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1. ABSTRACT

Recent observations of Jupiter have suggested the existence of global oscillatory modes at millihertz frequencies,
yet the source mechanism responsible for driving these modes is still unknown. However, the energies necessary to

produce observable surface oscillations have been predicted. Here we investigate if moist convection in Jupiter’s upper

atmosphere can be responsible for driving the global oscillations and what moist convective energy requirements are

necessary to achieve these theoretical mode energies and surface amplitudes. We begin by creating a one-dimensional

moist convective cloud model and find that the available kinetic energy of the rising cloud column falls below theoretical
estimates of oscillations energies. That is, mode excitation cannot occur with a single storm eruption. We then

explore stochastic excitation scenarios of the oscillations by moist convective storms. We find that mode energies

and amplitudes can reach theoretical estimates if the storm energy available to the modes is more than just kinetic.

In order for the modes to be excited, we find that they require 5 × 1027 to 1028 erg per day. However, even for a
large storm eruption each day, the available kinetic energy from the storms falls two orders of magnitude short of the

required driving energy. Although our models may oversimplify the true complexity of the coupling between Jovian

storms and global oscillations, our findings reveal that enough thermal energy is associated with moist convection to

drive the modes, should it be available to them.

2. INTRODUCTION

Since the advent of helioseismology and the detection of solar global oscillations, it has been postulated that gas giant

planets could also exhibit similar oscillations. Much theoretical work has been done investigating the inherent nature

of the oscillatory modes of Jupiter and Saturn (e.g., Vorontsov et al. 1976; Bercovici & Schubert 1987; Marley & Porco
1993; Jackiewicz et al. 2012), and indeed, they have been observed. Gaulme et al. (2011) and Hedman & Nicholson

(2013) have detected signatures of Jupiter’s global oscillations and the spiral density structures in Saturn’s rings caused

by Saturnian fundamental modes, respectively. Yet the excitation mechanism of these oscillations remains a mystery.

In the case of the Sun, Goldreich & Keeley (1977) demonstrated that the energy from turbulent convection drives
the observed solar oscillations. However, a similar approach on Jupiter reveals that too little energy is available from

convection to be responsible for the global oscillations (Gaulme et al. 2014). The ratio of velocity of the convective flux

to the sound speed (Mach number) gives an indication as to the energy in a driving mechanism. In Jupiter, the Mach

number relative to the Sun is much lower, resulting in oscillatory surface velocity amplitudes of at least three orders

of magnitude less than the Sun (≤ 0.5 m s−1 on Jupiter compared to ∼ 500 m s−1 on the sun) (Bercovici & Schubert
1987). While Bercovici & Schubert (1987) claim that turbulent motions may be responsible for oscillatory surface

velocities of ∼ 50 cm s−1, these turbulent motions may not be the result of traditional convection.
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Several possible sources have been investigated in regard to their ability to drive Jovian global oscillations but all

were found to be insufficient. Both the κ-mechanism, an opacity effect traditionally observed in pulsating variable

stars (Cowling 1941; Stothers 1976), and the radiative suppression mechanism, a possible excitation source for hot

Jupiters, were shown to be unable to drive Jovian oscillations by Dederick & Jackiewicz (2017). Although Helium
rain, the process by which atomic Helium droplets rain through the immiscible metallic hydrogen region, has yet to be

examined as an excitation mechanism, we think this process is unlikely to excite modes as the inertia at these pressures

is too large for driving to occur. Ortho- to para-hydrogen conversion as a driving mechanism is unlikely as well as

it is a very slow process, too slow to couple with oscillatory motions (Bercovici & Schubert 1987). The mechanism

that excites Jovian oscillations has yet to be determined. In this investigation, we examine moist convection and the
energy it could supply to drive Jupiter’s global oscillations.

In the simplest of terms, moist convection is the process of the formation and dissipation of thunderstorms. The

main difference between moist convection on Earth and on Jupiter is the ratio of the molecular weight of water to the

surrounding atmospheric gases. On Earth, with the principle atmospheric constituent being diatomic nitrogen, this
ratio is less than one, but on Jupiter, being comprised of mainly hydrogen and Helium, the ratio is greater than one.

Thus, on Jupiter, the water vapor tends to condense and sink whereas it remains aloft on Earth. A more in-depth

description of the Jovian moist convective process is given in the context of our model in Section 3.

In Section 4 we discuss if moist convection can excite Jovian oscillations with a single storm using our cloud model.

Section 5 contains the explanation of our harmonic oscillator model and Section 6 lists the results of the model.
In Section 7 we discuss whether moist convection can excite the modes stochastically. Finally we end with some

conclusions in Section 8.

3. CLOUD MODEL

In the moist convective cloud analysis we adopt the entraining jet model proposed by Stoker (1986) with a few

assumptions. First, we estimate that the moist convection zone on Jupiter begins at the cloud base around 6 bars of

pressure (Ingersoll et al. 2000). The maximal height of the cloud is defined as where the vertical cloud velocity drops
to zero, which is model dependent. This is partially a consequence of the inferred abundance ratio of water in the

deep atmosphere and the assumption that the abundance ratios of O/H, C/H, N/H and S/H are three times solar (see

Section 7.1 for a discussion of changing the water abundance on Jupiter). Second, we assume Jupiter’s atmosphere is

13.49% Helium and 86.51% molecular Hydrogen by particle abundance with trace amounts of heavier gases (taken from

Galileo measurements from Niemann et al. 1996). Finally, the entraining jet model assumes a convectively inhibitive
water loading process in which the following scenario occurs.

As Jupiter has no nuclear fusion processes like the Sun, its convection is driven by cooling at the surface rather

than heating from below. As the atmosphere cools, dry parcels of air cool faster than moist parcels (those containing

water vapor). This is due to the fact that as moist parcels cool, water condenses and sinks out of the parcel while
releasing latent heat. This heat keeps the virtual temperature (temperature of the moist parcels) higher than the

atmospheric temperature (temperature of the dry parcels). As long as the virtual temperature is higher than the

atmospheric temperature, the atmosphere is stable against convection. (Note: once the water vapor condenses out of

a moist parcel, the parcel is still considered with the virtual temperature.) Once all the water vapor has condensed

out of the moist parcels and the virtual temperature cools to match the atmospheric temperature, the atmosphere is
no longer stratified and thus becomes unstable to convection. At this point, all the condensed water currently resides

just below the cloud base at 6-8 bars (6 in our model). However, this region is now much warmer than the air above

it (which has continued to cool), and the buoyancy force creates a rising cloud column. This rising cloud is modeled

as an entrained jet. That is, the cloud is a rising, convective column of saturated air that entrains, or traps, dry air
parcels via convective turbulence as it rises. For a schematic of a moist convective cloud model we refer the reader to

Figure 13 in Fletcher et al. (2017).

This column has some temperature profile larger than that of the surrounding atmosphere, and as such, will have a

positive vertical velocity associated with it. At this point the cloud can be thought of as either a standalone storm,

or, more likely, one cloud column amongst several in a larger storm. The cloud will rise to some height (usually less
than 1 bar of pressure), where it will then dissipate its energy into the surrounding environment, expedited by the

upper atmospheric winds. As it dissipates, it begins to saturate the dry surrounding air, thereby redistributing its

water vapor, starting the entire water loading process over again.

We model this process using three free parameters: the relative humidity, defined as the ratio of the vapor pressure
to the saturation vapor pressure, the entrainment constant α, and the characteristic radius of the cloud column, r.

The entrainment rate, φ, is the change in mass of dry air in the column per change in pressure per unit mass of moist
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Table 1. The list of constraints used in this investigation. The values have been taken or derived from Gudkova & Zharkov
(1999); Gierasch et al. (2000); Ingersoll et al. (2000); Hueso et al. (2002); Gaulme et al. (2011).

Constraint Value

Cloud Base ∼6 bars

Maximum Cloud Column Radius 25 km

Storm Thermal Power 5× 1022 erg s−1

Storm Area 106 km2

Surface Storm Density 0.66× 10−9 km−2

l=2 n=0 Mode Energy for 1 m Amplitude 6.4× 1026

l=0 n=1 Mode Energy 1026 - 1027 erg

Cumulative Mode Surface Amplitude 10 - 100 m

air. Measuring the entrainment rate of a cloud explicitly would require in-situ measurements. Therefore, we simply

approximate the entrainment rate to have the form

φ =
α

r
. (1)

The entrainment constant, α, is a proportionality constant determined from laboratory plume experiments (Stommel

1947). For terrestrial clouds, α takes a value of about 0.2 (Simpson et al. 1965). Therefore, allowing for potential
differences in Jovian moist convection, we vary α between 0.01 and 0.4. In addition, we also vary the relative humidity

from 0% to 100% and r from 0.1 km to 1000 km. Hueso et al. (2002) find that the radius of the cloud column

cannot be substantially larger than 25 km as it would violate mass continuity, so radii larger than this are unrealistic.

Nevertheless, we run models for r up to 1000 km to fully explore the range of storm sizes on Jupiter.

One could also assume finite values of the liquid water mixing ratio, ηL. However, we find its only effect is to
decrease maximum cloud height. As more water in the cloud condenses (higher ηL), the cloud becomes heavier and

rains out instead of ascending further. A lower ceiling for the cloud to rise to results in less kinetic energy in the

cloud. In the following, kinetic energy refers to the kinetic energy of the rising cloud only. Since we are interested in a

maximum energy scenario, ηL is set equal to zero. Finally, for our background atmospheric model the environmental
temperature, density, and pressure profiles are taken from Gaulme & Mosser (2005), which were derived from Galileo

data. The derivation of equations used to develop this model can be found in Stoker (1986). A comprehensive list of

the constraints used in this investigation can be found in Table 1.

4. ANALYSIS

Figure 1 shows the temperature profiles of the environment and the cloud column for various entrainment constant

values and radii. We do not plot the cloud temperature profiles for varying relative humidity as changes in the relative

humidity do not significantly affect the cloud temperature, especially relative to the other two parameters. Note

how the clouds are always warmer than the ambient environment. The cloud top can be defined where the cloud

temperature equilibrates with the environmental temperature.
A better illustration of where the cloud top terminates can be seen in Figure 2 where the vertical velocity profiles of

the cloud are shown. The velocity is calculated as described in Stoker (1986). Where the velocity drops to zero also

dictates the cloud top layer (ignoring any overshoot). Finally, Figure 3 shows the vertical momentum profiles (ρvz),

indicating the kinetically energetic regions in the clouds.
The moist convection storm column is affected by all of these parameters. α, the entrainment coefficient, describes

how much the cloud column interacts with the environment. That is, the amount of drag the column feels from rising

through the environment. As seen in Figure 2, for a decreasing value of α, the cloud extends further towards the Jovian

surface; there is less interaction with the environment for lower α, and the cloud can extend higher while reaching

higher velocities. Low α scenarios are the most probable candidates for overshoot, but are beyond the scope of this
paper.

The effective cloud column radius, r, is also intuitive. For a larger value of r, the cloud may have more total

interaction with the environment (greater absolute surface area), but it also carries more momentum. As r increases,

the momentum to surface drag ratio also increases, resulting in the pattern seen in Figure 3. Larger column radii
cause the cloud to have more momentum and thus rise to higher altitudes. With this interpretation it can be seen

that a larger cloud with greater momentum and less drag, or interaction with the environment, will ascend to a lower
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Figure 1. Left: The cloud temperature profile for varying values of the entrainment constant α shown in the legend. The
relative humidity is fixed at 100% and the cloud radius at 1 km. Right: The cloud temperature profile for various radii at
α = 0.2. In both plots the black line represents the temperature profile of the surrounding air from the Jovian atmospheric
data.
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Figure 2. Left: Vertical velocity vz profiles of the cloud column for varying values of the entrainment constant α shown in the
legend. The relative humidity is fixed at 100% and the cloud radius at 1 km. Right: Vertical velocity profiles of the cloud
column for varying radii at α = 0.2.
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Figure 3. Left: Vertical momentum profiles of the cloud column for varying values of the entrainment constant α shown in the
legend. The relative humidity is fixed at 100% and the cloud radius at 1 km. Right: Vertical momentum profiles of the cloud
column for varying radii at α = 0.2.

pressure layer and carry with it more kinetic energy. It is on this basis that we calculate the power produced by these

cloud columns.

4.1. Maximum Energy/Power

The ideal scenario for driving Jovian oscillations occurs when the maximum possible moist convective energy is
available and all of it is transferred to the oscillations. In such a scenario, we assume that all the energy of the cloud

available for dispersion is kinetic, such that the energy density U = ρv2. Since we also use a vertical cloud column
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Table 2. Kinetic and thermal power outputs for various cloud column radii using α = 0.2.

Cloud Column Radius (km) Kinetic Power (erg s−1) Thermal Power (erg s−1)

1 1.72 × 1016 1.28× 1018

10 2.26 × 1019 1.31× 1021

25 1.64 × 1020 9.27× 1021

50 6.88 × 1020 3.87× 1022

100 2.8× 1021 1.57× 1023

1000 2.86 × 1023 1.6× 1025

entrainment model, we can find the kinetic energy per vertical length dz with

dE = πr2U dz. (2)

Integrating over the height of the cloud column then gives the total kinetic energy in the cloud.

The power generated by one of these cloud columns (storms) depends upon the time required for a parcel of air

to rise from the cloud base to the maximum cloud height (≈ 80 km). Utilizing the vertical velocities calculated in
Figure 2, the cloud column rise time for Jupiter’s moist convection is on the order of 45-135 minutes. Given these

times, Table 2 lists the kinetic power outputs of each storm as a function of radius. The α parameter is held constant

here at 0.2. In addition, we also calculate the thermal power in the cloud in the same way as the kinetic, except our

equation for thermal energy becomes (ignoring latent heat)

dQ = mCp∆T = ρπr2dzCp(Tcloud − Tenvironment) (3)

where m is the mass, Cp is the specific heat of water and ∆T is the difference in temperature between the cloud

and the environment. These results are also listed in Table 2. Regardless of cloud column radius, the kinetic power
comprises ∼ 1.5% of the total power.

Gierasch et al. (2000) observed a Jovian moist convective storm 1000 km by 1000 km in area with a thermal power

output of around 5 × 1022 erg s−1 (5 × 1015 W) as determined from infrared observations. This value came from

measuring the storm’s thermal outflow within 1 scale height above 1 bar of pressure. Therefore, it is unclear what

proportion of the total outflow energy comes directly from moist convection, and what comes from other sources like
simple radiative cooling. The storm is likely comprised of many cloud columns of smaller radii, somewhere around

1-25 km as mentioned previously. Utilizing the thermal powers in Table 2 to match the observed power of the 1000 x

1000 km storm, 6 25-km radius cloud columns or ∼ 39, 000 1-km radius cloud columns would be required. However,

Gierasch et al. (2000) measured the thermal flux above 1 bar of pressure whereas our thermal powers are integrated
over the entirety of the cloud column down to 6 bars. Correcting for this discrepancy and only utilizing the thermal

power above 1 bar in our models, 20 25-km or ∼ 135, 000 1-km cloud columns would be required.

4.2. Oscillatory Mode Energies

Jovian thunderstorms have finite lifetimes and their energy must be dissipated into the near-surface environment. It

is worth noting that currently no working theory exists as to exactly how the two the storm energy and mode excitation
are coupled. The precise understanding of the nature of the coupling most likely requires the inclusion of atmospheric

microphysics which is beyond the scope of this paper. However, on a more general scale, we hypothesize that the storm

energy is transferred to the modes by the cloud column punching the upper atmosphere as it ascends. By analogy, this

would be equivalent to a filled water balloon where someone flicks the balloon skin from the inside, thereby initiating
the propagation of waves throughout the balloon. Assuming the energy can and does transfer to global oscillations,

then in order to conclude whether moist convection could drive them, two key points must be understood: (1) how

much energy is required to drive the modes (which, to first order, could be found by calculating the energy needed

to produce an assumed surface displacement for a given oscillation mode and frequency); and (2) how the energy

dissipation is partitioned into thermal transfer, radiation, winds, oscillations, etc. The latter is currently unknown,
but the analysis of the former reveals it may not be necessary to understand in regards to oscillations.

Using a best-case scenario, we are interested in what the maximum possible energy supply can be from moist

convection to Jupiter’s global oscillations and whether that is sufficient to match the theoretical energies of the

modes. Using the information in Table 2, the maximum surface power density from moist convection kinetic energy
is ∼ 9 × 1016 erg s−1 km−2. Utilizing 1997 Galileo data of Jovian thunderstorms as a tracer for moist convection,

Gierasch et al. (2000) measure moist convective storm surface density on Jupiter to be 0.66× 10−9 km−2. The surface
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area of Jupiter is 6.423× 1010 km2 (using an equatorial radius at 1 bar of 71,492 km). Assuming this surface density

is temporally typical and a storm surface area of ∼ 104 km2 is typical (Gierasch et al. (2000) specify these storms

are typically a few hundred kilometers in diameter), then at any given moment there is approximately 42.4 moist

convective storms occurring on Jupiter, or a total of 4.24 × 105 km2 of storms. Using the maximum kinetic surface
power density, moist convection could then supply a total of ∼ 3.8× 1022 erg s−1 to the global oscillations, assuming

all available energy is used in the forcing. Keep in mind this value is a gross overestimate as not all of the observed

storm area corresponds directly to a rising cloud column. As noted at the end of Section 4.1, a large storm will

consist of several separated cloud columns and thus a large amount of the storm surface area does not contain a rising

cloud column directly beneath it, such as ∼ 20 25-km radius cloud columns for a 1000 km2 storm, which would only
contribute ∼ 3.3× 1021 erg s−1 to the modes.

Gudkova & Zharkov (1999) calculate theoretical estimates of the energies for these Jovian global oscillations. For

the fundamental n = 0, ℓ = 2 mode, they find the energy in this mode per period is 6.4× 1026 erg when a 1 m surface

displacement is assumed. For the various models utilized to arrive at this value, the period ranges from 75 to 1600
minutes. The ideal scenario for driving oscillations would be a minimum mode energy, thus the longest period results

in a power of 6.67× 1021 erg s−1 for this particular mode.

At first glance, it appears that there is enough kinetic power available to drive the modes. However, while the n = 0,

ℓ = 2 mode, for example, requires an average power of 6.67 × 1021 erg s−1 to survive, the storms do not produce the

aforementioned kinetic powers on average, as the kinetic power is only produced over the rise time of the cloud column,
or about 45 minutes for a 25-km radius cloud. If we assume a 1000 km x 1000 km storm erupts every day on Jupiter,

then when we examine the total power required to drive just the n = 0, ℓ = 2 mode, the kinetic energy from the

storms falls two orders of magnitude short of the required driving energy.

In addition, the actual Jovian surface displacements for global oscillations are unknown. Thus, this is a free pa-
rameter in the calculation of mode energies. Gudkova & Zharkov (1999) compute these energies assuming a surface

displacement of 1 m. Using the shortest mode period, this translates to surface velocities of order 0.02 cm s−1. How-

ever, Vorontsov et al. (1976) and Bercovici & Schubert (1987) predict global oscillations to have surface velocities of

10 − 100 cm s−1 For the 75 minute mode period, this results in surface displacements on the order of 50 − 100 m.

Observational efforts place surface amplitudes at 49+8
−10 cm s−1 (Gaulme et al. 2011). Therefore, the 1 m estimate is a

conservative estimate, adding to the disparity between moist convection kinetic energy and mode energies.

Given this analysis, if all the kinetic energy from moist convection does excite modes, the lowest fundamental mode

possible to be excited would be of angular degree ℓ ≈ few tens (according to the predictions of Vorontsov et al. 1976),

which would require all the energy to drive this singular mode, a mode with a surface amplitude much too small to
observe. Higher-order radial modes could also be possible (n > 10), again requiring the entirety of the moist convective

kinetic energy. A far more likely scenario would be a partitioning of energy to excite several high order modes, yet

likely none of these modes would be even close to observable limits. To reiterate, this scenario assumes maximum

storm kinetic energy, minimum mode energy, 100% energy conversion between the two, every square kilometer of a

moist convective storm carries kinetic energy readily available to the oscillations, and a highly conservative surface
displacement of 1 meter. Therefore, we can conclude that moist convective kinetic energy alone is insufficient to

immediately excite any fundamental, low order, observable global oscillations.

4.3. Kinetic Energy Partitioning

As a final note, Bercovici & Schubert (1987) estimate the power of turbulence from kinetic motions radiated into

acoustic waves to be described by

W =
ρu3

λ

(

M3 +M5
)

(4)

where u is the eddy velocity, λ is the eddy wavelength, and M is the Mach number. If we use Equation 4 with our

cloud models having velocities of 10-50 m s−1 and the sound speed within Jupiter being ∼ 1 km s−1 we find that only

10−4% − 10−2% of the kinetic cloud energy actually gets converted to acoustic modes due to the very small Mach

number (10−6 to 10−4). If this is truly the case, then moist convective kinetic energy most certainly cannot excite
Jovian modes.

5. STOCHASTIC HARMONIC OSCILLATOR

What we have shown with our model is that moist convective kinetic energy cannot immediately excite low-order
oscillatory modes up to their expected energy and surface displacement. By analogy, we have shown that a parent of

modest strength cannot push their child to maximum amplitude on a playground swing with only one push. Yet just
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as how the child can eventually reach a maximum swing amplitude from additional pushes at stochastic intervals, here

we investigate if moist convective storms can stochastically interact with Jovian oscillations, eventually exciting them

to observable amplitudes.

To investigate a stochastic situation, we create a 1D harmonic oscillation simulation for Jupiter. The basic idea
is simple: we begin with an interior model from which we compute a set of standard linear, adiabatic oscillation

mode eigenfunctions and frequencies. We then set up several different schemes for how frequently and effectively

moist convective storms deposit energy “exciting” the modes, given certain normalization conditions on the energy

and surface displacement. The modal energy is tracked as a function of time as it either dissipates or increases

by encountering other storms with the appropriate frequency (parent pushing swing). After a sufficient amount of
time, it is possible to determine if one or several modes attain enough energy to satisfy the theoretical estimates or

observational lower limits. Below we discuss more details of these computations.

5.1. Mode eigenfunctions

The modes we utilize in this simulation are a subset of eigenfunctions, both the radial and horizontal components,

and their corresponding eigenfrequencies calculated from state-of-the-art Jupiter models (Jackiewicz et al. 2012). We

only consider those with angular degrees ℓ = 0− 15 and radial orders n = 0− 10. The temporal eigenfrequencies span
from ∼ 0.1 mHz to ∼ 2.5 mHz, commensurate with the expectations of low-degree oscillations of Jupiter.

To establish a proxy for the initial energy of a given mode that takes into account its inertia we consider

E = πω2

R
∫

0

[∣

∣

∣
ξr(r)

∣

∣

∣

2

+ l(l + 1)
∣

∣

∣
ξh(r)

∣

∣

∣

2]

ρr2dr. (5)

Here, ξr and ξh are the radial and horizontal eigenfunctions, respectively, of the mode in question and ρ is the radial

density profile of the Jupiter model. As is common, the eigenfunctions are normalized at the surface according to

the boundary conditions. At each timestep, once the energy imparted to each mode is computed, its radial (surface)

amplitude is determined according to

ξr(R) = Aξ̃r(R) = A, (6)

where ξ̃r is the eigenfunction that is arbitrarily normalized to one at the surface. The ratio between the radial and

horizontal eigenfunction amplitudes is fixed by the solution of the oscillation equations. In what follows though, we

only consider A, the surface displacement in real units of the mode in question.

The eigenfunctions we use are not necessarily meant to be the most representative of the planet, as we’ve ignored
higher-order effects due to rotation in the computation. As has been shown in similar efforts, rapid rotation causes

subtle, but important changes to the eigenmode solutions of giant planets (Fuller 2014). However, these functions

provide a good approximation to how the oscillation inertia is distributed throughout the interior of the planet.

5.2. Energy partition, growth, and decay

Having computed the available kinetic energy from the storms as discussed in Section 4.2, we now specify when and

how often the storms occur. Each storm is described by two basic timescales, tload, and tstorm. tstorm is the time over
which the cloud column rises from the cloud base to its maximum height and tload is the time between these rising

cloud excitation events. A storm is triggered at t = 0 and then each subsequent storm occurs at a later time randomly

sampled between tload,max and tload,min.

Each time a storm occurs, the energy available to the modes is the power from the cloud column(s) with a specified
radius multiplied by tstorm. We assume energy equipartition where half of the available energy is transferred to thermal

dissipation or bulk motions, or as Ingersoll et al. (2000) conclude, is returned to the South Equatorial Belt or Great

Red Spot, and the other half is equally split between all the modes. However, the energy partitioned to a particular

mode is not always added to the energy already contained within that mode. For any given mode excited with non-zero

energy, we prescribe a phase, φ, to it that oscillates sinusoidally in time between 0 and 2π at the mode’s eigenfrequency.
So when a storm erupts, if Em is the energy partitioned to a particular mode, then the additional energy added to the

mode is Em cosφ. This could result in modes being damped by some storms rather than amplified, thereby converting

mode energy into thermal energy. This is a way to model the effect of “pushing the swing” at the wrong time. If at

any point the mode’s energy becomes negative it is reset to zero energy and the phase is reset to zero.
We also run a suite of simulations for a distribution of storm energies. We create a Gaussian distribution with a

mean of the minimum possible storm energy and a standard deviation equal to one-third of the maximum possible
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storm energy such that the maximum storm energy, or largest storm, will be three sigma away from the mean. When

a storm erupts in the simulation, its energy is randomly chosen based on this distribution and only considers values

at or larger than the mean.

To account for energy dissipation, we make use of the quality factor, Q, which parametrizes how well a particular
mode “rings” within Jupiter. A strongly frequency-dependent Q is considered as well as a constant one. Following the

work of Mosser (1995), we use an approximate exponential relation given by

log10 Q = 9− 2ν, (7)

in the range of ν = [0, 3] mHz where ν is the temporal eigenfrequency of the mode. For example, Q ≈ 107 for a 1 mHz

mode. We also consider simulations where we simply fix Q at a constant value of 105 for frequencies below 3 mHz as
suggested by Stevenson (1983). The Jovian atmospheric acoustic cutoff frequency has been estimated to be around

3.5 mHz, but the low-degree modes we consider are below this value.

Once values for Q are determined for each mode, its energy loss over one oscillation cycle is given by

Q =
E

∆E
, (8)

where E is its energy and ∆E is the energy lost. Q follows from either Equation 7 or the constant relationship.

5.3. Simulation scenarios and setup

This process allows us to create a time dependent map of the growth and/or decay of mode energies, mode amplitudes,
and the overall surface displacement of the planet (i.e. the sum of the mode amplitudes). We then embed the code

in a probabilistic distribution (see below) simulation which will run the entire process for a specified number of times

and record the maximum energy achieved by each mode per run, the maximum amplitude of each mode per run, and

the maximum planetary surface displacement per run. We run each simulation for 5000 days, more than adequate

time for the oscillations to find a quasi-equilibrium based on various tests that were performed. Each simulation is run
200 times to build the probability distribution of maximum achieved mode energies and amplitudes. The final results

allow us to thus analyze the mean of this stochastic process.

Our overall strategy is put constraints on moist convection storms based largely upon theoretical estimates and

observational limits of mode amplitudes and energies. In general, we consider the radial ℓ = 0, n = 1 mode as a proxy
for all modes since it has the largest energy as its mode mass is the largest. If its theoretical energy prediction of

1026 - 1027 erg is failed to be met (Vorontsov & Zharkov 1981), then we conclude the specific parameters in that moist

convection scenario to be unable to successfully drive modes. In conjunction, the cumulative surface displacement

of the planet from all the modes shall be no smaller than 10 meters, a lower limit commensurate with the observed

velocity amplitude of Gaulme et al. (2011).
In the analysis we investigate four distinct moist convection scenarios, each of which reveals something about the

possible nature of these storms and their relation to the modes.

1. It is likely that perhaps moist convective storms on Jupiter are much more frequent than we think. Small
storms could be erupting from the cloud base all the time, yet they simply do not have enough buoyancy and

upward momentum to reach observable cloud heights. We therefore investigate what temporal storm frequency

is necessary for a 1-km radius storm with 100 columns per storm with a tstorm of 135 minutes (the time required

for the cloud to reach maximum altitude from the cloud base) to achieve theoretical mode energy and amplitude

estimates. This may also be thought of as 100 1-km radius storms erupting simultaneously across the planet.

2. What if the largest storms were primarily responsible for driving the modes? We thus also investigate the storm

frequency necessary to achieve the theoretical mode energies and amplitudes for the largest physically feasible

storms in our simulations, the 25-km radius cloud column with 200 columns per storm with a tstorm of 45 minutes.

3. We then examine the scenario where the energy in a storm contributing to the modes is actually much greater

than just the kinetic energy that our cloud models suggest. Utilizing the storm energy found by Gierasch et al.
(2000), we find the storm frequency necessary to achieve theoretical mode estimates for storms of 5 × 1022 erg

s−1.

4. Finally we consider the probable case whereby a distribution of storm sizes can erupt. Using the one-sided
Gaussian distribution of storms described in Section 5.2, we find what distribution of storm energies can reproduce

theoretical mode energies and amplitudes.
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The values we use for tstorm are derived from the vertical velocities shown in Figure 2. For example, Hueso et al.

(2002) show that a rising storm cloud column can have a radius no larger than 25 km, but that a moist convective

storm can have up to 200 of these updrafts. The 25 km radius column has an average updraft velocity of 30 m s−1 over

the 80 km range between the cloud base and maximum cloud height, resulting in tstorm = 45 minutes. From Table 2,
we thus use an input power of 200× 1.64× 1020 erg s−1 = 3.28× 1022 erg s−1. In addition, Hueso et al. (2002) allude to

a storm frequency of about 12 days, thus we begin testing our simulations with the minimum and maximum values of

tload to be 9 and 15 days, respectively. The value for tload is randomly sampled between its maximum and minimum

values, that is, once a storm concludes the time until the subsequent storm erupts is randomly selected to be between

9 and 15 days, for example. This temporal range is then adjusted between simulations to find which storm eruption
frequencies produce the mode energies that agree with theoretical estimates and observed amplitudes.

6. HARMONIC OSCILLATION RESULTS

6.1. Case 1

In the scenario in which only the smallest storms contribute to driving Jovian modes, we find that for a 1 km radius

storm with 100 columns per storm with a tstorm of 135 minutes, there is no temporal spacing between storm eruptions

that reproduces the desired mode energies given the predicted kinetic energy available in these columns. If one of

these storms erupts every 1-2 days, the l = 0, n = 1 mode has an energy of 2× 1021 (1.5× 1021) erg and Jupiter has
an overall surface displacement of 10.5 (5.3) cm for the frequency-dependent (constant) quality factor. In order to

achieve theoretical energies, it would require an eruption of ∼ 107 single column storms or ∼ 105 100 column storms

each day on Jupiter. This would imply an average surface density of one storm column per 6423 km2.

6.2. Case 2

When examining the case of the largest realistic storm frequency, we reach a similar conclusion to Case 1. For a

storm of 200 columns with each column having a radius of 25 km, having one of these storms erupt every 1-2 days,

the l = 0, n = 1 mode has an energy of 1.4 × 1025 (9 × 1024) erg and Jupiter has an overall surface displacement of
7.3 (4.1) meters for the frequency-dependent (constant) quality factor. Theoretical estimates would require ∼ 70 of

these storms to erupt per day. However, given that Hueso et al. (2002) allude to a ∼ 12 day spacing of these storms,

coupled with the observations made by Gierasch et al. (2000) which indicate an average abundance of ∼ 43 of these

storms being present on Jupiter at any given time (not all of which are as large as the one observed; see Section 4.2),
we conclude that there are simply too few storms of this size to drive oscillatory modes.

6.3. Case 3

Perhaps our derivations of the available storm energy are incorrect. Perhaps there is actually much more storm

energy readily available to the modes than just the kinetic energy we have considered. Or maybe there is additional

energy associated with Jovian storms that can also contribute to mode driving. As an upper limit we consider the

entirety of the storm energy observed by Gierasch et al. (2000). They observed a storm with a power of 5 × 1022 erg

s−1. Using their estimated storm surface density of 0.66 × 10−9 km−2, we find that storms like this would supply

∼ 3.25× 1030 erg day−1 to the modes (found by 5×1022 erg s−1

106 km2 ÷ 0.66× 10−9 km−2 converted to erg day−1 and halved
as we assume only half the available storm energy drives modes). When utilizing this energy input in our simulations,

we find the mode energies and amplitudes are much too high, resulting in an energy of 3.5 × 1029 erg for the l = 0,

n = 1 mode and an overall surface amplitude of 775 meters.

Although this does not reproduce the mode estimates we expect, it is promising because it does reveal that enough

associated storm energy is indeed present to excite Jovian modes via moist convection. By varying the daily energy
input from the storms, we find that in order to excite the modes to their theoretical energies and observed amplitudes

(1026 − 1027 erg for the l = 0, n = 1 mode and a 10-100 meter cumulative surface amplitude), we find that the modes

require, on average, a daily storm eruption that provides between 5 × 1027 and 1028 erg day−1. If all the observed

energy in the storm were available to modes, then this energy requirement could be achieved by an average surface
abundance of approximately 43 Jovian storms of average surface area 764 km2, or approximately 33 storms with

average surface area 1000 km2. It is worth noting that even though these storm abundances are commensurate with

those in Section 4.2, these storms utilize the total thermal surface power density as that observed by Gierasch et al.

(2000), not the kinetic power.

6.4. Case 4
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Figure 4. The overall surface displacements and l = 0, n = 1 mode energies for the Case 4 simulation with minimum storm
energy of 8.1 × 1020 erg and a standard deviation of 1.35 × 1028 erg. Left: The maximum cumulative surface displacement of
all modes achieved in each simulation run and how many times that displacement was reached. Right: The maximum energy
in the l = 0, n = 1 mode reached in each simulation run and how many times that energy was reached. The simulation was run
200 times to produce these distributions.

Using a Gaussian distribution of storm energies as described in Section 5.2, we investigate what distribution of storm

energies can excite modes to predicted levels of energy and amplitude. If the minimum energy of the distribution (recall

the minimum energy is the mean because it is a one-sided Gaussian) matches our smallest considered storm energy
of 8.1 × 1020 erg with a standard deviation one-third the maximum considered storm energy of 1.35 × 1026 erg (so

that the largest storms are three standard deviations from the mean), we find the l = 0, n = 1 mode energy to have

1.5× 1025 (6× 1024) erg for the frequency dependent (independent) quality factor and an overall surface amplitude of

7.6 (3.8) meters. So for a distribution of storm energies contained within the kinetic energy limits of our cloud models,

we find that there is not enough energy to supply to the modes.
However, we do find two distributions that can successfully reproduce the mode predictions. If both the mean and

standard deviation are 100 times larger, such that the minimum energy is 8.1 × 1022 erg and three sigma from the

mean is 1.35×1028 erg, then the overall surface amplitude of Jupiter becomes 38 meters and the l = 0, n = 1 mode has

an energy of 8× 1026 erg. The storm cadence for this simulation was an eruption every 1-2 days, although increasing
this temporal range only slightly decreases the resultant amplitudes and energies due to the large quality factor.

The results of the second simulation are shown in Figure 4. For this energy distribution the minimum energy is still

that of our smallest storm (8.1 × 1020 erg), but with a standard deviation 100 times larger than our initial estimate

(1.35× 1028 erg). For a storm cadence of one eruption every 1-2 (5-10) days the l = 0, n = 1 mode contains an average

energy of 8.2 × 1026 (3.2 × 1026) erg with an overall surface displacement of 38 (29) meters. The spread in energies
and amplitudes in Figure 4 is typical of these simulations.

7. DISCUSSION

Regardless of which simulation case was investigated, we find that the results of the l = 0, n = 1 mode energy

differ by a small amount regardless of which quality factor is used, even though the higher frequency modes may differ

more so between quality factors. However, we do find the frequency-dependent Q produces results that are closer to

observations. For the exact relationship between Q and frequency in Equation 7, any modes with frequency greater

than 2.5 mHz are very quickly damped. Therefore, the frequency dependent Q is a more realistic representation for
Jupiter as the higher frequency modes decrease in amplitude more quickly than in the frequency independent Q case,

consistent with Figure 2 in Gaulme et al. (2011). This can be seen in Figure 5. (Note: in Figure 5 we expect the l = 0

n = 1 mode, which has the lowest frequency, to have the greatest maximum energy, but the modes that exceed the

energy of the l = 0 n = 1 mode are simulation outliers with the majority of their maximum mode energies below that
of the l = 0 n = 1 mode.) Radial orders of n = 4 and greater, corresponding to frequencies around 2.75 mHz, were

observed by Gaulme et al. (2011), but unfortunately our subset of modes utilized in this work do not extend up to
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Figure 6. Left: An example of the surface amplitude as a function of time for the l = 0, n = 1 mode from one of the 200 runs
of the Case 4 simulation. Right: An example of the energy lifetime of the same mode in the same simulation.

that frequency. In addition, neither quality factor can account for the missing mode amplitudes near 2 mHz, as both

predict the survival of modes near this frequency. Therefore, either the observations made by Gaulme et al. (2011)

were made during a period over which the ∼ 2 mHz modes were being temporarily damped, energy equipartition
does not favor modes of this frequency, or the Jovian quality factor is more complex than we think. A clearer picture

of mode survival is illustrated in Figure 6. It is clear that due to the stochastic nature of mode excitation and de-

excitation from moist convection, there are periods in which mode amplitudes are suppressed, or even drop to zero,

thereby lending credibility to the idea that Gaulme et al. (2011) observed Jupiter during a period over which the ∼ 2
mHz modes were being temporarily damped.

Table 3 lists the simulations with the most promising results for achieving theoretical mode energies and amplitudes
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for each of the four cases. The simulations that produce results which agree with theoretical estimates are highlighted

in green. Assuming that moist convection is solely responsible for driving Jovian modes, we find the kinetic energies

available as calculated from our cloud models insufficient to do so. There are several possible reasons for this:

• The quality factor on Jupiter is actually much higher than previously thought. A much greater Q would prevent
modes from decaying as quickly. However, a quality factor greater than 105 is unlikely to have much of an effect

on mode survival as can be seen in Figure 6. It is actually the destructive interference of storm excitation and

the current mode phase that is responsible for temporarily driving the mode energies down to zero. Q is large

enough that little energy is lost between storms, and feasible as shown by Stevenson (1983).

• Not all the excitation energy for Jovian oscillations comes from moist convection. That is, a secondary or even

tertiary energy source could also contribute to the modes. Turbulent convection, albeit at a much lower energy

scale than the sun, does still exist within Jupiter, possibly also contributing to mode excitation. If a secondary
excitation source does exist, however, it must be located near the surface of Jupiter as the inertia becomes

increasing difficult to overcome at decreasing radii.

• We may lack proper understanding of energy equipartition. Perhaps more or less energy is allocated to the modes
or there is some mechanism that preferentially favors the excitement of some modes over others, such as in the

observed case of 2 mHz suppression by Gaulme et al. (2011).

• The energy from the storms is underestimated. It is certainly possible that our cloud models lack a key source
of energy associated with them that could also be transferred to the modes, including thermal energy.

• Our harmonic oscillation code may be overly simplistic and therefore is a poor representation of the complex

interaction between moist convection and the oscillations. To better understand exactly how energy is transferred
to the modes, one would need a simulation that accounts for Jovian atmospheric microphysics.

Finally, if we allow for mode excitation to be a byproduct of more storm energy than just kinetic, our simulations

predict that it is in fact the largest, most energetic storms responsible for driving Jovian modes. This can be inferred

in two ways. First, it can be seen in Figure 6 that mode growth is not indefinite. Due to the stochastic nature of
the excitation and de-excitation, the energy in a particular mode is likely to return to zero at times. As such, little

energy input from small storms cannot slowly drive up mode energies to theoretical estimates, even for a large quality

factor. The second way this can be inferred is from the simulations in Case 4. Using a distribution of storm sizes to

excite the modes, theoretical estimates can only be achieved if the standard deviation of the distribution extends into

high enough storm energies. This tells us that if we want to achieve highly energetic modes, we need highly energetic
storms. This could be excellent news when trying to explain mode excitation on Saturn, as it has extremely large

quasi-periodic moist convective storms (Li & Ingersoll 2015).

7.1. Water Abundance on Jupiter

As a final note, it is worth examining the assumption made in Section 3 regarding the water abundance on Jupiter.

Although we do not quantitatively examine the effect of a varying atmospheric water abundance, an abundance
variation does indeed affect the moist convective process and therefore our results. If the water abundance in Jupiter’s

atmosphere is decreased, the water cloud base would form at a lower pressure. For example, if the water abundance

were 1 percent that of solar as suggested by Bjoraker (1985), the cloud base would form around 2.5 bars of pressure

(Stoker 1986). This would result in lower cloud column momentum, and thus less kinetic energy available to drive
oscillations.

Conversely, if the water abundance is greater than three times solar we would expect to see more energy available to

the modes for reasons opposite that described above, until an enrichment of 9.9 times solar is reached. Leconte et al.

(2017) and Guillot (1995) show that for a water enrichment greater than 9.9 times solar, the atmosphere becomes

more stabilized against convection, thereby inhibiting storms. The result is a more time-dependent moist convection.
Although this may explain the quasi-periodic nature of Saturn’s moist convective storms as described in Li & Ingersoll

(2015), Jupiter’s moist convection is more stochastic, thereby limiting the water abundance estimate to no more than

10 times solar. Since we assumed an enrichment of 3 times solar for this work and the range of Jupiter’s water

abundance is approximately limited between 1 and 10 times solar, it is safe to say that the kinetic energy available to
modes from moist convection is on the conservative estimate of the water abundance spectrum, thereby making it more

likely that moist convection can indeed drive Jupiter’s oscillations. We did not run simulations with a varying water
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Table 3. Summary of selected results. The Case corresponds to the simulation cases in Section 6, Q is the quality factor
(D=frequency Dependent, I=frequency Independent), tstorm is the duration of the storm, Pstorm is the power in the storm,
SEmin and SEmax are the minimum storm energy and 3 sigma maximum storm energy in the storm Gaussian energy distribution,
respectively, SA is the maximum cumulative surface amplitude of Jupiter from all modes, and E is the maximum energy in the
l = 0 n = 1 mode. For Cases 1 and 2, tload is 1-2 days.

Case Q tstorm (min) Pstorm (erg/s) SEmin (erg) SEmax (erg) SA (m) E (1026 erg)

1 D 135 1018 N/A N/A 0.105 2×10−5

1 I 135 1018 N/A N/A 0.053 1.5×10−5

2 D 45 3.24×1022 N/A N/A 7.3 0.14

2 I 45 3.24×1022 N/A N/A 4.1 0.09

3 I 45 3.76×1025 N/A N/A 775 3500

3 D 45 3.76×1025 N/A N/A 1600 6000

3 I 45 5.79×1022 N/A N/A 31 5.5

3 D 45 5.79×1022 N/A N/A 63 10

4 D 45 N/A 8.1×1020 1.35×1026 7.6 0.15

4 I 45 N/A 8.1×1020 1.35×1026 3.8 0.06

4 I 45 N/A 8.1×1022 1.35×1028 38 8

4 I 45 N/A 8.1×1022 1.35×1028 41 8.1

abundance as the kinetic energy is so low relative to the storm energy observed by Gierasch et al. (2000) that even

an increase of an order of magnitude of available kinetic energy would still fall short of the required mode excitation

energy.

8. CONCLUSIONS

Here we have shown that moist convection does not have enough kinetic energy in the rising cloud columns to im-

mediately excite Jovian oscillations to predicted levels of energy and surface amplitude. Therefore, if moist convection

is truly the excitation mechanism responsible for driving Jupiter’s modes, the modes must, at minimum, be excited

stochastically by moist convective storms such that the storms can continually provide energy to the modes. However,
even with stochastic excitation, we find that our storm cloud column models cannot provide enough kinetic energy to

achieve theoretical mode energies and amplitudes regardless of quality factor and regardless of the time between storm

excitations. The modes can be sustained at theoretical energies, however, given a supply of 5 × 1027 to 1028 erg per

day. We find that from the observations of Gierasch et al. (2000), there is more energy in Jupiter’s large storms than

the theoretical mode energy estimates. Therefore, should moist convection truly be responsible for mode excitation,
then this is indicative of more storm energy being available to the modes than previously thought.

We also find that the frequency dependent and independent quality factors can both reproduce similar energies in

the low frequency modes (around 1 mHz) but both fail to reproduce the damped modes around 2 mHz as observed by

Gaulme et al. (2011). Yet, those observations could have been recorded at a time in which the 2 mHz modes happened
to be temporarily damped by the moist convection, or energy equipartition simply does not favor those frequencies.

Finally, we find it is the largest storms with the largest energies that are primarily responsible for mode excitation.

If the required mode energy did come from the kinetic energy in rising cloud columns, and if storms with a cloud

column radius of 1 km are instead responsible, it would require the average existence of one column per 6423 km2 on

Jupiter at any given moment. Currently no observations exist to support this hypothesis, however given that columns
of this size would only rise to 3 bars of atmospheric pressure or less, they may not be able to be directly observed at all.

Similarly, for the case of storms comprised of 200 cloud columns, each with a 25 km radius, theoretical mode estimates

would require ∼ 43 of these storms to erupt per day, something inconsistent and far more frequent than Hueso et al.

(2002) and Gierasch et al. (2000) would suggest. Overall, it appears that moist convection is not responsible for driving
Jovian oscillations, unless more storm energy other than just the kinetic in the rising cloud column is available to the

modes.
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