead of π alg,unip 1

. If ? ∈ {B, DR}, then the functor ω ? : T → Vec Q takes the T -group scheme (resp. T -torsor) P x,x (X) (resp. P y,x (X)) to π ? 1 (X, x) (resp. π ? 1 (X, y, x)), so that forget takes the Hopf algebra and comodule algebra V?,(1) and V?,(10) in Pro(G ? -mod) to the objects with the similar structures O(π ? 1 (X, 1)

) ∨ and O(π ? 1 (X, 1, 0)) ∨ in Pro(Vec Q ), O(-)
being the ring of regular functions over a scheme. Then comp V,(1) (2πi,φKZ) and comp V,(10) (2πi,φKZ) can respectively be identified with the Betti-de Rham comparison algebra and module isomorphisms ULieπ

B 1 (X, 1) = O(π B 1 (X, 1)) ∨ ∼ → O(π DR 1 (X, 1)) ∨ = ULieπ DR 1 (X, 1) and O(π B 1 (X, 1, 0)) ∨ ∼ → O(π DR 1 (X, 1, 0)) ∨
given by [De], §12.16 (here ULie(-) is the cocommutative topological Hopf algebra attached to a Q-group scheme). The isomorphisms comp V,(1) (µ,g) and comp

V,(10) (µ,g) , for (µ, g) ∈ k × × G( VDR ) can therefore be viewed as 'fake comparison isomorphisms'.

Part 3. Geometric interpretation of double shuffle theory

The purpose of this part is to construct geometric interpretations of the 'de Rham' and 'Betti' DSR formalisms introduced in Part 2. These interpretations rely on general algebraic constructions which are explained in §4. Then § §5 and 6 are devoted to the de Rham DSR formalism: we introduce geometric objects related with the de Rham fundamental groups in §5, namely infinitesimal braid Lie algebras and morphisms relating them; they are used in §6 to give a geometric interpretation of the de Rham harmonic algebra coproduct following [DeT], as well as of its module counterpart. § §7 and 8 follow the same pattern on the Betti side: introduction of geometric objects related with the Betti fundamental groups in §7, namely braid groups and morphisms relating them, and geometric interpretations of the Betti harmonic algebra and module coproducts in §8.

Algebraic preliminaries for part 3

In this section, we prove algebraic results that will be used in § §6 and 8. The first result allows for the construction of an algebra morphism starting from an algebra containing an ideal with freeness properties ( §4.1, Lemma 4.1). The second result describes the behavior of this construction under isomorphisms ( §4.1, Lemma 4.2). The third result shows how an algebra morphism may be constructed starting from an algebra morphism to a matrix algebra satisfying some conditions ( §4.2, Lemma 4.3).

Construction of algebra morphisms based on ideals with freeness properties.

Lemma 4.1. Let R be an associative algebra and let J ⊂ R be a two-sided ideal. Assume that (j a ) a∈ [[1,d]] is a family of elements of J, which constitutes a basis of J for its left Rmodule structure. For r ∈ R, let (m ab (r)) a,b∈ [[1,d]] be the collection of elements of R defined by [[1,d]] is an algebra morphism.

j a r = d b=1 m ab (r)j b . Then the map R,J : R → M d (R) , r → (m ab (r)) a,b∈
Proof. Let R ⊕d → J be the map (r 1 , . . . , r d ) → d a=1 r a j a . This is an isomorphism of left R- modules. It sets up an isomorphism of algebras End R-left (J) End R-left (R ⊕d ), where the index "R-left" means endomorphisms of left R-modules. The map R → End R-left (J), r → (j → jr)
is an algebra morphism when R is equipped with the opposite algebra structure. Similarly, ) is equipped with the opposite algebra structure. We then obtain a sequence of algebra morphisms

the map M d (R) → End R-left (R ⊕d ) taking M ∈ M d (R) to the image under the canonical iso- morphism R ⊕d M 1×d (R) of the endomorphism X → XM is an algebra isomorphism when M d (R
R op → End R-left (J) End R-left (R ⊕d ) M d (R) op ,
which yields an algebra morphism R → M d (R). One checks that this morphism is given by the announced formula. □ Lemma 4.2. Let R be an associative algebra, let J ⊂ R be a two-sided ideal, free as a left R-module with basis (j a ) a∈ [[1,d]] . Let f : R → R ′ be an algebra isomorphism, and let

(j ′ a ) a∈[[1,d]] be a basis of f (J) ⊂ R ′ as a left R ′ -module.
Then there exists a unique element

P ∈ GL d (R ′ ), such that    f (j 1 ) . . . f (j d )    = P    j ′ 1 . . . j ′ d    (equality in M d×1 (R ′ )). The morphisms R,J : R → M d (R) and R ′ ,J ′ : R ′ → M d (R ′ ) respectively attached to the data (J ⊂ R, (j a ) a∈[[1,d]] ) and (J ′ ⊂ R ′ , (j ′ a ) a∈[[1,d]]
) as in Lemma 4.1 are related by the following diagram

R ϖ R,J / / f M d (R) M d (f ) R ′ ϖ R ′ ,J ′ / / M d (R ′ ) Ad(P ) / / M d (R ′ ) Proof. For r ∈ R, one has    j 1 . . . j d    r = R,J (r)    j 1 . . . j d   , therefore    f (j 1 ) . . . f (j d )    f (r) = f ( R,J (r))    f (j 1 ) . . . f (j d )   , that is P    j ′ 1 . . . j ′ d    f (r) = f ( R,J (r))P    j ′ 1 . . . j ′ d   .
Comparing this with the identity 

   j ′ 1 . . . j ′ d    r ′ = R ′ ,J ′ (r ′ )    j ′ 1 . . . j ′ d    for r ′ ∈ R ′ , one obtains R ′ ,J ′ (r ′ ) = P -1 • f ( R,J (f -1 (r ′ ))) • P . □ 4.2.
R ≃ f / / M n (S) row•(-)•col (R, • e ) f / / S where (4.2.2) row • (-) • col : M n (S) → S is the linear map defined by m → row • m • col; in diagram (4.2.1
), the horizontal arrows are algebra morphisms and the vertical arrows are vector space morphisms.

Proof. For r, r ′ ∈ R, one has f (r • e r ′ ) = f (rer ′ ) = row • f (rer ′ ) • col = row • f (r)f (e)f (r ′ ) • col = row • f (r) • col • row • f (r ′ ) • col = f (r) f (r ′ ).
□

Infinitesimal braid Lie algebras

In §5.1, we recall the definition of the infinitesimal braid Lie algebras t n , p n (n ≥ 1), as well as the morphisms : p 4 → p 5 , pr i :

p 5 → p 4 (i ∈ [[1, 5]]
) and pr 12 : p 5 → (p 4 ) ⊕2 relating them.

In §5.2, we introduce an ideal J(pr 5 ) of the universal enveloping algebra U p 5 arising from pr 5 , and show its freeness as a left U p 5 -module (Lemma 5.3). Lemma 4.1 then gives rise to an algebra morphism : U p 5 → M 3 (U p 5 ). By composing with the morphisms and pr 12 , we construct a morphism ρ : V DR → M 3 ((V DR ) ⊗2 ). In Lemma 5.6, by introducing suitable

elements row 1 ∈ M 1×3 ((V DR ) ⊗2 ) and col 1 ∈ M 3×1 ((V DR ) ⊗2
), we show that the morphism ρ satisfies the hypothesis of Lemma 4.3 (the index 1 in the notation row 1 and col 1 is motivated by the fact that these elements should be thought of as associated to the tangential base point 1 in M 0,4 ). Applying this lemma, we obtain in §5.2.4 a morphism ρ :

(V DR , • e1 ) → (V DR ) ⊗2 ,
which we compute in Lemma 5.7.

5.1. Material on infinitesimal braid Lie algebras.

5.1.1. The Lie algebras t n , p n . For n ≥ 2, let t n be the graded Lie k-algebra with generators For n ≥ 4, we denote by p n the graded Lie k-algebra with generators e ij of degree 1, where

t ij , i = j ∈ [[1, n]] of
i = j ∈ [[1, n]] and relations e ji = e ij , j∈[[1,n]]-{i} e ij = 0, [e ij , e kl ] = 0 for i, j, k, l all distinct in [[1, n]].
The Lie algebra p n is called the sphere infinitesimal braid Lie algebra.

For n ≥ 3, there are surjective morphisms of graded Lie algebras t n ↠ p n+1 given by , where e 0 = e 14 = e 23 , e 1 = e 12 = e 34 . One also sets e ∞ := -e 0 -e 1 , so e ∞ = e 13 = e 24 . By abuse of notation, and following [DeT], we set

t ij → e ij for i = j ∈ [[1, n]], t n+1 ↠ p n+1 given by t ij → e ij for i = j ∈ [[1, n + 1]],
∀i ∈ {0, 1}, e i := (e i , 0) ∈ (f 2 ) 2 , f i := (0, e i ) ∈ (f 2 ) 2 .
We then have e i = e i ⊗ 1,

f i = 1 ⊗ e i in (V DR ) ⊗2 .
One checks that there are Lie algebra morphisms pr i : p 5 → p 4 for i = 1, 2, 5, given by elt x ∈ p 5 e 12 e 13 e 14 e 15 e 23 e 24 e 25 e 34 e 35 e 45 pr 1 (x) 0 0 0 0 e 0 e ∞ e 1 e 1 e ∞ e 0 pr 2 (x) 0 e ∞ e 0 e 1 0 0 0 e 1 e 0 e ∞ pr 5 (x)

e 1 e ∞ e 0 0 e 0 e ∞ 0 e 1 0 0

These morphisms give rise to the Lie algebra morphism pr 12 : p 5 → p ⊕2 4 defined by pr 12 (x) := (pr 1 (x), pr 2 (x)).

There is a Lie algebra morphism : p 4 → p 5 , given by e 0 → e 23 , e 1 → e 12 . It is such that

pr 5 • is the identity of p 4 . The isomorphism p 4 f 2 gives rise to an isomorphism U p 4 U f 2 = V DR .
The Lie algebra morphisms pr 12 , pr i and induce algebra morphisms between universal enveloping algebras, which will be denoted pr 12 : U p 5 → (V DR ) ⊗2 , pr i : U p 5 → V DR and : V DR → U p 5 . 5.2. Constructions related to an ideal of U p 5 .

5.2.1.

The structure of J(pr 5 ). Definition 5.2. We denote by J(pr 5 ) the kernel Ker(U p 5 pr 5 → V DR ). This is a two-sided ideal of U p 5 .

In order to study the structure of J(pr 5 ), we prove the following Lemma 5.3. Lemma 5.3. 1) The Lie subalgebra of p 5 generated by the e i5 , i ∈ [[1, 4]] is freely generated by the e i5 , i ∈ [[1, 3]], and coincides with the ideal Ker(pr 5 ) of p 5 ; it will be denoted as f 3 .

2) Set p4 := im( : p 4 → p 5 ). There is a direct sum decomposition p 5 = p4 ⊕ f 3 .

Proof. 1) follows from [START_REF] Ihara | On the stable derivation algebra associated with some braid groups[END_REF], §1.1 with n = i = 5 (the notation for f 3 in loc. cit. is N n ). 2) follows from the facts that f 3 = Ker(pr 5 ) and that pr 5 • = id p4 . □ Remark 5.4. Using [START_REF] Ihara | On the stable derivation algebra associated with some braid groups[END_REF], one can prove that the centralizer of e 45 in p 5 decomposes as a direct sum ke 45 ⊕ p4 .

Lemma 5.5. The map

(U p 5 ) ⊕3 → J(pr 5 ), (p i ) i∈[[1,3]] → i∈[[1,3]] p i • e i5 is an isomorphism of left U p 5 -modules.
Proof. The equality p 5 = p4 ⊕ f 3 is a decomposition of the Lie algebra p 5 as a direct sum of two Lie subalgebras. The tensor product of : U p 4 → U p 5 with the injection U f 3 → U p 5 , followed by the product in U p 5 , induces a linear map codec :

U p 4 ⊗ U f 3 → U p 5 .
This map is compatible with the PBW filtrations on both sides, and its associated graded map is the linear map Sp 4 ⊗ Sf 3 → Sp 5 , which is an isomorphism of graded vector spaces, so that codec is an isomorphism of filtered vector spaces.

The following diagram (5.2.1)

U p 4 ⊗ U f 3 codec / / id⊗ε ( ( U p 5 pr 5 U p 4 is commutative, where ε is the counit of U f 3 . Indeed, for p ∈ U p 4 and f ∈ U f 3 , pr 5 • codec(p ⊗ f ) = pr 5 (p)f = pr 5 ( (p)) • pr 5 (f ) = p • ε(f ),
where the first equality follows from the definition of codec, the second equality follows from the algebra morphism property of pr 5 , and the third equality follows from the facts that pr 5 • = id p4 and that f 3 = Ker(pr 5 : p 5 → p 4 ). This diagram implies that J(pr 5 ) is equal to the isomorphic image by codec of the subspace

U p 4 ⊗ (U f 3 ) + of U p 4 ⊗ U f 3 , where (U f 3 ) + := Ker(ε : U f 3 → k) is the augmentation ideal of U f 3 , that is (5.2.2) J(pr 5 ) = im(U p 4 ⊗ (U f 3 ) + codec → U p 5 ). Since the e i5 , i ∈ [[1, 3]], belong to f 3 , the following diagram commutes (5.2.3) (U p 4 ⊗ U f 3 ) ⊕3 codec ⊕3 ∼ / / U p 4 ⊗ (U f 3 ) ⊕3 / / U p 4 ⊗ U f 3 codec (U p 5 ) ⊕3 / / U p 5
where the lower horizontal map is given by (p i ) i∈ [[1,3]] → i∈ [[1,3]] p i e i5 , and the upper horizontal map is given by the tensor product of the identity in U p 4 with the map (U

f 3 ) ⊕3 → U f 3 , (ϕ i ) i∈[1,3] → i∈[[1,3]] ϕ i e i5 .
Since U f 3 is freely generated, as an associative algebra, by the e i5 , i ∈ [[1, 3]], the latter map corestricts to a k-module isomorphism (U f 3 ) ⊕3 → (U f 3 ) + . It follows that the upper horizontal map of (5.2.3) corestricts to an isomorphism

U p 4 ⊗ (U f 3 ) ⊕3 → U p 4 ⊗ (U f 3 ) + .
Since the vertical maps of (5.2.3) are isomorphisms, this implies that the lower horizontal map of (5.2.3) corestricts to an isomorphism from (U p 5 ) ⊕3 to the image by codec of U p 4 ⊗ (U f 3 ) + , which is J(pr 5 ) according to (5.2.2). □

5.2.2.

A morphism : U p 5 → M 3 (U p 5 ). Lemma 5.5 says that the hypothesis of Lemma 4.1 is satisfied in the following situation: R = U p 5 , J = J(pr 5 ), d = 3, (j a ) a∈ [[1,d]] = (e i5 ) i∈ [[1,3]] . We denote by

: U p 5 → M 3 (U p 5 )
the algebra morphism given in this situation by Lemma 4.1. Then for p ∈ U p 5 , (p) = (a ij (p)) i,j∈ [[1,3]] , and

(5.2.4) ∀i ∈ [[1, 3]], e i5 p = j∈[[1,3]] a ij (p)e j5
(equalities in U p 5 ).

Construction and properties of a morphism

ρ : V DR → M 3 ((V DR ) ⊗2 ). Define the algebra morphism (5.2.5) ρ : V DR → M 3 ((V DR ) ⊗2 )
to be the composition

V DR U p 4 ℓ → U p 5 ϖ → M 3 (U p 5 ) M3(pr 12 ) → M 3 ((U p 4 ) ⊗2 ) M 3 ((V DR ) ⊗2 ),
where is as in §5.1.2, is as in §5.2.2, and M 3 (pr 12 ) is the morphism induced by pr 12 , i.e., taking (p ij ) i,j∈ [[1,3]] to (pr 12 (p ij )) i,j∈ [[1,3]] .

Lemma 5.6. Set

(5.2.6) The image of this matrix in

row 1 := e 1 -f 1 0 ∈ M 1×3 ((V DR ) ⊗2 ), col 1 :=   1 -1 0   ∈ M 3×1 ((V DR ) ⊗2 ) (recall that e 1 , f 1 ∈ (V DR ) ⊗2 are e 1 ⊗ 1, 1 ⊗ e 1 ), then (5.2.7) ρ(e 1 ) = col 1 • row 1 (equality in M 3 ((V DR ) ⊗2 )).
M 3 ((V DR ) ⊗2 ) is ρ(e 1 ) =   e 1 -f 1 0 -e 1 f 1 0 0 0 0   =   1 -1 0   e 1 -f 1 0 = col 1 • row 1 .
Therefore ρ(e 1 ) = col 1 • row 1 . □ 5.2.4. Construction and properties of a morphism ρ : (V DR , • e1 ) → (V DR ) ⊗2 . Lemma 5.6 shows that the hypothesis of Lemma 4.3 is satisfied in the following situation: R = V DR , S = (V DR ) ⊗2 , e = e 1 , n = 3, f = ρ, row 1 and col 1 are as in Lemma 5.6. We denote by ρ :

(V DR , • e1 ) → (V DR ) ⊗2
the algebra morphism given in this situation by Lemma 4.3.

Then for any f ∈ V DR , one has

(5.2.8) ρ(f ) = row 1 • ρ(f ) • col 1 = row 1 • {M 3 (pr 12 ) • • (f )} • col 1 ∈ (V DR ) ⊗2 .
Lemma 5.7. For any n ≥ 0, 

ρ(e n 0 ) = e 1 e n 0 + f 1 f n 0 - n-1 i=0 (e 1 e i 0 ) • (f 1 f n-1-i 0 ) (equality in (V DR ) ⊗2 = (U f 2 ) ⊗2 ). Proof. According to (5.2.8), ρ(e n 0 ) = row 1 • ρ(e n 0 ) • col 1 . As ρ is an algebra morphism, ρ(e n 0 ) = ρ(e 0 ) n . Then ρ(e 0 ) = M 3 (pr 12 ) • • (e 0 ) = M 3 (pr 12 )( (e 23 )).

Then

(5.2.9)

ρ(e 0 ) = M 3 (pr 12 )( (e 23 )) =   e 0 0 0 0 -e 1 + f 0 -e 1 0 e 0 + e 1 -f 0 e 0 + e 1   ∈ M 3 ((V DR ) ⊗2 ). Set T := -e 1 + f 0 -e 1 e 0 + e 1 -f 0 e 0 + e 1 ∈ M 2 ((V DR ) ⊗2 ), then ρ(e n 0 ) = e n 0 0 0 T n , therefore ρ(e n 0 ) = row 1 • ρ(e n 0 ) • col 1 = e 1 e n 0 + -f 1 0 T n -1 0 ,
where the last equality follows from the form of row 1 and col 1 .

One checks that T = 1 0 -1 1

f 0 -e 1 0 e 0 1 0 -1 1 -1
, therefore

T n = 1 0 -1 1 f 0 -e 1 0 e 0 n 1 0 1 1 = 1 0 -1 1 f n 0 - n-1 i=0 f i 0 e 1 e n-1-i 0 0 e n 0 1 0 1 1 , so ρ(e n 0 ) = e 1 e n 0 + -f 1 0 f n 0 - n-1 i=0 f i 0 e 1 e n-1-i 0 0 e n 0 -1 -1 = e 1 e n 0 + f 1 f n 0 - n-1 i=0 f 1 f i 0 e 1 e n-1-i 0 ;
the result then follows from the commutativity of e s with f t for s, t ∈ {0, 1}. □ Remark 5.8. If A is a unital associative algebra, then the following identity holds in M 2 (A)

(5.2.10)

Ad( 1 0 a 1 )( u v 0 w ) = Ad( 1 a -1 0 1 )( a -1 wa 0 au -wa -ava aua -1 )
provided u, v, w ∈ A and a ∈ A × . This implies the identity

T = 1 -1 0 1 e 0 0 e 0 + e 1 -f 0 f 0 1 -1 0 1 -1
, allowing for an alternative computation of T n .

Geometric interpretation of the de Rham harmonic coproducts

In this section, we construct commutative diagrams relating the de Rham harmonic algebra and module coproducts ∆ W,DR and ∆ M,DR with infinitesimal braid Lie algebras (diagrams (6.2.3) and (6.3.5)).

These diagrams involve a localization V DR [ 1 e1 ] of the algebra V DR , and a module M DR [ 1 e1 ] over this algebra, which are introduced in §6.1.

We prove the commutativity of the first diagram in §6.2: we first construct a diagram relating ∆ W,DR and the morphism ρ from §5.2.4 (Lemma 6.2), and derive from there the commutativity of diagram (6.2.3) relating ∆ W,DR and ρ and row 1 , col 1 (Proposition 6.3). The material in §6.2 is inspired by [DeT], more specifically by §6.3 and Proposition 6.2 in that paper.

In §6.3, we introduce a column vector col 0 (the index 0 indicates that it should be thought of as associated to the corresponding tangential base point of M 0,4 ). We then prove the existence of a map δ :

M DR → (M DR [ 1 e1 ]) ⊗2
fitting in a commutative diagram involving col 0 ; using diagram (6.2.3), we then identify δ with ∆ M,DR , which establishes diagram (6.3.5) (Proposition 6.9).

We finally construct completions of the diagrams (6.2.3) and (6.3.5) in §6.4.

6.1. Localizations. Define V DR [ 1 e1
] to be the localization of V DR with respect to e 1 , i.e. the unital k-algebra with generators e 0 and e ±1 1 and relations e 1 e -1 1 = e -1 1 e 1 = 1; V DR [ 1 e1 ] is then equipped with a Z-grading given by deg(e i ) = 1 for i = 0, 1. It follows that V DR [ 1 e1 ] in an algebra in k-mod gr (see Definition 0.1). Proof. For k ≥ 1, the k-th power of the canonical injection, followed by the k-th fold product

Set also M

DR [ 1 e1 ] := V DR [ 1 e1 ]/V DR [ 1 e1 ]e 0 . This is a Z-graded V DR [ 1 e1 ]-module, therefore M DR [ 1 e1 ] is a V DR [ 1 e1 ]-module in k-mod gr . One checks that the natural Z-graded k-algebra morphism V DR → V DR [ 1 e1 ] and k-module morphism M DR → M DR [ 1 e1 ] are injective.
• e1 , sets up a linear map k[e 0 ] ⊗k → V DR . One checks that this map is injective and that its image coincides with the part of V DR of e 1 -degree equal to k -1. So the composition

⊕ k≥1 k[e 0 ] ⊗k → ⊕ k≥1 (V DR ) ⊗k → V DR ,
where the first map is the canonical injection and the second map is the iteration of the product • e1 , maps ⊕ k≥1 k[e 0 ] ⊗k injectively (in fact, bijectively)

to V DR . □
Recall that W DR is the subalgebra of V DR equal to k ⊕ V DR e 1 (see §1.1). We set (6.2.1)

W DR + := V DR e 1 .
This is a (non-unital) subalgebra of W DR .

Since the right multiplication by e 1 is injective in V DR , the algebra morphism

(6.2.2) mor V DR ,e1 : (V DR , • e1 ) → W DR + (see §4
) is an algebra isomorphism. One also checks that the algebra automorphism Ad(e -1 1 ) of V DR [ 1 e1 ] restricts to an algebra morphism

V DR → V DR [ 1 e1 ] ≥0 .
Lemma 6.2. The following diagram is commutative

(V DR , • e1 ) Ad(e1f1) -1 • ρ / / mor V DR ,e 1 ≃ (V DR [ 1 e1 ] ≥0 ) ⊗2 W DR + ∆ W,DR / / (W DR ) ⊗2 ? O O
where the top horizontal map is the composition of ρ with the tensor square of the morphism

Ad(e -1 1 ) :

V DR → V DR [ 1 e1
] ≥0 and the right vertical map is the tensor square of the injection

W DR → V DR → V DR [ 1 e1 ] ≥0 . Proof. For n ≥ 1, ∆ W,DR • mor V DR ,•e 1 (e n 0 ) = ∆ W,DR (e n 0 e 1 ) = ∆ W,DR (-y n+1 ) = -y n+1 ⊗ 1 -1 ⊗ y n+1 - n i=1 y i ⊗ y n+1-i = e n 0 e 1 ⊗ 1 + 1 ⊗ e n 0 e 1 - n i=1 e i-1 0 e 1 ⊗ e n-i 0 e 1 = Ad(e 1 f 1 ) -1 • ρ(e n 0 ),
where the third equality follows from (1.2.1), and the last equality follows from Lemma 5.7.

It follows that the two maps of the above diagram agree on e n 0 , n ≥ 1. Since these maps are algebra morphisms, and since the family e n 0 , n ≥ 0 generates (V DR , • e1 ) (see Lemma 6.1), this diagram commutes. □ Proposition 6.3. The following diagram commutes (6.2.3)

V DR ≃ ⋄ ρ / / M 3 ((V DR ) ⊗2 ) (e1f1) -1 row1•(-)•col1e1f1 ⋄♯ / / (V DR [ 1 e1 ] ≥0 ) ⊗2 (V DR , • e1 ) mor V DR ,e 1 ≃♯ W DR + ∆ W,DR / / (W DR ) ⊗2 ? O O
where ρ is as in (5.2.5), row 1 , col 1 are as in (5.2.6), and ∆ W,DR is as in §1.2; in this diagram, all the maps are algebra morphisms (resp. degree 0 maps), except for the maps marked with (resp. ), which are only k-module morphisms (degree 1 maps).

Proof. This follows from the combination the commutative diagram from Lemma 6.2 with the commutative diagram

V DR ρ / / ≃ M 3 ((V DR ) ⊗2 ) (e1f1) -1 row1•-•col1e1f1 (V DR , • e1 ) Ad(e1f1) -1 • ρ / / (V DR [ 1 e1 ] ≥0 ) ⊗2
which follows from the specialization, based on (5.2.7), of the commutative diagram from Lemma

4.3 to R = V DR , S = V DR [ 1 e1 ] ⊗2 , f = ρ, e = e 1
, row = (e 1 f 1 ) -1 row 1 , col = col 1 e 1 f 1 . The map ρ has degree 0 as it is a composition of maps of degree 0. The other degree statements follow from inspection of the degrees of e 1 , row 1 , col 1 . □ 6.3. Relationship between infinitesimal braid Lie algebras and ∆ M,DR . Definition 6.4. Set

col 0 :=   0 -e 1 • 1 ⊗2 DR e 1 • 1 ⊗2 DR   ∈ M 3×1 ((M DR ) ⊗2 ). Lemma 6.5. Denote by (a, x) → ax the action of M 3 ((V DR ) ⊗2 ) on M 3×1 ((M DR ) ⊗2 ). Then (6.3.1)
ρ(e 0 )col 0 = 0.

Proof. Using (5.2.9), one computes ρ(e 0 )col 0 =

  0 -e 1 f 0 • 1 ⊗2 DR e 1 f 0 • 1 ⊗2 DR   = 0 in M 3×1 ((V DR /V DR e 0 ) ⊗2 ) = M 3×1 ((M DR ) ⊗2 ). □ Lemma 6.6. The map (e 1 f 1 ) -1 row 1 • (-) • col 0 : M 3 ((V DR ) ⊗2 ) → M DR [ 1 e1
] ⊗2 constructed out of matrix multiplication and of the tensor square of the map

V DR [ 1 e1 ]⊗V DR ⊗M DR → M DR [ 1 e1 ] induced by the inclusions V DR ⊂ V DR [ 1 e1 ] and M DR ⊂ M DR [ 1 e1 ], the product on V DR [ 1 e1 ]
, and the action of

V DR [ 1 e1 ] on M DR [ 1 e1 ], has image contained in (M DR [ 1 e1 ] ≥-1 ) ⊗2 .
Proof. This map is given by (m ij ) i,j∈ [[1,3]

] → {f -1 1 (m 13 -m 12 )e 1 + e -1 1 (m 22 -m 23 )e 1 } • 1 ⊗2 DR . One has f -1 1 (m 13 -m 12 )e 1 • 1 ⊗2 DR ∈ M DR [ 1 e1 ] ≥1 ⊗ M DR [ 1 e1 ] ≥-1 and e -1 1 (m 22 -m 23 )e 1 • 1 ⊗2 DR ∈ (M DR [ 1 e1 ] ≥0 ) ⊗2
, therefore the sum of these elements belongs to the announced space. □ Lemma 6.7. There is a unique map δ :

M DR → (M DR [ 1 e1 ] ≥-1 ) ⊗2 , such that the following diagram commutes (6.3.2) V DR ρ / / (-)•1DR M 3 ((V DR ) ⊗2 ) (e1f1) -1 row1•(-)•col0 M DR δ / / (M DR [ 1 e1 ] ≥-1 ) ⊗2
It is such that

(6.3.3) δ(1 DR ) = 1 ⊗2 DR . Proof. If x ∈ V DR , then (e 1 f 1 ) -1 row 1 • ρ(xe 0 ) • col 0 = (e 1 f 1 ) -1 row 1 ρ(x)ρ(e 0 )col 0 = 0 by (6.3.1), therefore (e 1 f 1 ) -1 row 1 • (-) • col 0 • ρ(V DR e 0 ) = 0.
The existence and uniqueness of δ follow. One then computes

δ(1 DR ) = (e 1 f 1 ) -1 row 1 • ρ(1) • col 0 = (e 1 f 1 ) -1 row 1 • col 0 = (e 1 f 1 ) -1 e 1 f 1 • 1 ⊗2 DR = 1 ⊗2 DR .
□ Lemma 6.8. The map δ satisfies the identity

(6.3.4) ∀x ∈ W DR , ∀m ∈ M DR , δ(x • m) = ∆ W,DR (x) • δ(m),
where the module structure in the left-hand side (resp. right-hand side) is that of M DR over

W DR (resp. M DR [ 1 e1 ] ⊗2 over (W DR ) ⊗2 ).
Proof. The identity is obvious if x = 1. Assume now that x = ae 1 with a ∈ V DR and that

m ∈ M DR = V DR /V DR e 0 . Let m ∈ V DR be a lift of m. Then δ(x • m) = δ(ae 1 • m) = (e 1 f 1 ) -1 row 1 • ρ(ae 1 m) • col 0 = (e 1 f 1 ) -1 row 1 • ρ(a)ρ(e 1 )ρ( m) • col 0 = (e 1 f 1 ) -1 row 1 • ρ(a) • col 1 • row 1 • ρ( m) • col 0 = (e 1 f 1 ) -1 row 1 • ρ(a) • col 1 • e 1 f 1 • (e 1 f 1 ) -1 row 1 • ρ( m) • col 0 = ∆ W,DR (x) • δ(m),
where row 1 is as in (5.2.6), the second equality follows from (6.3.2), the third equality follows from the fact that ρ is an algebra morphism, the fourth equality follows from (5.2.7) and the last equality follows from the combination of (6.3.2) and the equality ∆ W,DR (ae

1 ) = (e 1 f 1 ) -1 row 1 • ρ(a) • col 1 • (e 1 f 1
) for a ∈ V DR , which follows from equation (6.2.3). □ Proposition 6.9. The following diagram commutes

(6.3.5) V DR ρ / / (-)•1DR M 3 ((V DR ) ⊗2 ) (e1f1) -1 row1•(-)•col0 M DR ∆ M,DR / / (M DR ) ⊗2 / / (M DR [ 1 e1 ] ≥-1 ) ⊗2
In this diagram, all the maps have degree 0.

Proof. Combining (6.3.3), (6.3.4) and the fact that M DR is a free W DR -module of rank one with generator 1 DR , one obtains δ = ∆ M,DR , which one injects in (6.3.2) to get the result. The statement on degrees follows from inspection of the degrees of (e 1 f 1 ) -1 row 1 and col 0 . □ 6.4. Completions (commutativities of (A7) in (10.8.4) and (M5) in (11.6.1)). The following lemma will be used to prove the commutativities mentioned in the title of this subsection.

Lemma 6.10. The commutative diagram (6.2.3) (resp. (6.3.5)) gives rise to a commutative diagram between the degree completions of its constituents, in which the completion of the map

(W DR ) ⊗2 → (V DR [ 1 e1 ] ≥0 ) ⊗2 (resp. (M DR ) ⊗2 → (M DR [ 1 e1 ] ≥-1 ) ⊗2 ) is injective.
Proof. By Proposition 6.3, if one equips V DR and M 3 ((V DR ) ⊗2 ) with the shifted gradings

V DR [1] n := V DR n-1 and M 3 ((V DR ) ⊗2 )[1] n := M 3 (((V DR ) ⊗2
) n-1 ), then (6.2.3) is a diagram in the category k-mod gr,+ . By Proposition 6.9, (6.3.5) is similarly a diagram in the same category.

Applying the functor (-) ∧ • taut fil,+ gr,+ (see §1), one obtains commutative diagrams in k-mod top . The announced injectivities follows from Lemma 0.2, 1). □

Braid groups

In §7.1, we recall the definition of various families of braid groups (the Artin braid group, the sphere braid group and the modular group of the sphere with marked points), of their pure subgroups, and of a diagram of morphisms relating them (see (7.1.1)). We recall the presentation of these groups and relate various generators by morphisms (Lemma 7.3). We then give a presentation of the modular group P * 5 which exhibits an order 5 cyclic symmetry, and may be viewed as an analogue of the presentation of p 5 in [START_REF] Ihara | On the stable derivation algebra associated with some braid groups[END_REF], Proposition 4 (this presentation is not used is the sequel of the paper). In §7.1.2, we define morphisms : F 2 → P * 5 , pr i :

P * 5 → F 2 (i ∈ [[1, 5]]
), pr 12 : P * 5 → (F 2 ) 2 relating P * 5 with the free group with two generators F 2 or its square.

In §7.2, we introduce an ideal J(pr 5 ) of the group algebra kP * 5 arising from pr 5 , and show its freeness as a left kP * 5 -module (Lemma 7.10). Lemma 4.1 then gives rise to an algebra morphism : kP * 5 → M 3 (kP * 5 ). By composing with the morphisms and pr 12 , we construct a morphism ρ : V B → M 3 ((V B ) ⊗2 ) (see (7.2.1)). In Lemma 7.11, by introducing suitable elements row 1 ∈ M 1×3 ((V B ) ⊗2 ) and col 1 ∈ M 3×1 ((V B ) ⊗2 ), we show that the morphism ρ satisfies the hypothesis of Lemma 4.3. Applying this lemma, we obtain in §7.2.4 a morphism ρ : (V B , • X1-1 ) → (V B ) ⊗2 , which we compute in Lemma 7.12.

7.1. Material on braid groups.

7.1.1. Braid groups. For X a topological space, let C n (X) denote its configuration space of n distinct points. Let also M 0,n+1 be the moduli space of smooth complex projective curves of genus zero with n + 1 marked points. Below, we give a list of topological spaces and simplyconnected subspaces, together with standard names and notation for the corresponding fundamental groups (see [START_REF] Birman | Braids, links, and mapping class groups[END_REF][START_REF] Ihara | Automorphisms of pure sphere braid groups and Galois representations[END_REF][START_REF] Lochak | The Grothendieck-Teichmüller group and automorphisms of braid groups, The Grothendieck theory of dessins d'enfants[END_REF]). 

range of n n ≥ 1 n ≥ 1 n ≥ 3 space X C n (C) C n (P 1 C ) C n (P 1 C )/PGL 2 (C) M 0,n subspace b U n U n B n notation for π 1 (X, b) K n P n P * n name of π 1 (X,
of n n ≥ 1 n ≥ 1 n ≥ 3 space X C n (C)/S n C n (P 1 C )/S n C n (P 1 C )/(S n × PGL 2 (C)) M 0,n /S n subspace b S n • U n S n • U n S n • B n notation for π 1 (X, b) B n H n B * n name of π 1 (X,
:= {(x 1 , . . . , x n ) ∈ R n |x 1 < • • • < x n } ⊂ C n (C)
; we define Bn ⊂ C n (P 1 ) to be the set of n-tuples (x 1 , . . . , x n ) in (P 1 R ) n , which lie on P 1 R in the counterclockwise order; one has Bn = PGL + 2 (R) • U n ; we define B n as the quotient Bn /PGL + 2 (R); it is a simply-connected subspace of C n (P 1 C )/PGL 2 (C). By homotopy exact sequence, the pure groups appear as the kernels of the natural morphisms of their non-pure counterparts to S n , so

K n = Ker(B n → S n ), P n = Ker(H n → S n ), P * n = Ker(B * n → S n ).
According to [LoS], Appendix, B * n is isomorphic to the quotient of the Artin braid group B n by the normal subgroup generated by η n if n ≥ 3, which corresponds to the winding of x n around (x 1 , . . . , x n-1 ) (see (7.1.6) for an expression in terms of standard generators), and by its center Z(B n ), which is isomorphic to Z. One has Z(B n ) ⊂ K n , and

P * n+1 K n /Z(B n )
for n ≥ 2. One also has P n P * n × C 2 , where C 2 is the cyclic group of order 2 (see [LoS], Proposition A4 iii) and also [START_REF] Ihara | Automorphisms of pure sphere braid groups and Galois representations[END_REF], Corollary 2.1.2).

Remark 7.1. The isomorphism P * n+1 K n /Z(B n ) can be interpreted as follows. There is an

isomorphism M 0,n+1 C n (C)/Aff, with Aff = {x → ax + b | a ∈ C × , b ∈ C}; it gives rise to a homotopy exact sequence π 2 (M 0,n+1 ) → π 1 (Aff) → π 1 (C n (C)) → π 1 (M 0,n+1 ) → 1.
The spaces M 0,n are K(π, 1)-spaces, as can be seen inductively from the homotopy exact sequences of the fibrations M 0,n+1 → M 0,n , therefore π 2 (M 0,n+1 ) = 1. One has K n = π 1 (C n (C)), C )/PGL 2 (C) to be the map taking (x 1 , . . . , x n ) to the class of (x 1 , . . . , x n , ∞). This map takes U n to B n+1 , therefore induces a group morphism Presentations of braid groups. According to [Ar], the group B n is presented for n ≥ 1 by generators σ 1 , . . . , σ n-1 , subject to relations σ i σ j = σ j σ i for |i -j| > 1, and

P * n+1 = π 1 (M 0,n+1 ) and π 1 (Aff) = Z,
K n → P * n+1 . Let D be the open unit disc in C, let C D n (C) (resp. U D n ) be the intersection of C n (C) (resp. U n ) with D n . Then (C D n (C), U D n ) is a deformation retract of (C n (C), U n ), therefore K n π 1 (C D n (C), U D n ). The morphism C D n (C) → C n+1 (C) given by (x 1 , . . . , x n ) → (x 1 , . . . , x n , 2) takes U D n to U n+1 ,
σ i σ i+1 σ i = σ i+1 σ i σ i+1 for i ∈ [[1, n -1]]. The morphism B n → S n is then given by σ i → (i, i + 1). For i < j ∈ [[1, n]], set xij := (σ j-2 • • • σ i ) -1 σ 2 j-1 (σ j-2 • • • σ i ) = (σ j-1 • • • σ i+1 )σ 2 i (σ j-1 • • • σ i+1 ) -1 ∈ B n .
(when

j = i + 1, the products σ j-2 • • • σ i and σ j-1 • • • σ i+1 are equal to 1 by convention, see
(2.4.9)). Then one checks that xij ∈ K n . According to [Ar], a presentation of K n is given by

generators xij , i < j ∈ [[1, n]], subject to relations (7.1.2) (a ijk , xij ) = (a ijk , xik ) = (a ijk , xjk ) = 1 for i < j < k and i, j, k ∈ [[1, n]],
where a ijk = xij xik xjk , together with

(7.1.3) (x ij , xkl ) = (x ik , x-1 ij xjl xij ) = (x il , xjk ) = 1. for i < j < k < l and i, j, k, l ∈ [[1, n]].
Set

ω n := x12 • (x 13 x23 ) • • • (x 1n • • • xn-1,n ) ∈ K n .
Then ω n is a generator of Z(B n ), therefore (7.1.4)

P * n+1 = K n / ω n . For n ≥ 2 and i ∈ [[1, n]], define xi,n+1 ∈ K n by (7.1.5) xi,n+1 := (x 1i • • • xi-1,i xi,i+1 • • • xin ) -1 . For i < j ∈ [[1, n + 1]],
we denote by x ij ∈ P * n+1 the image of xij ∈ K n by the projection (7.1.4).

Lemma 7.3. If i < j ∈ [[1, n + 1]], then x ij ∈ P * n+1 is the image of xij ∈ K n+1 under the morphism K n+1 → P * n+1 . Proof. If j ≤ n, then the image of xij ∈ K n under K n → P * n+1 is x ij ∈ P * n+1
, and the image of the same element under K n → K n+1 is xij ∈ K n , so the result follows from the commutativity of (7.1.1).

Assume now that j = n + 1. According to [LoS], three lines after (A1), one has (7.1.6) Note the equality σ 1 = σ -1 1,1 ∈ B 2 . The following result may be viewed as an analogue of Proposition 4 in [START_REF] Ihara | On the stable derivation algebra associated with some braid groups[END_REF].

η n+1 = σ n • • • σ 2 1 • • • σ n (equality in B n+1 ). Moreover, one checks that for i ∈ [[1, n]], σ i • • • σ n • η -1 n+1 • (σ i • • • σ n ) -1 = x1i • • • xi-1,i xi,i+1 • • • xi,n+1 ( 
Proposition 7.4. For i ∈ C 5 [[1, 5]], define g i ∈ P * 5 by g i := x i,i+1 (with the convention x 0,1 := x 1,5 ). The group P * 5 is presented by generators g i (i ∈ C 5 ), subject to the relations

(g i , g j ) = 1 if i, j ∈ C 5 and i -j = ±1, (g 0 , g 1 )(g 1 , g 2 )(g 2 , g 3 )(g 3 , g 4 )(g 4 , g 0 ) = 1.
Proof. It follows from (7.1.5) that for i ∈ [[1, 4]], one has (7.1.8)

x i,5 = (x 1i • • • x i-1,i x i,i+1 • • • x i4 ) -1 ∈ P * 5 .
Relation ω 5 = 1, namely (7.1.9) x 12 x 13 x 23 x 14 x 24 x 34 = 1, together with relation (7.1.8) for i = 4, implies g 4 = x 45 = x 12 x 13 x 23 , therefore (7.1.10)

x 13 = g -1 1 g 4 g -1 2 . Relation (7.1.9) together with (x 14 , x 23 ) = 1 yields x 12 x 13 x 14 x 23 x 24 x 34 = 1, which together with (7.1.8) for i = 1, yields x 15 = x 23 x 24 x 34 . This relation yields (7.1.11) x 24 = g -1 2 g 0 g -1 3 . By the commutation of x 34 with x 23 x 24 x 34 , this relation also yields g 0 = x 15 = x 24 x 34 x 23 =

x 24 x 34 g 2 , therefore x -1 34 x -1 24 = g 2 g -1 0 . (7.1.9) implies x 14 = x -1 23 x -1 13 x -1 12 x -1 34 x -1 24 , which after combination with the previous equality yields

x 14 = x -1 23 x -1 13 x -1 12 g 2 g -1 0 = g -1 2 x -1 13 g -1 1 g 2 g -1 0 .
Combining with (7.1.10), we obtain (7.1.12) 1,4]]]}, therefore also by the union of this set with g 0 , which is equal to {g i |i ∈ C 5 } ∪ {x 13 , x 24 , x 14 }. Relations (7.1.10), (7.1.11) and (7.1.12) then imply that a generating set is {g i |i ∈ C 5 }.

x 14 = g -1 4 g 2 g -1 0 . As P * 5 is a quotient of K 4 it is generated by {x ij |i < j ∈ [[

The group P *

5 may be viewed as generated by {g i |i ∈ C 5 }∪{x 13 , x 24 , x 14 }, subject to relations (7.1.2), (7.1.3), ω 5 = 1, and (7.1.8) for i = 1, 4. These relations imply expressions (7.1.10), (7.1.11) and (7.1.12) of x 13 , x 24 , x 14 in terms of {g i |i ∈ C 5 }. Substituting these expressions in relations (7.1.2), (7.1.3), ω 5 = 1, and (7.1.8) for i = 1, 4, we obtain a presentation of P * 5 in terms of the generators {g i |i ∈ C 5 }. The relations obtained in this way are the following.

Relation ω 5 = 1 yields the commutation of g 0 with g 2 . Relation (7.1.2) for (i, j, k) = (1, 2, 3) yields the commutation of g 4 with g 1 and g 2 . Relation (7.1.2) for (i, j, k) = (2, 3, 4) yields the commutation of g 0 with g 2 and g 3 . The first part of relation (7.1.3), namely (x 12 , x 34 ) = 1, yields the commutation of g 1 with g 3 . The last part of relation (7.1.3), namely (x 14 , x 23 ) = 1, yields a consequence of the already obtained commutations of g 2 with g 0 and g 4 . The middle part of relation (7.1.3), namely (x 13 , x -1 12 x 24 x 12 ) = 1, together with the commutations (g 1 , g 3 ) = (g 0 , g 2 ) = 1, yields the relation g 0 g -1 2 g 1 g -1 3 g 2 g -1 4 g 3 g -1 0 g 4 g -1 1 = 1, which by again using the commutation relations yields g 0 g -1

4 g 1 g -1 0 g 2 g -1 1 g 3 g -1 2 g 4 g -1 3 = 1, which is equivalent to the cyclic relation (g 0 , g 1 )(g 1 , g 2 )(g 2 , g 3 )(g 3 , g 4 )(g 4 , g 0 ) = 1.
Relation (7.1.2) for (i, j, k) = (1, 2, 4) splits as the conjunction of x 12 x 14 x 24 = x 14 x 24 x 12 and x 14 x 24 x 12 = x 24 x 12 x 14 . The first relation yields a consequence of already obtained relations, namely (g 0 , g 2 ) = (g 1 , g 3 ) = (g 1 , g 4 ) = 1. After using (g 0 , g 2 ) = (g 1 , g 3 ) = 1, the second relation

yields g 0 g -1 3 g 1 g -1 4 g 2 g -1 0 g 3 g -1 1 g 4 g -1 2
= 1 which as above is equivalent to the already obtained cyclic relation.

Relation (7.1.2) for (i, j, k) = (1, 3, 4) splits as the conjunction of x 13 x 14 x 34 = x 34 x 13 x 14 and

x 34 x 13 x 14 = x 14 x 34 x 13 . The first relation yields a consequence of the already obtained relations (g 2 , g 4 ) = (g 3 , g 1 ) = (g 3 , g 0 ) = 1. After using (g 2 , g 4 ) = 1 and the commutation of g 1 with g -1 3 , the second relation yields the already obtained relation g

0 g -1 3 g 1 g -1 4 g 2 g -1 0 g 3 g -1 1 g 4 g -1 2 = 1. □
Remark 7.5. Under the commutation relations, the cyclic relation i∈C5 (g i , g i+1 ) = 1 (using the notation i∈C5 a i := a 0 a 1 • • • a 4 ) is equivalent to any of the relations i∈C5 g i g -1 i+j = 1, where j ∈ C 5 -{0, 1}. For j = 2, this relation expresses as i∈C5 (g -1 i , g -1 i+1 ) = 1. The cyclic relation is also equivalent to the relation i∈C5 (g -i , g -i-1 ) = 1. All this proves that the group D 5 × C 2 acts by automorphisms of P * 5 as follows: the dihedral group D 5 acts by permutation of indices of the generators (g i ) i∈C5 and the cyclic group C 2 acts by g i → g -1 i .

7.1.2. The morphisms , pr i and pr 12 between braid groups. Let F 2 be the free group with generators X 0 , X 1 . Similarly to §5.2.3, we will abuse notation by setting for i = 0, 1 (7.1.13)

X i := (X i , 1) ∈ (F 2 ) 2 , Y i := (1, X i ) ∈ (F 2 ) 2 .
We then have

X i = X i ⊗ 1, Y i = 1 ⊗ X i in (V B ) ⊗2 .
Lemma 7.6. 1) There are group morphisms pr i : P * 5 → F 2 for i = 1, 2, 5, given by x ∈ P * 5 x 12

x 13 x 14 x 15 x 23 x 24 x 25 x 34

x 35 x 45 pr 1 (x) 1 1 1 1 X 0 (X 1 X 0 ) -1 X 1 X 1 (X 0 X 1 ) -1 X 0 pr 2 (x) 1 (X 0 X 1 ) -1 X 0 X 1 1 1 1 X 1 X -1 1 X 0 X 1 (X 0 X 1 ) -1 pr 5 (x) X 1 (X 0 X 1 ) -1 X 0 1 X 0 (X 1 X 0 ) -1 1 X 1 1 1 2)
There is a group morphism : F 2 → P * 5 , given by X 0 → x 23 , X 1 → x 12 . We have pr 5 • = id F2 .

Proof. Direct computation. □ Define pr 12 : P * 5 → (F 2 ) 2 as the morphism p → (pr 1 (p), pr 2 (p)). We will denote by , pr i and pr 12 the Hopf algebra morphisms relating the group algebras kF 2 , (kF 2 ) ⊗2 and kP * 5 induced by , pr i and pr 12 .

Remark 7.7. The pure modular group of the sphere with 4 marked points P * 4 is freely generated by x 12 , x 23 , and therefore isomorphic to F 2 . Composing with this isomorphism the morphisms pr i (resp. ), one obtains the morphisms P * 5 → P * 4 (resp. P * 4 → P * 5 ) induced by the morphisms between moduli spaces consisting in forgetting the i-th marked point (resp. doubling the fourth marked point).

7.2. Algebraic constructions related to an ideal of kP * 5 .

7.2.1. The structure of J(pr 5 ).

Definition 7.8. We denote by J(pr 5 ) the kernel Ker(kP * 5 pr 5 → kF 2 ). This is a two-sided ideal of kP * 5 .

Let F 3 be the free group with generators a i , i ∈ [[1, 3]]; there is a unique group morphism

F 3 → P * 5 , given by a i → x i5 for i ∈ [[1, 3]].
Lemma 7.9. 1) The morphisms pr 5 and F 3 → P * 5 fit in an exact sequence

1 → F 3 → P * 5 → F 2 → 1. As F 3 → P *
5 is injective, we will identify F 3 with its image in

P * 5 . 2) The map F 2 × F 3 → P * 5 , (f , f ′ ) → (f ) • f ′ is a bijection.
Proof. 1) follows from [START_REF] Ihara | Automorphisms of pure sphere braid groups and Galois representations[END_REF], Proposition 2.1.3, based on [FaB]. 2) then follows from the fact that is a section of pr 5 . □ Lemma 7.10. The map

(kP * 5 ) ⊕3 → J(pr 5 ), (p i ) i∈[[1,3]] → i∈[[1,3]] p i • (x i5 -1) is an isomor- phism of left kP * 5 -modules.
Proof. The bijection from Lemma 7.9, 2) induces a linear isomorphism kF 2 ⊗ kF 3 Since

≃ → kP * 5 . For (f , f ′ ) ∈ F 2 × F 3 , pr 5 ( (f ) • f ′ ) = f as pr 5 • = id
x i5 ∈ F 3 for i ∈ [[1, 3]], the diagram (kF 2 ⊗ kF 3 ) ⊕3 ≃ / / (kP * 5 ) ⊕3 kF 2 ⊗ kF 3 ≃ / / kP * 5
commutes, where the vertical maps are, on the left-hand side, the tensor product of the id kF2

with kF ⊕3 3 → kF 3 , (f i ) i∈[[1,3]] → i∈[[1,3]] f i • (x i5 -1)
, and on the right-hand side, the map given by the same formula.

It follows from Lemma 2.1 that kF 2 ⊗ (kF 3 ) + is the isomorphic image of the left vertical map, therefore J(pr 5 ) is the isomorphic image of (kP * 5 ) ⊕3 by the right vertical map, which proves the claimed statement. □

A morphism

: kP * 5 → M 3 (kP * 5 ). Lemma 7.10 says that the hypothesis of Lemma 4.1 is satisfied in the following situation: R = kP * 5 , J = J(pr 5 ), d = 3, (j a ) a∈ [[1,d]] = (x i5 -1) i∈ [[1,3]] . We denote by : kP * 5 → M 3 (kP * 5 ) the algebra morphism given in this situation by Lemma 4.1. Then for p ∈ kP * 5 , (p) = (a ij (p)) i,j∈ [[1,3]] , and

∀i ∈ [[1, 3]], (x i5 -1)p = j∈[[1,3]] a ij (p)(x j5 -1)
(equalities in kP * 5 ).

Construction and properties of a morphism

V B → M 3 ((V B ) ⊗2
). Define the algebra morphism (7.2.1)

ρ : V B → M 3 ((V B ) ⊗2 )
to be the composition

V B ℓ → kP * 5 ϖ → M 3 (kP * 5 ) M3(pr 12 ) → M 3 ((V B ) ⊗2 ),
where is as in 2) of Lemma 7.6, is as in §7.2.2, and M 3 (pr 12 ) is the morphism induced by pr 12 , i.e., taking (p ij ) i,j∈ [[1,3]] to (pr 12 (p ij )) i,j∈ [[1,3]] .

Lemma 7.11.

Set (7.2.2) row 1 := X 1 -1 1 -Y 1 0 ∈ M 1×3 ((V B ) ⊗2 ), col 1 :=   Y 1 -1 0   ∈ M 3×1 ((V B ) ⊗2 ) (where X 1 , Y 1 ∈ F 2 2 ⊂ (V B ) ⊗2
are defined by (7.1.13)), then

(7.2.3) ρ(X 1 -1) = col 1 • row 1 (equality in M 3 ((V B ) ⊗2 )).
Proof. One has (X 1 ) = x 12 . Let us compute (x 12 ). One has

(x 15 -1)x 12 = (x 15 -1)x 12 x 15 x 25 x -1 25 x -1 15 = x 12 x 15 x 25 (x 15 -1)x -1 25 x -1 15 = x 12 x 15 x 25 (-x 15 x -1 25 x -1 15 + 1 + x -1 25 x -1 15 )(x 15 -1) + x 12 x 15 x 25 (1 -x 15 )x -1 25 (x 25 -1), (x 25 -1)x 12 = (x 25 -1)x 12 x 15 x 25 x -1 25 x -1 15 = x 12 x 15 x 25 (x 25 -1)x -1 25 x -1 15 = x 12 x 15 x 25 (x -1 25 -1)x -1 15 (x 15 -1) + x 12 x 15 (x 25 -1), (x 35 -1)x 12 = x 12 (x 35 -1), which implies that (x 12 ) =   x 12 x 15 x 25 (-x 15 x -1 25 x -1 15 + 1 + x -1 25 x -1 15 ) x 12 x 15 x 25 (1 -x 15 )x -1 25 0 x 12 x 15 x 25 (x -1 25 -1)x -1 15 x 12 x 15 0 0 0 x 12   ∈ M 3 (kP * 5 ).
The image of (

x 12 -1) in M 3 ((V B ) ⊗2 ) by M 3 (pr 12 ) is therefore   (X 1 -1)Y 1 Y 1 (1 -Y 1 ) 0 1 -X 1 Y 1 -1 0 0 0 0   =   Y 1 -1 0   X 1 -1 1 -Y 1 0 = col 1 • row 1 . Therefore ρ(X 1 -1) = col 1 • row 1 . □ 7.2.4. Construction and properties of a morphism ρ : (V B , • X1-1 ) → (V B ) ⊗2 . Lemma 7.11
shows that the hypothesis of Lemma 4.3 is satisfied in the following situation: R = V B , S = (V B ) ⊗2 , e = X 1 -1, n = 3, f = ρ, row and col are row 1 and col 1 from Lemma 7.11. We denote by ρ :

(V B , • X1-1 ) → (V B ) ⊗2
the algebra morphism given in this situation by Lemma 4.3.

Then for any f ∈ V B , one has

(7.2.4) ρ(f ) = row 1 • ρ(f ) • col 1 = row 1 • {M 3 (pr 12 ) • • (f )} • col 1 ∈ (V B ) ⊗2 .
Lemma 7.12. For any k ∈ Z,

ρ(X k 0 ) = (X 1 -1)X k 0 ⊗ 1 + 1 ⊗ (1 -X -1 1 )X k 0 X 1 - k-1 i=1 (X 1 -1)X i 0 ⊗ (1 -X -1 1 )X k-i 0 X 1 , ρ(X k 0 X -1 1 ) = ρ(X k 0 )(X -1 1 ⊗ X -1 1 ) (equalities in (V B ) ⊗2 ). Proof. According to (7.2.4), ρ(X k 0 ) = row 1 • ρ(X k 0 ) • col 1 . As ρ is an algebra morphism, ρ(X k 0 ) = ρ(X 0 ) k . Then ρ(X 0 ) = M 3 (pr 12 ) • • (X 0 ) = M 3 (pr 12 )( (x 23 )).

Let us compute (x 23 ).

As x 15 commutes with x 23 , one has which implies the first equality in the following chain of equalities

x -1 23 (x 25 -1)x 23 = x 25 x 35 x 25 x -1 35 x -1 25 -1 = x 25 (x 35 x 25 x -1 35 x -1 25 -1) + x 25 -1 = x 25 {x 35 (x 25 x -1 35 x -1 25 -1) + x 35 -1} + x 25 -1 = x 25 [x 35 {x 25 (x -1 35 x -1 25 -1) + x 25 -1} + x 35 -1] + x 25 -1 = x 25 x 35 [x 25 {x -1 35 (x -1 25 -1) + x -1 35 -1} + x 25 -1] + x 35 -1 + x 25 -1 = x 25 x 35 x 25 x -1 35 (x -1 25 -1) + x 25 x 35 x 25 (x -1 35 -1) + x 25 x 35 (x 25 -1) + x 25 (x 35 -1) + x 25 -1 = (-x 25 x 35 x 25 x -1 35 x -1 25 + x 25 x 35 + 1)(x 25 -1) + (-x 25 x 35 x 25 x -1 35 + x 25 )(x 35 -1),
the following equalities being immediate. Therefore Equalities (7.2.5), (7.2.6) and (7.2.7) imply that

(x 23 ) =   x 23 0 0 0 x 23 (-x 25 x 35 x 25 x -1 35 x -1 25 + x 25 x 35 + 1) x 23 (-x 25 x 35 x 25 x -1 35 + x 25 ) 0 x 23 (-x 25 x 35 x -1 25 + 1) x 23 x 25   ∈ M 3 (kP * 5 ). Then (7.2.8) ρ(X 0 ) = M 3 (pr 12 )( (x 23 )) =   X 0 0 0 0 (1 -X 1 )X 0 + Y -1 1 Y 0 Y 1 (1 -X 1 )X 0 X 1 0 X 0 -Y -1 1 Y 0 Y 1 X -1 1 X 0 X 1   ∈ M 3 ((V B ) ⊗2 ). Set T := (1 -X 1 )X 0 + Y -1 1 Y 0 Y 1 (1 -X 1 )X 0 X 1 X 0 -Y -1 1 Y 0 Y 1 X -1 1 X 0 X 1 ∈ M 2 ((V B ) ⊗2 ), then ρ(X k 0 ) = X k 0 0 0 T k , therefore ρ(X k 0 ) = row 1 •ρ(X k 0 )•col 1 = (X 1 -1)X k 0 Y 1 + 1 -Y 1 0 T k -1 0 = (X 1 -1)X k 0 Y 1 -(1-Y 1 )(T k ) 11 ,
where the second equality follows from the form of row 1 and col 1 , and where (T k ) 11 means the (1, 1)-entry of T k .

One checks that

T = 1 0 -X -1 1 1 a b 0 c 1 0 -X -1 1 1 -1 where 1 0 -X -1 1 1 -1 = 1 0 X -1 1 1 and a b 0 c = Y -1 1 Y 0 Y 1 (1 -X 1 )X 0 X 1 0 X -1 1 X 0 X 1 . For k ∈ Z, one has a b 0 c k = a k k-1 i=0 a i bc k-i-1 0 c k
using the notation (2.4.9) so that

T k = 1 0 -X -1 1 1 a k k-1 i=0 a i bc k-i-1 0 c k 1 0 X -1 1 1 = a k + k-1 i=0 a i bc k-i-1 • X -1 1 * * * therefore (T k ) 11 = a k + k-1 i=0 a i bc k-i-1 • X -1 1 = Y -1 1 Y k 0 Y 1 + k-1 i=0 Y -1 1 Y i 0 Y 1 • (1 -X 1 )X 0 X 1 • X -1 1 X k-i-1 0 X 1 • X -1 1 = Y -1 1 Y k 0 Y 1 + k-1 i=0 Y -1 1 Y i 0 Y 1 • (1 -X 1 )X k-i 0 = Y -1 1 Y k 0 Y 1 + (1 -X 1 )X k 0 + k-1 i=1 Y -1 1 Y i 0 Y 1 • (1 -X 1 )X k-i 0 . It follows that ρ(X k 0 ) = (X 1 -1)Y 1 X k 0 -(1 -Y 1 )(T k ) 11 = (X 1 -1)Y 1 X k 0 -(1 -Y 1 ){(1 -X 1 )X k 0 + Y -1 1 Y k 0 Y 1 + k-1 i=1 Y -1 1 Y i 0 Y 1 • (1 -X 1 )X k-i 0 } = (X 1 -1)Y 1 X k 0 -(1 -Y 1 )(1 -X 1 )X k 0 -(1 -Y 1 )Y -1 1 Y k 0 Y 1 -(1 -Y 1 ) k-1 i=1 Y -1 1 Y i 0 Y 1 • (1 -X 1 )X k-i 0 = (X 1 -1)X k 0 + (Y 1 -1)Y -1 1 Y k 0 Y 1 - k-1 i=1 (1 -X 1 )X k-i 0 • Y -1 1 (1 -Y 1 )Y i 0 Y 1 ,
which implies the first identity.

By Lemma 7.11, one has ρ(X

1 ) = 1 + col 1 • row 1 . As 1 + row 1 • col 1 is equal to X 1 Y 1 and is therefore invertible, one checks that the inverse of 1+col 1 •row 1 is 1-col 1 •(1+row 1 •col 1 ) -1 •row 1 , therefore ρ(X -1 1 ) = 1 -col 1 • (1 + row 1 • col 1 ) -1 • row 1 = 1 -col 1 • (X 1 Y 1 ) -1 • row 1 . Lemma 8.1. 1) The canonical morphism V B → V B [ 1 X1-1 ] is injective. 2) The image of V B [ 1 X1-1 ] under the functor gr : k-mod fil → k-mod gr (see §1) is isomorphic to V DR [ 1 e1 ]. Proof. 1) Denote by V DR [ 1 e0 ] ∧ the completion of V DR [ 1 e1
] with respect to large degrees (see §1.3). It may be viewed as an algebra in k-mod fil by setting

F α (V DR [ 1 e1 ] ∧ ) := β≥α V DR [ 1 e1 ] β . There is a unique algebra morphism ϕ : V B [ 1 X1-1 ] → V DR [ 1 e1 ] ∧ in k-mod fil given by X ±1 i → (1 + e i ) ±1
for i = 0, 1 and (X 1 -1) -1 → e -1 1 . It induces an algebra morphism grϕ : grV

B [ 1 X1-1 ] → grV DR [ 1 e1 ] ∧ V DR [ 1 e1 ] in k-mod gr . Its composition with V DR grV B gr(can) → grV B [ 1 X1-1 ], can being the morphism V B → V B [ 1 X1-1 ], is the canonical map V DR → V DR [ 1 e1 ], which is injective. It follows that gr(can) is injective. Since ∩ k≥0 F k V B = 0, this implies that can is injective.
2) There is a unique graded algebra morphism ψ :

V DR [ 1 e1 ] → grV B [ 1 X1-1 ], induced by e i → [X i -1] ∈ gr 1 V B [ 1 X1-1 ] for i = 0, 1 and e -1 1 → [(X 1 -1) -1 ] ∈ gr -1 V B [ 1 X1-1 ].
One has grϕ • ψ = id, which implies that ψ is injective. For α ∈ Z, for n, α 0 , . . . , α n as in the right-hand side of (8.1.1), and for

v i ∈ F αi V B for i = 1, . . . , n, the degree α component ψ α of ψ maps [v 0 ]e -1 1 • • • e -1 1 [v n ] ∈ V DR [ 1 e1 ] α , where [v i ] ∈ gr αi V B V DR αi to [v 0 (X 1 -1) -1 • • • (X 1 -1) -1 v n ] ∈ gr α (V B [ 1 X1-1 ]), therefore ψ α is surjective. It follows that ψ is surjective. □ Lemma 8.2. 1) The morphism M B → M B [ 1 X1-1 ] is injective. 2) The image of M B [ 1 X1-1 ] under the functor gr (see §1) is isomorphic to M DR [ 1 e1 ]. Proof. 1) Let M DR [ 1 e1 ] ∧ the completion of M DR [ 1 e1
] with respect to large degrees (see §1.3); it can be identified with

V DR [ 1 e1 ] ∧ /V DR [ 1 e1
] ∧ e 0 . The map ϕ in the proof of Lemma 8.1 maps the left ideal generated by X 0 -1 to the left ideal generated by e 0 , therefore induces a morphism

ϕ : M B [ 1 X1-1 ] → M DR [ 1 e1 ] ∧ in k-mod fil , which gives rise to a morphism grϕ : grM B [ 1 X1-1 ] → grM DR [ 1 e1 ] ∧ . Its composition with M DR grM B gr(can M ) → grM B [ 1 X1-1 ], where can M is the morphism M B → M B [ 1 X1-1 ], is the canonical map M DR → M DR [ 1 e1 ]
, which is injective. This implies the injectivity of gr(can M ), then of can M as in the proof of Lemma 8.1.

2) The composition of ψ from the proof of Lemma 8.1 with gr((-) • 1 B ) takes e 0 to 0, therefore takes V DR [ 1 e1 ]e 0 to 0, therefore induces a map ψ :

M DR [ 1 e1 ] → grM B [ 1 X1-1 ]. One has grϕ • ψ = id, which implies that ψ is injective. The equality gr((-) • 1 B ) • ψ = ψ • ((-) • 1 DR ), where (-) • 1 DR : V DR [ 1 e1 ] → M DR [ 1 e1
] is the canonical projection, the surjectivity of ψ and that of gr((-) • 1 B ) (which follows from the construction of the filtration in M B [ 1 X1-1 ]) imply the surjectivity of ψ. □

Relationship between braid groups and ∆

W,B . Denote by k[X ±1 0 ] the linear span in kF 2 of the elements X k 0 , k ∈ Z, by k[X ±1 0 ]X -1 1 the linear span of the elements X k 0 X -1 1 , k ∈ Z. The sum of these submodules of V B = kF 2 is direct. Lemma 8.3. (V B , • X1-1 ) is generated, as an associative algebra, by k[X ±1 0 ] ⊕ k[X ±1 0 ]X -1 1 .
and similarly

∆ W,B • mor V B ,X1-1 (X k 0 X -1 1 ) = ∆ W,B (X k 0 (1 -X -1 1 )) = X k 0 (1 -X -1 1 ) ⊗ 1 + 1 ⊗ X k 0 (1 -X -1 1 ) - k i=0 X i 0 (1 -X -1 1 ) ⊗ X k-i 0 (1 -X -1 1 ) = Ad(X 1 -1) -1 (Y 1 -1) -1 (X 1 -1)X k 0 X -1 1 ⊗ 1 + 1 ⊗ (X 1 -1)X k 0 X -1 1 - k i=0 (X 1 -1)X i 0 X -1 1 ⊗ (X 1 -1)X k-i 0 X -1 1 = Ad(X 1 -1) -1 (Y 1 -1) -1 (X 1 -1)X k 0 X -1 1 ⊗ X -1 1 + X -1 1 ⊗ (X 1 -1)X k 0 X -1 1 - k-1 i=1 (X 1 -1)X i 0 X -1 1 ⊗ (X 1 -1)X k-i 0 X -1 1 = Ad((X 1 -1) -1 (Y 1 -1) -1 Y 1 )(ρ(X k 0 ))(X -1 1 ⊗ X -1 1 ) = Ad((X 1 -1) -1 (Y 1 -1) -1 Y 1 )(ρ(X k 0 X -1 1 ));
in each of these sequence of equalities, the second equality follows from (2.4.7) (resp. (2.4.8)), the fourth equality follows from Lemma 7.12.

It follows that the two maps of the announced diagram agree on the family of elements

X k 0 , X k 0 X -1 1 , k ∈ Z.
Since these maps are algebra morphisms, and since this family generates (V B , • X1-1 ) (see Lemma 8.3), this diagram commutes. □ Proposition 8.5. The following diagram commutes (8.2.3)

V B ≃ ⋄ ρ / / M 3 ((V B ) ⊗2 ) (X1-1) -1 (1-Y -1 1 ) -1 row 1 •(-)•col 1 (X1-1)(1-Y -1 1 ) ⋄♯ / / F 0 (V B [ 1 X1-1 ]) ⊗2 (V B , • X1-1 ) mor V B ,X 1 -1 ≃♯ W B + ∆ W,B / / (W B ) ⊗2 ? O O
where ρ is as in (7.2.1), row 1 , col 1 , are as in (7.2.2), and ∆ W,DR is as in §1.2; in this diagram, all the maps are k-algebra morphisms (resp. compatible with the filtrations), except for the maps marked with (resp. ), which are only k-module morphisms (resp. increase the filtration degrees by 1).

Proof. The map marked is well-defined as it is the composition of the map row 1 • (-) • col 1 :

M 3 ((V B ) ⊗2 ) → (V B ) ⊗2
and of the tensor product of the maps

V B → F 0 (V B [ 1 X1-1 ])
given by Ad(X 1 -1) -1 and Ad(1 -X -1 1 ) -1 . The commutation of (8.2.3) follows from the combination the commutative diagram from Lemma 8.4 with the specialization, based on using (7.2.3), of the commutative diagram from

Lemma 4.3 to R = V B , S = V B [ 1 X1-1 ] ⊗2 , e = X 1 -1, row = (X 1 -1) -1 (1 -Y -1 1 ) -1 row 1 , By Lemma 2.1, the map (kF 3 ) ⊕3 → (kF 3 ) + , (f i ) i∈[[1,3]] → i∈[[1,3]] f i • (x i5 -1) is bijective.
For w ∈ F 3 , we denote by (f i (w)) i∈ [[1,3]] the preimage of w -1 in (kF 3 ) ⊕3 . Then i∈ [[1,3]] f i (w) • (x i5 -1) = w -1. Substituting w by w(g, i) -1 in this identity, one obtains

(x i5 -1)g = g • w(g, i)(x i5 -1) + j∈[[1,3]] g • w(g, i)(x i5 -1)f j (w(g, i) -1 ) • (x j5 -1).
It follows that

(g) ij = g • w(g, i)δ ij + g • w(g, i)(x i5 -1)f j (w(g, i) -1 ). As g • w(g, i) ∈ P * 5 , g • w(g, i) ≡ 1 mod J. Moreover, as J is a two-sided ideal, g • w(g, i)(x i5 - 1)f j (w(g, i) -1 ) ∈ J. It follows that (g) ij ≡ δ ij mod J, and therefore that (g) -id ∈ M 3 (J). Therefore (J) ⊂ M 3 (J). Then for n ≥ 1, (J n ) ⊂ (J) n ⊂ M 3 (J) n ⊂ M 3 (J n ).
□ Lemma 8.8. The algebra morphism ρ is compatible with the filtrations of its source and target algebras.

Proof. The morphisms and pr 12 are compatible with the filtrations as they can be identified with algebra morphisms between group algebras induced by group morphisms, the group algebras being equipped with the adic filtrations of their augmentation ideals. Together with Lemma 8.7, this implies the result. □ □ 8.3. Relationship between braid groups and ∆ M,B . Definition 8.9. Set

col 0 :=   0 (1 -X 1 )Y -1 1 • 1 ⊗2 B (1 -X -1 1 )Y -1 1 • 1 ⊗2 B   ∈ M 3×1 ((M B ) ⊗2 ). Lemma 8.10. Denote by (a, x) → ax the action of M 3 ((V B ) ⊗2 ) on M 3×1 ((M B ) ⊗2 ). Then (8.3.1) ρ(X 0 -1)col 0 = 0.
Proof. (7.2.8) implies the equalities

ρ(X 0 )col 0 =   0 Y -1 1 Y 0 Y 1 (1 -X 1 )Y -1 1 • 1 ⊗2 B -Y -1 1 Y 0 Y 1 X -1 1 (1 -X 1 )Y -1 1 • 1 ⊗2 B   =   0 (1 -X 1 )Y -1 1 Y 0 • 1 ⊗2 B (1 -X -1 1 )Y -1 1 Y 0 • 1 ⊗2 B   = col 0 in M 3×1 ((V B /V B (X 0 -1)) ⊗2 ) = M 3×1 ((M B ) ⊗2 ). □ Lemma 8.11. The map (X 1 -1) -1 (1 -Y -1 1 ) -1 row 1 • (-) • col 0 : M 3 ((V B ) ⊗2 ) → M B [ 1 X1-1
] ⊗2 defined similarly to the map in Lemma 6.6, replacing exponents DR by B and e 1 by X 1 -1 in localizations, has image contained in

F -1 (M B [ 1 X1-1 ]) ⊗2 .

Part 4. Associators and harmonic coproducts

In this part, we recall the formalism of associators and its interpretation in terms of categories related to braids, and do some related computations of matrices ( §9). We combine these computations with the geometric interpretations of the Betti and de Rham algebra coproducts obtained in Part 3 to show Theorem 10.9, according to which any associator relates these two algebra coproducts ( §10). We follow a similar approach in §11 to show Theorem 11.13, according to which any associator relates the Betti and de Rham module coproducts.

Associators and comparison isomorphisms

The purpose of this section is to recall some facts on associators, and in particular how these objects relate braid groups to infinitesimal braid Lie algebras.

In §9.1, we recall the definition of the set of associators over k with a given parameter µ ∈ k × (Definition 9.3). In §9.2, we recall the construction and properties of Γ-functions of associators (Lemma 9.5). In §9.3, we recall from [BN] that the choice of an associator gives rise to a functor from a category PaB of parenthesized braids to a category PaCD of parenthesized chord diagrams; we compute images of particular morphisms of PaB. This leads, for each associator (µ, Φ), to a collection comp P (µ,Φ) of morphisms from algebras associated to braid groups to algebras associated to infinitesimal braid Lie algebras, indexed by parenthesized words P in one letter •. In §9.4, we express particular elements of the pure braid group K 4 in terms of elements σ a,b ∈ B 4 . We apply these results to explicitly compute the images of these elements in the modular group P * 5 in the group of invertible elements of the completion (U p 5 ) ∧ of the enveloping algebra of the infinitesimal braid Lie algebra p 5 , first under the functor comp

(•(••))• (µ,Φ)
( §9.5, Proposition 9.13), then under the functor comp .6,Proposition 9.16). This leads to the definition of matrices P (µ,Φ) , R (µ,Φ) and P (µ,Φ) , R (µ,Φ) ( §9.7) and to their computation in § §9.8 and 9.9. 9.1. The set M(k) of associators. Let A = F 0 A ⊃ F 1 A ⊃ • • • be a filtered algebra over k, complete with respect to its filtration. Let a 0 , a 1 ∈ F 1 A. Then there is a morphism ev a0,a1 : VDR → A, uniquely determined by the conditions e i → a i for i = 0, 1. Definition 9.1. For Φ ∈ VDR , we set Φ(a 0 , a 1 ) := ev a0,a1 (Φ) (this is an element of A). Remark 9.2. Assume that A = VDR , (a 0 , a 1 ) := (e 0 , e 1 ), then ev a0,a1 = id VDR , therefore Φ = Φ(e 0 , e 1 ). (equality in (U t 4 ) ∧ , called the pentagon condition).

((••)•)• (µ,Φ) ( §9
We call M(k

) := {(µ, Φ)|µ ∈ k × , Φ ∈ M µ (k)} the set of associators over k.
In [F2], it was proved that the first two equalities are consequences of the latter one, where µ is obtained from the expansion Φ = 1 + µ 2 24 [e 0 , e 1 ]+ terms of degree ≥ 3. These two equalities also imply the relation

(9.1.3) e -(µ/2)b Φ(c, b)e -(µ/2)c Φ(a, c)e -(µ/2)a Φ(b, a) = 1 in k a, b .
Remark 9.4. In [Dr], §2, it is proved that ϕ KZ ∈ ( VDR C ) × (see §1.5) belongs to M 1 (C), and that M µ (Q) is nonempty, from which one derives that M µ (k) is nonempty for k any Q-algebra and any µ ∈ k × . 9.2. Γ-functions. Let Φ ∈ M µ (k). Let ϕ 0 , ϕ 1 be the elements of VDR defined by the equality Φ = 1 + ϕ 0 e 0 + ϕ 1 e 1 (equality in VDR ). Let e 0 , e 1 be free commutative formal variables; there is a unique continuous k-algebra morphism VDR → k[[e 0 , e 1 ]], denoted f → f ab , such that e i → e i for i = 0, 1.

Lemma 9.5. Let µ ∈ k and Φ ∈ M µ (k). Let Γ Φ (t) ∈ k[[t]] × be as in (1.4.1).
(1) One has the identity

(9.2.1) (1 + ϕ 1 e 1 ) ab = Γ Φ (-e 0 )Γ Φ (-e 1 ) Γ Φ (-e 0 -e 1 ) in k[[e 0 , e 1 ]].
(2) Γ Φ satisfies the identity

(9.2.2) Γ Φ (t)Γ Φ (-t) = µt e µt/2 -e -µt/2 in 1 + t 2 k[[t]].
Proof. In [E], one attaches to Φ a collection (ζ Φ (n)) n≥2 of elements of k with the following properties: (a) for n even ≥ 2, one has

ζ Φ (n) = µ n • ζ(n)/(2πi) n ; (b) the series ΓΦ (t) (denoted Γ Φ (t) in [E]) defined by ΓΦ (t) := exp(-n≥2 ζ Φ (n)t n /n) is such that (9.2.3) (1 + ϕ 1 e 1 ) ab = ΓΦ (e 0 + e 1 )
ΓΦ (e 0 ) ΓΦ (e 1 ) (identity in k[[e 0 , e 1 ]]). Then (r.h.s. of (9.2.3)) = exp(-

n≥2 ζ Φ (n) n {(e 0 + e 1 ) n -e n 0 -e n 1 }) = exp(- n≥2 ζ Φ (n) n {ne n-1 0 e 1 + O(e 2 1 )}) = 1 - n≥2 ζ Φ (n)e n-1 0 e 1 + O(e 2 1 )
, and (l.h.s. of (9.2.3)

) = 1 + n≥2 (Φ|e n-1 0 e 1 )e n-1 0 e 1 + O(e 2 1 )
.

Then (9.2.3) implies ζ Φ (n) = -(Φ|e n-1 0 e 1 ) for n ≥ 2. It follows that Γ Φ (t) = 1/ ΓΦ (-t)
, where Γ Φ is as in (1.4.1). Plugging this equality in (9.2.3), we obtain (9.2.1). This proves 1).

Let us prove 2). Since logΓ(1

-t) = γt + n≥2 ζ(n)t n /n, the series exp(2 n even,n≥2 ζ(n)t n n ) is equal to Γ(1 + t)Γ(1 -t).
The identities Γ(t + 1) = tΓ(t) and Γ(t)Γ(-t) = t sin(πt) imply that the latter series equals (2πit)/(e (2πit)/2 -e -(2πit)/2 ), therefore exp(2

n even,n≥2 ζ(n)t n n ) = 2πit e (2πit)/2 -e -(2πit)/2 . Then Γ Φ (t)Γ Φ (-t) = ( ΓΦ (t) ΓΦ (-t)) -1 = exp(2 n even,n≥2 ζ Φ (n)t n n ) = exp(2 n even,n≥2 ζ(n)(µt/(2πi)) n n )
= µt e µt/2 -e -µt/2 , which proves 2). □ Remark 9.6. Lemma 9.5 can also be derived by combining two results from [F3], namely the inclusion result M µ (k) ⊂ DMR µ (k) and the result on Γ-functions for elements of DMR µ (k).

Lemma 9.7. The following identities

(9.2.4) ϕ 1 (α, β) = 1 β Γ Φ (-α)Γ Φ (-β) Γ Φ (-α -β) -1 , ϕ 0 (α, β) = - 1 α Γ Φ (-α)Γ Φ (-β) Γ Φ (-α -β) -1 , hold in the commutative formal series ring k[[α, β]].
Proof. The first identity follows from the image of (9.2.1) by the isomorphism of formal series rings taking (e 0 , e 1 ) to (α, β). One has Φ(e 0 , e 1 ) ∈ G( VDR ), which implies that logΦ(e 0 , e 1 ) ∈ f2 .

One also knows that the degree 1 component of the series logΦ(e 0 , e 1 ) in e 0 , e 1 is zero. This implies (logΦ(e 0 , e 1 )) ab = 0, therefore Φ(e 0 , e 1 ) ab = 1. This implies the equality 1+ αϕ 0 (α, β)+ βϕ 1 (α, β) = 1. Together with the first identity of (9.2.4), this implies the second identity of (9.2.4). □ 9.3. Functors arising from associators. 9.3.1. The category PaB. For n ≥ 0, let Par n be the set of parenthesizations of the word

• • • • • • n letters
. Set Par := n≥0 Par n . The set Par is a monoid with product denoted (P, Q) → P Q. 

|P | = |Q| = |R|, more precisely ((P f → Q), (Q g → R)) → (P gf → R) for f, g ∈ B |P | .
We now introduce particular morphisms of PaB: 

• t ij = t σ(i)σ(j)
. This action gives rise to an algebra structure on the tensor product (U t n ) ∧ ⊗ kS n , and to a topological Hopf algebra on it, defined by the conditions that the elements of S n be group-like and the elements of t n be primitive; the resulting topological Hopf algebra structure is denoted by (U t n ) ∧ S n .

Following [BN], we denote by PaCD the category with set of objects Par and sets of morphisms given by PaCD(P, 

Q) := (U t |P | ) ∧ S |P | if |P | = |Q|
(µ,Φ) (σ •,• ) = exp(- µ 2 t 12 ) • 1 2 2 1 ∈ PaCD(••), (9.3.2) comp (µ,Φ) (a •,•,• ) = Φ(t 12 , t 23 ) ∈ PaCD((••)•, •(••)),
and its compatibility with operations of extensions, cabling and strand removal from [BN] in both the source and target categories. 

P,Q (µ,Φ) : B n → (U p n+1 ) ∧ S n the composed map B n PaB(P, Q) comp P,Q (µ,Φ) → PaCD * (P, Q) (U p n+1 ) ∧ S n .
It corestricts to a map B n → ((U p n+1 ) ∧ ) × S n , which is a group morphism denoted comp P (µ,Φ) := comp P,P (µ,Φ) when Q = P . The map comp P,Q (µ,Φ) restricts and corestricts to a map : VB (M 0,5 ) → VDR (M 0,5 ) are related by (9.3.3) comp

K n → (U p n+1 ) ∧ ,
(•(••))• (µ,Φ)
= Ad(Φ(e 12 , e 23 )) • comp

((••)•)• (µ,Φ)
Remark 9.8. There are natural identifications comp

V,(1) (µ,Φ) comp (••)• (µ,Φ) and comp V,(10) (µ,Φ) comp •(••),(••)• (µ,Φ)
. 9.3.4. Images by comp (µ,Φ) of particular morphisms.

Lemma 9.9. Let µ ∈ k × and Φ ∈ M µ (k).

1) If P, Q are in Par, with |P | = a, |Q| = b, then comp (µ,Φ) (σ P,Q ) = 1 ••• a a+1 ••• a+b b+1 ••• a+b 1 ••• b • exp( µ 2 β∈a+[[1,b]] e β,a+b+1 + µ α<β∈a+[[1,b]] e α,β ) (9.3.4) = 1 ••• a a+1 ••• a+b b+1 ••• a+b 1 ••• b • exp( µ 2 α∈[[1,a]] e α,a+b+1 + µ α<β∈[[1,a]]
e α,β ) ∈ PaCD * (P Q, QP ). 

2) If

(µ,Φ) (σ P,Q ) = 1 ••• a a+1 ••• a+b b+1 ••• a+b 1 ••• b • exp(- µ 2 α∈A,β∈B t α,β ) ∈ PaCD(P Q, QP ),
where This implies that the image of comp (µ,Φ) (σ P,Q ) in PaCD * (P Q, QP ) is the announced value.

A := [[1, a]], B := a + [[1, b]].
2) It follows from ( 9 

((••)•)• a••,•,• → (••)(••) a•,•,•• → •(•(••)) (x15) •(•(••)) → •(•(••)) a -1 •,•,•• → (••)(••) a -1 ••,•,• → ((••)•)•
of isomorphisms of this category.

2) The automorphism (x 2,5 )

((••)•)• of the object ((••)•)• of the category PaB is equal to the composition ((••)•)• a••,•,• → (••)(••) σ -1 ••,•• → (••)(••) a -1 ••,•,• → ((••)•)• (x45) ((••)•)• → ((••)•)• a••,•,• → (••)(••) σ••,•• → (••)(••) a -1 ••,•,• → ((••)•)•
of isomorphisms of this category.

3) The automorphism (x 3,5

) ((••)•)• of the object ((••)•)• of the category PaB is equal to the composition ((••)•)• σ -1 •,(••)• → •((••)•) a -1 •,••,• → (•(••))• (x45) (•(••))• → (•(••))• a•,••,• → •((••)•) σ •,(••)• → ((••)•)•
of isomorphisms of this category.

4) The automorphism (x 4,5

) ((••)•)• of the object ((••)•)• of the category PaB is equal to the composition ((••)•)• σ (••)•,• → •((••)•) σ •,(••)• → ((••)•)•
of isomorphisms of this category.

Proof. Let B be the groupoid with set of objets equal to Z ≥0 and sets of morphisms given by 2) The automorphism (x 2,5

B(n) := B n if n ≥ 0 (
) (•(••))• of the object (•(••))• of the category PaB is equal to the composition (•(••))• σ -1 •,•(••) → •(•(••)) a -1 •,•,•• → (••)(••) σ••,•• → (••)(••) a•,•,•• → •(•(••)) (x1,5) •(•(••)) → •(•(••)) a -1 •,•,•• → (••)(••) σ -1 ••,•• → (••)(••) a•,•,•• → •(•(••)) σ •,•(••) → (•(••))•
of isomorphisms of this category.

3) The automorphism (x 3,5

) (•(••))• of the object (•(••))• of the category PaB is equal to the composition (•(••))• σ -1 •,•(••) → •(•(••)) a -1 •,•,•• → (••)(••) a -1 ••,•,• → ((••)•)• (x4,5) ((••)•)• → ((••)•)• a••,•,• → (••)(••) a•,•,•• → •(•(••)) σ •,•(••) → (•(••))•
of isomorphisms of this category.

4) The automorphism (x 4,5

) (•(••))• of the object (•(••))• of the category PaB is equal to the composition (•(••))• σ •(••),• → •(•(••)) σ •,•(••) → (•(••))•
of isomorphisms of this category.

Proof. Each of the items of the lemma states the equality of two elements of PaB((•(••))•).

In view of (9.5.1), this equality is a consequence of the equality of their images in B(4) = B 4 under the morphism of groupoids forget : PaB → B from the proof of Lemma 9.11. The latter equality is itself a consequence of Lemma 9.10: (9.4.1) (resp., (9.4.5), (9.4.3), (9.4.4)) implies the equality of elements of B 4 relevant to 1) (resp., 2), 3), 4)). □ Remark 9.15. The equalities from Lemma 9.14 can be translated in the graphical language of [BN] as the statement that for i ∈ [[1, 4]], the isomorphism ( (µ,Φ) (x i5 -1) belong to the augmentation ideal of the degree completion (U f 3 ) ∧ of its universal enveloping algebra. This augmentation ideal is freely generated, as a left (U f 3 ) ∧ -module, by the elements e i5 , i ∈ [[1, 3]].

x i5 ) (•(••))• of the object (•(••))• of the
It follows that there are uniquely defined collections (p ij ) i,j∈ [[1,3]] and (q ij ) i,j∈ [[1,3]

] of elements of (U f 3 ) ∧ , such that ∀i, j ∈ [[1, 3]], comp ((••)•)• (µ,Φ) (x i5 -1) = i∈[[1,3]] p ij e j5 , comp (•(••))• (µ,Φ) (x i5 -1) = i∈[[1,3]]
q ij e j5 (equalities in (U f 3 ) ∧ ). Definition 9.17. Let µ ∈ k × and Φ ∈ M µ (k). One sets P (µ,Φ) := (p ij ) i,j∈ [[1,3]

] ∈ M 3 ((U f 3 ) ∧ ), Q (µ,Φ) := (q ij ) i,j∈[[1,3]] ∈ M 3 ((U f 3 ) ∧ ).
One then has (9.7.1)

M 3×1 (comp ((••)•)• (µ,Φ) )(   x15 -1 x25 -1 x35 -1   ) = P (µ,Φ)  
e 15 e 25 e 35   , M 3×1 (comp

(•(••))• (µ,Φ) )(   x15 -1 x25 -1 x35 -1   ) = Q (µ,Φ)   e 15 e 25 e 35  
(equalities in M 3×1 ((U f 3 ) ∧ )).

Lemma 9.18. If µ ∈ k × and Φ ∈ M µ (k), then the matrices P (µ,Φ) and Q (µ,Φ) belong to

GL 3 ((U f 3 ) ∧ ).
Proof. This follows from the fact that that both p ij and q ij are equal to µδ ij modulo the augmentation ideal of (U f 3 ) ∧ , which is equal to the direct product of the components of U f 3 of [[1,3]] ∈ GL 3 ((V DR ) ⊗2,∧ ). 9.8. Computation of P (µ,Φ) and P (µ,Φ) . Recall the elements ϕ 0 , ϕ 1 ∈ VDR associated with Φ ( §9.2).

degrees > 0. □ Definition 9.19. For i, j ∈ [[1, 3]], one sets p ij := pr ∧ 12 (p ij ) ∈ (V DR ) ⊗2,∧ , q ij := pr ∧ 12 (q ij ) ∈ (V DR ) ⊗2,∧ . Definition 9.20. Let µ ∈ k × and Φ ∈ M µ (k). One sets P (µ,Φ) := pr ∧ 12 (P (µ,Φ) ) = (p ij ) i,j∈[[1,3]] ∈ GL 3 ((V DR ) ⊗2,∧ ), Q (µ,Φ) := pr ∧ 12 (Q (µ,Φ) ) = (q ij ) i,j∈
Proposition 9.21. Let µ ∈ k × and Φ ∈ M µ (k). One has

P (µ,Φ) =
diag Φ(e 4,5 , e 12,5 ) -1 Φ(e 34,5 , e 1,5 ) -1 , Φ(e 4,5 , e 12,5 ) -1 e µ 2 e34,5 Φ(e 34,5 , e 2,5 ) -1 , e µ 2 e4,5 Φ(e 4,5 , e 3,5

) -1 • •                      
(e µe 1,5 -1)Φ(e34,5,e1,5)

•(φ1-φ0) (e4,5,e12,5) +(e µe 1,5 -1)(φ1-φ0) (e34,5,e1,5)

+ e µe 1,5 -1 e 1,5
(e µe 1,5 -1)Φ(e34,5,e1,5)

•(φ1-φ0) (e4,5,e12,5) -(e µe 1,5 -1)φ0 (e34,5,e1,5) -(e µe 1,5 -1)Φ(e34,5,e1,5)

•φ0 (e4,5,e12,5) (e µe 2,5 -1)Φ(e34,5,e2,5)

•e -µ 2 e 34,5 (φ1-φ0)(e4,5,e12,5)

-(e µe 2,5 -1)Φ(e34,5,e2,5) e -µ 2 e 34,5 -1 e 34,5

-(e µe 2,5 -1)φ0 (e34,5,e2,5) (e µe 2,5 -1)Φ(e34,5,e2,5)

•e -µ 2 e 34,5 (φ1-φ0)(e4,5,e12,5)

-(e µe 2,5 -1)Φ(e34,5,e2,5) e -µ 2 e 34,5 -1

e 34,5
+(e µe 2,5 -1)(φ1-φ0) (e34,5,e2,5)

+ e µe 2,5 -1 e 2,5
-(e µe 2,5 -1)Φ(e34,5,e2,5)

•e -µ 2 e 34,5 φ0(e4,5,e12, 5)

-(e µe 3,5 -1)Φ(e4,5,e3,5) e -µ 2 e 4,5 -1 e 4,5

-(e µe 3,5 -1)φ0 (e4,5,e3,5) -(e µe 3,5 -1)Φ(e4,5,e3,5) e -µ 2 e 4,5 -1 e 4,5

-(e µe 3,5 -1)φ0 (e4,5,e3,5) -(e µe 3,5 -1)Φ(e4,5,e3,5) e -µ 2 e 4,5 -1

e 4,5
+(e µe 3,5 -1)(φ1-φ0) (e4,5,e3,5)

+ e µe 3,5 -1 e 3,5                      
where diag(d 1 , d 2 , d 3 ) denotes the diagonal matrix with diagonal elements d 1 , d 2 , d 3 .

Proof. The computation of the first line of the matrix follows from (9.5.2) and from (e µe1,5 -1)Φ(e 34,5 , e 1,5 )Φ(e 4,5 , e 12,5 )

= (e µe1,5 -1)Φ(e 34,5 , e 1,5 )ϕ 0 (e 4,5 , e 12,5 )e 4,5 + (e µe1,5 -1)Φ(e 34,5 , e 1,5 )ϕ 1 (e 4,5 , e 12,5 )e 12,5

+ (e µe1,5 -1)ϕ 0 (e 34,5 , e 1,5 )e 34,5 + (e µe1,5 -1)ϕ 1 (e 34,5 , e 1,5 )e 1,5 + (e µe1,5 -1)

= (e µe1,5 -1)Φ(e 34,5 , e 1,5 )(ϕ 1 -ϕ 0 )(e 4,5 , e 12,5 ) + (e µe1,5 -1)(ϕ 1 -ϕ 0 )(e 34,5 , e 1,5 ) + e µe1,5 -1 e 1,5 e 1,5

+ (e µe1,5 -1)Φ(e 34,5 , e 1,5 )(ϕ 1 -ϕ 0 )(e 4,5 , e 12,5 ) + (e µe1,5 -1)(-ϕ 0 )(e 34,5 , e 1,5 ) e 2,5

+ (e µe1,5 -1)Φ(e 34,5 , e 1,5 )(-ϕ 0 )(e 4,5 , e 12,5 ) e 3,5 .

The computation of the second line follows from (9.5.3) and from (e µe2,5 -1)Φ(e 34,5 , e 2,5 )e -µ 2 e34,5 Φ(e 4,5 , e 12,5 ) = (e µe2,5 -1)Φ(e 34,5 , e 2,5 )e -µ 2 e34,5 ϕ 0 (e 4,5 , e 12,5 )e 4,5

+ (e µe2,5 -1)Φ(e 34,5 , e 2,5 )e -µ 2 e34,5 ϕ 1 (e 4,5 , e 12,5 )e 12,5 + (e µe2,5 -1)Φ(e 34,5 , e 2,5 )(e -µ 2 e34,5 -1)

+ (e µe2,5 -1)ϕ 0 (e 34,5 , e 2,5 )e 34,5 + (e µe2,5 -1)ϕ 1 (e 34,5 , e 2,5 )e 2,5 + (e µe2,5 -1)

= (e µe2,5 -1)Φ(e 34,5 , e 2,5 )e -µ 2 e34,5 (ϕ 1 -ϕ 0 )(e 4,5 , e 12,5 ) -(e µe2,5 -1)Φ(e 34,5 , e 2,5 ) e -µ 2 e34,5 -1 e 34,5

+ (e µe2,5 -1)(-ϕ 0 )(e 34,5 , e 2,5 ) e 1,5 + (e µe2,5 -1)Φ(e 34,5 , e 2,5 )e -µ 2 e34,5 (ϕ 1 -ϕ 0 )(e 4,5 , e 12,5 )

-(e µe2,5 -1)Φ(e 34,5 , e 2,5 ) e -µ 2 e34,5 -1 e 34,5 + (e µe2,5 -1)(ϕ 1 -ϕ 0 )(e 34,5 , e 2,5 ) + e µe2,5 -1 e 2,5 e 2,5

+ (e µe2,5 -1)Φ(e 34,5 , e 2,5 )e -µ 2 e34,5 (-ϕ 0 )(e 4,5 , e 12,5 ) e 3,5 .

The computation of the third line follows from (9.5.4), from the 2-cycle identity (9.1.1), and from (e µe3,5 -1)Φ(e 4,5 , e 3,5 )e -µ 2 e4,5 = (e µe3,5 -1)Φ(e 4,5 , e 3,5 )(e -µ 2 e4,5 -1) + (e µe3,5 -1)ϕ 0 (e 4,5 , e 3,5 )e 4,5

+ (e µe3,5 -1)ϕ 1 (e 4,5 , e 3,5 )e 3,5 + (e µe3,5 -1) = -(e µe3,5 -1)Φ(e 4,5 , e 3,5 ) e -µ 2 e4,5 -1 e 4,5

-(e µe3,5 -1)ϕ 0 (e 4,5 , e 3,5 ) e 1,5 + -(e µe3,5 -1)Φ(e 4,5 , e 3,5 ) e -µ 2 e4,5 -1 e 4,5

-(e µe3,5 -1)ϕ 0 (e 4,5 , e 3,5 ) e 2,5 + -(e µe3,5 -1)Φ(e 4,5 , e 3,5 ) e -µ 2 e4,5 -1 e 4,5

+ (e µe3,5 -1)(ϕ 1 -ϕ 0 )(e 4,5 , e 3,5 ) + e µe3,5 -1 e 3,5 e 3,5 .

□

Corollary 9.22. Let µ ∈ k × and Φ ∈ M µ (k). One has

P (µ,Φ) = diag Φ(e 0 , e 1 ) -1 Φ(f ∞ , f 1 ) -1 , Φ(e 0 , e 1 ) -1 e -µ 2 e1 Φ(f ∞ , f 1 ) -1 e -µ 2 f1 , e µ 2 e0 Φ -1 (e 0 , e ∞ )e µ 2 f∞ Φ -1 (f ∞ , f 0 ) •                          (e µf 1 -1)(φ1-φ0)(e0+f∞,e1+f1)
+(e µf 1 -1)(φ1-φ0)(-(e1+f1),f1) +(e µ(e∞ +f 0 ) -1)•

+ e µf 1 -1 f 1 (e µf 1 -1)• •(φ1-φ0)(e0+f∞,
•(φ1-φ0)(e0+f∞,e∞+f0)

+ e µ(e∞ +f 0 ) -1 e∞ +f 0                         
Proof. One transforms the expression obtained from Proposition 9.21 using identities Φ +(e µe 35 -1)(φ1-φ0)(e14,5,e35)

(e 0 + f ∞ , e 1 +f 1 ) = Φ(e 0 , e 1 )Φ(f ∞ , f 1 ), Φ(e 0 +f ∞ , e ∞ +f 0 ) = Φ(e 0 , e ∞ )Φ(f ∞ , f 0 ), Φ(-(e 1 +f 1 ), f 1 ) = Φ(-(e 1 + f 1 ), e 1 ) =
•                             e µe
+ e µe 35 -1 e 35                            
Proof. The computation of the first line of the matrix follows from (9. -(e µe 25 -1)φ0(e14,5,e25) e35

The computation of the third line of the matrix follows from (9.6.3), from the 2-cycle identity (9.1.1), and from (e µe35 -1)Φ(e +(e µ(e∞ +f 0 ) -1)(φ1-φ0)(e0-f0,e∞+f0)

Q (µ,Φ) = diag Φ(f 1 , f ∞ ), e µ 2 f∞ Φ(f 0 , f ∞ )e µ 2 f0 Φ(e 1 , e 0 ), e µ 2 (e0+f∞) Φ(f 0 , f ∞ )Φ(e ∞ , e 0 ) • •                             e µf 1 -1 f 1 +(e µf 1 -1)(φ1-φ0)(e0+f∞,
+ e µ(e∞ +f 0 ) -1 e∞ +f 0                            
Proof. One transforms the expression obtained from Proposition 9.23 using the commutativity of e 0 with f 0 , f ∞ , as well as the identities Φ

(e 0 + f ∞ , e 1 + f 1 ) = Φ(e 0 , e 1 )Φ(f ∞ , f 1 ), Φ(e 0 + f ∞ , e ∞ + f 0 ) = Φ(e 0 , e ∞ )Φ(f ∞ , f 0 ), Φ(-(e 1 + f 1 ), f 1 ) = Φ(-(e 1 + f 1
), e 1 ) = 1, which follow from the fact Φ is a group-like element with vanishing linear terms in e 0 , e 1 . □ 

(σ -2 •,• ⊗ id • ) ⊗ id • and (x 23 ) (•(••))• = (id • ⊗ σ -2 •,• ) ⊗ id •
((••)•)• (µ,Φ) (x 12 ) = e µe12 , comp (•(••))• (µ,Φ) (x 23 ) = e µe23 .
Then comp

((••)•)• (µ,Φ) (x 23 ) = comp (µ,Φ) ((x 23 ) ((••)•)• ) (10.1.4) = comp (µ,Φ) ((a •,•,• ⊗ id • ) -1 • (x 23 ) (•(••))• • (a •,•,• ⊗ id • )) = Φ(e 12 , e 23 ) -1 e µe23 Φ(e 12 , e 23 ),
where the last identity uses the second part of (10.1.3).

The first part of (10.1.3) implies that comp

((••)•)• (µ,Φ) • ˆ (X 1 ) = e µe12 , which is equal to ˆ • comp V,(1) (µ,Φ) (X 1 ). (10.1.4) implies comp ((••)•)• (µ,Φ)
• ˆ (X 0 ) = Φ(e 12 , e 23 ) -1 e µe23 Φ(e 12 , e 23 ). One has ˆ • comp V,(1) (µ,Φ) (X 0 ) = Φ(e 23 , e 12 )e µe23 Φ(e 23 , e 12 ) -1 . The 2-cycle identity (9.1.1) implies that these images are equal. Therefore the images of both X 0 and X 1 under comp

((••)•)• (µ,Φ) • ˆ and ˆ • comp V,(1) (µ,Φ) are the same. □ 10.2. Commutative diagram relating M 3 (pr ∧ 12 ) and M 3 (pr ∧ 12 ). Lemma 10.2. Let µ ∈ k × and Φ ∈ M µ (k).
The following

(kP * 5 ) ∧ comp ((••)•)• (µ,Φ) pr ∧ 1 / / VB comp V,(1) (µ,Φ) (U p 5 ) ∧ pr ∧ 1 / / VDR VDR Ad(Φ(e0,e1) -1 ) o o (kP * 5 ) ∧ comp ((••)•)• (µ,Φ) pr ∧ 2 / / VB comp V,(1) (µ,Φ) (U p 5 ) ∧ pr ∧ 2 / / VDR VDR Ad(Φ(e∞,e1) -1 e (µ/2)e 1 )
o o are commutative diagrams of topological Hopf algebras.

Proof. One computes comp

((••)•)• (µ,Φ) (x 34 ) = comp (µ,Φ) ((x 34 ) ((••)•)• ) (10.2.1) = comp (µ,Φ) ((a ••,•,• ) -1 • (x 34 ) (••)(••) • a ••,•,• ) = Φ(e 12,3 , e 34 ) -1 e µe34 Φ(e 12,3 , e 34 ).
It follows from Proposition 7.4 that the elements x i,i+1 , i ∈ C 5 generate P * 5 . So it suffices to check the commutativity of the diagrams on these elements. Using (9.5.2) and (9.5.5), (10.1.3), (10.1.4) and (10.2.1), the images of these generators under the two maps can be shown to be given by the following table. 

) • comp V,(1) (µ,Φ) • pr ∧ 1 (x) and pr ∧ 1 • comp ((••)•)• (µ,Φ) (x)
1 e µe0 Φ(e 0 , e 1 ) -1 e µe1 Φ(e 0 , e 1 ) e µe0 1

This implies that the first diagram commutes.

The situation in the case of the second diagram is given by the following table 10.5. Relationship between col 1 , col 1 and P (µ,Φ) .

Lemma 10.6. Let µ ∈ k × and Φ ∈ M µ (k). One has (10.5.1) (comp

V,(1) (µ,Φ) ) ⊗2 (col 1 ) = κ (µ,Φ) • P (µ,Φ) • col 1 • v (µ,Φ)
(equality in M 3×1 ((V DR ) ⊗2∧ )), where col 1 , col 1 are as in (5.2.6), (7.2.2), κ (µ,Φ) , P (µ,Φ) are as in (10.2.3), Definition 9.20 and where

(10.5.2) v (µ,Φ) := 1 µ e µf1 Γ Φ (e 1 )Γ Φ (f 1 ) Γ Φ (e 1 + f 1 ) ∈ (V DR ) ⊗2∧ .
Proof. Let d (µ,Φ) and P(µ,Φ) be the matrices of the right-hand side of equality of Corollary 9.22, so that P (µ,Φ) = d (µ,Φ) • P(µ,Φ) . One computes = e -(µ/2)f1 (e µe1 -1)(e µf1 -1)• • (φ1-φ0)(-(e1+f1),f1)+e -(µ/2)(e 1 +f 1 ) φ0(-(e1+f1),e1)

P(µ,Φ) • col 1 =     (e µf1 -1) ϕ 1 (-(e 1 + f 1 ), f 1 ) + 1 f1 -(e µe1 -1) ϕ 1 (-(e 1 + f 1 ), e 1 ) + 1 e1 0     =    e µf 1 -1 f1 ΓΦ(e1+f1)ΓΦ(-f1) ΓΦ(e1) -e µe 1 -1 e1 ΓΦ(e1+f1)ΓΦ(-e1) ΓΦ(f1) 0    =   µe (µ/2)f1 -µe (µ/2)e1 0   Γ Φ (e 1 + f 1 ) Γ Φ (
+ 1 f 1
+e -(µ/2)(e 1 +f 1 ) e (µ/2)(e 1 +f 1 ) -1 -e 1 -f 1 -φ0(-(e1+f1),f1)-e -(µ/2)(e 1 +f 1 ) (φ1-φ0)(-(e1+f1),e1) -e -(µ/2)(e 1 +f 1 ) e 1 +e -(µ/2)(e 1 +f 1 ) e (µ/2)(e 1 +f 1 ) -1 -e 1 -f 1 0 Then (ϕ 1 -ϕ 0 )(-(e 1 + f 1 ), f 1 ) + e -(µ/2)(e1+f1) ϕ 0 (-(e 1 + f 1 ), e 1 ) + 1 f 1 + e -(µ/2)(e1+f2) e (µ/2)(e1+f2) -1 e1+f1) • 1 e 1 + f 1 Γ Φ (e 1 )Γ Φ (-e 1 ) = Γ Φ (e 1 + f 1 ) Γ Φ (e 1 )Γ Φ (f 1 )

-e 1 -f 1 = ( 1 -(e 1 + f 1 ) + 1 f 1 ) Γ Φ (e 1 + f 1 )Γ Φ (-f 1 ) Γ Φ (e 1 ) + e -(µ/2)(e1+f1) • 1 e 1 + f 1 Γ Φ (e 1 + f 1 )Γ Φ (-e 1 ) Γ Φ (f 1 ) = Γ Φ (e 1 + f 1 ) Γ Φ (e 1 )Γ Φ (f 1 ) • ( 1 -(e 1 + f 1 ) + 1 f 1 )Γ Φ (f 1 )Γ Φ (-f 1 ) + e -(µ/2)(
• ( 1 -(e 1 + f 1 ) + 1 f 1 ) µf 1 e (µ/2)f1 e µf1 -1 + e -(µ/2)(e1+f1) • 1 e 1 + f 1 µe 1 e (µ/2)e1 e µe1 -1 = Γ Φ (e 1 + f 1 ) Γ Φ (e 1 )Γ Φ (f 1 ) • e -(µ/2)f1 (e µe1 -1)(e µf1 -1)

• µe 1 e 1 + f 1 (e µ(e1+f1) -1).

where the first equality follows from (9.2.4) and the third equality follows from (9.2.2); similarly -ϕ 0 (-(e 1 + f 1 ), f 1 ) -e -(µ/2)(e1+f1) (ϕ 1 -ϕ 0 )(-(e 1 + f 1 ), e 1 ) -e -(µ/2)(e1+f1) e 1 + e -(µ/2)(e1+f1) e (µ/2)(e1+f1) -1

-e 1 -f 1 = 1 -(e 1 + f 1 ) Γ Φ (e 1 + f 1 )Γ Φ (-f 1 ) Γ Φ (e 1 ) -e -(µ/2)(e1+f1) ( 1 -(e 1 + f 1 ) + 1 e 1 ) Γ Φ (e 1 + f 1 )Γ Φ (-e 1 ) Γ Φ (f 1 ) = Γ Φ (e 1 + f 1 ) Γ Φ (e 1 )Γ Φ (f 1 ) • 1 -(e 1 + f 1 )
µf 1 e (µ/2)f1 -e -(µ/2)f1 -e -(µ/2)(e1+f1) ( 1 -(e 1 + f 1 ) + 1 e 1 ) µe 1 e (µ/2)e1 -e -(µ/2)e1 = Γ Φ (e 1 + f 1 ) Γ Φ (e 1 )Γ Φ (f 1 ) • e -(µ/2)f1 (e µe1 -1)(e µf1 -1)

• -µf 1 e 1 + f 1 (e µ(e1+f1) -1),

where the first equality follows from (9.2.4), the second equality follows from (9.2.2). It follows that the right-hand side of (10.6.3) is equal to e -µf1 • Γ Φ (e 1 + f 1 ) Γ Φ (e 1 )Γ Φ (f 1 ) e µ(e1+f1) -1 e 1 + f 1 µe 1 -µf 1 0 = u (µ,Φ) • row 1 .

□

• the commutativity of (A6) follows from the compatibility of comp V loc ,(1) (µ,Φ)

and comp W,(1) (µ,Φ) , and the commutativity of (A8) follows from the fact that ∆W,DR is an algebra morphism, such that e 1 → e 1 + f 1 .

Using successively the commutativities of (A6), (A1), (A5), (A4), (A3), (A7), (A8), (A2), and denoting by map i (i = 1, 2) the two maps ŴB → (W DR ) ⊗2∧ which can be derived from diagram (10.8.2), one sees that the two maps e µ(e 1 +f 1 ) -1 / / (W DR ) ⊗2∧ → (V DR [ 1 e1 ] ≥0 ) ⊗2∧ is injective, and since mor V B ,X1-1 : VB → ŴB + is a bijection, it follows that the restrictions of map 1 and map 2 to ŴB + coincide. One has map 1 (1) = 1 ⊗2 = map 2 (1), which implies that the restrictions of map 1 and map 2 to k1 ⊂ ŴB also coincide. Since ŴB is the direct sum of k1 and ŴB + , it follows that the maps map 1 and map 2 coincide, therefore that (10.8.2) commutes. □

Associators and harmonic module coproducts

The purpose of this section is to prove the second main result of this paper, namely the compatibility of associators with harmonic module coproducts (Theorem 11.13). This proof relies on the commutativity of diagram (11.6.1). The main new ingredients in this diagram are: a family of localized versions of the comparison isomorphisms from §3, which are constructed in §11.1; and a matrix R (µ,Φ) , which is defined in §11.2. Diagram (11.6.1) is divided into subdiagrams (M1) to (M5). Among them, subdiagram (M1) (resp. (M5)) expresses the geometric interpretation of the Betti (resp. de Rham) module coproduct and was proved in Lemma 8.15 (resp. Lemma 6.10). The main remaining diagrams are (M3) and (M4), which relate, by means of the module comparison isomorphisms and the matrices R (µ,Φ) from §11.2 and P (µ,Φ) from §9.7, 'de Rham' and 'Betti' objects: namely, the morphisms ρ and ρ in the case of (M3), and the morphisms row 1 • (-) • col 0 and row 1 • (-) • col 0 in the case of (M4). The commutativity of (M3) is established in §11.2 using the module morphism properties of its constituents over the constituents of (A3) in (10.8.4), the commutativity of (A3), and the definition of R (µ,Φ) . The commutativity of (M4) is established in § §11.3 to 11.5; more precisely, §11.3 is devoted to the expression of R (µ,Φ) in terms of the matrix Q (µ,Φ) from §9.7; §11.4 is devoted to the proof of an equality relating R (µ,Φ) , col 0 and col 0 , based in §11.3 and the computation of Q (µ,Φ) in §9.9;

this result is combined in §11.5 with the equality relating P (µ,Φ) , row 1 and row 1 from §10.5 to prove the commutativity of (M4). Theorem 11.13 is formulated and proved in §11.6.

11.1. Localized versions of comparison isomorphisms. For (µ, g) ∈ k × × ( VDR ) × , let comp V loc ,(10) (µ,g)

: V B [ 1 X 1 -1 ] ∧ → V DR [ 1 e 1 ] ∧
11.2. Definition of the matrix R (µ,Φ) and commutativity of (M3) in (11.6.1). Recall that Φ ∈ ( VDR ) × , and that ρ : VDR → M 3 ((V DR ) ⊗2∧ ) is an algebra morphism. It follows that ρ(Φ) ∈ GL 3 ((V DR ) ⊗2∧ ). The result then follows from the injectivity of the map ((U p 5 ) ∧ ) ⊕3 → (U p 5 ) ∧ , (p i ) i∈ [[1,3]] →

i∈ [[1,3]] p i • e i5 (see Lemma 5.5). □ Lemma 11.7. Let µ ∈ k × and Φ ∈ M µ (k). One has

P (µ,Φ) ρ(Φ) = Q (µ,Φ)
(equality in GL 3 ((V DR ) ⊗2,∧ )).

Proof. One has where the first equality follows from Definition 9.20, the second equality follows from Lemma 11.6, the third equality from the fact that pr ∧ 12 is an algebra morphism. One has pr ∧ 12 • ˆ (e 1 ) = 0. As pr ∧ 12 is an algebra morphism and as the logarithm of Φ is a Lie series in e 0 , e 1 without degree 1 terms, this implies pr ∧ 12 • ˆ (Φ) = 1. Together with Definition 9.20 and the definition of ρ (see §5.2.3), this implies the fourth equality, hence the result. □ Corollary 11.8. Let µ ∈ k × and Φ ∈ M µ (k). One has

Q (µ,Φ) =
R (µ,Φ) = Q -1 (µ,Φ) κ -1
(µ,Φ) Φ(e 0 , e 1 )Φ(f 0 , f 1 ) (equality in GL 3 ((V DR ) ⊗2∧ )).

Proof. This follows from Definition 11.4 and Lemma 11.7. □ 11.4. Relationship between col 0 , col 0 and R (µ,Φ) .

Lemma 11.9. Let µ ∈ k × and Φ ∈ M µ (k). The following equalities hold in (M DR ) ⊗2∧ :

(11.4.1) -(e µe1 -1)ϕ 1 (e 0 -f 0 , e 1 ) -e µe1 -1 e 1 e 1 1 ⊗2 DR = (1 -e µe1 )Φ(e 0 , e 1 )1 ⊗2 DR (11.4.2) (e µ(e∞+f0) -1)ϕ 1 (e 0 -f 0 , e ∞ +f 0 )+ e µ(e∞+f0) -1 e ∞ + f 0 e 1 1 ⊗2 DR = (1-e µe∞ )Φ(e 0 , e ∞ )1 ⊗2 DR (11.4.3) Φ(e 0 , e 1 )e (µ/2)e0 Φ(e ∞ , e 0 )(1 -e µe∞ )Φ(e 0 , e ∞ )1 ⊗2 DR = (1 -e -µe1 )Φ(e 0 , e 1 )1 ⊗2 DR .

Proof. The following holds in (M DR ) ⊗2∧ :

-(e µe1 -1)ϕ 1 (e 0 -f 0 , e 1 ) -e µe1 -1 e 1 e 1 1 ⊗2 DR = -(e µe1 -1) ϕ 1 (e 0 -f 0 , e 1 )e 1 + 1 1 ⊗2 DR = (1 -e µe1 ) ϕ 0 (e 0 -f 0 , e 1 )(e 0 -f 0 ) + ϕ 1 (e 0 -f 0 , e 1 )e 1 + 1 1 ⊗2 DR = (1 -e µe1 )Φ(e 0 -f 0 , e 1 )1 ⊗2 DR = (1 -e µe1 )Φ(e 0 , e 1 )1 ⊗2 DR as the second equality follows from e 0 1 ⊗2 DR = f 0 1 ⊗2 DR = 0, the third equality from the relation between ϕ 0 , ϕ 1 and Φ (see §9.2), and the last equality from the commutation of f 0 with e 0 and e 1 . This proves (11.4.1).

The following holds in (M DR ) ⊗2∧ : (e µ(e∞+f0) -1)ϕ 1 (e 0 -f 0 , e ∞ + f 0 ) + e µ(e∞+f0) -1 e ∞ + f 0 e 1 1 ⊗2 DR = -(e µ(e∞+f0) -1)ϕ 1 (e 0 -f 0 , e ∞ + f 0 ) + e µ(e∞+f0) -1 e ∞ + f 0 (e ∞ + f 0 )1 ⊗2 as the first and third equalities follow from e 0 1 ⊗2 DR = f 0 1 ⊗2 DR = 0, the fourth from the relation between ϕ 0 , ϕ 1 and Φ (see §9.2), the fifth from the commutation of f 0 with e 0 and e ∞ , and the last from the same fact, together with f 0 1 ⊗2 DR = 0. This proves (11.4.2). The following holds in (V DR ) ⊗2∧ : Φ(e 0 , e 1 )e (µ/2)e0 Φ(e ∞ , e 0 )(1 -e µe∞ )Φ(e 0 , e ∞ ) = e -(µ/2)e1 Φ(e ∞ , e 1 )(e -(µ/2)e∞ -e (µ/2)e∞ )Φ(e 0 , e ∞ ) = e -(µ/2)e1 • e (µ/2)e1 Φ(e 0 , e 1 )e (µ/2)e0 -e -(µ/2)e1 Φ(e 0 , e 1 )e -(µ/2)e0 = (1 -e -µe1 )Φ(e 0 , e 1 ) + Φ(e 0 , e 1 )(e (µ/2)e0 -1) -e -(µ/2)e1 Φ(e 0 , e 1 )(e -(µ/2)e0 -1) as the first equality follows from the 2-cycle identity (9.1.1) and the hexagon identity (9.1.2) for (a, b, c) = (e 0 , e ∞ , e 1 ) and the second equality follows from the hexagon identities (9.1.2) and (9.1.3) for (a, b, c) = (e 0 , e 1 , e ∞ ). Applying this equality to 1 ⊗2 DR , and using e 0 1 ⊗2 DR = 0, one obtains (11.4.3). □ Lemma 11.10. Let µ ∈ k × and Φ ∈ M µ (k). One has (11.4.4) Φ(e 0 , e 1 ) -1 Φ(f 0 , f 1 ) -1 M 3×1 ((comp M,(10) (µ,Φ) ) ⊗2 ) col 0 = R -1 (µ,Φ) col 0

(equality in M 3×1 ((M DR ) ⊗2∧ )), where col 0 , col 0 are as in Definitions 6.4 and 8.9.

  .1. Conventions. Throughout the paper, k is a commutative and associative Q-algebra. By a k-algebra we mean a k-module, equipped with a k-bilinear associative product; a k-algebra is called unital if it contains a (necessarily unique) unity element. We denote by A × the group of invertible elements of an associative unital k-algebra A. For u ∈ A × , we denote by Ad(u) the inner automorphism of A induced by u, so Ad(u)(a) = uau -1 for a ∈ A. If f : A → B is a morphism of k-algebras, if M, N are respectively an A-module and a B-module, then a k-module morphism g : M → N is said to be compatible with f iff g(am) = f (a)g(m) for any a ∈ A, m ∈ M . 0.3.2. Acknowledgements. The collaboration of both authors has been supported by grants JSPS KAKENHI JP15KK0159 and JP18H01110 as well as HighAGT ANR-20-CE40-0016. Part 1. Categorical preliminaries

  1) The functor (-) ∧ • taut fil,+

  are Hopf algebras (resp. is a coalgebra) in k-mod gr,+ (see Definition 0.1). Their images by the functor (-) ∧ • taut fil,+ gr,+ : k-mod gr,+ → k-mod top (see §1) are topological Hopf algebras ( VDR , ∆V,DR ) and ( ŴDR , ∆W,DR ), and a topological coalgebra ( MDR , ∆M,DR ); the topological k-module MDR is then a free rank 1 module over the topological k-algebra ŴDR . 1.4. Γ-functions. Define a map VDR

  the inner square commutes by (2.4.10), the external square commutes as it is the tensor square of (2.4.10), the lower quadrangle commutes by the definition of ∆ M,DR , the left quadrangle commutes by Proposition 2.16, the upper quadrangle commutes because (-) • 1 B induces an isomorphism of the coalgebras (W B , ∆ W,B ) and (M B , ∆ M,B ) in k-mod fil,+ . It follows that the right quadrangle commutes. □

  are Hopf algebras (resp. is a coassociative coalgebra) in k-mod fil,+ . Applying the functor (-) ∧ : k-mod fil,+ → k-mod top (see §1), one obtains topological Hopf algebras ( VB , ∆V,B ) and ( ŴB , ∆W,B ), and a topological coalgebra ( MB , ∆M,B ). It follows from the compatibility of the decomposition

  submodule VDR e 0 ⊂ VDR invariant, and therefore induces an automorphism of the topological k-module MDR = VDR / VDR e 0 , which will be denoted aut M,(10),DR (µ,g) . One checks that for X ∈ {V, M} and A ∈ {V, W}, the k-module automorphism aut X ,(10),DR (µ,g) is compatible (in the sense of §0.3.1) with the module structure of X DR over the algebra ÂDR and with the algebra automorphism aut A,(1),DR (µ,g) 

  Construction of algebra morphisms based on morphisms to matrix algebras. Let R be an associative algebra and let e ∈ R. Define • e : R × R → R by r • e r ′ := rer ′ . Then (R, • e ) is an associative algebra. The subspaces Re and eR of R are subalgebras. There is an algebra morphism mor R,e : (R, • e ) → Re , given by r → re. Lemma 4.3. Let R, S be associative algebras, let e ∈ R, let n ≥ 1, and let f : R → M n (S) be an algebra morphism. Assume that there exist elements row ∈ M 1×n (S) and col ∈ M n×1 (S), such that f (e) = col • row. Then the map f : (R, • e ) → S, defined by r → row • f (r) • col is an algebra morphism. One then has a commutative diagram (4.2.1)

Proof.

  One has (e 1 ) = e 12 . Let us compute (e 12 ). One has e 15 e 12 = e 12 e 15 + [e 15 , e 12 ] = e 12 e 15 + [e 25 , e 15 ] = (e 12 + e 25 )e 15 -e 15 e 25 , e 25 e 12 = -e 25 e 15 + (e 12 + e 15 )e 25 (applying the permutation of indices 1 and 2 to the previous equality), e 35 e 12 = e 12 e 35 , 3 (U p 5 ).

  Let us compute (e 23 ). One has e 15 e 23 = e 23 e 15 , e 25 e 23 = e 23 e 25 + [e 25 , e 23 ] = e 23 e 25 + [e 35 , e 25 ] = (e 23 + e 35 )e 25 -e 25 e 35 , e 35 e 23 = -e 35 e 25 + (e 23 + e 25 )e 35(applying the permutation of indices 2 and 3 to the previous equality), 3 (U p 5 ).

6. 2 .

 2 Relationship between infinitesimal braid Lie algebras and ∆ W,DR . Denote by k[e 0 ] the linear span in V DR of the elements e n 0 , n ≥ 0. Lemma 6.1. (V DR , • e1 ) is generated, as an associative (non-unital) algebra, by k[e 0 ].

  and therefore induces a morphism K n → K n+1 .

  equality in B n+1 ). The left-hand side belongs to the kernel of the morphism B n+1 → B * n+1 , and the right-hand side belongs to the subgroup K n+1 ⊂ B n+1 , therefore the latter side belongs to the kernel of the composed morphism K n+1 ⊂ B n+1 → B * n+1 . As this morphism factors as K n+1 ↠ P * n+1 → B * n+1 , the right-hand side belongs to Ker(K n+1 ↠ P * n+1 ). □ Diagrammatic representation. The generators of B n are depicted as follows when n = 4, σ 1 = , σ 2 = , σ 3 = and the convention for the product is σ 2 σ 1 = The element xij ∈ K n is then depicted as b ≥ 1, we define σ a,b ∈ B a+b to be the element represented by (

  F2 and F 3 = Ker(pr 5 ). It follows that the following diagram is commutative kF 2 ⊗ kF 3 It follows that J(pr 5 ) is the image of kF 2 ⊗ (kF 3 ) + under the linear isomorphism kF 2 ⊗ kF 3 ≃ → kP * 5 .

  (7.2.5) (x 15 -1) • x 23 = x 23 • (x 15 -1). Since x 25 commutes with x 23 x 25 x 35 , one has x -1 23 x 25 x 23 = x 25 x 35 x 25 x -1 35 x -1 25

  -1)•x 23 = x 23 (-x 25 x 35 x 25 x -1 35 x -1 25 +x 25 x 35 +1)•(x 25 -1)+x 23 (-x 25 x 35 x 25 x -1 35 +x 25 )•(x 35 -1). Since x 23 x 25 x 35 = x 35 x 23 x 25 , one has x -1 23 x 35 x 23 = x 25 x 35 x -1 25 , which implies the first equality in the following chain of equalities x -1 23 (x 35 -1)x 23 = x 25 x 35 x -1 25 -1 = x 25 (x 35 x -1 25 -1) + x 25 -1 = x 25 {x 35 (x -1 25 -1) + x 35 -1} + x 25 -1 = x 25 x 35 (x -1 25 -1) + x 25 -1 + x 25 (x 35 -1) = (-x 25 x 35 x -1 25 + 1)(x 25 -1) + x 25 (x 35 -1), the following equalities being immediate. Therefore (7.2.7) (x 35 -1) • x 23 = x 23 (-x 25 x 35 x -1 25 + 1) • (x 25 -1) + x 23 x 25 • (x 35 -1).

  Recall the graded Lie algebra t 4 from §5.1.1. Definition 9.3. ([Dr]) If µ ∈ k, one defines the set M µ (k) to be the set of elements Φ ∈ VDR , which are group-like for ∆V,DR and such that (9.1.1) Φ(b, a) = Φ(a, b) -1 , (9.1.2) e (µ/2)b Φ(c, b)e (µ/2)c Φ(a, c)e (µ/2)a Φ(b, a) = 1 (equalities in k a, b , called the 2-cycle and hexagon conditions; here c := -a -b),

For P ∈

 ∈ Par, we denote by |P | the integer n such that P ∈ Par n . We denote by PaB the category with set of objects given by Ob(PaB) := Par and set of morphisms given by PaB(P, Q) := ∅ if |P | = |Q|, PaB(P, Q) := B |P | if |P | = |Q|, where B |P | is the Artin braid group with |P | strands. The composition PaB(P, Q) × PaB(Q, R) → PaB(P, R) is given by the product in B |P | if

  (a) for P, Q, R ∈ Par, we denote by a P,Q,R ∈ PaB((P Q)R, P (QR)) the image of 1 ∈ B |P |+|Q|+|R| PaB((P Q)R, P (QR)); (b) for P ∈ Par and b ∈ B |P | , we denote by b P ∈ PaB(P ) the image of b ∈ B |P | PaB(P ); (c) for P, Q ∈ Par, we denote by σ P,Q ∈ PaB(P Q, QP ) the image of σ |P |,|Q| ∈ B |P |+|Q| PaB(P Q, QP ), where σ |P |,|Q| is as in (7.1.7). 9.3.2. The category PaCD. For n ≥ 1, the permutation group S n acts by automorphisms of t n by permutation of indices via σ

  and PaCD(P, Q) := 0 otherwise, and with composition induced by the product in (U t |P | ) ∧ S |P | in the same way as the composition in PaB is induced by the product in braid groups. We also denote by PaCD * the analogue of PaCD, where the Lie algebra t |P | is replaced by its quotient p |P |+1 . One then has a natural functor PaCD → PaCD * . 9.3.3. The functor comp (µ,Φ) : PaB → PaCD. It follows from [BN], Theorem 1, that each pair (µ, Φ), with µ ∈ k × and Φ ∈ M µ (k), gives rise to a functor comp (µ,Φ) : PaB → PaCD

  Let us again denote by comp (µ,Φ) : PaB → PaCD * the composition of functors PaB comp (µ,Φ) → PaCD → PaCD * . For P, Q ∈ Par with |P | = |Q| = n, we will denote by comp

  which factors through a map P * n+1 → (U p n+1 ) ∧ . The latter map induces an isomorphism VB (M 0,n+1 ) ∼ → VDR (M 0,n+1 ), where VB (M 0,n+1 ) := (kP * n+1 ) ∧ , VDR (M 0,n+1 ) := (U p n+1 ) ∧ . It follows from the categorical formalism that the algebra isomorphisms comp

  P, Q, R are in Par, with |P | = a, |Q| = b, |R| = c, then (9.3.5) comp (µ,Φ) (a P,Q,R ) = Φ( γ∈a+b+[[1,c]] e γ,a+b+1 , α∈[[1,a]] e α,a+b+1 ) ∈ PaCD * ((P Q)R, P (QR)).Proof. 1) It follows from (9.3.1) that if P, Q are in Par, with |P | = a, |Q| = b, then comp

  Figure 9.1. Proof of Lemma 9.10

  with the convention B 0 = 1) and B(n, m) := ∅ if m = n. There is a functor forget : PaB → B given by forget(P ) := |P | at the level of objects and defined at the level of morphisms by the condition that the map forget : PaB(P, Q) → B(|P |, |Q|) is given by the composition PaB(P, Q) B |P | B(|P |, |Q|) when |Q| = |P |, and is the only self-map of the empty set if |Q| = |P |. Then (9.5.1) ∀P, Q ∈ Ob(PaB), PaB(P, Q) → B(|P |, |Q|) is an isomorphism. Each of the items of the lemma states the equality of two elements of PaB((•(••))•). In view of (9.5.1), this equality is a consequence of the equality of their images in B(4) = B 4 . The latter equality is itself a consequence of Lemma 9.10: (9.4.2) (resp. (9.4.3), (9.4.4)) implies the equality of elements of B 4 relevant to 2) (resp. 3), 4)). □ Remark 9.12. The equalities from Lemma 9.11 can be translated in the graphical language of [BN] as the statement that for i ∈ [[1, 4]], the isomorphism (x i5 ) ((••)•)• of the object ((••)•)• of the category PaB is equal to the composition of morphisms indicated in Figure 9.2. 9.5.2. Computation of images of morphisms in PaB. Proposition 9.13. Let µ ∈ k × and Φ ∈ M µ (k). One has (9.5.2) comp ((••)•)• (µ,Φ) (x 1,5 ) = Ad Φ(e 4,5 , e 12,5 ) -1 Φ(e 34,5 , e 1,5 ) -1 (exp(µe 1,5 )), (9.5.3) comp ((••)•)• (µ,Φ) (x 2,5 ) = Ad Φ(e 4,5 , e 12,5 ) -1 exp( µ 2 e 34,5 )Φ(e 34,5 , e 2,5 ) -1 (exp(µe 2,5 )), of isomorphisms of this category.

  category PaB is equal to the composition of morphisms indicated in Figure 9.3. 9.6.2. Computation of images of morphisms in PaB. Proposition 9.16. Let µ ∈ k × and Φ ∈ M µ (k). One has 5 )Φ(e 2,5 , e 14,5 ) (exp(µe 2,5 )), (9.6.3) comp (•(••))• (µ,Φ) (x 3,5 ) = Ad exp( µ 2 e 4,5 ) • Φ(e 23,5 , e 4,5 ) • Φ(e 3,5 , e 14,5 ) (exp(µe 3,5 )), (9.6.4) comp (•(••))• (µ,Φ) (x 4,5 ) = exp(µe 4,5 ). 9.7. Definition of the matrices P (µ,Φ) , Q (µ,Φ) and P (µ,Φ) , Q (µ,Φ) . Recall from Lemma 5.3, 1) the graded Lie subalgebra f 3 of p 5 generated by the e i5 , i ∈ [[1, 4]]. It follows from Propositions 9.13 and 9.16 that for i ∈ [[1, 4]], both comp ((••)•)• (µ,Φ) (x i5 -1) and comp (•(••))•

  µ(e∞ +f 0 ) -1)φ0(e0+f∞,e∞+f0) -(e µ(e∞ +f 0 ) -1)Φ(e0,e∞)• •Φ(f∞,f0) e -

  1, which follow from the fact Φ is a group-like element with vanishing linear terms in e 0 , e 1 . □ 9.9. Computation of Q (µ,Φ) and Q (µ,Φ) . Proposition 9.23. Let µ ∈ k × and Φ ∈ M µ (k). One has Q (µ,Φ) = diag Φ(e 15 , e 45 ), e µ 2 e45 Φ(e 23,5 , e 45 )e µ 2 e23,5 Φ(e 25 , e 14,5 ), e µ 2 e45 Φ(e 23,5 , e 45 )Φ(e 35 , e 14,5 ) •

  µe 15 -1)(φ1-φ0)(e45,e15) -(e µe 15 -1)φ0(e45,e15) -(e µe 15 -1)φ0(e45,e15) -(e µe 25 -1)Φ(e14,5,e25)e -µe 25 -1)Φ(e14,5,e25)• •e -µ 2 e 23,5 φ0(e45,e23,5) -(e µe 25 -1)Φ(e14,5,e25)e -µe 25 -1)Φ(e14,5,e25) e -µ 2 e 23,5 -1 e 23,5 +(e µe 25 -1)(φ1-φ0)(e14,5,e25) + e µe 25 -1 e 25 -(e µe 25 -1)Φ(e14,5,e25)e --φ0)(e45,e23,5) +(e µe 25 -1)Φ(e14,5,e25) e -µ 2 e 23,5 -1 e 23,5 -(e µe 25 -1)φ0(e14,5,e25) -(e µe 35 -1)Φ(e14,5,e35)• •Φ(e45,e23,5) eµe 35 -1)Φ(e14,5,e35)φ0(e45,e23,5) -(e µe 35 -1)Φ(e14,5,e35)• •Φ(e45,e23,5) eµe 35 -1)φ0(e14,5,e35) -(e µe 35 -1)Φ(e14,5,e35)• •Φ(e45,e23,5) e -

  6.1), from the 2-cycle identity (9.1.1), and from (e µe15 -1)Φ(e 45 , e 15 ) = (e µe15 -1)(1 + ϕ 0 (e 45 , e 15 )e 45 + ϕ 1 (e 45 , e 15 )e 15 ) = e µe15 -1 e 15 + (e µe15 -1)ϕ 1 (e 45 , e 15 ) e 15 + (e µe15 -1)ϕ 0 (e 45 , e 15 )e 45 = e µe 15 -1 e 15 +(e µe 15 -1)(φ1-φ0)(e45,e15) e15-(e µe 15 -1)φ0(e45,e15)e25-(e µe 15 -1)φ0(e45,e15)e35. The computation of the second line of the matrix follows from (9.6.2), from the 2-cycle identity (9.1.1), and from (e µe25 -1)Φ(e 14,5 , e 25 )e -µ 2 e23,5 Φ(e 45 , e 23,5 )e -µ 2 e45 = (e µe25 -1)Φ(e 14,5 , e 25 )e -µ 2 e23,5 Φ(e 45 , e 23,5 )• • (e -µ 2 e45 -1) + (e µe25 -1)Φ(e 14,5 , e 25 )e -µ 2 e23,5 (ϕ 0 (e 45 , e 23,5 )e 45 + ϕ 1 (e 45 , e 23,5 )e 23,5 ) +(e µe 25 -1)Φ(e14,5,e25)(e -µ 2 e 23,5 -1)+(e µe 25 -1)(φ0(e14,5,e25)e14,5+φ1(e14,5,e25)e25)+(e µe 25 -1) = -(e µe 25 -1)Φ(e14,5,e25)e -µe 25 -1)Φ(e14,5,e25) e -µ 2 e 23,5 -1 e 23,5 +(e µe 25 -1)(φ1-φ0)(e14,5,e25)+ e µe 25 -1 e 25 e25 + -(e µe 25 -1)Φ(e14,5,e25)e -µ 2 e 23,5 Φ(e45,e23,5) e -µ 2 e 45 -1 e 45 +(e µe 25 -1)Φ(e14,5,e25)e -µ 2 e 23,5 (φ1-φ0)(e45,e23,5) +(e µe 25 -1)Φ(e14,5,e25) e -µ 2 e 23,5 -1 e 23,5

  f1) -(e µf 1 -1)φ0(e0+f∞,f1)-(e µf 1 -1)φ0(e0+f∞,f1)-(e µe 1 -1)Φ(e0,e1)e -µe 1 -1)Φ(e0,e1)e -µ 2 (-e 0 +f 0 ) • •(φ1-φ0)(e0+f∞,-e0+f0)+(e µe 1 -1)Φ(e0,e1) e -

  e 0 , e 1 ) -1

  e 1 )Γ Φ (f 1 ) , where the second equality follows from ϕ 1 (α, β) = 1 β ΓΦ(-α)ΓΦ(-β) ΓΦ(-α-β)-1 for α, β commutative formal variables (see (9.2.1)), the third equality follows from the functional equation (9.2.2) for Γ Φ . ThereforeP(µ,Φ) • col 1 • v (µ,Φ)On the other hand, κ (µ,Φ) d (µ,Φ) is a diagonal matrix of the form diag(e -(µ/2)f1 , e -(µ/2)e1-µf1 , * ),with * ∈ (V DR ) ⊗2∧ . Then κ (µ,Φ) P (µ,Φ) • col 1 • v (µ,Φ) = κ (µ,Φ) d (µ,Φ) • P(µ,Φ) • col 1 • v (µ,Φ) Relationship between row 1 , row 1 and P (µ,Φ) . Lemma 10.7. Let µ ∈ k × and Φ ∈ M µ (k). Φ) ) ⊗2 )(row 1 ) • κ (µ,Φ) • P (µ,Φ) = u (µ,Φ) • row 1 (equality in M 1×3 ((V DR ) ⊗2∧ )), where row 1 , row 1 are as in (5.2.6), (7.2.2), κ (µ,Φ) , P (µ,Φ) are as in (10.2.3), Definition 9.20, and where (10.6.2) u (µ,Φ) := µe -µf1 e µ(e1+f1) -1e 1 + f 1 Γ Φ (e 1 + f 1 ) Γ Φ (e 1 )Γ Φ (f 1 ) ∈ (V DR ) ⊗2∧ .Proof. One has M 1×3 ((compV,(1) (µ,Φ) ) ⊗2 )(row 1 ) = e µe1 -1 1 -e µf1 0 . With d (µ,Φ)as in the proof of Lemma 10.6, this impliesM 1×3 ((comp V,(1) (µ,Φ) ) ⊗2 )(row 1 )•κ (µ,Φ) d (µ,Φ) = e -(µ/2)f1 e µe1 -1 -e -(µ/2)(e1+f1) (e µf1 -1) 0 .Then with P(µ,Φ) as in the proof of Lemma 10.6,M 1×3 ((comp V,(1) (µ,Φ) ) ⊗2 )(row 1 ) • κ (µ,Φ) • P (µ,Φ) = M 1×3 ((comp V,(1) (µ,Φ) ) ⊗2 )(row 1 ) • κ (µ,Φ) d (µ,Φ) • P(µ,Φ)(10.6.3) = e -(µ/2)f1 e µe1 -1 -e -(µ/2)(e1+f1) (e µf1 -1) 0 • P(µ,Φ) .

  VB mor V B ,X 1 -1 / / ŴB + map i / / (W DR ) ⊗2∧ B -1 Φ •(-)•BΦ e 1 +f 1 e µ(e 1 +f 1 ) -1 / / (W DR ) ⊗2∧ → (V DR [ 1 e1 ] ≥0 ) ⊗2∧coincide (i = 1, 2). Since the map (W DR ) ⊗2∧

Definition 11. 4 .

 4 Let µ ∈ k × and Φ ∈ M µ (k). We set (11.2.1) R (µ,Φ) := ρ(Φ) -1 P -1(µ,Φ) κ -1 (µ,Φ) Φ(e 0 , e 1 )Φ(f 0 , f 1 ) ∈ GL 3 ((V DR ) ⊗2∧ ).Lemma 11.5.Let µ ∈ k × and Φ ∈ M µ (k). The diagram Φ) ) ⊗2 ) M 3 ((V DR ) ⊗2∧ ) VDR ρ / / M 3 ((V DR ) ⊗2∧ ) κ (µ,Φ) P (µ,Φ) •(-)•R (µ,Φ) Φ) ) ⊗2 )(ρ(v)) • Φ(e 0 , e 1 )Φ(f 0 , f 1 ) = Ad(κ (µ,Φ) P (µ,Φ) ) ρ comp V,(1) (µ,Φ) (v) • Φ(e 0 , e 1 )Φ(f 0 , f 1 ) = Ad(κ (µ,Φ) P (µ,Φ) ) ρ comp V,(10) (µ,Φ) (v) • Φ -1 • Φ(e 0 , e 1 )Φ(f 0 , f 1 ) = Ad(κ (µ,Φ) P (µ,Φ) ) ρ comp V,(10) (µ,Φ) (v) • ρ(Φ) -1 • Φ(e 0 , e 1 )Φ(f 0 , f 1 ) = κ (µ,Φ) P (µ,Φ) • ρ comp V,(10) (µ,Φ) (v) • ρ(Φ) -1 • (κ (µ,Φ) P (µ,Φ) ) -1 • Φ(e 0 , e 1 )Φ(f 0 , f 1 ) = κ (µ,Φ) P (µ,Φ) • ρ comp V,(10) (µ,Φ) (v) • R (µ,Φ) ,where the first and third equalities follow from (3.3.4), the second equality follows from Lemma 10.5, the fourth equality follows from the fact that ρ is an algebra morphism, and the last equality follows from (11.2.1). □ 11.3. Computation of R (µ,Φ) in terms of Q (µ,Φ) . Let us first relate the elements P (µ,Φ) and Q (µ,Φ) from Definition 9.17.Lemma 11.6. Let µ ∈ k × and Φ ∈ M µ (k). One has(11.3.1) Q (µ,Φ) = ˆ (Φ) -1 • P (µ,Φ) • ˆ ( ˆ (Φ))(equality in GL 3 ((U p 5 ) ⊗2∧ )).Proof. The following sequence of equalities holds in M 3×1 ((U p 5 ) ⊗2∧ ) first (resp. third) equality follows from the second (resp. first) part of (9.7.1); the second equality follows from (9.3.3) together with Φ(e 12 , e 23 ) = ˆ (Φ) -1 , which follows from the definition of ˆ (see §5.1.2) and (9.1.1); the last equality follows from (5.2.4).

  pr ∧ 12 (Q (µ,Φ) ) = pr ∧ 12 ( ˆ (Φ) -1 • P (µ,Φ) • ˆ ( ˆ (Φ))) = pr ∧ 12 ( ˆ (Φ)) -1 • pr ∧ 12 (P (µ,Φ) ) • pr ∧ 12 ( ˆ ( ˆ (Φ))) = 1 • P (µ,Φ) • ρ(Φ) = P (µ,Φ) ρ(Φ),

DR=

  -(e µ(e∞+f0) -1) ϕ 1 (e 0 -f 0 , e ∞ + f 0 )(e ∞ + f 0 ) + 1 1 ⊗2 DR = -(e µ(e∞+f0) -1) ϕ 0 (e 0 -f 0 , e ∞ + f 0 )(e 0 -f 0 ) + ϕ 1 (e 0 -f 0 , e ∞ + f 0 )(e ∞ + f 0 ) + 1 1 ⊗2 DR = -(e µ(e∞+f0) -1)Φ(e 0 -f 0 , e ∞ + f 0 )1 ⊗2 DR = (1 -e µ(e∞+f0) )Φ(e 0 , e ∞ )1 ⊗2 DR = (1 -e µe∞ )Φ(e 0 , e ∞ )1 ⊗2 DR

  Moreover, the morphism t n → p n+1 factorizes as t n ↠ t n /Z(t n ) p

	p n+1 ; ; ; ;
	t n+1

and an injective morphism t n → t n+1 given by

t ij → t ij for i = j ∈ [[1, n]]; they fit in a commutative diagram t n / / / / _ n+1 , where Z(t n ) is the 1-dimensional center of t n (it is concentrated in degree 1 and spanned by i<j∈[[1,n]] t ij ).

Remark 5.1. Let P n (resp. K n ) be the pure sphere (resp. Artin pure) braid group with n strands (see §7.1.1 and

[Bir]

). Its lower central series defines a descending group filtration. The associated graded Z-module is a Z-Lie algebra. Then gr(P n ) ⊗ k p n , and gr(K n ) ⊗ k t n . 5.1.2. The morphisms , pr i and pr 12 between infinitesimal braid Lie algebras. There is a graded Lie algebra isomorphism p 4 f 2

  so the above exact sequence implies P *

		n+1	K n /Z.
	Remark 7.2. The isomorphism P n	P * n × C 2 for n ≥ 2 implies, in the notation of Remark
	5.1, the isomorphism gr(P n ) gr(P * n ) × C 2 , therefore gr(P *
	A diagram of pure braid groups. The canonical projection C n+1 (C) → C n+1 (P 1 C )/PGL 2 (C)
	defines a morphism of topological spaces; this map takes U n+1 to B n+1 , therefore induces a
	group morphism K n+1 → P * n+1 .	
	Define a morphism C	

n ) ⊗ k gr(P n ) ⊗ k p n as Q ⊂ k. n (C) → C n+1 (P 1

  Φ(t 12 , t 23 + t 24 ) • Φ(t 13 + t 23 , t 34 ) = Φ(t 23 , t 34 ) • Φ(t 12 + t 13 , t 24 + t 34 ) • Φ(t 12 , t 23 )

  14,5 , e 35 )Φ(e 45 , e 23,5 )e -µ 2 e45 = (e µe35 -1)Φ(e 14,5 , e 35 )Φ(e 45 , e 23,5 )(e -µ 2 e45 -1) + (e µe35 -1)Φ(e 14,5 , e 35 )(ϕ 0 (e 45 , e 23,5 )e 45 + ϕ 1 (e 45 , e 23,5 )e 23,5 ) + (e µe35 -1)(ϕ 0 (e 14,5 , e 35 )e 14,5 + ϕ 1 (e 14,5 , e 35 )e 35 ) + (e µe35 -1) , e 35 )(ϕ 1 -ϕ 0 )(e 45 , e 23,5 ) -(e µe35 -1)ϕ 0 (e 14,5 , e 35 ) e 25 + -(e µe35 -1)Φ(e 14,5 , e 35 )Φ(e 45 , e 23,5 ) µe35 -1)Φ(e 14,5 , e 35 )(ϕ 1ϕ 0 )(e 45 , e 23,5 ) + (e µe35 -1)(ϕ 1 -ϕ 0 )(e 14,5 , e 35 ) +

	= -(e µe35 -1)Φ(e 14,5 , e 35 )Φ(e 45 , e 23,5 )	e -µ 2 e45 -1 e 45	-(e µe35 -1)Φ(e 14,5 , e 35 )ϕ 0 (e 45 , e 23,5 ) e 15
	+ -(e µe35 -1)Φ(e 14,5 , e 35 )Φ(e 45 , e 23,5 )	e -µ 2 e45 -1 e 45	+ (e µe35 -1)Φ(e 14,5 e -µ 2 e45 -1
			e 45
	+ (e e µe35 -1 e 35	e 35 .

□

Corollary 9.24. Let µ ∈ k × and Φ ∈ M µ (k). One has

Then

which proves the second statement. □ Remark 7.13. Identity (5.2.10) from Remark 5.8 implies another decomposition of T , namely

, which as in this remark allows for an alternative computation of T k .

Geometric interpretation of the Betti harmonic coproducts

The purpose of this section is to construct a commutative diagram relating the Betti algebra and module coproducts ∆ W,B and ∆ M,B with braid groups (diagrams (8.2.3) and (8.3.5)), analogously to the de Rham diagrams (6.2.3) and (6.3.5).

This construction involves a localization V B [ 1 X1-1 ] of the algebra V B , and a module M B [ 1 X1-1 ] over this algebra, which are introduced and studied in §8.1. We prove the commutativity of diagram (8.2.3) in §8.2 (Proposition 8.5); this diagram relates ∆ W,B with ρ and row 1 , col 1 , and is a Betti analogue of diagram (6.2.3). We prove the commutativity of the diagram (8.3.5) in §8.3 (Proposition 8.14); this statement is based on Proposition 8.5 and relates ∆ M,B with ρ, row 1 and the column vector col 0 (see Definition 8.9). We construct completions of the diagrams (8.2.3) and (8.3.5) in §8.4.

] to be the localization of V B with respect to X 1 -1, i.e. the k-algebra with generators X ±1 0 , X ±1 1 , (X 1 -1) -1 and relations expressing that u -1 is a left and right inverse of u for u ∈ {X 0 , X 1 , X 1 -1}. It is equipped with a collection of subspaces indexed by i ∈ Z, namely (8.1.1)

This collection is decreasing and compatible with the product, and therefore equips V B [ 1 X1-1 ] with the structure of an algebra in k-mod fil (see Definition 0.1).

Set also M

]. This collection is decreasing and compatible with the collection of subspaces of V B [ 1 X1-1 ] and the action of this algebra, therefore equips M B [ 1 X1-1 ] with the structure of a module over V B [ 1 X1-1 ] in k-mod fil . The natural maps V B → V B [ 1 X1-1 ] and M B → M B [ 1 X1-1 ] are compatible algebra and module morphisms in k-mod fil .

Proof. For s ≥ 0 and for (k 0 , . . . , k s ) ∈ Z s+1 , ( 1 , . . . , s ) ∈ {±1} s , set (8.2.1)

If s ≥ 0, let (F 2 ) s be the subset of F 2 of all the elements (8.2.1), where (k 0 , . . . , k s ) ∈ Z s+1 , ( 1 , . . . , s ) ∈ {±1} s ; so when s = 0, (F 2 ) 0 is the set of all X k 0 , k ∈ Z. One has for s ≥ 0, (k 0 , . . . , k s+1 ) ∈ Z s+1 , ( 2 , . . . , s+1 ) ∈ {±1} s , w(k 0 , . . . , k s+1 |1, 2 , . . . , s+1 ) = X k0 0 • X1-1 w(k 1 , . . . , k s+1 | 2 , . . . , s+1 ) +w(k 0 + k 1 , k 2 , . . . , k s+1 | 2 , . . . , s+1 ),

). These identities enable one to prove by induction on s ≥ 0 that (F 2 ) s is contained in the associative subalgebra of (V B , • X1-1 ) generated by k

The statement then follows from the fact that the union for s ≥ 0 of all (F 2 ) s is equal to

This is a (non-unital) subalgebra of W B . It is equipped with the filtration induced by W B .

Since the right multiplication by

) is an algebra isomorphism.

One checks that the automorphisms Ad(X 1 -1) -1 and Ad(1

Lemma 8.4. The following diagram is commutative

where the top horizontal map is the composition with ρ of tensor product of the maps

The filtration statement about mor V B ,X1-1 follows from:

is compatible with its algebra structure. The filtration statement about the map marked with follows from: same statement regarding V B [ 1 X1-1 ] ⊗2 , the components of the row (resp. column) element in this map belong to

The filtration statement about ∆ W,B is Proposition 2.15. The filtration statement on ρ will be proved in Lemma 8.8. Lemma 8.6. Recall that F 3 may be viewed as a normal subgroup of P * 5 (see Lemma 7.9). For any g ∈ P * 5 , for any i ∈ [[1, 3]], there exists an element w(g, i) ∈ F 3 , such that

Proof. As F 3 is normal in P * 5 , for any g ∈ P * 5 , the inner automorphism of P * 5 given by conjugation by g -1 restricts to an automorphism θ g of F 3 . Then g → θ g defines a group antihomomorphism θ : P * 5 → Aut(F 3 ). Let Aut * (F 3 ) be the subgroup of Aut(F 3 ), consisting of all the automorphisms taking each x i5 , i ∈ [[1, 3]], to a conjugate of this element. When g ∈ F 3 , θ g is an inner automorphism of F 3 , therefore belongs to Aut * (F 3 ). One computes

which implies that the images by θ of x -1 12 and x -1 23 , and therefore also of F 2 , lie in Aut * (F 3 ). Together with Lemma 7.9, this implies that the image of P * 5 is contained in Aut * (F 3 ), and therefore the announced statement. □ Lemma 8.7. Equip kP * 5 with the adic filtration of its augmentation ideal. The algebra morphism : kP * 5 → M 3 (kP * 5 ) is compatible with the filtrations on both sides.

Proof. Let J := (kP * 5 ) + . The announced statement means that for any n ≥ 0, (J n ) ⊂ M 3 (J n ). This is obvious for n = 0, let us prove it for n = 1.

As

is linear, and as J is spanned by the g -1, where g ∈ P * 5 , it suffices to show that (g) -id ∈ M 3 (J) for any g ∈ P * 5 , where id is the unit matrix in

where the first equality follows from (8.2.4).

Proof. This map is given by (m ij ) i,j∈ [[1,3]

), therefore their sum belongs to the announced space. □ Lemma 8.12. There is a unique map δ :

It is such that

The existence and uniqueness of δ follow. One then computes

□ Lemma 8.13. The map δ satisfies the identity

where the module structure in the left-hand side (resp. right-hand side) is that of

Proof. The identity is obvious if x = 1. Assume now that x = a(X 1 -1) with a ∈ V B and that

where row 1 is as in (7.2.2), the second equality follows from (8.3.2), the third equality follows from the fact that ρ is an algebra morphism, the fourth equality follows from (7.2.3), and the last equality follows from the combination of (8.3.2) and the equality

for a ∈ V B , which follows from (8.2.3). □ Proposition 8.14. The following diagram commutes

where the right vertical map is as in Proposition 8.11. All the maps in this diagram are compatible with the filtrations.

Proof. Combining (8.3.3),(8.3.4) and the fact that M B is a free W B -module of rank one with generator 1 B , one obtains δ = ∆ W,B , which we inject in (8.3.2) to get the result.

The filtration statement on ρ is Lemma 8.8. The filtration statement on ∆ M,B follows from Lemma 2.18. The filtration statement on the right vertical map follows from: the components of the row vector belong to

), the components of the column vector belong to

] is compatible with the filtrations. □ 8.4. Completions (commutativities of (A1) in (10.8.4) and (M1) in (11.6.1)). The following lemma will be used to prove the commutativities mentioned in the title of this subsection.

Lemma 8.15. The commutative diagram (8.2.3) (resp. (8.3.5)) gives rise to a commutative diagram between the completions of its constituents with respect to the filtrations, in which the completion of the map

egory k-mod fil,+ . By Proposition 8.14, (8.3.5) is similarly a diagram in the same category.

Applying the functor (-) ∧ (see §1), one obtains commutative diagrams in k-mod top . The injectivity of the completions of the said maps follows from Lemma 0.2, 2), together with the identification of the associated graded maps with the maps (W

)Φ(e 3,5 , e 4,5 ) (exp(µe 3,5 )), (9.5.5) comp (9.5.6) where the second equality follows from the first equality in (9.3.4) for (P, Q) = (•(••), •) and from the second equality in (9.3.4) for (P,

where the first equality follows from Lemma 9.11, 1), and the second equality follows from (9.3.5) for (P, Q, R) = (••, •, •) and (•, •, ••) and from (9.5.6). This proves (9.5.2).

One computes comp

where the first equality follows from Lemma 9.11, 2), and the second equality follows from the second equality in (9.3.4) for (P, Q) = (•, (••)•) and from the first equality in (9.3.4) for

. This proves (9.5.5).

Then

) where the first equality follows from Lemma 9.11, 3), the second equality follows from (9.3.5)

and from (9.5.5), the third equality follows from computation in (U p 5 ) ∧ S 4 , in particular the fact that e 3,4 commutes with e 34,5 , the fourth equality follows from the fact the e 3,4 commutes with e 2,5

and e 34,5 , and the last equality follows from the 2-cycle identity (9.1.1). This proves (9.5.3).

Finally

where the first equality follows from Lemma 9.11, 4), the second equality follows from (9.3.5) and the last equality follows from the duality relation (9.1.1). This proves (9.6.1).

Similarly, on an element of p 5 is this algebra, and the fourth equality also uses that kS 4 → U (p 5 ) ∧ S 4 is an algebra morphism, and the fact that e 34 commutes with both e 34,5 and e 15 . The sixth equality follows from e 1234,5 = 0 and from the duality identity (9.1.1). This proves (9.6.2).

One computes where the first equality follows from Lemma 9.14, 3), the third equality follows from (9.3.5) for

and the last equality is a computation in (U p 5 ) ∧ S 4 . This proves (9.6.3).

One computes

where the first equality follows from Lemma 9.14, 4), and the third equality follows from the second equality in (9.3.4) for (P, Q) = (•, •(••)) and from the first equality in (9.3.4) for

. This proves (9.6.4). □

Associators and harmonic algebra coproducts

The purpose of this section is the proof of the first main result of this paper, namely the compatibility of associators with harmonic algebra coproducts (Theorem 10.9). This proof relies on the commutativity of diagram (10.8.4), which is divided into subdiagrams (A1) to (A8). Among them, subdiagram (A1) (resp. (A7)) expresses the interpretation of the Betti (resp. de Rham) algebra coproduct and was proved in Lemma 8.15 (resp. Lemma 6.10). The main remaining diagrams are (A3) and (A4), both of which relate, by means of the matrix P (µ,Φ) from §9.7 and the algebra comparison isomorphisms, 'de Rham' and 'Betti' objects:

namely, the morphisms ρ and ρ in the case of (A3), and the morphisms row 1 • (-) • col 1 and row 1 •(-)•col 1 in the case of (A4). § §10.1 to 10.4 are devoted to the commutativity of (A3); more precisely, § §10.1 to 10.3 are devoted to the commutativity of diagrams relating constituents of ρ and ρ, and these results are gathered in §10.4 for proving the commutativity of (A3). § §10.5

to 10.7 are devoted to the commutativity of (A4); more precisely, §10.5 (resp. §10.6) is devoted to the proof of equalities relating P (µ,Φ) , col 1 and col 1 (resp. P (µ,Φ) , row 1 and row 1 ), based on the explicit computation of P (µ,Φ) in §9.8, and these results are combined in §10.7 for proving the commutativity of (A4). Theorem 10.9 is formulated and proved in §10.8. with the coproducts ∆ V,B and ∆ V,DR , and is given by (10.1.2) X 0 → Φ(e 0 , e 1 )e µe0 Φ(e 0 , e 1 ) -1 , X 1 → e µe1 .

Then:

The following diagram of topological Hopf algebras

is as in §9.3.3, and ˆ is the completed version of from §5.1.2. x 15 Ad(Φ(e ∞ , e 1 ) -1 e (µ/2)e1 )

Proof. The following equalities x

•comp

V,(1)

where = Φ(e ∞ , e 1 ) -1 e -(µ/2)e1 Φ(e 0 , e 1 )e -µe0 Φ(e 0 , e 1 ) -1 e -(µ/2)e1 Φ(e ∞ , e 1 ).

By the hexagon identity (9.1.2), one has e (µ/2)t23 Φ(t 12 , t 23 )e (µ/2)t12 = Φ(t 13 , t 23 )e (µ/2)(t12+t23) Φ(t 12 , t 13 )

and by the exchange of t 12 and t 23 , also e (µ/2)t12 Φ(t 23 , t 12 )e (µ/2)t23 = Φ(t 13 , t 12 )e (µ/2)(t12+t23) Φ(t 23 , t 13 ).

Taking the product of the last equality with the previous one and using the 2-cycle relation, we get e (µ/2)t12 Φ(t 23 , t 12 )e µt23 Φ(t 12 , t 23 )e (µ/2)t12 = Φ(t 13 , t 12 )e µ(t12+t23) Φ(t 12 , t 13 )

Inverting, using the 2-cycle identity and conjugating by Φ(t 13 , t 12 ) -1 e -(µ/2)t12 e (µ/2)t12 , we get (10.2.2) Φ(t 13 , t 12 ) -1 e -(µ/2)t12 Φ(t 12 , t 23 ) -1 e -µt23 Φ(t 23 , t 12 ) -1 e -µt12 (Φ(t 13 , t 12 ) -1 e -(µ/2)t12 ) -1 = e -µt2,13 .

Taking the image of the resulting identity by the morphism (U t 3 ) ∧ → VDR given by t 12 → e 1 , t 23 → e 0 , t 13 → e ∞ and using the 2-cycle identity, one obtains the equality = e µe∞ . It follows that the second diagram commutes.

where

and Ad(κ (µ,Φ) ) denotes the automorphism taking each entry of a matrix to its image by the automorphism Ad(κ (µ,Φ) ) of (V DR ) ⊗2∧ .

Proof. Combining the tensor product of the two diagrams from Lemma 10.2 with the diagram expressing the compatibility of comp

with the coproducts of its source and target, one obtains the following commutative diagram 

where ˆ , ˆ are the completions of , (see § §6.4, 8.4) and

is given by Definition 9.17.

Proof. This follows from Lemma 4.2, with R = (kP * 5 ) ∧ , J = J(pr 5 ) ∧ , (j a ) a∈ [[1,d] 

where ρ, ρ are as in § §6.4, 8.4.

Proof. One checks that the following diagram commutes

O O .

The result follows from the juxtaposition of this diagram and of the diagrams from Lemmas 

Proof. This follows from the juxtaposition of the obviously commutative diagram

with the following diagram

whose commutativity follows from (10.5.1) and (10.6.1). □ 10.8. Associators and harmonic algebra coproducts.

Theorem 10.9. Let µ ∈ k × and Φ ∈ M µ (k). Set (10.8.1)

The following diagram commutes

there is a unique extension of the algebra automorphism aut V,(1),DR (µ,g) of VDR (see §3.1) to an algebra automorphism aut

(see §6.1). The algebra isomorphism iso V : VB → VDR from §3.3 also extends uniquely to an algebra isomorphism iso

] . We denote by (10.8.3) comp

the algebra isomorphism given by the composition aut

• iso V loc . It is compatible with the filtrations on both sides, and in particular it induces an algebra isomorphism between

It is divided into subdiagrams (A1) to (A8). In this diagram:

• the commutativity of (A1) (resp. (A3), (A4), (A7)) follows from Lemma 8.15 (resp.

Lemma 10.5, Lemma 10.8, Lemma 6.10);

• the commutativity of (A2) follows from the definition of mor -,-, from the compatibilities of comp

(µ,Φ) , and from the fact that comp

• the commutativity of (A5) follows from the equalities (10.8.5)

, where the two first equalities follow from (9.2.2), and the last equality is immediate; be the k-module isomorphism given by (11.1.1)

is compatible with the filtrations on both sides. Moreover, the following diagram commutes

Proof. The first statement follows from the fact that comp

is compatible with filtrations. It follows from its definition (see (10.8.3)) that the algebra isomorphisms comp

V,(1) (µ,g) and comp with the module structures (see §3.3) extends to the localized situation as follows.

Lemma 11.3.

(in the sense of §0.3.1) with the k-algebra morphism comp

and with the module structure

Proof. It follows from (11.1.1) and from the algebra morphism property of comp

Applying to this identity the projection 

(e 0 +f∞ ) Φ(f0,f∞)Φ(e∞,e0) (e µ(e∞ +f 0 ) -1)φ1(e0-f0,e∞+f0)+ e µ(e∞ +f 0 ) -1 

Proof. This follows from (10.6.1), from the fact that (comp

⊗2 is an algebra automorphism, and from the equality (comp

Φ , which follows from (10.8.5) and (10.8.6). □ Lemma 11.12. Let µ ∈ k × and Φ ∈ M µ (k). The diagram (11.5.2)

((M4) in (11.6.1)) commutes, where B Φ is as in (10.8.1).

where the first identity follows from Lemma 11.3, the second identity follows from (3.3.4), and the last identity follows from (11.5.1) and ( 11 

commutes, where B Φ is given by (10.8.1).

Proof. Consider the following diagram. It is divided into the subdiagrams (M1), ..., (M5).

(11.6.1)

The commutativity of subdiagram (M1) (resp. (M2), (M3), (M4), (M5)) follows from Lemma 8.15 (resp. Lemma 3.2, Lemma 11.5, Lemma 11.12, Lemma 6.10).

Using the commutativities of these diagrams in the following order M1-M4-M3-M5-M2, we obtain that the composition of the external square with the morphism π B : VB → MB is commutative. Since this morphism is surjective, this implies that the external diagram commutes.

The commutativity of the announced diagram then follows from Lemma 11.2 and from the fact that the injection (M DR ) ⊗2∧ → (M