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A STABILIZER INTERPRETATION OF DOUBLE SHUFFLE LIE ALGEBRAS

According to Racinet's work, the scheme of double shuffle and regularization relations between cyclotomic analogues of multiple zeta values has the structure of a torsor over a pro-unipotent Q-algebraic group DMR0, which is an algebraic subgroup of a pro-unipotent Q-algebraic group of outer automorphisms of a free Lie algebra. We show that the harmonic (stuffle) coproduct of double shuffle theory may be viewed as an element of a module over the above group, and that DMR0 identifies with the stabilizer of this element. We identify the tangent space at origin of DMR0 with the stabilizer Lie algebra of the harmonic coproduct, thereby obtaining an alternative proof of Racinet's result stating that this space is a Lie algebra (the double shuffle Lie algebra).
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Introduction

Multiple L-values (MLV in short) L(k 1 , • • • , k m ; ζ 1 , • • • , ζ m ) are the complex numbers defined by the following series

L(k 1 , • • • , k m ; ζ 1 , • • • , ζ m ) := n 1 >•••>nm>0 ζ n 1 1 • • • ζ nm m n k 1 1 • • • n km m
for m, k 1 ,. . . , k m ∈ Z >0 and ζ 1 ,. . . ,ζ m in the group µ N of N -th roots of unity in C, where N is an integer ≥ 1. They converge if and only if (k 1 , ζ 1 ) = (1, 1). Multiple zeta values are regarded as a special case for N = 1. These values have recently garnered much interest due to their appearance in various fields of physics and mathematics ( [BK, Dr, LM]). In connection with motive theory ( [De, DeG]), linear and algebraic relations among MLV's are particularly important. The extended (regularized) double shuffle relations ( [IKZ, R]) might be one of the most fascinating ones. Racinet's formalism [R] is quite useful to state these relations. The basic ingredients of this formalism are: a noncommutative formal power series algebra C X over variables x 0 , x σ (σ ∈ µ N ), another noncommutative formal power series algebra C Y over another set of variables, a map C X × → C Y × denoted G → G ⋆ (see Def. 5.3), a coproduct map ∆ : C X → C X ⊗2 for which the elements of X are primitive and another coproduct map ∆ * : C Y → C Y ⊗2 (see §2.2). The central object of Racinet's approach is a certain invertible non-commutative formal power series I in C X × , constructed through iterated integrals and whose coefficients are expressed in terms of MLV's; in particular, the coefficient of

x k 1 -1 0 x ζ 1 x k 2 -1 0 x ζ 1 ζ 2 • • • x km-1 0 x ζ 1 •••ζm is L(k 1 , • • • , k m ; ζ 1 , . . . , ζ m
). The regularized double shuffle relations for MLV's can then be formulated as (equalities in C X ⊗2 , resp., C Y ⊗2 ). The series I has constant term equal to 1, coefficients of x 0 and x 1 equal to 0, and coefficient of x 0 x 1 equal to -(2π √ -1) 2 /24. For k a commutative Q-algebra and λ ∈ k, the set of series in k X satisfying (1.1) and the above coefficient conditions, with 2π √ -1 replaced by λ, is denoted by DMR λ (k). So I belongs to DMR 2π √ -1 (C). The structure of the regularized double shuffle relations is clarified by the following result:

Theorem 1.1. ( [R] Th. I, §3.2.3) The scheme k → DMR 0 (k) forms a pro-unipotent subgroup scheme of MT. For k a Q-commutative algebra and λ ∈ k, the set DMR λ (k) is a torsor (principal homogeneous space) over the group DMR 0 (k).

Here MT is 1 the pro-unipotent Q-algebraic group scheme k → MT(k) := ({series in k X with constant term equal to 1}, ⊛), 1 DMR and MT stand for the French "double mélange et régularisation" and "groupe de Magnus tordu".

where the group structure ⊛ is such that there is a group morphism from MT(k) to the group of automorphisms of the topological k-algebra k X taking x 0 to itself and each x σ , σ ∈ µ N , to a conjugate of itself, and which are invariant with respect to the natural action of µ N (see §4.1).

Thm. 1.1 shows that the scheme DMR 2π √ -1 (C), which corresponds to the double shuffle relations of MLVs, is isomorphic to the group DMR 0 (C). This group is prounipotent, and therefore isomorphic to its Lie algebra, which is the degree completion of a positively graded Lie algebra dmr 0 . It is therefore an important question, which is still open today, to determine the size of this Lie algebra (more precisely, its Poincaré polynomial, as dmr 0 is graded).

In order to better understand dmr 0 , it seems useful to improve our understanding of its Lie algebra structure. Here it seems helpful to recall the situation with the Grothendieck-Teichmüller Lie algebra grt 1 . This Lie algebra was introduced by Drinfeld ( [Dr]) and later shown to be contained, up to the automorphism (x 0 , x 1 ) → (x 0 , -x 1 ), in dmr 0 when N = 1 ( [F]). A transparent interpretation of its Lie algebra structure was given by Ihara ( [I]): grt 1 is isomorphic to any of the Lie algebras of symmetric special outer derivations of p n for n ≥ 5, where p n is the graded Lie algebra associated to the prounipotent completion of the pure sphere braid group with n strands.

It is also instructive to recall the situation with the Kashiwara-Vergne Lie algebra krv 2 arising in the work of Alekseev and Torossian ([AT]). The inclusion grt 1 ⊂ krv 2 was proved in [AT], while the inclusion dmr 0 ⊂ krv 2 was proved in [Sch]. In contrast to the previous situation, the Lie algebra status of krv 2 is rather transparent from its definition, as it is related to a Lie algebra cocycle.

Let us review the known proofs of the Lie algebra nature of dmr 0 . The space dmr 0 is introduced in [R] as the tangent space of DMR 0 , viewed as a subspace of MT, at the unit element. The proof of [R] that dmr 0 is a Lie algebra appeals to coderivations of the coalgebra (C Y , ∆ * ); in the case when N = 1, this proof was streamlined in the appendix of [F]. The statement that dmr 0 is a Lie algebra was also announced without proof in [E]; in the case when N = 1, it was later proved using the techniques of Ecalle's theory of moulds in [SaS].

In this paper, we introduce a graded Lie subalgebra (Lib(X), , ) of a graded Lie algebra mt, whose completion is the Lie algebra of MT, and show that dmr 0 coincides, up to addition of an abelian Lie algebra, with the stabilizer of an element in a (Lib(X), , )-module (see Thm. 3.10); this gives an alternative proof of the Lie algebra nature of dmr 0 . We then prove a group version of this result: for any commutative Q-algebra k, we construct a subgroup (exp( Lib k (X)), ⊛) of MT(k) and prove that DMR 0 (k) coincides (up to a central additive group) with the stabilizer of an element of an (exp( Lib k (X)), ⊛)-module. More precisely:

1) there is a group representation of MT(k) on the topological k-module k Y ; we denote by g → S Y g the corresponding group morphism

MT(k) → Aut cont k (k Y ) (see (5.16)); 2) there is a group morphism Θ k : (exp( Lib k (X)), ⊛) → MT(k) (see §4.3.
2); this morphism should be viewed as a correction of the canonical inclusion related with regularization;

3) the set DMR 0 (k

) := {e βx 1 • g • e αx 0 | α, β ∈ k, g ∈ DMR 0 (k)} (where • is the usual product in k X × ) is a subgroup of (exp( Lib k (X)), ⊛), isomorphic to DMR 0 (k) × k 2 (see §5.2);
we then prove (see §5.4):

Theorem 1.2. The subgroup DMR 0 (k) coincides with the stabilizer of the element

∆ * of the space Hom cont k (k Y , k Y ⊗2 ) of all continuous k-linear maps k Y → k Y ⊗2
, equipped with the action of (exp( Lib(X)), ⊛), pulled back by Θ k of the natural action of MT(k), namely

DMR 0 (k) = {g ∈ exp( Lib k (X)) | (S Y Θ k (g) ) ⊗2 • ∆ * = ∆ * • S Y Θ k (g) (in Hom cont k (k Y , k Y ⊗2 ))}.
Therefore DMR 0 (k) may be interpreted as the set of

g ∈ exp( Lib k (X)) such that the diagram k Y ∆ * / / S Y Θ k (g) k Y ⊗2 (S Y Θ k (g) ) ⊗2 k Y ∆ * / / k Y ⊗2 is commutative, i.e. such that S Y Θ k (g) is an automorphism of the topological coalgebra (k Y , ∆ * ).
The realization of this program is done in the following steps. §2 presents background material necessary for the proof of the Lie algebra version of Thm. 1.2, which is obtained in §3 (Thm. 3.10). In §4, we construct the group homomorphism Θ k , a necessary step for the proof of Thm. 1.2 in §5.

Lie algebras of derivations of free Lie algebras

In this section, we present the material needed for the comparison of dmr 0 and stab(∆ * ). In §2.1 and §2.2, we recall the formalism of double shuffle theory: the Ihara bracket on the augmentation ideal Q X 0 of the associative algebra Q X and on the free Lie algebra Lib(X), the maps π Y , corr : Q X → Q Y , the endomorphism q of Q Y , and the harmonic coproduct ∆ * of Q Y . In §2.3, we construct modules Q X , Q Y over the space Q X 0 , viewed as a Lie algebra via its Ihara bracket, and a morphism Q X q•π Y → Q Y between these modules. In §2.4 we construct a Lie algebra morphism θ : Lib(X) → Q X 0 , where both sides are equipped with the Lie algebra structures arising from the Ihara bracket (Prop. 2.5). One then pulls back the module Q Y over Q X 0 to get a module over Lib(X), and constructs from there a new module Hom Q (Q Y , Q Y ⊗2 ) over this Lie algebra containing a particular element ∆ * . In §2.5, we construct the stabilizer subalgebra stab(∆ * ) ⊂ Lib(X) of this element. Finally, in §2.6, we show a relation between θ, a morphism sec : Q Y → Q X and an endomorphism p of Q X .

2.1. Ihara brackets and outer derivation Lie algebras.

2.1.1. Ihara brackets. Let Γ be a finite commutative group, whose product will be denoted multiplicatively. Let X be the alphabet {x 0 } ⊔ {x γ |γ ∈ Γ}, indexed by {0} ⊔ Γ. Let Q X be the free noncommutative associative algebra with unit over the alphabet X and Lib(X) be the Lie subalgebra of Q X generated by X (see [R], §2.2.3).

The group Γ acts on X by σ • x 0 = x 0 , σ • x γ = x σγ for γ ∈ Γ. This action extends to an action on Q X and Lib(X), which will be denoted σ → t σ (see [R], §3.1.1).

For ψ ∈ Q X , let d ψ be the derivation of Q X given by

∀σ ∈ Γ, d ψ (x 0 ) = 0, d ψ (x σ ) = [x σ , t σ (ψ)]
(see [R], §3.1.12.2) and let s ψ be the linear endomorphism of Q X defined by

s ψ (v) := ψv + d ψ (v)
for v ∈ Q X (see [R], §3.1.12.1).

Let Q X 0 be the subspace of Q X of all series with zero constant term (this is denoted mt(k) in [R], §3.1.8). On Q X 0 , one defines the (Ihara) bracket

(2.1) ψ 1 , ψ 2 := s ψ 1 (ψ 2 ) -s ψ 2 (ψ 1 )
(see [R], (3.1.10.2)). This restricts to a bracket on the subspace Lib(X) of Q X 0 . We have therefore a Lie algebra inclusion

(2.2) (Lib(X), , ) ⊂ (Q X 0 , , ) =: mt.
2.1.2. Outer derivation Lie algebras. Call an associative (resp., Lie) algebra derivation of Q X (resp., Lib(X)) tangential if it takes any of the generators

x γ , γ ∈ Γ ∪ {0} to an element of [x γ , Q X ] (resp., [x γ , Lib(X)]
). The tangential derivations of either kind form a Lie algebra, of which the subspace of inner derivations is an ideal. In each case, the quotient algebra has a natural action of Γ. The subalgebra of invariants of this action is denoted outder * (Q X ) Γ (resp., outder * (Lib(X)) Γ ). As Q X is the universal enveloping algebra of Lib(X), any derivation of the latter algebra extends uniquely to a derivation of the former algebra, which induces an injective Lie algebra morphism outder * (Lib(X)) Γ ֒→ outder * (Q X ) Γ . Introduce a Z 2 -grading in the algebras Lib(X) and Q X by deg(x 0 ) := (1, 0), deg(x γ ) := (0, 1) for γ ∈ Γ. This grading is compatible with the Lie bracket , in both cases. Moreover, it induces a Z 2 -grading on outder * (Lib(X)) Γ and outder * (Q X ) Γ . Lemma 2.1. There are isomorphisms of Z 2 -graded Lie algebras

(2.3) (Lib(X), , ) ≃ outder * (Lib(X)) Γ ⊕ (Qx 0 ⊕ Qx 1 ), and 
(2.4) mt ≃ outder * (Q X ) Γ ⊕ (Q[x 0 ] 0 ⊕ Q[x 1 ] 0 ), in which Q[x 0 ] 0 , Q[x 1
] 0 are the spaces of polynomials in x 0 , x 1 with no constant terms, and where the spaces Qx 0 ⊕Qx 1 and Q[x 0 ] 0 ⊕Q[x 1 ] 0 are equipped with abelian Lie algebra structures. The Lie algebra inclusion (2.2) is compatible with the isomorphisms (2.3) and (2.4) and with the natural inclusions of the respective summands of the right-hand side of (2.3) in the summands of the right-hand side of (2.4).

Proof. The map ψ → (class of d ψ ) induces a surjective Lie algebra morphism (Q X 0 , ,

) → outder * (Q X ) Γ . Its kernel is Q[x 0 ] 0 ⊕ Q[x 1 ] 0 , which is contained in the center of (Q X 0 , , ).
For n ≥ 0, the components of Q[x 0 ] 0 and of Q X 0 of bidegree (n, 0) are the same, so outder * (Q X ) Γ [n, 0] = 0 for n ≥ 0 (where X [n, m] is the subspace of a bigraded space X with bidegree (n, m)).

The direct sum of homogenous components of Q X of bidegrees (0, n), n ≥ 0 identifies with the free associative algebra Q x γ , γ ∈ Γ . Let I be the two-sided ideal of this algebra generated by the family

{x γ | γ ∈ Γ \ {1}}. This is a Q-linear subspace of Q X , complementary to Q[x 1 ], so I ⊕ Q[x 1 ] 0 = ⊕ n≥0 Q X 0 [0, n]. It follows that g := I ⊕ (⊕ n,m>0 Q X 0 [n, m]) is such that g ⊕ (Q[x 0 ] 0 ⊕ Q[x 1 ] 0 ) = Q X 0 .
One also has I, I ⊂ I, so that g is a Lie subalgebra of Q X 0 . This proves both that the latter equality is a direct sum decomposition of the Lie algebra (Q X 0 , , ), and that the natural projection g → outder * (Q X ) Γ is an isomorphism, which proves (2.4).

The proof of (2.3) is similar, the inclusion I ⊂ Q X 0 being replaced by the inclusion in the Lie algebra Lib(x γ , γ ∈ Γ) of its ideal generated by {x γ | γ ∈ Γ \ {1}}.

2.2. Harmonic coproduct, correction and projection operators. Let Y be the alphabet {y n,σ | (n, σ) ∈ N >0 × Γ}, indexed by N >0 × Γ. We define Q Y to be the free algebra over this alphabet. We now construct linear maps fitting in the following diagram:

Q X π Y / / corr / / (-) * C C Q Y q ∆ * / / Q Y ⊗2
• the algebra Q Y is viewed as a subalgebra of Q X by the assignment y n,σ →

x n-1 [R], § §2.2.5 and 4.2.1);

0 x σ for n ≥ 0, σ ∈ Γ. The map π Y is then determined by the conditions π Y (Q X x 0 ) = 0 and that Q Y ֒→ Q X π Y → Q Y is the identity (see
• the map corr : Q X → Q Y is defined to be the linear map taking the word

x n-1 0

x 1 to (-1) n-1 n (y 1,1 ) n if n ≥ 1, and any other word to 0; in particular, it takes 1 to 0 (see [R], §3.1.1); • the map q : Q Y → Q Y is defined to be the linear map taking 1 to 1 and by

q(y s 1 ,σ 1 • • • y sr,σr ) = y s 1 ,σ 1 y s 2 ,σ 2 σ -1 1 • • • y sr,σrσ -1 r-1
for any r ≥ 1, s 1 , . . . , s r in N >0 , and σ 1 , . . . , σ r in Γ (see [R], §2.2.7).

• the map (-

) * : Q X → Q Y is given by ψ → ψ * , where (2.5) ψ * := q(π Y (ψ)) + corr(ψ); one has therefore (-) * = q • π Y + corr (see [R], (3.3.1.2)); • the map ∆ * : Q Y → Q Y ⊗2 is the unique algebra morphism such that for any n ≥ 1 and σ ∈ Γ ∆ * (y n,σ ) = y n,σ ⊗ 1 + 1 ⊗ y n,σ + n ′ +n ′′ =n|n ′ ,n ′′ >0, σ ′ ,σ ′′ ∈Γ|σ ′ σ ′′ =σ y n ′ ,σ ′ ⊗ y n ′′ ,σ ′′ .
The map ∆ * is called the harmonic coproduct (see [R], §2.3.1).

2.3.

Modules over the Lie algebra (Q X 0 , , ). The space Q X is a left module over the Lie algebra (Q X 0 , , ) for the action

Q X 0 → End(Q X ), ψ → s ψ
(see [R], (3.1.9.2)).

For ϕ ∈ Q X 0 , there exists a unique linear endomorphism s Y ϕ of Q Y such that the following diagram commutes

(2.6) Q X sϕ / / q•π Y Q X q•π Y Q Y s Y ϕ / / Q Y (see [R], §4.1.1). One shows: Lemma 2.2. The map Q X 0 → End(Q Y ), ψ → s Y ψ defines a module structure on Q Y over the Lie algebra (Q X 0 , , ). The map Q X q•π Y → Q Y is
then a module morphism over this Lie algebra.

2.4.

A Lie algebra homomorphism θ : (Lib(X), , ) → (Q X 0 , , ). The following statement is a consequence of the fact that the elements x n 0 , x n 1 are central in (Q X 0 , , ):

Lemma 2.3. Let (f n ) n>0 and (g n ) n>0 be two collections of characters f n , g n : (Lib(X), , ) → Q. The map θ (fn)n,(gn)n : (Lib(X), , ) → (Q X 0 , , ), ψ → ψ + n>0 f n (ψ)x n 1 + n>0 g n (ψ)x n 0 is a Lie algebra homomorphism. Lemma 2.4. Let n ≥ 1. Define 2 maps f 0 n , g 0 n : Lib(X) → Q by f 0 n : ψ → (ψ|x n-1 0 x 1 ) for n > 0, g 0 1 : ψ → (ψ|x 0 ), and g 0 n : ψ → 0 if n > 1. These maps are Lie algebra characters f 0 n , g 0 n : (Lib(X), , ) → Q. Proof. According to Lemma 2.1, there is a decomposition (Lib(X), , ) ≃ outder * (Lib(X)) Γ ⊕ (Qx 0 ⊕ Qx 1 ),
where the first summand is supported in bidegrees (n, m) with n, m > 0, and the second summand is supported in bidegrees (1, 0) and (0, 1). We will denote by Supp(X) the bidegree support of a bigraded vector space X.

Let n > 1. As f 0 n is supported in bidegrees (n -1, 1) with n -1 > 0, this linear form factors through the summand outder * (Lib(X)) Γ , and since Supp(outder

* (Lib(X)) Γ ) ⊂ Z 2 >0 , one has (n -1, 1) / ∈ Supp(outder * (Lib(X)) Γ ) + Supp(outder * (Lib(X)) Γ ), therefore f 0
n is a character of the Lie algebra outder * (Lib(X)) Γ , and therefore is a character of (Lib(X), , ). By bidegree reasons, the linear forms f 0 1 and g 0 1 factor through the abelian Lie algebra Qx 0 ⊕ Qx 1 , on which they are characters. These linear forms are therefore also characters of (Lib(X), , ).

Combining Lemma 2.3 and Lemma 2.4, and putting

θ := θ (f 0 n )n,(g 0 n )n , we get: Proposition 2.5. The map θ : (Lib(X), , ) → (Q X 0 , , ) given by θ(ψ) := ψ + n≥1 (-1) n-1 n (ψ|x n-1 0 x 1 )x n 1 -(ψ|x 0 )x 0
is a Lie algebra homomorphism.

2.5. The stabilizer Lie algebra of ∆ * . Via pull-back through the morphism θ, the morphism 2.6. Relation between p, sec and θ. Let ∂ 0 be the derivation of Q X defined by ∂ 0 (x 0 ) = 1, ∂ 0 (x σ ) = 0 for σ ∈ Γ (see [R], §4.2.1). Let sec be the linear endomorphism of Q X given by sec

q • π Y : Q X → Q Y of modules over (Q X 0 , , ) may be viewed as a morphism of modules over (Lib(X), , ) (see Lemma 2.2). The action of Lib(X) on Q X is given by ψ → s θ(ψ) , while its action on Q Y is given by ψ → s Y θ(ψ) . The space Hom Q (Q Y , Q Y ⊗2 ) of linear maps Q Y → Q Y ⊗2 is then equipped with a module structure over (Lib(X), , ). Namely, the action of ψ ∈ Lib(X) on f ∈ Hom Q (Q Y , Q Y ⊗2 ) is given by ψ • f := (s Y θ(ψ) ⊗ id + id ⊗ s Y θ(ψ) ) • f -f • s Y θ(ψ) . The stabilizer Lie algebra stab(∆ * ) of ∆ * ∈ Hom Q (Q Y , Q Y ⊗2 ) is then a Lie subal- gebra of (Lib(X), , ), given by stab(∆ * ) = {ψ ∈ Lib(X) | (s Y θ(ψ) ⊗ id + id ⊗ s Y θ(ψ) ) • ∆ * = ∆ * • s Y θ(ψ) }.
(f ) := i≥0 (-1) i i! ∂ i 0 (f )x i 0 for f ∈ Q X . Recall that Q X contains subspaces Q Y and Ker(∂ 0 ). It is proved in [R], §4.2.1, that sec(Q Y ) ⊂ Ker(∂ 0 ). We denote by sec : Q Y → Ker(∂ 0 )
the resulting linear map. The following statement was proved in [R], Prop. 4.2.2:

Lemma 2.6. The map sec and the restriction

(π Y ) |Ker(∂ 0 ) : Ker(∂ 0 ) → Q Y are inverse linear isomorphisms.
Let p be the linear endomorphism of Q Y given by (2.7)

p(y n 1 ,σ 1 • • • y nr,σr ) = y n 1 ,σ 1 y n 2 ,σ 1 σ 2 • • • y nr,σ 1 •••σr ,
for any n i in N >0 and σ i in Γ. Then p and q are linear automorphisms of Q Y , which are inverse to each other (see [R], §2.2.7) .

For

ψ ∈ Ker(∂ 0 ), one has sec • p(ψ * ) = sec • p(q • π Y (ψ) + corr(ψ)) (identity in Ker(∂ 0 )). Since p • q = id Q Y and by Lemma 2.6, one has sec • p(q • π Y (ψ)) = ψ. The restriction of p and of sec to Q[y 1,1 ] is the identity. As corr(ψ) belongs to Q[y 1,1 ], it follows that sec • p(corr(ψ)) = corr(ψ). All this implies that (2.8) ∀ψ ∈ Ker(∂ 0 ), sec • p(ψ * ) = ψ + corr(ψ)
(identity in Ker(∂ 0 )). Define Lib(X) ⊖ Qx 0 as the sum of all the homogeneous components of Lib(X) for the degree in N {0}∪Γ , of degree = ǫ 0 . Then Lib(X)⊖Qx 0 ⊂ Ker(∂ 0 ). One then has

∀ψ ∈ Lib(X) ⊖ Qx 0 , sec • p(ψ * ) = ψ + corr(ψ) (identity in Ker(∂ 0 )). For any ψ ∈ Lib(X) ⊖ QX 0 , one has ψ + corr(ψ) = θ(ψ) (identity in Q X ), therefore ∀ψ ∈ Lib(X) ⊖ QX 0 , sec • p(ψ * ) = θ(ψ) (identity in Q X ). For ψ = x 0 , one has sec • p(ψ * ) = sec(0) = 0 = θ(ψ). It follows: (2.9) ∀ψ ∈ Lib(X), sec • p(ψ * ) = θ(ψ) (identity in Q X ). Define p to be the endomorphism of Q X given by p(x n 1 0 x σ 1 x n 2 0 • • • x nr 0 x σr x n r+1 0 ) = x n 1 0 x σ 1 x n 2 0 • • • x nr 0 x σ 1 •••σr x n r+1 0
, for any n i in N and σ i in Γ. This endomorphism of Q X commutes both with ∂ 0 and with the endomorphism of Q X given by right multiplication by x 0 . It follows that p commutes with the endomorphism sec of Q X . As the restriction of p to Q Y ⊂ Q X is p, it follows that sec • p = p • sec. Combining this with (2.9), one obtains:

Lemma 2.7. For any ψ ∈ Lib(X), one has p • sec(ψ * ) = θ(ψ) (identity in Q X ).

Comparison of Lie algebras

This section is devoted to the comparison of the Lie algebras dmr 0 and stab(∆ * ). In §3.1, we recall the definition of Racinet's spaces dmr 0 and dmr; we then compare the Lie algebra stab(∆ * ) introduced in §2.5 with these spaces. In §3.2, we use the fact that dmr 0 and dmr coincide in certain degrees to compute stab(∆ * ) in these degrees. In § §3.3 and 3.4, we compute stab(∆ * ) in the remaining degrees. This leads us in §3.5 to Thm. 3.10 computing stab(∆ * ) in terms of dmr 0 . We then derive Cor. 3.11 stating that dmr 0 is a Lie subalgebra of (Lib(X), , ), thus recovering Racinet's result (Prop. 4.1 i) in [R]). [R], §3.3.8) One defines dmr 0 to be the subspace of dmr of all elements ψ satisfying the relation

The double inclusion dmr

0 ⊂ stab(∆ * ) ⊂ dmr ⊕ Qx 0 ⊕ Qx 1 . Definition 3.1. (see [R], §3.3.1) dmr := {ψ ∈ Lib(X) | (ψ|x 0 ) = (ψ|x 1 ) = 0, ∆ * (ψ * ) = ψ * ⊗ 1 + 1 ⊗ ψ * } Definition 3.2. (see
(ψ * |y n,σ ) + (-1) n (ψ * |y n,σ -1 ) = 0 for n = 1 and any σ ∈ Γ if |Γ| ≥ 3, and for (n, σ) = (2, 1) if |Γ| ≤ 2.
In [R], Prop. 4.3.1 (see also [F], Prop. A.5 when Γ = 1), it is proved:

Proposition 3.3. If ψ ∈ dmr 0 , then (3.1) (s Y p•sec(ψ * ) ⊗ id + id ⊗ s Y p•sec(ψ * ) ) • ∆ * = ∆ * • s Y p•sec(ψ * ) (equality of maps Q Y → Q Y ⊗2 ).
By Lemma 2.7, condition (3.1) is equivalent to condition

(s Y θ(ψ) ⊗ id + id ⊗ s Y θ(ψ) ) • ∆ * = ∆ * • s Y θ(ψ)
defining stab(∆ * ). Combining this with Prop. 3.3, we get the inclusion

(3.2) dmr 0 ⊂ stab(∆ * ).
Assume now that ψ belongs to stab(∆ * ). It satisfies the identity

(s Y θ(ψ) ⊗ id + id ⊗ s Y θ(ψ) ) • ∆ * = ∆ * • s Y θ(ψ) .
Applying this identity to 1 ∈ Q Y , one obtains

(3.3) s Y θ(ψ) (1) ⊗ 1 + 1 ⊗ s Y θ(ψ) (1) = ∆ * (s Y θ(ψ) (1)) (identity in Q Y ⊗2 ). Let ϕ be an element of Q X . Applying diagram (2.6) to 1 ∈ Q X , one obtains s Y ϕ (q(π Y (1))) = q • π Y (s ϕ (1)), which using π Y (1) = q(1) = 1 and s ϕ (1) = ϕ, implies: ∀ϕ ∈ Q X , s Y ϕ (1) = q • π Y (ϕ).
Applying this identity to ϕ

:= θ(ψ), one obtains s Y θ(ψ) (1) = q • π Y (θ(ψ)). By Lemma 2.7, this is equal to q•π Y (p•sec(ψ * )). We have π Y • p = p•π Y ; moreover q•p = id Q Y , and Lemma 2.6 implies that π Y • sec = id Q Y , so that s Y θ(ψ) (1) = ψ * . Identity (3.3) then implies that ψ * ⊗ 1 + 1 ⊗ ψ * = ∆ * (ψ * ) (identity in Q Y ⊗2 ). Therefore: (3.4) stab(∆ * ) ⊂ {ψ ∈ Lib(X) | ∆ * (ψ * ) = ψ * ⊗ 1 + 1 ⊗ ψ * }.
(3.2) and (3.4) then imply

(3.5) dmr 0 ⊂ stab(∆ * ) ⊂ dmr ⊕ Qx 0 ⊕ Qx 1 .
3.2. Computation of stab(∆ * ) for large degrees. The double inclusion (3.5) deals with vector subspaces of the space Lib(X). This space is equipped with a grading for which the generators x 0 and x σ for σ ∈ Γ have degree 1; this is the total degree of the bidegree from §2.1.2. The spaces from (3.5) are then graded subspaces of Lib(X).

The space Lib(X) is the direct sum of its components of degrees ≥ 1 and the extremal spaces dmr 0 and dmr ⊕ Qx 0 ⊕ Qx 1 of the double inclusion (3.5) coincide in each degree ≥ 2 if |Γ| ≥ 3, and in each degree ≥ 3 if |Γ| = 1, 2 (here |Γ| is the cardinality of Γ). It follows:

Lemma 3.4. • If |Γ| ≥ 3, then stab(∆ * )[n] = dmr 0 [n] any n ≥ 2. • If |Γ| = 1, 2, then stab(∆ * )[n] = dmr 0 [n] any n ≥ 3.
Here the notation [n] means the component of degree n.

3.3.

Computation of stab(∆ * ) in degree 1. The degree 1 component of dmr⊕Qx 0 ⊕ Qx 1 coincides with that of Lib(X), which is

⊕ g∈Γ∪{0} Qx g .
On the other hand, according to §3.1, the degree 1 component of dmr 0 is

Span{x g + x g -1 | g ∈ Γ \ {1}}. Recall that Q Y may be viewed as the subspace Q ⊕ ⊕ α∈Γ Q X x α of Q X (see §2.2). If now ψ belongs to Q Y and α belongs to Γ, the element d ψ (x α ) = [x α , t α (ψ)] also belongs to Q Y . As d ψ is a derivation, it follows that d ψ preserves Q Y . We denote by dψ : Q Y → Q Y
the resulting linear map. On the other hand, the endomorphism of Q X given by v → ψv also preserves the subspace Q Y . As the endomorphism s ψ of Q X is the sum of d ψ and of (v → ψv), it follows that s ψ preserves Q Y . We denote by sψ :

Q Y → Q Y
the resulting linear map. The purpose of this section is to compute the degree 1 component of the space stab(∆ * ), which lies between the extremal spaces of (3.5). 

Q Y / / sψ Q X s ψ q•π Y / / Q Y s Y ψ Q Y / / Q Y q•π Y / / Q Y Since the composed map Q Y ֒→ Q X π Y → Q Y is the identity of Q Y ,
the composition of the horizontal maps of this diagram equals q, so that

(3.6) ∀ψ ∈ Q Y , s Y ψ = q • sψ • q -1 . 3.3.2. Condition for s Y ψ to ba a coderivation. For g ∈ Γ, one has s xg (1) = x g and ∀α ∈ Γ, s xg (x α ) = x g x α + [x α , x αg ].
As x g lies in Q Y (it identifies with the element y 1,g ), the endomorphism s xg of Q X restricts to an endomorphism sxg of Q Y , which satisfies sxg (1) = y 1,g and ∀α ∈ Γ, sxg (y 1,α ) = y 1,g y 1,α + [y 1,α , y 1,αg ]. Equation (3.6) then implies:

s Y xg (1) = y 1,g and ∀α ∈ Γ, s Y xg (y 1,α ) = y 1,g y 1,αg -1 + y 1,α y 1,g -y 1,αg y 1,g -1 . Let α ∈ Γ. As y 1,α is primitive for ∆ * , one has (s Y xg ⊗ id + id ⊗ s Y xg ) • ∆ * (y 1,α ) = s Y xg (y 1,α ) ⊗ 1 + 1 ⊗ s Y xg (y 1,α ) + sym(y 1,α ⊗ y 1,g ), where sym(a ⊗ b) := a ⊗ b + b ⊗ a. On the other hand, ∆ * (s Y xg (y 1,α )) =s Y xg (y 1,α ) ⊗ 1 + 1 ⊗ s Y xg (y 1,α ) + sym(y 1,α ⊗ y 1,g ) + sym(y 1,g ⊗ y 1,αg -1 ) -sym(y 1,g -1 ⊗ y 1,αg ). It follows that (3.7) ∆ * •s Y xg -(s Y xg ⊗id+id⊗s Y xg )•∆ * (y 1,α ) = sym(y 1,g ⊗y 1,αg -1 )-sym(y 1,g -1 ⊗y 1,αg ).
Let now ψ be an element of Span{x g |g ∈ Γ} and assume that

s Y ψ is a coderivation for ∆ * , namely that ∆ * • s Y ψ = (s Y ψ ⊗ id + id ⊗ s Y ψ ) • ∆ * . Set ψ = g∈Γ c g x g . Using (3.7), the equation ∆ * • s Y ψ -(s Y ψ ⊗ id + id ⊗ s Y ψ ) • ∆ * (y 1,α ) = 0 expresses as follows ∀α ∈ Γ, g∈Γ c g (x g ⊗ αx g -1 -x g -1 ⊗ x αg + x αg -1 ⊗ x g -x αg ⊗ x g -1 ) = 0 (equality in QΓ ⊗2 ). Set A := g∈Γ c g (x g ⊗ x g -1 -x g -1 ⊗ x g ).
Multiplying the above identity by 1 ⊗ x α -1 , it reexpresses as

(3.8) ∀α ∈ Γ, A = (x α ⊗ x α -1 )A.
For any g ∈ Γ, set a g := c g -c g -1 . Then A = g∈Γ a g (x g ⊗ x g -1 ). As Γ is abelian, (3.8) translates into the condition a g = a α -1 g for any (g, α) ∈ Γ 2 . This means that the map g → a g is constant. On the other hand, a 1 = 0, therefore a g = 0 for any g ∈ Γ.

This implies that c g = c g -1 for any g ∈ Γ. We have proved:

Lemma 3.5. If ψ is an element of Span{x g |g ∈ Γ} such that s Y ψ is a coderivation for ∆ * , then it belongs to Span{x g + x g -1 |g ∈ Γ}.

The restriction to X of the map θ : Lib(X) → Q X 0 is given by (3.9)

x 0 → 0, x 1 → 2x 1 , x g → x g for g ∈ Γ \ {1}.
The degree 1 part of stab(∆ * ) is the set of all ψ ∈ Span{x g |g ∈ Γ}, such that s Y θ(ψ) is a coderivation. Combining Lemma 3.5 with (3.9), we obtain:

Lemma 3.6. The degree 1 part of stab(∆ * ) is contained in Qx 0 ⊕Span{x g +x g -1 |g ∈ Γ}.
On the other hand, it follows from the definition of dmr 0 that its degree 1 part is equal to

Span{x g + x g -1 |g ∈ Γ \ {1}}
(see §3.1). Combining this equality, the first inclusion of (3.5) and Lemma 3.6, we obtain: Lemma 3.7. Let Γ be arbitrary. The components of degree 1 of stab(∆ * ) and dmr 0 are related by

stab(∆ * )[1] = dmr 0 [1] ⊕ Qx 0 ⊕ Qx 1 . 3.4. Computation of stab(∆ * ) in degree 2. 3.4.1. The case |Γ| = 1. Specializing the inclusion stab(∆ * ) ⊂ dmr ⊕ Qx 0 ⊕ Qx 1 ⊂ Lib(X) in degree 2, we obtain the inclusion stab(∆ * )[2] ⊂ dmr[2] ⊂ Lib(X)[2] as x 0 , x 1 are of degree 1. One has Lib(X)[2] = Q • [x 0 , x 1 ]. If ψ := [x 0 , x 1 ], then ψ * = y 2 -1 2 y 2 1 (we drop the elements of Γ from the notation of generators of Q Y as Γ = 1), which is ∆ * -primitive. Therefore dmr[2] = Q • [x 0 , x 1 ]. One computes σ([x 0 , x 1 ]) = [x 0 , x 1 ] -1 2 x 2 1 . The image of x 1 by s σ([x 0 ,x 1 ]) is s σ([x 0 ,x 1 ]) (x 1 ) = σ([x 0 , x 1 ])x 1 + [x 1 , σ([x 0 , x 1 ])] = x 1 σ([x 0 , x 1 ]) = x 1 [x 0 , x 1 ] - 1 2 x 3 1 .
The image of this element under q

• π Y is y 1 y 2 -1 2 y 3 1 . So q • π Y • s σ([x 0 ,x 1 ]) (x 1 ) = y 1 y 2 - 1 2 y 3 1 .
On the other hand, the image of

x 1 by q • π Y is y 1 . It then follows from diagram (2.6) that s Y σ([x 0 ,x 1 ]) (y 1 ) = y 1 y 2 - 1 2 y 3 1 .
Whereas y 1 is primitive for ∆ * , the element y 1 y 2 -1 2 y 3 1 is not, as its image by ∆ * contains for example the term

y 1 ⊗ y 2 . It follows that s Y σ([x 0 ,x 1 ]) is not a coderivation for ∆ * , so that [x 0 , x 1 ] / ∈ stab(∆ * )[2]. Therefore Lemma 3.8. When |Γ| = 1, one has stab(∆ * )[2] = 0 = dmr 0 [2].
3.4.2. The case |Γ| = 2. Specializing the inclusion stab(∆ * ) ⊂ dmr ⊕ Qx 0 ⊕ Qx 1 ⊂ Lib(X) in degree 2, we again obtain the inclusion

stab(∆ * )[2] ⊂ dmr[2] ⊂ Lib(X)[2].
We set Γ = {+, -} so that x 1 can be denoted x + . One has

Lib(X)[2] = Q[x 0 , x + ] ⊕ Q[x 0 , x -] ⊕ Q[x + , x -].
Set

ψ 1 := [x 0 , x + ], ψ 2 := [x 0 , x -], ψ 3 := [x + , x -]. Then (ψ 1 ) * = y 2,+ -1 2 (y 1,+ ) 2 , (ψ 2 ) * = y 2,-, (ψ 3 ) * = y 1,+ y 1,--(y 1,-) 2 . Then ∆ * ((ψ 1 ) * ) = (ψ 1 ) * ⊗ 1 + 1 ⊗ (ψ 1 ) * + y 1,-⊗ y 1,-, ∆ * ((ψ 2 ) * ) = (ψ 2 ) * ⊗ 1 + 1 ⊗ (ψ 2 ) * + y 1,+ ⊗ y 1,-+ y 1,-⊗ y 1,+ , ∆ * ((ψ 3 ) * ) = (ψ 3 ) * ⊗ 1 + 1 ⊗ (ψ 3 ) * + y 1,+ ⊗ y 1,-+ y 1,-⊗ y 1,+ -2y 1,-⊗ y 1,-.
A linear combination of (ψ 1 ) * , (ψ 2 ) * , (ψ 3 ) * is therefore primitive for ∆ * iff it is a linear combination of 2(ψ 1 ) * -(ψ 2 ) * + (ψ 3 ) * . It follows that

dmr[2] = Q • ψ, where ψ := 2ψ 1 -ψ 2 + ψ 3 . One computes σ(ψ) = ψ + (-1) 1 2 (ψ|x 0 x + )x 2 + , therefore σ(ψ) = ψ -x 2 + . The image of x + by s σ(ψ) is σ(ψ)x + + d σ(ψ) (x + ) = x + σ(ψ) so s σ(ψ) (x + ) = 2(x + x 0 x + -x + x + x 0 ) -(x + x 0 x --x + x -x 0 ) + (x + x + x --x + x -x + ).
The image of this element by π Y is 2y 1,+ y 2,+ -y 1,+ y 2,-+ (y 1,+ ) 2 y 1,--y 1,+ y 1,-y 1,+ .

The image of this element by q is

2y 1,+ y 2,+ -y 1,+ y 2,-+ (y 1,+ ) 2 y 1,--y 1,+ (y 1,-) 2 .
Since the image of Note that Qx 0 ⊕ Qx 1 is contained in the center of (Lib(X), , ). The subspace stab(∆ * ) of (Lib(X), , ) is obviously a Lie subalgebra. It is graded and lives in degrees ≥ 1. Therefore projection to any quotient of its degree 1 component is a Lie algebra morphism to an abelian Lie algebra, and the kernel of such a projection is an ideal in stab(∆ * ), and therefore a Lie subalgebra of (Lib(X), , ). Applying this to the quotient of stab(∆ * )[1] by its subspace Qx 0 ⊕ Qx 1 , we obtain: Corollary 3.11. dmr 0 is a Lie subalgebra of (Lib(X), , ).

x + by q • π Y is y 1,+ , (2.6) implies s Y σ(ψ) (y 1,+ ) = 2y 1,+ y 2,+ -y 1,+ y 2,-+ (y 1,+ ) 2 y 1,--y 1,+ (y 1,-) 2 . Whereas y 1,+ is primitive for ∆ * ,
As mentioned in the introduction, this result was first proved in [R].

Remark 3.12. Let Γ, Γ ′ be finite commutative groups. Let us specify the dependence of X on the group Γ by denoting it X Γ . To a group morphism ϕ : Γ → Γ ′ , one associates the algebra morphisms

ϕ * : Q X Γ → Q X Γ ′ and ϕ * : Q X Γ ′ → Q X Γ , defined by ϕ * : x 0 → d • x 0 , x γ → x ϕ(γ)
for γ ∈ Γ, where d := |Kerϕ|, and

ϕ * : x 0 → x 0 , x γ ′ → γ∈ϕ -1 (γ ′ ) x γ for γ ′ ∈ Γ ′ . The maps ϕ * : Q X Γ → Q X Γ ′ and ϕ * : Q X Γ ′ → Q X Γ
are Lie algebra morphisms, the spaces Q X Γ and Q X Γ ′ being equipped with the Ihara brackets. As the maps ϕ * and ϕ * restrict to linear maps Lib(X Γ ) ⇄ Lib(X Γ ′ ), the maps ϕ * and ϕ * define Lie algebra morphisms between the Ihara Lie algebras (Lib(X Γ ), , ) and (Lib(X Γ ′ ), , ).

If Γ is a finite commutative group, then for any integer d ≥ 1, the group Γ d is defined as the image of the endomorphism of Γ given by multiplication by d. There is an injective morphism i d : Γ d → Γ given by inclusion, and a surjective morphism p d : Γ → Γ d given by corestriction of the multiplication by d. To them are associated morphisms i * d , p d * : Lib(X Γ ) → Lib(X Γ d ) of Lie algebras, both sides being equipped with the Ihara bracket. Any linear form ℓ d : QX Γ → Q extends to a linear form ld : Lib(X Γ ) → Q by the condition that ld vanishes on the components of degree > 1.

As the image of the Ihara Lie bracket is concentrated in degrees > 1, the form ld is a character of the Ihara bracket on Lib(X Γ ). Since on the other hand x 0 ∈ Lib(X Γ ) is a central element, the space

Lib(X Γ ) d := {x ∈ Lib(X Γ ) | p d * (x) = i * d (x) + ld (x)x 0 } is a Lie subalgebra of (Lib(X Γ ), , ). Set ℓ d (x) := σ∈Γ|σ n/d =1 (x|x σ ), and 
Lib(X Γ ) dist := d||Γ| Lib(X Γ ) d .
Then Lib(X Γ ) dist is a Lie subalgebra of Lib(X Γ ). The Lie algebra dmrd from [R], §3.3.1, is the intersection Lib(X Γ ) dist ∩ dmr 0 .

Exponentiation of the Lie algebra homomorphism θ

Thm. 3.10 says that dmr 0 identifies with the stabilizer of an element in a module over (Lib(X), , ), obtained from a mt-module by the pull-back under θ : (Lib(X), , ) → mt. In order to prove the group version of this result, we construct in this section the group analogue of θ. In §4.1, we recall useful notions from the theory of Q-group schemes. In §4.2, we show how a collection of characters of the group scheme (k → (exp( Lib k (X)), ⊛)) gives rise to a morphism of this group scheme to MT. In §4.3, we construct an explicit collection of such characters, giving rise to a morphism Θ to MT, whose associated Lie algebra morphism is θ (Prop. 4.13).

4.1. Q-group schemes and their Lie algebras.

4.1.

1. An affine Q-group scheme is a functor {commutative Q-algebras} → {groups} which is representable by a commutative Hopf algebra. Such a functor G : {commutative Q-algebras} → {groups} being fixed, the kernel Ker(G(Q[ǫ]/(ǫ 2 )) → G(Q)) is naturally equipped with a Q-Lie algebra structure; this is the Lie algebra (Lie(G), [, ]) of G. If G, H are two Q-group schemes, then a morphism G → H is a morphism from the Hopf algebra of H to that of G. It gives rise to a natural transformation between the functors {commutative Q-algebras} → {groups} attached to G, H. 4.1.2. Recall that a Q-Lie algebra is called nilpotent if its lower central series stabilizes to 0. A Q-Lie algebra is called pronilpotent if it is complete and separated for the topology defined by the members of the lower central series. Such a Lie algebra is then a projective limit of nilpotent Lie algebras, which are its quotients by the members of the lower central series.

If g is a pronilpotent Q-Lie algebra and k is a commutative Q-algebra, define g ⊗k to be the inverse limit lim ← (g/g (n) ) ⊗ k, where g (n) := [g, [g, . . . , g]] (n arguments). This is a complete separated topological Lie algebra over k.

For x, y ∈ g ⊗k, the Campbell-Baker-Hausdorff (CBH) series cbh(x, y) = log(e x e y ) is a well-defined element of g ⊗k. When equipped with the product map cbh : (g ⊗k) 2 → g ⊗k, (x, y) → cbh(x, y), the set g ⊗k is a group. The assignment {commutative Q-algebras} → {groups}, k → (g ⊗k, cbh) =: G n (k) is a Q-group scheme, denoted G n and represented by the Hopf algebra given by the direct limit lim → U (g/g (n) ) • , where U is the universal enveloping algebra functor and • denotes the restricted dual (so for a a finite dimensional Lie algebra, U (a) • is the set of linear maps U (a) → Q which vanish on a finite codimensional ideal). The assignment n → G n is a functor {pronilpotent Q-Lie algebras} → {affine Q-group schemes}. The Lie algebra of G n is then n. A Q-group scheme in the image of n → G n will be called prounipotent (unipotent if g is nilpotent).

A projective limit of unipotent Q-group schemes is prounipotent, and any Q-group subscheme of a prounipotent Q-group scheme is prounipotent. 4.1.3. Let k be a commutative Q-algebra. One defines k X to be the tensor product algebra k ⊗ Q X and k X to be the degree completion of k X , where x 0 , x σ , σ ∈ Γ are all of degree 1. The free algebra structure on k X induces on k X the structure of a complete topological algebra. The product in this algebra is denoted by •. The group (k X × , •) of invertible elements of k X is its subset of series whose constant term belongs to the group k × of invertible elements of k.

For G in k X × , define aut G to be the automorphism of the topological algebra k X given by

x 0 → x 0 , x σ → t σ (G) -1 x σ t σ (G). Define a map (4.1) k X × × k X → k X , (G, H) → G ⊛ H := G • aut G (H).
Then one checks that for any G, H in k X × and K in k X , one has

(4.2) (G ⊛ H) ⊛ K = G ⊛ (H ⊛ K)
and that (4.1) restricts and corestricts to a map (k X × ) 2 → k X × . This implies:

Lemma 4.1. (see [R], §3.1.2) (k X × , ⊛) is a group. Remark 4.2. One checks the identity aut G⊛H = aut G • aut H for any G, H in k X × . It follows that the map G → aut G defines a morphism (k X × , ⊛) → Aut(k X ) Γ ,
where the target is the group of automorphisms of k X commuting with the action of Γ by σ → t σ (see §2.1).

One checks that the functor {commutative Q-algebras} → {groups}, k → (k X × , ⊛) is representable by a Hopf algebra, therefore:

Lemma 4.3. The functor {commutative Q-algebras} → {groups}, k → (k X × , ⊛) is a Q-group scheme.
For k a commutative Q-algebra, let k X × 1 be the subset of k X × of all series with constant term equal to 1. Then k X × 1 is a subgroup of (k X × , •). One checks that k X × 1 is a subgroup of (k X × , ⊛). Moreover, the functor k → k X × 1 is also represented by a Hopf algebra, therefore

Lemma 4.4. The functor k → (k X × 1 , ⊛) is a Q-group subscheme of the group scheme k → (k X × , ⊛). This group scheme is denoted MT in [R], so MT(k) = (k X × 1 , ⊛). For n ≥ 1, let k X × 1,≥n be the subset of k X × 1 consisting of all the series which are ≡ 1 modulo degree ≥ n. Then k X × 1,≥n is a normal subgroup of (k X × 1 , ⊛), and the functor k → (k X × 1 /k X × 1,≥n , ⊛) is a unipotent Q-group scheme. It follows: Lemma 4.5. The group Q-scheme MT := (k → (k X × 1 , ⊛)) is prounipotent.
Recall that k X is equipped with a Hopf algebra structure, with product • and coproduct ∆ such that the elements x 0 , x σ , σ ∈ Γ, are primitive. Then (k X × 1 , •) contains as a subgroup the set of group-like elements for this coproduct, namely

G(k X , ∆) = {G ∈ k X × |∆(G) = G ⊗ G}.
The exponential map relative to • sets up a bijection

(exp) k : k X 0 ∼ → k X × 1
, where the index 0 means formal series with vanishing constant term; this bijection restricts to a bijection

(exp) k : Lib k (X) ∼ → G(k X , ∆), where Lib k (X) ⊂ k X 0 is the degree completion of Lib k (X) := Lib(X) ⊗ k. One checks that G(k X , ∆) = exp( Lib k (X)) is a subgroup of (k X × 1 , ⊛). Therefore: Lemma 4.6. The functor k → (exp( Lib k (X)), ⊛) is a Q-group subscheme of MT = (k → (k X × 1 , ⊛)). As the Q-group scheme MT is prounipotent, we get: Lemma 4.7. The Q-group scheme k → (exp( Lib k (X)), ⊛) is prounipotent. 4.1.4. The Lie algebras of the Q-group schemes MT = (k → (k X × 1 , ⊛)
) and k → (exp( Lib k (X)), ⊛) may be computed using the ring of dual numbers. One gets

(4.3) Lie(MT) = (Q X 0 , , ) = mt and Lie(k → (exp( Lib k (X)), ⊛)) = ( Lib(X), , ).
These are the degree completions of the Lie algebras from (2.2).

Since the Q-group schemes MT = (k → (k X × 1 , ⊛)) and k → (exp( Lib k (X)), ⊛) are both prounipotent, they are isomorphic to the Q-group schemes G mt = (k → (k X 0 , cbh ⊛ )) and G ( Lib(X), , ) = (k → ( Lib k (X), cbh ⊛ )) respectively, where in both cases, cbh ⊛ denotes the CBH series relative to the bracket , . 4.1.5. The Q-group scheme isomorphism between G mt and MT is an assignment k → (exp ⊛ ) k , where (exp

⊛ ) k is a bijection k X 0 → k X ×
1 , which intertwines cbh ⊛ and ⊛. One checks that the permutation (exp x), where e n (x) is a homogeneous polynomial self-map of k X 0 of degree n with rational coefficients.

) -1 k • (exp ⊛ ) k of k X 0 is given by x → x + n≥2 e n (
In particular, the differentials at 0 of the two maps exp k ,

(exp ⊛ ) k : k X 0 → k X × 1 coincide. 4.2. A Q-group scheme morphism to MT. 4.2.1. From characters (exp( Lib k (X)), ⊛) → (k, +) to group homomorphisms (exp( Lib k (X)), ⊛) → (k X × 1 , ⊛). Let G, H ∈ k X × and f G , f H ∈ k[[x 1 ]] × , g G , g H ∈ k[[x 0 ]] × . One has (f G • G • g G ) ⊛ (f H • H • g H ) = f G • G • g G • aut f G •G•g G (f H • H • g H ) = f G • G • g G • aut f G •G•g G (f H )aut f G •G•g G (H)aut f G •G•g G (g H ). (4.4) Since aut f G •G•g G (f H ) = (f G • G • g G ) -1 • f H • f G • G • g G , aut f G •G•g G (H) = aut G•g G (H) = (g G ) -1 • aut G (H) • g G , aut f G •G•g G (g H ) = g H , the right hand side of (4.4) is equal to f H • f G • G • aut G (H) • g G • g H . Therefore: Lemma 4.8. Let G, H ∈ k X × and f G , f H ∈ k[[x 1 ]] × , g G , g H ∈ k[[x 0 ]] × . Then: (f G • G • g G ) ⊛ (f H • H • g H ) = f H • f G • (G ⊛ H) • g G • g H .
Let f n , g n : (exp( Lib k (X)), ⊛) → (k, +) (n ≥ 1) be two collections of group homomorphisms. We construct from them group homomorphisms f , g

: (exp( Lib k (X)), ⊛) → k[[t]] × , via (4.5) f (G) := exp( n≥1 f n (G)t n ), g(G) := exp( n≥1 g n (G)t n ).
Lemma 4.8 implies:

Lemma 4.9. If f n , g n : (exp( Lib k (X)), ⊛) → (k, +) (n ≥ 1) are two collections of group homomorphisms and the maps f , g are defined by (4.5), then the map

(4.6) G → f (G) |t→x 1 • G • g(G) |t→x 0 defines a group homomorphism Θ (f n)n,(gn)n : (exp( Lib k (X)), ⊛) → (k X × 1 , ⊛).
Here the indices |t → x i , i = 0, 1 stand for the homomorphisms k

[[t]] → k X , t → x i (i = 0, 1). 4.2.2. Construction of a Q-group scheme morphism (k → (exp( Lib k (X)), ⊛)) → (k → (k X × 1 , ⊛)).
Recall that the additive group is the Q-group scheme given by k → (k, +). Assume that

f n , g n : (k → (exp( Lib k (X)), ⊛)) → G a
are Q-group scheme morphisms; they give rise to compatible families of group homomorphisms f n (k), g n (k) : (exp( Lib k (X)), ⊛) → (k, +) and therefore to a group homomorphism

Θ (fn(k))n,(gn(k))n : (exp( Lib k (X)), ⊛) → (k X × 1 , ⊛). For g ∈ exp( Lib k (X)
), one checks that Θ (fn(k))n,(gn(k))n (g) can be expressed algebraically in terms of the coefficients of g. It follows:

Lemma 4.10. Let f n , g n : (k → (exp( Lib k (X)), ⊛)) → G a be Q-group scheme morphisms. There exists a Q-group scheme morphism

Θ (fn)n,(gn)n : (k → (exp( Lib k (X)), ⊛)) → (k → (k X × 1 , ⊛)), such that for any commutative Q-algebra k, the specialization to k of Θ (fn)n,(gn)n coin- cides with Θ (fn(k))n,(gn(k))n . Remark 4.11. When the f n , g n are trivial, then Θ (fn(k))n,(gn(k))n is nothing but the inclusion (exp( Lib k (X)), ⊛) ⊂ (k X × 1 , ⊛).
The Lie algebra homomorphisms associated with f n , g n are characters

Lie(f n ), Lie(g n ) : ( Lib(X), , ) → Q.

Then (4.6) implies that the Lie algebra homomorphism associated to Θ (fn)n,(gn)n is

Lie(Θ (fn)n,(gn)n ) : ( Lib(X), , ) → (Q X 0 , , ), (4.7) ψ → ψ + n≥1 Lie(f n )(ψ)x n 1 + n≥1 Lie(g n )(ψ)x n 0 . 4.3. Construction of a Q-group scheme morphism Θ exponentiating θ. 4.3.1. Exponentiation of some characters ( Lib(X), , ) → Q.
Lemma 4.12. Let n ≥ 1. There are Q-group scheme morphisms

f 0 n , g 0 n : (k → (exp( Lib k (X)), ⊛)) → G a , such that for any k, the group homomorphisms f 0 n (k), g 0 n (k) : (exp( Lib k (X)), ⊛) → (k, +) are given by f 0 n (k) : G → (G|x n-1 0 x 1 ), g 0 1 (k) : G → (G|x 0 ), g 0 n (k) : G → 0 for n ≥ 2.
The associated Lie algebra homomorphisms coincide with the characters

f 0 n , g 0 n : ( Lib(X), , ) → Q defined in Lemma 2.4. Proof. If G is a pronilpotent Q-Lie algebra, and if G → Q is a Lie algebra ho- momorphism (character), then there is a unique morphism of Q-group schemes (k → (G ⊗k, cbh)) → G a with differential the initial map G → Q. The homomorphisms f 0 n , g 0 n from Lemma 2.4 therefore give rise to Q-group scheme morphisms f 0 n , g 0 n : (k → (exp( Lib k (X)), ⊛)) → G a . Let n ≥ 1 and for k a commutative Q-algebra, let (ϕ n ) k : (exp( Lib k (X)), ⊛) → k be given by (ϕ n ) k (G) := (G|x n-1 0 x 1 ) for G ∈ exp( Lib k (X)). Let G 0 , H ∈ exp( Lib k (X)), where (log(G 0 )|x 0 ) = 0. Then (G 0 ⊛ H|x n-1 0 x 1 ) = (G 0 |x n-1 0 x 1 ) + n-1 k=0 (G 0 |x k 0 )(aut G 0 (H)|x n-1-k 0 x 1 ). All the (G 0 |x k 0 ) are zero for k > 0, so (G 0 ⊛ H|x n-1 0 x 1 ) = (G 0 |x n-1 0 x 1 ) + (aut G 0 (H)|x n-1 0 x 1 ).
One also computes (aut

G 0 (H)|x n-1 0 x 1 ) = (H|x n-1 0 x 1 ), so (4.8) (G 0 ⊛ H|x n-1 0 x 1 ) = (G 0 |x n-1 0 x 1 ) + (H|x n-1 0 x 1 ). Let now G ∈ exp( Lib k (X)) be arbitrary. Let α := (log(G 0 )|x 0 ). Set G 0 := G • exp(-αx 0 ). We have G = G 0 • exp(αx 0 ) = G 0 ⊛ exp(αx 0 ). Then (G⊛H|x n-1 0 x 1 ) = (G 0 ⊛exp(αx 0 )⊛H|x n-1 0 x 1 ) = (G 0 |x n-1 0 x 1 )+(exp(αx 0 )⊛H|x n-1 0 x 1 )
after (4.8). One has exp(αx 0 ) ⊛ H = H • exp(αx 0 ) (recall that x 0 is central), so this is

(G 0 |x n-1 0 x 1 ) + (H • exp(αx 0 )|x n-1 0 x 1 ).
The last term is obviously equal to (H|x n-1 0

x 1 ), so

(G ⊛ H|x n-1 0 x 1 ) = (G 0 |x n-1 0 x 1 ) + (H|x n-1 0 x 1 ). Also, (G 0 |x n-1 0 x 1 ) = (G 0 • exp(αx 0 )|x n-1 0 x 1 ) = (G|x n-1 0 x 1 ). So finally (ϕ n ) k (G ⊛ H) = (G ⊛ H|x n-1 0 x 1 ) = (G|x n-1 0 x 1 ) + (H|x n-1 0 x 1 ) = (ϕ n ) k (G) + (ϕ n ) k (H) so that (ϕ n ) k is a character. Let also (γ n ) k : (exp( Lib k (X)), ⊛) → k be given by (γ 1 ) k (G) := (G|x 0 ) for G ∈ exp( Lib k (X)), and by (γ n ) k (G) := 0 for n > 1 and G ∈ exp( Lib k (X)). Let G, H ∈ exp( Lib k (X)). One has G ⊛ H = G • aut G (H), and the series G, aut G (H) have constant term 1, so (G ⊛ H|x 0 ) = (G|x 0 ) + (aut G (H)|x 0 ). One checks that (aut G (H)|x 0 ) = (H|x 0 ), so (G ⊛ H|x 0 ) = (G|x 0 ) + (H|x 0 ). This implies that (γ 1 ) k is a character. It is also clear that the maps (γ n ) k are characters for n > 1. The assignments k → (ϕ n ) k , k → (γ n ) k are functorial.
The Lie algebra of the assignment k → (exp( Lib k (X)), ⊛) coincides with ( Lib(X), , ).

According to §4.1.5, the maps (exp) k and (exp ⊛ ) k have the same differential at origin. This enables one to compute the Lie algebra homomorphisms induced by k → (ϕ n ) k , (γ n ) k , which are found to be equal to f 0 n , g 0 n . Since the assignments k → ϕ n (k) and k → f 0 n (k) on the one hand, k → γ n (k) and k → g 0 n (k) on the other hand, are both functorial and induce the same Lie algebra homomorphisms, they coincide. 4.3.2. Construction of Θ. In Lemma 4.12, Q-group scheme morphisms f 0 n , g 0 n are constructed. Plugging them in the construction of Lemma 4.10, one obtains a Q-group

scheme morphism Θ (f 0 n )n,(g 0 n )n : (k → (exp( Lib k (X)), ⊛)) → (k → (k X × 1 , ⊛)
), which will be denoted Θ. According to §4.2.2, the infinitesimal of Θ is the Lie algebra homomorphism θ from Prop. 2.5. Summarizing: Proposition 4.13. There exists a Q-group scheme morphism

Θ : (k → (exp( Lib k (X)), ⊛)) → (k → (k X × 1 , ⊛))
, such that for any commutative Q-algebra k, the group homomorphism

Θ k : (exp( Lib k (X)), ⊛) → (k X × 1 , ⊛) is given by (4.9) G → exp n≥1 (-1) n-1 n (G|x n-1 0 x 1 )x n 1 • G • exp -(G|x 0 )x 0 .
The differential of Θ coincides with the Lie algebra homomorphism θ in Prop. 2.5.

Comparison of Q-group schemes

The group analogue of Thm. 3.10 is Thm. 1.2, which states that for k any commutative Q-algebra, the subgroup DMR 0 (k) of (exp( Lib k (X)), ⊛) coincides with the stabilizer of ∆ * , viewed as an element of the pull-back under Θ k of the MT(k)-module

Hom cont k (k Y , k Y ⊗2
). This result is proved in several steps. In §5.1, we show that in the context of certain modules over a pronilpotent Lie algebra, stabilizer group functors coincide with the group functors arising from stabilizer Lie algebras. In §5.2, we introduce the modification DMR 0 of DMR 0 corresponding to the product of the Lie algebra dmr 0 with the abelian Lie algebra Qx 0 ⊕ Qx 1 . In §5.3, we construct a module over (exp( Lib k (X)), ⊛), together with a submodule, to which the results of §5.1 can be applied. In §5.4, we put together the various constructions to prove Thm. 1.2. 5.1. Stabilizer group functors and schemes.

5.1.1. Module functors associated to a module over a pronilpotent Q-Lie algebra. Let n be a pronilpotent Q-Lie algebra. Let C n be the the category of topological n-modules M , which are complete and separated, such that the sequence of subspaces (n k • M ) k≥0 is a neighborhood of origin, and such that for each k ≥ 0, the quotient n k • M/n k+1 • M is finite dimensional. The category C n is symmetric and monoidal.

For k a commutative Q-algebra, we define a k-module M ⊗k := lim ← (M/n k • M ) ⊗ k. The k-module M ⊗k is then a module over the group G n (k) = (n ⊗k, cbh), the action of x ∈ n ⊗k on M ⊗k being given by the element n≥0 ρ k (x) n /n! ∈ Aut k (M ⊗k), where ρ k : n ⊗k → End k (M ⊗k) is the action map derived from the action map ρ : n → End Q (M ) by extension of scalars. The assignment k → M ⊗k is a module functor over the group functor k → G n (k). 

Stab(v)(k) = G stab(v) (k) (equality of subgroups of G n (k)). Proof. For k ≥ 0, set M (k) := M/n k • M and let v (k) be the image of v ∈ M . Then M (k) ∈ Ob(C n ).
One associates with the pair (M (k) , v (k) ) the following data:

• the Lie subalgebra stab(v) ⊂ n, and therefore the Q-group scheme inclusion

G stab(v) ⊂ G n ; • the subgroup functor k → Stab(v (k) )(k) of the group functor k → G n (k).
One has k≥0 stab(v (k) ) = stab(v), which implies that for any commutative Q-algebra k, one has

(5.2) k≥0 G stab(v (k) ) (k) = G stab(v) (k)
(equality of subsets of G n (k)).

On the other hand, for any commutative Q-algebra k, one has

(5.3) k≥0 Stab(v (k) )(k) = Stab(v)(k)
(equality of subsets of G n (k)). Recall that G n (k) = (n ⊗k, cbh). Let x ∈ n ⊗k. Then:

• Assume that x ∈ G stab(v (k) ) (k). This means that x ∈ stab(v (k) ) ⊗k. Then x • v (k) = n≥0 (1/n!)ρ (k) k (x) n • v (k) (equality in M (k) ⊗k), where ρ (k) k : n ⊗k → End k (M (k) ⊗k) is the action map of n ⊗k on M (k) ⊗k. Since ρ (k) k (v) = 0, one has x • v (k) = v (k) , so x ∈ Stab(v (k) )(k). This shows G stab(v (k) ) (k) ⊂ Stab(v (k) )(k). • Assume now that x ∈ Stab(v (k) )(k). Then x • v (k) = v (k) ; moreover, for any ℓ ≥ 1, x • • • x • v (k) = v (k) (l factors x). The ℓ-th power of x in G n (k) corresponds to ℓ•x ∈ n ⊗k. So (ℓ•x)•v (k) = v (k) , therefore n≥0 ℓ n (ρ (k) k (x) n /n!)(v (k) ) = v (k) . One has ρ (k) k (x) n (v (k) ) = 0 for n ≥ k, therefore ∀ℓ ≥ 1, k-1 n=1 ℓ n (ρ (k) k (x) n /n!)(v (k) ) = 0.
As the matrix with elements (ℓ

n ) ℓ∈[1,k-1],n∈[1,k-1] is invertible, one gets ρ (k) k (x)(v (k) ) = 0, therefore x ∈ stab(v (k) ) ⊗k ≃ G stab(v (k) ) (k). This shows Stab(v (k) )(k) ⊂ G stab(v (k) ) (k).
All this implies the equality G stab(v (k) ) (k) = Stab(v (k) )(k), which combined with (5.2) and (5.3), yields the conclusion. 5.2. The group scheme DMR 0 and its modification DMR 0 . The Lie algebra of the affine Q-group scheme MT is (Q X 0 , , ), which is pronilpotent. By (4.3), we have then

G (Q X 0 , , ) ≃ MT = (k → (k X × 1 , ⊛)).
Let G be a closed Lie subalgebra of (Q X 0 , , ), let G G be the corresponding Q-group subscheme of G (Q X 0 , , ) and let G be the group subscheme of MT, image of G G under the isomorphism G (Q X 0 , , ) ≃ MT, so that the diagram

G (Q X 0 , , ) ∼ / / MT G G ? O ∼ / / G ? O commutes.
Then for any commutative Q-algebra k, we have a group inclusion

(G(k), ⊛) ⊂ (MT(k), ⊛) = (k X × 1 , ⊛).
Let now G := G + (Qx 0 ⊕ Qx 1 ). As x 0 and x 1 are central in (Q X 0 , , ), G is a closed Lie subalgebra of (Q X 0 , , ). Let G be the corresponding group subscheme of MT.

Lemma 5.2. For any commutative Q-algebra k, we have

(5.4) G(k) = {e βx 1 • g • e αx 0 |α, β ∈ k, g ∈ G(k)}
(equality of subsets of MT(k)). In the right-hand side of (5.4), the product • is that of k X × (see §4.1.3).

Proof. The algebraic group scheme MT is pro-unipotent, therefore if k is any commutative Q-algebra, the exponential map exp ⊛ sets up a bijection exp ⊛ : mt(k) ∼ → MT(k) between the group of k-points of this group scheme and the Lie algebra mt(k) of k-points of its Lie algebra, which is equal to k X 0 . One has for any α, β ∈ k, (5.5) exp ⊛ (αx 0 ) = exp(αx 0 ), exp ⊛ (βx 1 ) = exp(βx 1 ) and for any g ∈ MT(k),

exp ⊛ (αx 0 ) ⊛ g = g • exp(αx 0 ), g ⊛ exp ⊛ (βx 1 ) = exp(βx 1 ) • g (identities in MT(k) = 1 + k X 0 ); in the right-hand sides, the products are that of k X . If now α, β, α ′ , β ′ ∈ k and g, g ′ ∈ MT(k), (e βx 1 • g • e αx 0 ) ⊛ (e β ′ x 1 • g ′ • e α ′ x 0 ) = exp ⊛ (βx 1 ) ⊛ g ⊛ exp ⊛ (αx 0 ) ⊛ exp ⊛ (β ′ x 1 ) ⊛ g ′ ⊛ exp ⊛ (α ′ x 0 ) = exp ⊛ ((β + β ′ )x 1 ) ⊛ g ⊛ g ′ ⊛ exp ⊛ ((α + α ′ )x 0 ) = e (β+β ′ )x 1 • (g ⊛ g ′ ) • e (α+α ′ )x 0 ,
where the second equality follows from the centrality of x 0 , x 1 in mt(k). This implies that the assignment k →(right-hand side of (5.4)) is a subgroup functor of k → MT(k). The associated Lie algebra is G, so this functor coincides with k → G(k).

Assume that there is an embedding ι : Γ → C × . With this datum and λ ∈ k is associated in [R], Déf. 3.2.1, the set DMR ι λ (k). When λ = 0, this set does not depend on ι and will be denoted simply DMR 0 (k). One has:

Definition 5.3. (see [R], Déf. 3.2.1) The set DMR 0 (k) is the set of elements G of k X × , such that: (G|1) = 1, (G|x 0 ) = (G|x 1 ) = 0, (G|x 0 x 1 ) = 0, (G|x σ -x σ -1 ) = 0 for any σ ∈ Γ, and ∆(G) = G ⊗ G, ∆ * (G ⋆ ) = G ⋆ ⊗ G ⋆ (identities in k X ⊗2 and k Y ⊗2 ), where (5.6) G ⋆ = exp n≥2 (-1) n-1 n (π Y (G)|y n,1 )y n 1,1 • q(π Y (G)) (an element of k Y × ). 3
Then:

Lemma 5.4. (see [R], § §3.2.3 and 3.2.8) This assignment k → DMR 0 (k) corresponds to a subgroup scheme DMR 0 of MT, with Lie algebra dmr 0 .

We derive from there:

Lemma 5.5. The subgroup functor of k → MT(k) corresponding to the degree completion of the Lie algebra dmr

0 := dmr 0 ⊕ (Qx 0 ⊕ Qx 1 ) is k → DMR 0 (k), where DMR 0 (k) = {e βx 1 • g • e αx 0 | α, β ∈ k, g ∈ DMR 0 (k)}
for k any commutative Q-algebra.

5.3. Topological modules over the Lie algebra ( Lib(X), , ).

3 In [R], the notation ψ → ψ⋆ is used to denote both the 'additive' map ψ → ψ * , where ψ * is as in (2.5) and the 'multiplicative' map G → G⋆, where G⋆ is as in (5.6). We made the choice of giving two different notations to these maps in order to avoid confusions.

5.3.1.

Graded modules over (Lib(X), , ). Recall from §2.1 the Lie algebras (Lib(X), , ) and mt = (Q X 0 , , ), from §2.4 the morphism θ : (Lib(X), , ) → mt; from Lemma 2.2 the mt-module structure on Q Y given by the map

Q X 0 ∋ ψ → s Y ψ ∈ End(Q Y ), from §2.5 the induced mt-module structure on Hom Q (Q Y , Q Y ⊗2
), as well as the pull-back (Lib(X), , )-module structure on the same space induced by θ. All the objects in this construction are Z-graded: the gradings on Lib(X) and Q X 0 are defined by deg(x γ ) = 1 for γ ∈ Γ ∪ {0}, and the grading on Q Y is defined by deg

(y n,γ ) = n for n ≥ 1, γ ∈ Γ ∪ {0}. The nonzero homogeneous components of Lib(X) (resp., of mt, of Q Y ) correspond to degrees in Z >0 (resp., Z >0 , Z ≥0 ), while Hom Q (Q Y , Q Y ⊗2 ) has nonzero components of all degrees in Z. The element ∆ * of Hom Q (Q Y , Q Y ⊗2
) is of degree 0. Let U (Lib(X), , ) be the universal enveloping algebra of (Lib(X), , ) and let (5.7)

M := U (Lib(X), , ) • ∆ * . Then M is a graded sub-(Lib(X), , )-module of Hom Q (Q Y , Q Y ⊗2 )
; it has nonzero components only in degrees ≥ 0.

5.3.2. Topological modules over ( Lib(X), , ). In §4.1.3, we introduced the degree completion ( Lib(X), , ) of (Lib(X), , ), and in §4.1.4, the degree completion mt of mt.

Being completions of positively graded Lie algebras, both Lie algebras are pronilpotent. The morphism θ from §2.4 extends to a continuous morphism θ : ( Lib(X), , ) → mt.

Let Q Y be the degree completion of Q Y . Then Q Y is a topological module over mt. Let Q Y ⊗2 be the degree completion of Q Y ⊗2 and let Hom cont Q (Q Y , Q Y ⊗2 ) be the set of continuous Q-linear maps Q Y → Q Y ⊗2 . Using the notation V [i]
for the homogeneous component of degree i of a Z-graded Q-vector space V , one identifies this set with the subspace of i,j≥0 Hom

Q (Q Y [i], Q Y ⊗2 [j]) of all collections ϕ = (ϕ ij ) i,j≥0 , satisfying: (5.8) there exists a map F ϕ : Z ≥0 → Z ≥0 with lim n→+∞ F ϕ (n) = +∞, such that ϕ ij = 0 if j < F ϕ (i).

The inclusion of Hom

Q (Q Y , Q Y ⊗2
) in this space may then be described as follows: this is the subspace of all collections (ϕ ij ) i,j≥0 , such that there exists an integer N ≥ 0, such that ϕ ij = 0 for |i -j| > N .

The space Hom

cont Q (Q Y , Q Y ⊗2
) is then equipped with the structure of a topological mt-module, which can be pulled back to a topological ( Lib(X), , )-module structure through θ.

Set M := i≥0 M [i], where M is the (Lib(X), , )-module defined in (5.7) and the M [i]'s are its homogeneous components. Then M is a topological ( Lib(X), , )-module.

The canonical inclusion M ⊂ Hom Q (Q Y , Q Y ⊗2 ) extends to an inclusion

M ⊂ Hom cont Q (Q Y , Q Y ⊗2 )
which is compatible with the topological module structures of both sides over ( Lib(X), , ).

Note that M is an object of the category C ( Lib(X), , ) associated to the pronilpotent Lie algebra ( Lib(X), , ) in §5.1.1. In §4.1.3, we introduced the degree completion ( Lib(X), , ) of (Lib(X), , ), and in §5.3.2, the degree completion M of M , which is a topological module over ( Lib(X), , ). According to §5.1.2, one attaches to these data and to the element ∆ * ∈ M the pronilpotent Lie algebra stab(∆ * ), which is a closed Lie subalgebra of ( Lib(X), , ). It follows from the fact that M is graded and ∆ * is homogeneous that this Lie algebra coincides with the degree completion of stab(∆ * , M ). Taking degree completions in (5.9), we obtain According to §4, there is a group isomorphism G mt (k) ≃ MT(k) = (k X × 1 , ⊛). This group isomorphism takes G ( Lib(X), , ) (k) to (exp( Lib k (X)), ⊛) and G dmr ∧ 0 (k) to ( DMR 0 (k), ⊛) (see Def. 5.3 and Lemma 5.5).

On the other hand, (5.12) implies that the image of G stab(∆ * ) (k) is k X × 1 × k X → k X , (g, H) → g ⊛ H =: S g (H) defines on k X a structure of (k X × 1 ×, ⊛)-module. The induced mt-module structure over k X is obtained from the mt-module structure on Q X denoted ψ → s ψ in §2.3 by tensor product with k and completion. This implies that (5.15) is the module functor associated to ψ → s ψ according to the procedure of §5.1.1. As in §2.3, one shows that for g ∈ k X × 1 , there exists a unique automorphism S Y g of k Y , such that the diagram 

k X Sg / / q•π Y k X q•π Y k Y S Y

  ) = I ⊗ I and ∆ * (I ⋆ ) = I ⋆ ⊗ I ⋆

  3.3.1. s Y ψ when ψ lies in Q Y . Combining the diagram describing the compatibility of s ψ and sψ with the diagram (2.6), we obtain the diagram

  its image by s Y σ(ψ) is not: the image by ∆ * of s Y σ(ψ) (y 1,+ ) contains for example the word y 1,+ ⊗ y 2,+ . It follows that s Y σ(ψ) is not a coderivation for ∆ * , so that ψ / ∈ stab(∆ * )[2]. Therefore: Lemma 3.9. When |Γ| = 2, one hasstab(∆ * )[2] = 0 = dmr 0 [2].3.5. The equality stab(∆ * ) = dmr 0 ⊕ Qx 0 ⊕ Qx 1 . Combining Lemma 3.4, Lemma 3.7, Lemma 3.8, and Lemma 3.9, we obtain:Theorem 3.10. Let Γ be arbitrary. The Lie algebras stab(∆ * ) and dmr 0 ⊕ Qx 0 ⊕ Qx 1 are equal: stab(∆ * ) = dmr 0 ⊕ Qx 0 ⊕ Qx 1 .

  5.1.2. Stabilizer group functors.Let n be a nilpotent Lie algebra, let M ∈ Ob(C n ) and let v ∈ M be a vector. For k a commutative Q-algebra, set(5.1) Stab(v)(k) := {g ∈ G n (k)|g • v = v (equality in M ⊗k)}. The assignment k → Stab(v)(k) is then a subgroup functor of the group functor k → G n (k).On the other hand, set stab(v) := {x ∈ n|x • v = 0}. Then stab(v) is a closed Lie subalgebra of n, which is therefore pronilpotent. With this Lie algebra is associated a Q-group scheme G stab(v) , which is a group subscheme of G n .Lemma 5.1. The subgroup functors k → Stab(v)(k) and k → G stab (k) of the group functor k → G n (k) are equal, so for any commutative Q-algebra k, one has

5. 4 .

 4 Identification of k → DMR 0 (k) with a stabilizer group functor. Recall from §1.1 the inclusion of graded Lie algebras (Lib(X), , ) ⊂ mt, and from Lemma 5.5 and §1.4 the definitions of the graded Lie subalgebras dmr 0 and stab(∆ * ) in (Lib(X), , ).In this section, we introduce the following notation stab(v, V ) := {x ∈ g|x • v = 0} for any collection of a graded Lie algebra g, a graded g-module V , and a homogeneous elementv in V . Then stab(∆ * ) = stab(∆ * , Hom Q (Q Y , Q Y ⊗2)), the underlying Lie algebra being (Lib(X), , ).According to Thm. 3.10, we have stab(∆ * ,Hom Q (Q Y , Q Y ⊗2 )) = dmr 0 . Recall from §5.3.1 the (Lib(X), , )-submodule M ⊂ Hom Q (Q Y , Q Y ⊗2 ). As ∆ * ∈ M , one has stab(∆ * , Hom Q (Q Y , Q Y ⊗2 )) = stab(∆ * , M ), therefore(5.9) stab(∆ * , M ) = dmr 0

  degree completion of dmr 0 . We have therefore an equality of pronilpotent Lie algebras dmr ∧ 0 = stab(∆ * ) ֒→ ( Lib(X), , ) ֒→ mt. Applying the functor n → G n of §4.1.2 and specializing to a commutative Q-algebra k, one obtains the equality of groups (5.11)G dmr ∧ 0 (k) = G stab(∆ * ) (k) ֒→ G ( Lib(X), , ) (k) ֒→ G mt (k).According to Lemma 5.1 and to (5.1), one has (5.12)G stab(∆ * ) (k) = {g ∈ G ( Lib(X), , ) (k) | g • ∆ * = ∆ * (equality in M ⊗k)}.

  {g ∈ (exp( Lib k (X)), ⊛) | g • ∆ * = ∆ * (equality in M ⊗k)}.The space k Y is a topological module over (exp( Lib k (X)), ⊛). This leads to a (exp( Lib k (X)), ⊛)-module structure over Hom cont k (k Y , k Y ⊗2 ). This space can be identified with the subspace of i,j≥0Hom cont k (k Y [i], k Y ⊗2 [j]) defined by conditions (5.8). Then there is a module inclusionM ⊗k ⊂ Hom cont k (k Y , k Y ⊗2 ).It follows that the module M ⊗k may be replaced by Hom cont k (k Y , k Y ⊗2 ) in the description of the image of G stab(∆ * ) (k) given in (5.13).The image of the equality in diagram (5.11) under the isomorphismG mt (k) ≃ (k X × 1 , ⊛) is then the equality (5.14) DMR 0 (k) = {g ∈ (exp( Lib k (X)), ⊛) | g•∆ * = ∆ * (equality in Hom cont k (k Y , k Y ⊗2))}. According to (4.2), the map (5.15)

  1 × k Y → k Y , (g, K) → S Y g (K)defines on k Y a structure of (k X × 1 , ⊛)-module, and gives rise to the module functor associated to ψ → s Y ψ . The map S Y g may be described explicitly as followsS Y g = q • SY g • q -1 , where SY g ∈ End k (k Y ) is defined by SY g (K) := π Y (g ⊛ K) for K = K((y n,σ ) n≥1,σ∈Γ ) ∈ k Y and where K := K((x n-1 0 x σ ) n≥1,σ∈Γ ) ∈ k X .According to Prop. 4.13, the map Θ k given by (4.9) defines a group morphism (exp( Lib k (X)), ⊛) → (k X × 1 , ⊛). It follows that the map (exp( Lib k (X)), ⊛) × k Y → k Y , (h, K) → S Y Θ k (h) (K)defines on k Y the structure of a (exp( Lib k (X)), ⊛)-module, corresponding to the (Lib(X), , )-module structure on Q Y given by ψ → s Y θ(ψ) . The action of (exp( Lib k (X)), ⊛) on Hom cont k (k Y , k Y ⊗2 )) is then given by g • u := (S Y Θ k (g)) ⊗2 • u • (S Y Θ k (g)) -1. Therefore the right hand side of (5.14) is equal to{g ∈ (exp( Lib k (X)), ⊛) | (S Y Θ k (g)) ⊗2 •∆ * = ∆ * •S Y Θ k (g) (equality in Hom cont k (k Y , k Y ⊗2))}. Combining this with (5.14), we get the statement of Thm. 1.2.

For f an element of Q X and w a word in X, we denote by (f |w) the coefficient of w in f , so f = w (f |w)w. Viewing Lib(X) as a subspace of Q X , we use the same notation for f ∈ Lib(X).
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