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Why are periodic erythrocytic diseases so rare
in humans?

Abstract Many studies have shown that periodic erythrocytic (red blood cell linked) diseases are
extremely rare in humans. To explain this observation, we develop here a simple model of ery-
thropoiesis in mammals and investigate its stability in the parameter space. A bifurcation analysis
enables us to sketch stability diagrams in the plane of key parameters. Contrary to some other
mammal species such as rabbits, mice or dogs, we show that human specific parameter values pre-
vent periodic oscillations of red blood cells levels. In other words, human erythropoiesis seems to
lie in a region of parameter space where oscillations exclusively concerning red blood cells cannot
appear. Further mathematical analysis show that periodic oscillations of red blood cells levels are
highly unusual and if exist, might only be due to an abnormally high erythrocytes destruction rate or
to an abnormal hematopoietic stem cell commitment into the erythrocytic lineage. We also propose
numerical results only for an improved version of our approach in order to give a more realistic
but more complex approach of our problem.
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1 Introduction

A medullar enigma : why are cyclic diseases exclusively concerning human erythrocytes
so rare?
Erythropoiesis, along with leukopoiesis and thrombopoiesis, are subparts of hematopoiesis which ac-
counts for the medullar production and regulation of the three blood cell types : red blood cells or
erythrocytes, white blood cells or leukocytes and platelets or thrombocytes.
In some hematopoietic disorders labeled as dynamical hematological diseases by Mackey and Glass
(1977), blood cell production operates in a region of physiological parameters that leads to pathologi-
cal behavior and abnormalities in blood cell counts. Such physiological behavior would originate either
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from bone marrow defects or from peripheral origins (Haurie et al., 1998). Disregarding the causes, pe-
riodic oscillations in blood cell levels can appear and result in a so called cyclic hematological disorder.
The occurrence of such periodic fluctuations specific to hematopoietic stem cells (HSC), leukocytes
and thrombocytes has been clearly established and documented (for reviews see e.g. Reimann, 1971;
Haurie et al., 1998; Foley and Mackey, 2009). Famous examples of periodic hematological disorders
are cyclical neutropenia (see e.g. Dale and Hammond, 1988), periodic chronic myelogenous leukemia
(see e.g. Morley et al., 1967) and cyclic thrombocytopenia (see e.g. Fontenele et al., 2015). However,
when regarding erythropoiesis, rare oscillations of some erythrocytic cell types have effectively been
reported, but the situation seems different. Actually, these oscillations are often coupled either with
oscillations from other blood cell lineages (see e.g. Morley, 1969, 1979) or with cyclic syndromes such
as periodic auto immune hemolytic anemia (Ranløv and Videbæk, 1963; Meyer et al., 1978; Björkholm
et al., 1982). These situations indicate that periodic erythrocytic oscillations originate either from the
hematopoietic stem cell population, impacting then all the lineages (see e.g. Haurie et al., 1998) or
from the periodic occurrence of a syndrome. Interestingly, specific only erythropoiesis cyclic fluctu-
ations have rarely been documented. It has only been reported for few cases in animals : clinically
observed in dogs (Morley and Stohlman, 1969) and experimentally induced in rabbits and mice (Orr
et al., 1968; Gurney et al., 1981; Gibson et al., 1984, 1985). Even rarer in humans, it has only been
reported in a young patient with pure red cell aplasia (Gordon and Varadi, 1962) with very long
periods (between three to five months). One can thus be surprised by such exceptional and unusual
observations.
In this work, we attempt then to explain this through a simple model of erythropoiesis.
How to choose a simple but relevant model?
Many models of hematopoiesis already exist (see e.g. Pujo-Menjouet, 2016) some may deal with the
production and regulation of one single hematopoietic lineage (see e.g. Craig et al., 2016; Langlois
et al., 2017) while others focus on the hematopoietic stem cell population (see e.g. Mackey, 1978,
2001; Pujo-Menjouet et al., 2005; Adimy et al., 2005, 2006). Blood cell production is believed to
involves delays due to maturation, proliferation and feedback processes and requires thus the use of
delay differential equations (DDE) (see e.g. Mackey and Glass, 1977; Foley and Mackey, 2009). Some
models, although carefully designed use DDEs without mathematically deriving the appearance of
delays (see e.g. Loeffler et al., 1989; Ramakrishnan et al., 2004; Woo et al., 2006; Krzyzanski et al.,
2008), while age-structured models, such as Fuertinger et al. (2013), composed of partial differential
equations (PDEs) of transport type allow clear mathematical derivation of DDEs thanks to an integra-
tion with respect to the structure variables (see e.g. Banks et al., 2004) and the use of the methods of
characteristics. Many models have already been developed to account for some periodic hematological
disorders (for a detailed review see Foley and Mackey, 2009). In this present work, we focus on cyclic
erythropoiesis and design a model to explain this rarely observed disorder. To that purpose, we take
advantage of relevant erythropoiesis mice, dogs and rabbit models (Bélair et al., 1995; Mahaffy et al.,
1998; Fuertinger et al., 2013) and mathematical analysis specific to DDEs (Beretta and Kuang, 2002;
Adimy et al., 2005; Crauste, 2010; Boullu et al., 2019a) Changes on parameter values accounting for
the cyclic erythropoiesis have been well described: among these changes, one can note an increase of
the hematopoietic stem cells apoptosis rate (Mackey, 1997) (mice and dogs) or a death rate amplifica-
tion of mature red blood cells in the case of induced auto immune hemolytic anemia (Mackey, 1979)
(rabbits). However, erythrocyte periodic oscillations specific to humans have been poorly investigated.
Our approach is based on the work of Mackey (1979). In Section 2, we set up an updated erythropoiesis
model and, in Section 3, prove its well-posedness. Section 4 is dedicated to the analysis of the
asymptotic behavior with respect to the variation of four parameters. In Section 5, we apply our
model to the occurrence of periodic oscillations for rabbits and humans. Then, in Section 6, we detail
further improvement and suggestions. We conclude this paper with a discussion in Section 7.
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2 Erythropoiesis Modeling

2.1 Red blood cell production, destruction and regulation

Before designing our model, let us briefly remind the biological background. The process begins with
a pool of pluripotent myeloid hematopoietic stem cell able to self-renew or differentiate into three
different hematopoietic lineages (erythrocytic, megakaryocytic and granulocytic). The irreversible
commitment into the erythrocytic lineage leads to committed erythroid progenitor cells called Burst
Forming Unit Erythroid (BFU-E) and the rapidly dividing Colony Forming Unit Erythroid (CFU-E).
Under normal conditions in humans, cells stay in these two stages for about 13 to 14 days while
they differentiate and divide (about five to seven times). Further differentiation leads the second
identifiable compartment of erythroid precursors called normoblasts or erythroblasts with four to five
more divisions. It takes approximately five days (Beutler et al., 2001; Doig, 2015) for these cells to lose
their nucleus and become marrow reticulocytes and leave the bone marrow - in 1 to 2 days - to reach
the peripheral blood. During the transit in the bone marrow - from the proerythroblast to reticulocyte
stages - hemoglobin is synthesized.
However red blood cells are continuously destroyed due to intra or extra vascular processes occurring
both in normal and pathological situations.
To maintain essential life functions, these losses have to be permanently compensated for. Erythrocytes
production must be carefully regulated. This regulation is mainly performed by erythropoietin (EPO)
: an hormone essentially produced in kidneys. In normal physiological conditions, thanks to O2 sensors
in kidneys, EPO production is negatively regulated by the O2 level of blood. Consequently, the total
number of erythrocytes is in negative feedback with EPO concentrations. Erythropoiesis is thus a
complex controlled system which should ensure that the red blood cell count and hemoglobin level
stay within narrow limits. For instance, in humans, hemoglobin concentration should steadily remain,
without abrupt changes, within 11.5 and 13.5 g.dL−1 which corresponds roughly to an interval of
3×1011 to 4.5×1011 red blood cells for each kilogram of body weight. Abnormally low (anemia), high
(absolute polycythemia) or oscillating levels of hemoglobin are harmful and health could be greatly
impaired.

2.2 Erythropoiesis Model

Our new model is based on biological updates illustrated in Fig. 1 with parameters specified in Table 1.

2.2.1 Bone marrow cell compartment

Our erythropoiesis model begins with the compartment of the maturing and differentiating bone
marrow cells. Cells transit in this compartment for a time τ ≥ 0 while some of them die randomly
with a rate δme > 0. This rate accounts both for the apoptosis of erythroid progenitors (essentially of
CFU-E) and for the ineffective erythropoiesis possibly due to iron deficiency (Fuertinger et al., 2013)
which occurs even in normal physiological conditions (Finch et al., 1970; Dinant and Maat, 1978;
Beutler et al., 2001; Lichtman et al., 2006).
Even though EPO normally downregulates erythropoiesis by preventing erythroid progenitor from
apoptosis (see e.g. Koury and Bondurant, 1990; Wu et al., 1995; Doig, 2015) δme is assumed to be
constant for simplification purpose. Insight in the effect of EPO could be seen by a variation of this
parameter investigated in Section 4.2.
Let m(t,a) be the population density of bone marrow cells at time t≥ 0 with the age a ∈ (0 , τ). The
age-structured equation ruling the density m is

∂m

∂t
(t, a) + ∂m

∂a
(t, a) =−δmem(t,a), t≥ 0, a ∈ (0, τ) , (1)
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Figure 1 Erythropoiesis model organized in two aged-structured compartments describing populations
of Bone marrow cells and Red Blood Cells (RBCs). When a cell enters one compartment, its age is
reset to 0. This explains why age is a structured variable. The maximal age a cell spends in the
bone marrow compartment is τ and it is assumed to be +∞ for RBCs (even if it is 120 days, we
assume that this is large enough and very few cells survive after that time, represented by the shaded
dark zone). Population death rates are δme and δe. The amplification parameter A = 2n translates
the n ∈ N mitotic divisions undergone by a single nucleated cell during its development in the bone
marrow. Te represents the mean lifespan of red blood cells and essentially accounts for extravascular
senescence. The kinetics of EPO does not appear explicitly here. Indeed, we consider that the red
blood cell population directly downregulates erythropoiesis. We decide to model this downregulation
through a negative feedback of the total red blood cell population - E - over the cell influx K(E)
coming from the Hematopoietic Stem Cell population.
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Table 1 Signification and possible values of model parameters. Possible values are either exact or
approximated values from literature. References are specified as numbers for concision: 1: Jandl
(1987), 2: Beutler et al. (2001), 3: Beutler et al. (2001), 4: Lichtman et al. (2006), 5: Lodish et al.
(2010), 6: Fuertinger et al. (2013), 7: Doig (2015), 8: Rogg et al. (2019), 9: Butina (2020), 10: Erslev
(1997), 11: Mackey (1979), 12: Crauste et al. (2008), 13: Myssina et al. (2003), 14: Dou et al. (2012),
15: Sato et al. (2012), 16: Ma et al. (2017), 17: Bélair et al. (1995), 18: Greer et al. (2003), 19:
Mackey (2001), 20: Finch (1982), 21: Goodnough (2002)

Name Signification Possible values Units References

τ Bone marrow tran-
sit time

[14 , 22] days 1, 2, 3, 4, 5,
6, 7, 8, 9

δme Death rate of bone
marrow cells

[0,1 , 1] day−1 3,4,6,8,10

δe Death rate of RBCs [0,01 , 0,04] day−1 4, 6, 11, 12
Te Mean lifespan of

RBCs
[60 , 120] days 1, 4, 6, 13,

14, 15, 16
δe,b Auxiliary death

rate
[0,001 , 0,01] day−1 2, 6, 7, 17

n &
A =
2n

Number of mitotic
divisions & amplifi-
cation parameter

[5 , 11] - 2, 6, 7, 9, 18

Kc Basal influx of
HSCs

[107 , 5.109] cells.kg−1.day−1 Estimated
from 6, 11,
12, 17, 19

α Supplementary in-
flux of HSCs

[3Kc , 6Kc] cells.kg−1.day−1 Estimated 6,
12, 17, 20, 21

β RBC quantity to
reach HSCs median
influx.

[
1011 , 1012] cells.kg−1 Estimated

from 6, 12,
17

q Hill function “sensi-
tivity” parameter

- - Arbitrary
and inspired
from 11, 12,
17
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and the total population of bone marrow cells is given by

M(t) =
∫ τ

0
m(t,a)da.

This compartment is supplied with a cell flux K coming from a pool of hematopoietic stem cells
whose population dynamic is not modeled here. Recent works of Grover et al. (2014) and Singh et al.
(2018) seem to indicate that EPO stimulates the commitment of hematopoietic stem cells into the
erythrocytic lineage. Even though this idea remains to be investigated, we decide, for simplicity, to
only take this feedback process into account. Moreover, as mentioned in Section 2.1, EPO is negatively
regulated by the total number of red blood cells. Indeed, to simplify, we assume that feedback reactions
are fast compared to other physiological mechanism. It enables us not to model the kinetic of EPO.
All things considered, we model the supply of bone marrow cells K(·) as a decreasing function of the
total population of red blood cells - E - such that :

K(E) =Kc+ α

1 +
(
E
β

)q , (2)

where Kc ≥ 0 represents the basal cell flux of hematopoietic stem cells when the total number of red
blood cells is large (E→+∞). Parameter α> 0 stands for the supplementary influx due to a decrease
in red blood cell population (E→ 0), while β > 0 is the total number of red blood cells corresponding
to the median flux Kc+ α

2 and q≥ 1 is the Hill coefficient characterizing how fast is the change between
erythrocytes number and hematopoietic stem cells commitment. It is difficult to find the value of these
parameters in the literature. Thus, as in numerous modeling works (see e.g. Mackey, 1979; Fuertinger
et al., 2013), we set them accordingly to the fact that erythropoiesis is expected to increase about
three to fivefold (Finch, 1982; Goodnough, 2002). Consequently, we assume that α ∈ [3Kc , 6Kc]. The
boundary condition of this compartment is then given by

m(t,0) =K(E(t)) , t≥ 0. (3)

Additionally, while going through this compartment, a single cell undergoes n mitotic divisions. In
our model, we take this amplification into account at the end the bone marrow cells compartment
where we assume that the cell density m(t,τ) is amplified by a factor A= 2n before entering the blood
circulatory compartment.

2.2.2 Red Blood Cell compartment

The model ends with the compartment of the red blood cells which describes the population of cells
who lie in the peripheral blood that is peripheral blood reticulocytes and erythrocytes.
Red blood cell degradation is crucial in erythropoiesis and involves different complex processes. It is
thus important to model erythrocyte destruction carefully. To do so, we analyzed numerous different
erythropoiesis models (see e.g. Bélair et al., 1995; Mahaffy et al., 1998; Fuertinger et al., 2013). We
decided, for the sake of simplicity, to model erythrocytes removal by a non specific death rate δe > 0
that accounts for every cause of death. Doing so, selective removal of senescent red blood cells is not
modeled in detail but we still try to keep a relevant biological model by expressing δe such that :

δe = ln3
Te

+ δe,b (4)

where Te is the mean lifespan of erythrocytes and ln3
Te

accounts for senescence. Thus ln(3)/Te ensures
that at least two thirds of the RBCs that entered the compartment at time t have been destroyed a
time Te > 0 thereafter. The term δe,b is an auxiliary death rate, usually smaller than ln3

Te
, that accounts

for cell destruction processes different from senescence (due to infrequent intravascular hemolysis or
blood losses). With this assumption, the age of cells can possibly go until infinity even though a large
majority has been destroyed at age Te.
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All things considered, if e(t,a) is the population red cells density at time t ≥ 0 with age a > 0, the
age-structured equation of transport ruling its dynamics is given by

∂e

∂t
(t, a) + ∂e

∂a
(t, a) =−δee(t,a), t≥ 0, a > 0, (5)

and the total population is given by

E(t) =
∫ +∞

0
e(t,a)da,

with the boundary condition
e(t,0) =Am(t,τ). (6)

Using the framework of Eq. (5) and the classical methods of characteristics, we obtain that at long
times, if t > Te, the number of cells entering the compartment at time t−Te and who survived Te days
later is such that

e(t,Te) = e(t−Te,0)e−δeTe .

From this expression and Eq. (4), we see that the term ln3
Te

effectively models senescence. It ensures
that at least two thirds of the red blood cells that entered the compartment at time t have been
destroyed a time Te > 0 thereafter:

e(t,Te)≤
2
3e(t−Te,0) .

3 Reduction of the model

Assuming that the solutions are smooth enough, we integrate the equations (1) and (5) over the age
variable and we take into account their associated boundary conditions (3) and (6). It simply leads
to the following system of differential equations if t≥ 0:

M ′(t) =−m(t,τ) +K(E(t))− δmeM(t),
E′(t) =−δeE(t) +Am(t,τ),

whose short time dynamics (not mentioned here) is easily solved with the knowledge of initial popu-
lation densities and initial conditions given by

M(0) =M0 =
∫ τ

0
m(0,a)da, E(0) = E0 =

∫ +∞

0
e(0,a)da.

We simply focus on the long time dynamics, for t≥ τ . Thanks to the classical method of characteristics
and the boundary condition (3), we obtain

m(t,τ) =m(t− τ,0)e−δmeτ =K(E(t− τ))e−δmeτ

from which we deduce

M ′(t) =−K(E(t− τ))e−δmeτ +K(E(t))− δmeM(t), if t≥ τ .

Hence, the dynamics of the red blood cell population E entirely rules the dynamics of the bone marrow
cell population M as follows

M(t) =
∫ τ

0
K(E(t−u))e−δmeudu.

All in all, the time behavior of the model relies on the equation ruling the erythrocyte population
dynamics

E′(t) =−δeE(t) +AK(E(t− τ))e−τδme . (7)
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We want to study its steady states. They verify

δeE =Ae−τδmeK(E), E ≥ 0. (8)

Due to the variation of K, Eq. (8) has a unique solution and Eq. (7) consequently admits a unique
equilibrium E∗ > 0. These elements and the implicit function theorem enable us to state the following
Proposition.

Proposition 3.1. Eq. (7) admits a unique positive equilibrium E∗ which satisfies

δeE
∗ =Ae−τδmeK(E∗) =Ae−τδme

Kc+ α

1 +
(
E∗

β

)q
 , (9)

and consequently verifies
Ae−τδmeKc

δe
≤ E∗ ≤ Ae−τδme(Kc+α)

δe
.

Moreover, E∗ is a continuously differentiable function with respect to all parameters. It is especially
decreasing with respect to δe, δme and τ and increasing with respect to Kc.
The associated bone marrow population M∗ > 0 is also unique and verifies

M∗ = K(E∗)[1− e−τδme ]
δme

.

The derivatives of E∗ with respect to τ , δe, Kc and δme are detailed in Appendix 2.

Remark 1. Solving Eq. (1) and Eq. (5) along with the stationary condition and

E∗ =
∫ +∞

0
e∗(a)da,

gives the stationary population densities - m∗ and e∗ - associated to the equilibrium (M∗ , E∗) :

m∗(a) =K(E∗)e−δmea, a ∈ [0 , τ ] ,
e∗(a) =Ae−τδmeK(E∗)e−δea = δeE

∗e−δea, a ∈ [0 ,+∞) . (10)

4 Local asymptotic stability of the steady state

Let us now perform a local asymptotic stability analysis of Eq. (7) near its unique equilibrium E∗

and obtain a classical characteristic equation (Section 4.1). Analyzing the roots of this equation
enables us to investigate the stability of E∗ in the space of parameters (Section 4.2). We especially
focus on τ , δe, Kc and δme and show that - under some conditions - periodic solutions may appear
and potentially through a Hopf bifurcation. Stability diagrams in the space of parameters as well
as example trajectories were drawn using MATLAB and the function dde23 (Shampine and Thompson,
2001).

4.1 Linearization about the equilibrium

After a simple translation of the time variable, Eq. (7) is linearized about its unique steady state
E∗ > 0 and gives

z′(t) =−δez(t)−Lz(t− τ), t≥ 0, (11)
where

L= −Ae−τδme ∂K
∂E

(E∗),

= q
Ae−τδme

β

(
E∗

β

)q−1 α(
1 +

(
E∗

β

)q)2 ,
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is strictly positive and continuously differentiable with respect to all the parameters. Its corresponding
derivatives with respect to τ , δe, Kc and δme are detailed in Appendix 2.
Every solution of Eq. (11) can be decomposed as an infinite linear combination of eigenfunctions of
the form zλ : t 7→ exp(λt) associated to the eigenvalue λ ∈ C. Introducing the expression of zλ into
Eq. (11), leads to the characteristic equation of Eq. (7) linearized about E∗ :

λ+ δe+Le−λτ = 0, λ ∈ C. (12)

This equation being transcendental, determining the position in the complex plane of its roots λ∈C is
tricky. To study it, we begin with the formulation of a sufficient stability condition for the equilibrium
E∗.
Proposition 4.1 (Hayes (1950)). If τ = 0 or L≤ δe then all roots of Eq. (12) have negative real parts.

The proof of this proposition is mentioned in Appendix 1. Keeping in mind that L is an implicit
function of model parameters, the latter condition enables us to identify regions in parameter space
where E∗ is locally asymptotically stable.
Actually, as long as model parameters vary while satisfying Proposition 4.1, E∗ is stable and stability
switches cannot occur. However, when Proposition 4.1 does not hold anymore, solution dynamics is
unknown.
In the following, we investigate the local asymptotic stability of E∗ when model parameters do not
verify Proposition 4.1. We wish to identify the boundaries in parameter space where stability switches
could occur due to a variation of one of the model parameters -such as τ , δe, δme or Kc- all the others
being fixed by using techniques of Beretta and Kuang (2002); Adimy et al. (2005, 2006); Adimy and
Crauste (2007, 2012) and Boullu et al. (2019a,b).

4.2 Local stability with respect to parameter variations

Denote by ψ ∈ P one of the parameters among δe, Kc, δme, or τ . P is the set of possible values for
the chosen parameter ψ (the only one to be varied, other parameters being fixed to given values). For
the sake of simplicity, in this section we only explicit the dependence with respect to the parameter
ψ. First, we define the set

Π = {ψ ∈ P | 0< δe < L(ψ)} ,
gathering all possible values of the parameter ψ for which Proposition 4.1 is not verified (assuming
that τ > 0). We subsequently simply obtain:
Corollary 4.1. If ψ /∈ Π then all roots λ ∈ C of Eq. (12) have negative real parts and E∗(ψ) is thus
locally asymptotically stable.

All other parameters being fixed, the set Π consequently defines the set of parameter values in which
stability switches could occur. From the variations of L with respect to ψ, we identify sufficient
conditions ensuring the existence of Π and enabling to give it a more explicit form.
In this work, we studied the effect of δe, Kc, δme and τ on the local asymptotic stability of E∗. We
thus established the variations of L with respect to each of these parameters thanks to its derivatives.
We obtained the following properties:

(i) For ψ = δe, we note Π = J and obtain:
Proposition 4.2. J 6= ∅ if and only if

α

Kc
>

4q
(q−1)2 .

In this case,
J = (δe,min , δe,max)

where δe,min < δe,max are uniquely defined such that L(δe,max) = L(δe,min) = δe and L(δe) ≥ δe
for all δe ∈ [δe,min, δe,max].
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(ii) For ψ =Kc, we note Π =K and obtain:
Proposition 4.3. If

4q
q2−1

(
q−1
q+ 1

) 1
q

<
Aαe−τδme

βδe
≤
(
q−1
q+ 1

) 1
q

, (13)

then K 6= ∅ et K⊂ [0 , Kc,max) where Kc,max ∈
[
K̃c ,+∞

)
is defined such that L(Kc,max) = δe and

L(Kc)> δe for all Kc ∈K∩ [0 , Kc,max). Furthermore, if L(Kc = 0)≤ δe then we uniquely define
Kc,min and Kc,max such that Kc,min <Kc,max and

K = (Kc,min , Kc,max) .

(iii) For ψ = δme, we note Π =D and obtain:
Proposition 4.4. If

AKc

δe
> β (14)

and
(q−1)α

2Kc
> 1 +

√
1 + α

Kc
, (15)

then
D = (δme,min , δme,max) ,

where δme,min<δme,max are uniquely defined such that L(δme,max) =L(δme,min) = δe and L(δme)≥
δe for all δme ∈ [δme,min , δme,max].

(iv) For ψ = τ , we note Π = I and obtain:
Proposition 4.5. If the conditions (14) and (15) hold then I 6= ∅ and there exists a unique τmax ∈
[τ̃ ,+∞) such that L(τmax) = δe and L(τ)> δe for all τ ∈ I ∩ [0 , τmax), such that I ⊂ [0 , τmax).
Furthermore, if L(τ = 0)≤ δe then we uniquely define τmin ∈ [0 , τ̃ ] such that L(τmin) = δe and

I = (τmin , τmax) .

Thus, we identified sufficient conditions ensuring that Π 6= ∅ and that P\Π 6= ∅. In other words, if
these conditions hold, then there exist some values ψ ∈ P\Π for which E∗(ψ) is stable (Corollary 4.1)
and other values ψ ∈ Π for which stability switch can occur (the local stability of E∗ is unknown for
these values). The following proposition is adapted from Theorem 2.1 and 3.1 of Beretta and Kuang
(2002).
Proposition 4.6. Assume that model parameters (different from ψ) are fixed and such that Π 6= ∅.
The characteristic equation (12) admits a pair of simple conjugate purely imaginary roots ±iω(ψ∗) in
ψ∗ ∈Π with

ω(ψ∗) =
√
L(ψ∗)2− δ2

e , (16)
if and only if there exists k ∈ N such that z(ψ∗,k) = 0 with

z(ψ,k) = τ −
arctan

(
−
√
L(ψ)2−δ2

e

δe

)
+ (2k+ 1)π√

L(ψ)2− δ2
e

, (ψ,k) ∈Π×N. (17)

Moreover, when a boundary value ψ∗ ∈Π exists and is reached due to a variation of ψ, its associated
pair of simple conjugate purely imaginary roots cross the imaginary axis - possibly inducing a stability
switch - from left to right if ∆(ψ∗)> 0 and from right to left if ∆(ψ∗)< 0 where

∆(ψ∗) = sign
{d(Reλ)

dψ (ψ∗)
}
.
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This Proposition is proven in Appendix 3.

Remark 2. For given parameter values under which Π 6= ∅, a stability switch is possible only if there
exists k ∈ N such that z(·,k) vanish at least one time.

Remark 3. When the chosen parameter varies from a value ψs /∈Π for which E∗(ψs) is stable, a Hopf
bifurcation must occur at the first boundary value ψ∗h = min{ψ∗ | there exists k ∈ N such that z(ψ∗,k) = 0}
if the transversality condition d(Reλ)

dψ (ψ∗h) 6= 0 is verified.

Explicit form of d(Reλ)
dψ is obtained by differentiating the characteristic equation (12) following the

branch of roots λ(ψ) defined such that λ(ψ∗) = iω(ψ∗) = i
√
L(ψ∗)2− δ2

e . After some computations,
one obtains :

d(Reλ)
dδe

(δ∗e) = ∂L

∂δe
(δ∗e)

sin(ω(δ∗e)τ)ω(δ∗e)τ − cos(ω(δ∗e)τ)(1 + τδ∗e)
(1 + τδ∗e)2 + (ω(δ∗e)τ)2

− (1 + τδ∗e)
(1 + τδ∗e)2 + (ω(δ∗e)τ)2 ,

d(Reλ)
dKc

(K∗c ) = ∂L

∂Kc
(K∗c )sin(ω(K∗c )τ)ω(K∗c )τ − (1 + τδe)cos(ω(K∗c )τ)

(1 + τδe)2 + (ω(K∗c )τ)2 ,

d(Reλ)
dδme

(δ∗me) = ∂L

∂δme
(δ∗me)

sin(ω(δ∗me)τ)ω(δ∗me)τ − cos(ω(δ∗me)τ)(1 + τδe)
(1 + τδe)2 + (ω(δ∗me)τ)2 ,

d(Reλ)
dτ (τ∗) = ∂L

∂τ
(τ∗) ω(τ∗)3τ∗ sin(ω(τ∗)τ∗)

(1 + τ∗δe)2 + (ω(τ∗)τ∗)2

− cos(ω(τ∗)τ∗)(1 + τ∗δe)
(1 + τ∗δe)2 + (ω(τ∗)τ∗)2 .

In Fig. 2 and Fig. 3, we display stability diagrams in the (τ , δe)-plane (Fig. 2a and Fig. 3c), in the
(Kc , δe)-plane (Fig. 2c) and in the (δe , δme)-plane (Fig. 3a) as well as example trajectories (Fig. 2b,
Fig. 2d, Fig. 3b and Fig. 3d) corresponding to values specified by crosses (respectively in Figs. 2a,
2c, 3a and 3c). The parameters used to obtain these plots are set to values mentioned in Table 2.
In Fig. 2d, Fig. 3b and Fig. 3d the red blood cell death rate is set to an arbitrary unrealistic value
δe = 0,07 day−1 for illustrative purpose.
Note. Asymptotic solutions turned out to be independent from initial conditions and densities. We
thus arbitrarily decided to compute each trajectories showed in Fig. 3d, Fig. 2b, Fig. 2d and Fig. 3b
with an initial condition and densities corresponding to 80% of the associated steady state specified
by parameter values.

5 Application to periodic oscillations of erythrocytes

Let us first apply our model to experiments carried out on rabbits (Section 5.1) and check that our
model is able to accurately describe periodic oscillations specific to the erythrocytic lineage.

5.1 In rabbits

We further assess the relevance of our model by comparing its output with experimental measurements
of Orr et al. (1968). In their study, the authors regularly administrated (every 2 or 3 days) red blood
cell antibodies to rabbits and consequently induced an immune hemolytic anemia. In the subject pre-
sented in the figure 4 of Orr et al. (1968), we observe reticulocyte and hemoglobin oscillations around
75 per cent of the normal level with a period of 16 to 17 days and an amplitude of approximately
10%. To compare our modeling with these experimental results, we carefully choose model parameters
displayed in Table 3. To do so, we follow experimental observations and statements of Orr et al. (1968)
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Figure 2 On the left panel: stability diagrams where boundary parameters ((a) ψ∗ = δ∗e for red blood
cell death rate, (c) ψ∗=K∗c for hematopoietic stem cells influx) are specified by dashed (d(Reλ)

dψ (ψ∗)< 0)
or full (d(Reλ)

dψ (ψ∗)> 0) lines. The gray zone corresponds to a biologically relevant area. On the right
panel: illustrative trajectories associated to different erythrocyte death rate ((b) for values indicated
by a cross in (a)) or different hematopoietic stem cells influx ((d) for values in cells.kg−1.day−1

indicated by crosses in (c)). The parameters used to obtain these plots are specified in Table 2.
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Figure 3 On the left panel: stability diagrams where boundary parameters ((a) ψ∗ = δ∗me for bone
marrow cells death rate; (c) ψ∗ = τ∗ for bone marrow cells transit time) are specified by dashed
(d(Reλ)

dψ (ψ∗) < 0) or full (d(Reλ)
dψ (ψ∗) > 0) lines. They gray zone corresponds to a biologically relevant

area. On the right panel: illustrative trajectories associated to example bone marrow cells death rates
((b) for values indicated by crosses in (a)) or example bone morrow transit time ((d) for values
indicated by crosses in (c)). The parameters used to obtain these plots are specified in Table 2
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Table 2 Summary of model parameter values used in numeric simulations. Exact or approximated
values from literature are used for ranges

Parameter Value assigned Range Unit

τ 19 or varying (only in
Figs. 3c, 3d)

[14 , 21] days

δme 0,22 or varying (only in
Figs. 3a, 3b)

[0,1 , 1] day−1

δe 0,07 or varying (only in
Fig. 2a, 2b)

[0,01 , 0,03] day−1

Te Not assigned [40 , 120] days
δe,b Not assigned [0,001 , 0,01] day−1

A= 2n 29 [25 , 211] -
Kc 5.108 or varying (only in

Figs. 2c, 2d)
[107 , 5.109] cells.kg−1.day−1

α 25.108 (= 5Kc excepted
when varying in Figs. 2c,
2d)

[3Kc , 6Kc] cells.kg−1.day−1

β 1,5.1011 approx. 1011 cells.kg−1

q 5 - -

as well as the parameter choice approach of Mackey (1979); Bélair et al. (1995) and Mahaffy et al.
(1998). Firstly, we set the initial red blood cell level to the average normal level for humans (Beutler
et al., 2001): E0 = 3,5× 1011 cells.kg−1. Parameters A, n and Kc are chosen within range observed
in mammals (see e.g. Crauste et al., 2008; Greer et al., 2003). Given the lack of data, we decide
to arbitrarily choose the values of q and α such that the model output present periodic oscillations.
Setting q = 18 and α= 8Kc (it remains in a plausible range) leads to consider that feedback processes
are fast, our choices may thus be unrealistic. Then, we set the value of β such that it verifies the
assertion of Orr et al. (1968) declaring that “a reduction of the average hemoglobin level to about 75
per cent of its normal value has increased differentiation by a factor of at least 5”. We also choose τ
arbitrarily but still in a range of meaningful values. Actually, Orr et al. (1968) wrote: “the time spent
in the erythron cannot be more than 3 days”. However, this ambiguous assertion does not clearly
define which cell stages are designated through the term “erythron”. One especially ignores if BFU-E
and CFU-E are considered or not. Hence, the marrow transit time in our modeling is likely to be
greater than 3 days and the choice of τ = 8 days is plausible. The mean lifespan of erythrocytes is
chosen according to the measurements of Orr et al. (1968), that is Te = 14 days and consequently (see
Eq. (4)) δe = 0,0785 day−1. We adapted the choice of δme in order to obtain a solution who oscillate
around 75 per cent of its normal level. Lastly, the initial erythrocyte death rate δe,0 (and thus red
blood cell lifespan Tgb,0) are imposed by these choices ensuring that the initial equilibrium -E0- is
well defined. We obtain δe,0 = 0,0122 day−1 corresponding to Tgb,0 ' 90 days which is significantly
higher than normal values of 45 to 50 days found in literature (Burwell et al., 1953). Initial population
densities are steady state populations given in Eq. (10) associated to E0.
Positions of the initial situation (normal with δe,0) and the experimental one (induced immune
hemolytic anemia with δe) in the (τ , δe)-plane as well as boundary of stability regions (δ∗e) are illus-
trated in Fig. 4a. The model solution displayed in Fig. 4b periodically oscillates around an unstable
equilibrium of 0,75E0,init with a mean periodicity of 16,9 days and an amplitude of 13,6%. Although
parameter choices impose an unrealistic normal mean lifespan of erythrocyte, our model output is not
far from the observations shown in the figure 4 of Orr et al. (1968). The application to rabbits seems
to support the relevance of our model to describe periodic diseases specific to the erythrocyte lineage
in other species and especially humans.
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Table 3 Parameter values used for model simulation of the immune hemolytic anemia experiment in
rabbits. Exact or approximated values from literature are used for ranges

Parameter Value assigned Range Unit

τ 5 [14 , 21] days
δme 0,2286 [0,1 , 1] day−1

δe 0,0785 or 0,0122 [0,01 , 0,03] day−1

Te 14 or 90,1 [7 , 50] days
δe,b Not assigned [0,001 , 0,01] day−1

n 7 [5 , 11] -
A= 2n 27 [25 , 211] -
Kc 1.108 [107 , 5.109] cells.kg−1.day−1

α 8.108 (= 8Kc) [3Kc , 6Kc] cells.kg−1.day−1

β 2,6283.1011 approx. 1011 cells.kg−1

q 18 - -
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Figure 4 (a) Stability diagram obtained in the framework of Orr et al. (1968) experiment. (b) Model
output E(t)

E0
associated to model parameters specified in Table 3
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5.2 In humans

In Fig. 2 and Fig. 3, we considered the case study of a human subject and paid particular attention
to set fixed parameters to physiologically meaningful values (see Table 2, excepted for δe which has
been set to δe = 0.07 day−1 for illustrative purpose in Fig. 3d, Fig. 2d and Fig. 3b). We only have
uncertainties about the biological relevance of the values taken for Kc, α, β and q. Because of a lack
of clearly referenced data for these parameters, we set them similarly to what is usually done in other
modeling studies specific to erythropoiesis (see e.g. Mackey, 1979; Bélair et al., 1995; Crauste et al.,
2008). Using ranges of parameter values referenced in Table 1, we identify physiologically meaningful
regions of parameter space (which include extreme values seen in some diseases) with coloured areas
in Fig. 3c, Fig. 2a, Fig. 2c and Fig. 3a. It is important to note here that these biologically relevant
regions predominantly lie in regions where E∗ is locally asymptotically stable consequently excluding
the possibility of oscillations under physiologically conceivable conditions. In the case of the variation
of τ , δe and δme (Fig. 3c, Fig. 2a and Fig. 3a), we underline that biologically relevant areas do not
include stability switch boundaries and are thus disjoint from unstable regions. Consequently, it
seems that a variation of these parameters under biologically conceivable conditions is highly unlikely
to lead to periodic fluctuations of red blood cell levels. When it comes to the parameter Kc (basal
influx of hematopoietic stem cells) in Fig. 2c, the interpretation is almost the same excepted that
the biologically relevant area slightly encounter a stability boundary at very high erythrocyte death
rates δe and low values of Kc. Consequently Kc may be the only parameter which might induce
periodic fluctuations specific to erythrocytes in humans. This is in agreement with the observation of
Gordon and Varadi (1962) in which erythrocytic specific oscillations are due to bone marrow defects.
Moreover, Kc being tightly associated with the hematopoietic stem cell population (whose dynamics
is not considered in this paper), our analysis also seems to support other studies (see e.g. Haurie et al.,
1998; Mackey, 1997) in which erythrocytic oscillations would originate from the hematopoietic stem
cell population itself and not from erythropoiesis.
All in all, thanks to literature data and our analysis, one can understand why periodic hematological
diseases specific to erythrocytes are so rarely observed. We state that human erythropoiesis should
operate in parameter regions where periodic red blood cell oscillations cannot occur even under patho-
logical conditions. Actually periodic fluctuations specific to red blood cell lineage are highly unlikely
to appear under physiologically possible parameters. However, if it is the case, it might be due to an
abnormally low value of basal hematopoietic stem cell influx and/or a high red blood cell death rate.

6 Further improvements of the model

We suggest to improve the previous model into the one illustrated in Fig. 5. However, due to its
complexity, it can only be studied numerically and this is the main reason why we give it only in this
last section. Modifications of the first model are the following:

• the population of bone marrow cells is divided in two: the bone marrow nucleated cells with a
transit time Tp and a death rate δp and the (unnucleated) Marrow reticulocytes with a transit
time Tr and a death rate δr. As mentioned in Section 2.1 as a limit of the simple model presented
in Fig.1, EPO here not only affects hematopoietic stem cell influx, but also the apoptosis rate
δp of erythroid progenitors (CFU-E). In a standard way, we use an increasing Hill function to
describe this feedback:

δp(E) = δp,min+ (δp,max− δp,min) Eqb

Eqb +βqbp
, E ≥ 0,

where δp,min and δp,max account respectively for the minimal and maximal death rate of bone
marrow nucleated cells. βp > 0 is the total number of erythrocytes corresponding to the median
death rate δp,min+δp,max

2 and qb ≥ 1 is the Hill coefficient characterizing how fast is the change
between red blood cells number and progenitor apoptosis. All things considered, similar to the
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Figure 5 Erythropoiesis model improved. Main modifications of the last model are indicated in red.
Previously described bone marrow population is now divided in two : the bone marrow nucleated cells
and the Marrow reticulocytes. The finite transit time in cell compartments are Tp for bone marrow
nucleated cells, Tr for marrow reticulocytes and Te for red blood cell. Population death rates are δp,
δr and δe. A = 2n translates the n ∈ N mitotic divisions underwent by a single nucleated cell during
its development in the bone marrow. This value may be a little less if we take cell apoptosis in every
doubling stage. This is why we assume that A belongs in the interval [25,211] in Table 4. Total red
blood cell population -E- downregulates erythropoiesis through a negative feedback over the cell influx
K(E) and through a positive feedback over the death rate of bone marrow nucleated cells δp(E).
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previous modeling, corresponding densities are also ruled by transport equations:

∂p

∂t
(t, a) + ∂p

∂a
(t, a) =−δp(E(t))p(t,a), t≥ 0 , a ∈ [0 , Tp] , (18)

∂r

∂t
(t, a) + ∂r

∂a
(t, a) =−δrr(t,a) , t≥ 0 , a ∈ [0 , Tr] . (19)

• Cells cannot transit infinitely in the red blood cell compartment, we now consider a finite transit
time Te accounting for the finite lifespan of erythrocytes. Each red blood cell reaching age Te
is identified as senescent by macrophages and is actively degraded due to phagocytosis. In this
paradigm δe no longer accounts for senescence (Eq. (4) does not hold anymore) and its meaning
becomes more consistent with its unspecific nature. δe only models other causes of red blood cell
destruction that are -in the vast majority- random and non specific. We use the same framework
to describe the erythrocyte density e excepted concerning the finite lifespan:

∂e

∂t
(t, a) + ∂e

∂a
(t, a) =−δee(t,a) , t≥ 0 , a ∈ [0 , Te] . (20)

Total populations obtained after integration of the equations (18), (19) and (20) over the corresponding
age intervals are suitable to accurately model erythropoiesis. Derivation of the corresponding model
equations is not the aim of this work, we simply state that solution dynamics at long time t ≥
Te+Tr +Tp is entirely ruled by

E′(t) = − δeE(t) +Ae−Trδr
[
K (E(t− (Tr +Tp)))e−

∫ Tr+Tp
Tr

δp(E(t−u))du

−e−TeδeK (E(t−Te− (Tr +Tp)))e−
∫ Te+Tr+Tp
Te+Tr

δp(E(t−u))du
]
.

(21)

This non-linear delay differential equation admits a unique positive equilibrium E∗ > 0 solving

δeE
∗ =A

(
1− e−Teδe

)
K(E∗)e−Trδr−Tpδp(E∗).

However, Eq. (21) involves discrete and distributed delays which render the local asymptotic study
of solutions around E∗ particularly tedious and kept for a future work. The resulting characteristic
equation is

λ+ δe+ e−λTr
[
1− e−(λ+δe)Te

][
ξ1

(∫ Tp

0
e−λudu

)
− ξ2e−λTp

]
= 0,

with

ξ1 =Ae−Trδr−Tpδp(E∗)K(E∗)∂δp
∂E

(E∗),

ξ2 =Ae−Trδr−Tpδp(E∗)∂K

∂E
(E∗).

One would remark that 0 cannot be a root of the latter equation due to the variations of K and δp
with respect to E. Consequently, the characteristic equation of Eq. (21) linearized about its unique
positive equilibrium E∗ reads

λ+ δe+ e−λTr
[
1− e−(λ+δe)Te

] [ξ1− (ξ1 +λξ2)e−λTp
]

λ
= 0. (22)

As mentioned above, finding the roots of Eq. (22) is an open problem and is only carried out numerically
here. In Fig. 6a we provide an insight into the stability of the model in the (Tp,Te)-plane. Thanks to a
“τ -decomposition” method, for a given value of Tp, we attempt to determine boundary red blood cell
transit time at which stability switches might occur. Fixed model parameters are set to biologically
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Table 4 Parameter values used in Fig. 6 for the integration of Eq. (21). Exact or approximated values
from literature are used for ranges

Parameter Value assigned Range Unit

Tp varying (Fig. 6) 19
(Fig. 6b)

[12 , 20] days

Tr 1 [1 , 3] days
δr 0.05 [0,1 , 1] day−1

δe 0.005 [0,01 , 0,03] day−1

Te varying [60 , 120] days
n 9 [5 , 11] -
A= 2n 29 [25 , 211] -
Kc 1.108 [107 , 5.109] cells.kg−1.day−1

α 5.108 (= 5Kc) [3Kc , 6Kc] cells.kg−1.day−1

β 3.3.1011 approx. 1011 cells.kg−1

q 8 - -
δp,min 0.01 - day−1

δp,max 0.3 - day−1

βp 3.3.1011 approx. 1011 cells.kg−1

qp 8 - -

relevant values as specified in Table 4. In Fig. 6b we illustrate the stability switch by considering two
situations with the same Tp and two different red blood cell transit time: Te,1 and Te,2. Here, Te,1
represents the normal conditions (that is a 120 days lifespan for erythrocytes while Te,2 represents a
critical pathological condition (parameter value given in Table 4, with reference given from Table 1.
Thanks to the MATLAB solver dde23 we integrate Eq. (21) for the situations i∈ {1,2} assuming a blood
loss at t= 0 and Ei(t) = E∗i for all t < 0. These examples and others (not shown here) highlight that
solution dynamics is likely to be more complicated without being drastically different.

7 Summary and conclusion

We analyzed an erythropoiesis model and attempted to account for the rare observations of cyclic
red blood cell oscillations. Motivated by recent experimental observations concerning the effect of
EPO on the commitment of hematopoietic stem cells into the erythrocytic lineage, we provided a
mathematical model of erythropoiesis generalizing the one in Mackey (1997). We continued and
improved this work by adding a basal cell influx (parameter Kc) and by providing a more detailed
mathematical and numerical analysis. We numerically obtained the boundaries of stability switches
in parameter space. With the resulting stability diagrams and a thorough insight into erythropoiesis
specific literature we completed the work of Mackey(1979,1997). Two cases study enabled us to
highlight key aspects involved in the occurrence of periodic erythrocytic oscillations. As pointed
out by Mackey (1979), Bélair et al. (1995) and Mahaffy et al. (1998), our model also predicts that an
increase in the erythrocyte death rate δe may trigger periodic oscillations of erythrocytes in rabbit. Our
contribution lies in the identification, in the parameter space, of biologically relevant areas for humans
from which we explained the extremely rare observations of cyclic erythropoiesis in humans. We
particularly identified that human parameter values are responsible for the very sparse observations
of periodic red blood cell levels and if observed, this periodicity might only be due to abnormally
high erythrocyte death rate and/or abnormally low basal hematopoietic stem cells influx. Carefully
inspecting erythropoiesis processes, we finally highlighted the limit of our model and developed an
improved one. Its tedious characteristic equation and stability switches are still to be investigated.
Moreover this new model grasps more biological aspects (especially concerning erythropoietin feedback
over apoptosis of erythroid progenitor and red blood cell removal) while remaining simple with a
reasonable number of parameters. Thus, added to a pharmacokinetic modeling of EPO and possibly
a model of iron dynamics, it opens up prospects for hemoglobin regulation of dialysis patients.
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Figure 6 (a) Stability diagram of the improved model associated with the characteristic equation
Eq. (22) in the (Tp , Te)-plane. We remind that Te,1 is the parameter used to described normal condi-
tions, and Te,2 a pathological one. A biologically relevant area is colored. (b) Illustrative trajectories
associated to example red blood cell transit time specified in (a). The parameters used to obtain
these plots are specified in Table 4

Appendix 1: Sufficient stability condition

In this appendix, we use the theorem established by Hayes (1950) to formulate a sufficient stability
condition for the equilibrium E∗. Consider a set of model parameters A, δme, q, β, Kc, α, δe and
τ . If τ = 0 then the characteristic equation (12) admits a unique root λ = −δe−L which is real and
negative because L > 0. Now, we consider that τ > 0. Eq. (12) can be written as

(λτ + δeτ)eλτ +Lτ = 0, λ ∈ C. (23)

The latter equation is adapted to the theorem formulated by Hayes (1950). Hence, if λ ∈ C verifies
Eq. (23) then

Reλ < 0 ⇔
{

0< Lτ < µsin(µ)− δeτ cos(µ),
µ=−δeτ tan(µ), µ ∈

(
π
2 , π

)
.

Which can also be written as

Reλ < 0 ⇔
{

0<−cos(µ)< δe
L ,

µ=−δeτ tan(µ), µ ∈
(
π
2 , π

)
.

Given that 0<−cos(µ)< 1 holds for all µ ∈
(
π
2 , π

)
, we obtain Proposition 4.1.

Appendix 2: Continuity, differentiability and variations with respect
to model parameters

Derivatives with respect to E. Given the form of K(·) in Eq. (2), trivial derivation rules and
simple computations lead, for E > 0, to

∂K

∂E
(E) =−q 1

β

(
E

β

)q−1 α(
1 +

(
E
β

)q)2 > 0,
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and
∂2K

∂E2 (E) = qα
(q+ 1)

(
E
β

)2q−2
− (q−1)

(
E
β

)q−2

β2
(
1 +

(
E
β

)q)3 .

Continuity and variations with respect to τ . Remembering the fact that L is strictly positive
for all τ ≥ 0, one can establish from the implicit function theorem that, all other parameters being
fixed, τ 7→ E∗(τ) is continuously differentiable on [0,+∞) and

∂E∗

∂τ
(τ) = −δmeδeE

∗(τ)
δe+L(τ) > 0.

τ 7→E∗(τ) is thus a strictly decreasing function with lim
τ→∞

E∗(τ) = 0. After few lines of computations
not mentioned here, one also obtains

∂L

∂τ
(τ) =− qδmeL(τ)

(δe+L(τ))
(
1 +

(
E∗(τ)
β

)q)
[
δe−

AKc

β

(
E∗(τ)
β

)q−1
e−τδme

]
.

This expression enables us to study the variation of L with respect to τ . From

AKc

δe
≤ E∗(τ = 0)≤ A(Kc+α)

δe
,

we establish that if model parameters are such that Condition (14) holds then τ 7→ L(τ) admits a
unique maximum at

τ̃ = 1
δme

[
q−1
2q ln

(
1 + α

Kc

)
+ ln

(
AKc

βδe

)]
,

and
L(τ̃) = qδeα

2Kc

(
1 +

√
1 + α

Kc

)
+α

.

Continuity and variations with respect to δe. Remembering the fact L is strictly positive for
all δe > 0, one can establish that δe 7→ E∗(δe) is continuously differentiable on (0,+∞) and

∂E∗

∂δe
(δe) =− E∗(δe)

δe+L(δe)
.

δe 7→ E∗(δe) is thus a strictly decreasing ranging from +∞ (when δe→ 0) to 0. One also obtains

∂L

∂δe
(δe) = L(δe)

(q+ 1)
(
E∗(δe)
β

)q
− (q−1)

(δe+L(δe))
(
1 +

(
E∗(δe)
β

)q) .
We establish after a few tedious computations that the function δe 7→L(δe) admits a unique maximum

L(δ̃e) = Aαe−τδme

4β
(q−1)

q−1
q (q+ 1)

q+1
q

q
,

with

δ̃e = Ae−τδme

β

(
q+ 1
q−1

) 1
q
(
Kc+ 3α

5

)
.
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Continuity and variations with respect to Kc. As previously done, one can establish that the
function Kc 7→ E∗(Kc) is continuously differentiable and

∂E∗

∂Kc
(Kc) = δeE

∗(Kc)
(δe+L(Kc))

(
1 +

(
E∗(Kc)

β

)q) .
The equilibrium E∗ is thus a strictly increasing function of Kc and we have. One subsequently
conclude, by composition, that Kc 7→ L(Kc) is continuously differentiable on R+, all other model
parameters being fixed. With computations similar to the one performed by the reader in the latter
paragraph, few lines of computations, not mentioned here, leads to

∂L

∂Kc
(Kc) =−δeL(Kc)

(q+ 1)
(
E∗(Kc)

β

)q
− (q−1)

(δe+L(Kc))
(
1 +

(
E∗(Kc)

β

)q)(
Kc+ α

1+
(
E∗(Kc)

β

)q) .

From this expression, one can study the variation of L with respect to Kc. Using Eq. (9), one sees
that

E∗(Kc = 0)≤ Aαe−τδme
δe

,

and easily establish that if the sufficient condition (13) holds, then Kc 7→ L(Kc) admits a maximum
at

K̃c = β

A
τδme

(
q−1
q+ 1

)
− α(q+ 1)

2q ,

given by

L(K̃c) =Aαe−τδme (q+ 1)2

4βq

(
q−1
q+ 1

) q−1
q

.

Continuity and variations with respect to δme. Similarly to the previous paragraphs, we have
that δme 7→ E∗(δme) is continuously differentiable and

∂E∗

∂δme
(δme) =−τδeE

∗(δme)
δe+L(δme)

< 0.

Then, δme 7→ E∗(δme) is a strictly decreasing with lim
δme→∞

E∗(δme) = 0. Similarly, one also obtains

∂L

∂δme
(δme) = − qδmeL(δme)

(δe+L(δme))
(
1 +

(
E∗(δme)

β

)q)
×
(
δe−

AKc

β

(
E∗(δme)

β

)q−1
e−τδme

)
.

With the same arguments previously mentioned, if Condition (14) is satisfied then δme 7→ L(δme)
admits a maximum

L(δ̃me) = qδeα

2Kc

(
1 +

√
1 + α

Kc

)
+α

,

at
δ̃me = 1

τ

[
q−1
2q ln

(
1 + α

Kc

)
+ ln

(
AKc

βδe

)]
.
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Appendix 3 : proof of Proposition 4.6

Let ψ be one of the parameter among δe, Kc, δme or τ . First, let us remark that 0 is a root of Eq. (12)
if and only if δe =−L(ψ). Yet, we know that L(ψ)> 0. Consequently 0 cannot be a root Eq. (12).
Moreover, considering the complex conjugate of Eq. (12), we obtain that if λ ∈ iR is a root of Eq. (12)
then −λ is also a root of this equation. From this, we know that if pure imaginary roots of Eq. (12)
exist, then they will be given by λ=±iω(ψ), ω(ψ)> 0.
Let ψ∗ ∈ P be a chosen parameter. Thanks to Proposition 4.1 and to Corollary 4.1, we know that if
ψ∗ /∈Π then pure imaginary roots of Eq. (12) cannot exist. It is thus necessary that ψ∗ ∈Π.
We begin to show the first part of Proposition 4.6. From what we just mentioned above, we assume,
without loss of generality, that iω(ψ∗), ω(ψ∗)> 0, is a root of Eq. (12). In such situation, separating
the real from the imaginary part, we obtain that ω(ψ∗) must verify{

δe = −L(ψ∗)cos(ω(ψ∗)τ),
ω(ψ∗) = L(ψ∗)sin(ω(ψ∗)τ).

(24)

Considering that −1≤ cos(x)≤ 1 and that δe > 0, we verify that ψ∗ ∈ Π is a necessary condition for
the definition of System (24). The latter system also reads

cos(ω(ψ∗)τ) = − δe
L(ψ∗) ,

sin(ω(ψ∗)τ) = ω(ψ∗)
L(ψ∗) ,

and we obtain
1 = cos(ω(ψ∗)τ)2 + sin(ω(ψ∗)τ)2 =

(
ω(ψ∗)
L(ψ∗)

)2
+
(

δe
L(ψ∗)

)2
.

Consequently
ω(ψ∗)2 = L(ψ∗)2− δ2

e ,

and we get that ω(ψ∗) is expressed by Eq. (16).

Remark 4. It is necessary that ψ∗ ∈Π otherwise ω(ψ∗) is not defined. This condition also guarantee,
a posteriori, that the function ψ 7→ ω(ψ) is well defined on the set Π.

Finally, from the signs involved in Eq. (24), it is necessary that

ω(ψ∗)τ ∈ ∪
k∈N

((4k+ 1)
2 π , (2k+ 1)π

)
,

from which it follows that there exists k ∈ N such that ψ∗ ∈Π verifies

ω(ψ∗)τ = arctan
(
−ω(ψ∗)

δe

)
+ (2k+ 1)π.

We reformulate the latter condition using the function z defined in Eq. (17) and obtain the first part
of Proposition 4.6: if iω(ψ∗) for ψ∗ ∈Π is a root of (12) then there exists k ∈ N such that ψ∗ ∈Π is a
zero of z(·,k).

Remark 5. For all k ∈ N, ψ 7→ z(ψ,k) is well defined and continuously differentiable on Π.

The proof of this remark directly originates from the continuous differentiability of ψ 7→ L(ψ) and
ψ 7→ ω(ψ) on Π.
The reciprocal of Proposition 4.6 is simply established by separating real and imaginary parts and
by doing similar computations to the one above. The proof of the end of this proposition is given by
Beretta and Kuang (2002).
Acknowledgements We are very thankful to Michael C. Mackey for his highly valuable feedback, comments
and spelling corrections.

23



References

Adimy M, Crauste F (2007) Modelling and Asymptotic Stability of a Growth Factor-Dependent
Stem Cells Dynamics Model with Distributed Delay. Discrete and Continuous Dynamical Systems
- Series B 8(1):19–38, DOI 10.3934/dcdsb.2007.8.19, URL https://hal.archives-ouvertes.fr/
hal-00258392, publisher: American Institute of Mathematical Sciences

Adimy M, Crauste F (2012) Delay Differential Equations and Autonomous Oscillations in Hematopoi-
etic Stem Cell Dynamics Modeling. Math Model Nat Phenom 7(6):1–22, DOI 10.1051/mmnp/
20127601, URL https://doi.org/10.1051/mmnp/20127601

Adimy M, Crauste F, Ruan S (2005) Stability and Hopf bifurcation in a mathematical model
of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications 6(4):651 –
670, DOI https://doi.org/10.1016/j.nonrwa.2004.12.010, URL http://www.sciencedirect.com/
science/article/pii/S1468121804001208

Adimy M, Crauste F, Ruan S (2006) Modelling Hematopoiesis Mediated by Growth Factors With
Applications to Periodic Hematological Diseases. Bulletin of Mathematical Biology 68(8):2321–2351,
DOI 10.1007/s11538-006-9121-9, URL https://doi.org/10.1007/s11538-006-9121-9

Banks HT, Cole CE, Schlosser PM, Tran HT (2004) Modeling and optimal regulation of erythropoiesis
subject to benzene intoxication. Mathematical Biosciences & Engineering 1(1):15–48, DOI 10.3934/
mbe.2004.1.15, URL https://www.aimsciences.org/article/doi/10.3934/mbe.2004.1.15

Bélair J, Mackey MC, Mahaffy JM (1995) Age-structured and two-delay models for erythropoiesis.
Mathematical Biosciences 128(1):317–346, DOI 10.1016/0025-5564(94)00078-E, URL http://www.
sciencedirect.com/science/article/pii/002555649400078E

Beretta E, Kuang Y (2002) Geometric stability switch criteria in Delay Differential systems with Delay
Dependent Parameters. SIAM Journal on Mathematical Analysis 33:1144–1165

Beutler E, Lichtman M, Coller B, Kipps T, Seligsohn U (2001) Williams Hematology, sixth edn.
No. vol. 487 in Williams Hematology, McGraw-Hill, URL https://books.google.fr/books?id=
VoFNcAAACAAJ

Björkholm M, Holm G, Merk K (1982) Cyclic autoimmune hemolytic anemia as a pre-
senting manifestation of splenic Hodgkin’s disease. Cancer 49(8):1702–1704, DOI
10.1002/1097-0142(19820415)49:8〈1702::AID-CNCR2820490827〉3.0.CO;2-I, URL https:
//acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142%2819820415%2949%
3A8%3C1702%3A%3AAID-CNCR2820490827%3E3.0.CO%3B2-I

Boullu L, Pujo-Menjouet L, Bélair J (2019a) Stability analysis of an equation with two delays and
application to the production of platelets. Discrete and Continuous Dynamical Systems - Series
S pp 1–24, DOI 10.3934/dcdss.2020131, URL https://hal.inria.fr/hal-02109546, publisher:
American Institute of Mathematical Sciences

Boullu L, Pujo-Menjouet L, Wu J (2019b) A Model for Megakaryopoiesis with State-Dependent Delay.
SIAM Journal on Applied Mathematics 79(4):1218–1243, DOI 10.1137/18M1201020, URL https:
//doi.org/10.1137/18M1201020

Burwell EL, Brickley BA, Finch CA (1953) Erythrocyte Life Span in Small Animals Comparison of Two
Methods Employing Radioiron. American Journal of Physiology-Legacy Content 172(3):718–724,
DOI 10.1152/ajplegacy.1953.172.3.718, URL https://doi.org/10.1152/ajplegacy.1953.172.3.
718, publisher: American Physiological Society

Butina M (2020) 5 - Erythrocyte production and destruction. In: Rodak’s Hematology, sixth edition
edn, Elsevier, St. Louis (MO), pp 62 – 77, DOI 10.1016/B978-0-323-53045-3.00014-3, URL http:
//www.sciencedirect.com/science/article/pii/B9780323530453000143

24

https://hal.archives-ouvertes.fr/hal-00258392
https://hal.archives-ouvertes.fr/hal-00258392
https://doi.org/10.1051/mmnp/20127601
http://www.sciencedirect.com/science/article/pii/S1468121804001208
http://www.sciencedirect.com/science/article/pii/S1468121804001208
https://doi.org/10.1007/s11538-006-9121-9
https://www.aimsciences.org/article/doi/10.3934/mbe.2004.1.15
http://www.sciencedirect.com/science/article/pii/002555649400078E
http://www.sciencedirect.com/science/article/pii/002555649400078E
https://books.google.fr/books?id=VoFNcAAACAAJ
https://books.google.fr/books?id=VoFNcAAACAAJ
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142%2819820415%2949%3A8%3C1702%3A%3AAID-CNCR2820490827%3E3.0.CO%3B2-I
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142%2819820415%2949%3A8%3C1702%3A%3AAID-CNCR2820490827%3E3.0.CO%3B2-I
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142%2819820415%2949%3A8%3C1702%3A%3AAID-CNCR2820490827%3E3.0.CO%3B2-I
https://hal.inria.fr/hal-02109546
https://doi.org/10.1137/18M1201020
https://doi.org/10.1137/18M1201020
https://doi.org/10.1152/ajplegacy.1953.172.3.718
https://doi.org/10.1152/ajplegacy.1953.172.3.718
http://www.sciencedirect.com/science/article/pii/B9780323530453000143
http://www.sciencedirect.com/science/article/pii/B9780323530453000143


Craig M, Humphries AR, Mackey MC (2016) A Mathematical Model of Granulopoiesis Incorporating
the Negative Feedback Dynamics and Kinetics of G-CSF/Neutrophil Binding and Internalization.
Bulletin of Mathematical Biology 78(12):2304–2357, DOI 10.1007/s11538-016-0179-8, URL https:
//doi.org/10.1007/s11538-016-0179-8

Crauste F (2010) Stability and Hopf Bifurcation for a First-Order Delay Differential Equation with
Distributed Delay. In: Atay FM (ed) Complex Time-Delay Systems: Theory and Applications,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 263–296

Crauste F, Pujo-Menjouet L, Génieys S, Molina C, Gandrillon O (2008) Adding self-renewal in com-
mitted erythroid progenitors improves the biological relevance of a mathematical model of ery-
thropoiesis. Journal of Theoretical Biology 250(2):322–338, DOI 10.1016/j.jtbi.2007.09.041, URL
http://www.sciencedirect.com/science/article/pii/S0022519307004778

Dale DC, Hammond WP (1988) Cyclic neutropenia: A clinical review. Blood Reviews 2(3):178 –
185, DOI https://doi.org/10.1016/0268-960X(88)90023-9, URL http://www.sciencedirect.com/
science/article/pii/0268960X88900239

Dinant HJ, Maat CEMd (1978) Erythropoiesis and Mean Red-Cell Lifespan in Normal Subjects and
in Patients with the Anaemia of Active Rheumatoid Arthritis. British Journal of Haematology
39(3):437–444, DOI 10.1111/j.1365-2141.1978.tb01114.x, URL https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1365-2141.1978.tb01114.x

Doig K (2015) Erythrocyte Production and Destruction. In: Rodak’s Hematology -Clinical Principles
and Applications, 5th edn, Elsevier Health Sciences, pp 95–111

Dou Y, Kruse A, Kotanko P, Rosen H, Levin NW, Thijssen S (2012) Red blood cell life span and
‘erythropoietin resistance’. Kidney International 81(12):1275–1276, DOI 10.1038/ki.2012.54, URL
https://www.kidneyinternational-online.org/article/S0085-2538(15)55260-5/abstract

Erslev AJ (1997) Clinical erythrokinetics: a critical review. Blood Reviews 11(3):160–167, DOI
10.1016/S0268-960X(97)90011-4, URL http://www.sciencedirect.com/science/article/pii/
S0268960X97900114

Finch CA (1982) Erythropoiesis, erythropoietin, and iron. Blood 60(6):1241–1246, DOI 10.
1182/blood.V60.6.1241.1241, URL https://ashpublications.org/blood/article/60/6/1241/
162987/Erythropoiesis-erythropoietin-and-iron, publisher: American Society of Hematology

Finch CA, Deubelbeiss K, Cook JD, Eschbach JW, Harker LA, Funk DD, Marsaglia G, Hillman RS,
Slichter S, Adamson JW, Ganzoni A, Biblett ER (1970) Ferrokinetics in man. Medicine 49(1):17–53,
DOI 10.1097/00005792-197001000-00002

Foley C, Mackey MC (2009) Dynamic hematological disease: a review. J Math Biol 58(1):285–322,
DOI 10.1007/s00285-008-0165-3, URL https://doi.org/10.1007/s00285-008-0165-3

Fontenele LPS, Santucci R, Centrone R, Aranha MAF, Bellesso M, Dias DF (2015) Cyclic Thrombo-
cytopenia: A Case Report. Blood 126(23):4661–4661, DOI 10.1182/blood.V126.23.4661.4661, URL
https://doi.org/10.1182/blood.V126.23.4661.4661

Fuertinger DH, Kappel F, Thijssen S, Levin NW, Kotanko P (2013) A model of erythropoiesis in adults
with sufficient iron availability. J Math Biol 66(6):1209–1240, DOI 10.1007/s00285-012-0530-0, URL
https://doi.org/10.1007/s00285-012-0530-0

Gibson CM, Gurney CW, Gaston EO, Simmons EL (1984) Cyclic erythropoiesis in the S1/S1d mouse.
Experimental hematology 12(5):343–348

Gibson CM, Gurney CW, Simmons EL, Gaston EO (1985) Further studies on cyclic erythropoiesis in
mice. Experimental hematology 13(9):855–860

25

https://doi.org/10.1007/s11538-016-0179-8
https://doi.org/10.1007/s11538-016-0179-8
http://www.sciencedirect.com/science/article/pii/S0022519307004778
http://www.sciencedirect.com/science/article/pii/0268960X88900239
http://www.sciencedirect.com/science/article/pii/0268960X88900239
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2141.1978.tb01114.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2141.1978.tb01114.x
https://www.kidneyinternational-online.org/article/S0085-2538(15)55260-5/abstract
http://www.sciencedirect.com/science/article/pii/S0268960X97900114
http://www.sciencedirect.com/science/article/pii/S0268960X97900114
https://ashpublications.org/blood/article/60/6/1241/162987/Erythropoiesis-erythropoietin-and-iron
https://ashpublications.org/blood/article/60/6/1241/162987/Erythropoiesis-erythropoietin-and-iron
https://doi.org/10.1007/s00285-008-0165-3
https://doi.org/10.1182/blood.V126.23.4661.4661
https://doi.org/10.1007/s00285-012-0530-0


Goodnough LT (2002) The role of iron in erythropoiesis in the absence and presence of erythropoietin
therapy. Nephrol Dial Transplant 17(suppl 5):14–18, DOI 10.1093/ndt/17.suppl 5.14, URL https:
//academic.oup.com/ndt/article/17/suppl_5/14/1893541, publisher: Oxford Academic

Gordon RR, Varadi S (1962) Congenital hypoplastic anaemia (pure red-cell anaemia) with periodic
erythroblastopenia. The Lancet 279(7224):296–299, DOI 10.1016/S0140-6736(62)91245-X, URL
http://www.sciencedirect.com/science/article/pii/S014067366291245X

Greer JP, Foerster J, Lukens JN, Rodgers GM, Paraskevas F, Glader B (2003) Wintrobe’s Clinical
Hematology, vol 1, 11th edn. Lippincott Williams & Wilkins, Philadelphia

Grover A, Mancini E, Moore S, Mead AJ, Atkinson D, Rasmussen KD, O’Carroll D, Jacobsen SEW,
Nerlov C (2014) Erythropoietin guides multipotent hematopoietic progenitor cells toward an ery-
throid fate. J Exp Med 211(2):181–188, DOI 10.1084/jem.20131189, URL https://rupress.org/
jem/article/211/2/181/41590/Erythropoietin-guides-multipotent-hematopoietic

Gurney C, Simmons E, Gaston E (1981) Cyclic erythropoiesis in W/Wv mice following a single small
dose of 89Sr. Experimental hematology 9(2):118–122, URL http://europepmc.org/abstract/
MED/7238647

Haurie C, Dale DC, Mackey MC (1998) Cyclical Neutropenia and Other Periodic Hemato-
logical Disorders: A Review of Mechanisms and Mathematical Models. Blood 92(8):2629–
2640, DOI 10.1182/blood.V92.8.2629, URL https://ashpublications.org/blood/article/92/
8/2629/261414/Cyclical-Neutropenia-and-Other-Periodic, publisher: American Society of
Hematology

Hayes ND (1950) Roots of the Transcendental Equation Associated with a Certain Difference-
Differential Equation. Journal of the London Mathematical Society s1-25(3):226–232, DOI
10.1112/jlms/s1-25.3.226, URL https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.
1112/jlms/s1-25.3.226

Jandl JH (1987) Blood : Textbook of Hematology. Lippincott Williams and Wilkins

Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed
death in erythroid progenitor cells. Science 248(4953):378–381, DOI 10.1126/science.2326648, URL
https://science.sciencemag.org/content/248/4953/378, publisher: American Association for
the Advancement of Science Section: Reports

Krzyzanski W, Perez-Ruixo JJ, Vermeulen A (2008) Basic pharmacodynamic models for agents that
alter the lifespan distribution of natural cells. J Pharmacokinet Pharmacodyn 35(3):349, DOI
10.1007/s10928-008-9092-6, URL https://doi.org/10.1007/s10928-008-9092-6

Langlois GP, Craig M, Humphries AR, Mackey MC, Mahaffy JM, Bélair J, Moulin T, Sinclair SR,
Wang L (2017) Normal and pathological dynamics of platelets in humans. Journal of Mathemat-
ical Biology 75(6):1411–1462, DOI 10.1007/s00285-017-1125-6, URL https://doi.org/10.1007/
s00285-017-1125-6

Lichtman M, Beutler E, Thomas J Kipps M, Williams W, Kaushansky K, Kipps T, Seligsohn U
(2006) Williams Hematology, Seventh Edition, 7th edn. McGraw-Hill medical publishing division,
McGraw-Hill, New-York

Lodish H, Flygare J, Chou S (2010) From stem cell to erythroblast: Regulation of red cell production
at multiple levels by multiple hormones. IUBMB Life 62(7):492–496, DOI 10.1002/iub.322, URL
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/iub.322

26

https://academic.oup.com/ndt/article/17/suppl_5/14/1893541
https://academic.oup.com/ndt/article/17/suppl_5/14/1893541
http://www.sciencedirect.com/science/article/pii/S014067366291245X
https://rupress.org/jem/article/211/2/181/41590/Erythropoietin-guides-multipotent-hematopoietic
https://rupress.org/jem/article/211/2/181/41590/Erythropoietin-guides-multipotent-hematopoietic
http://europepmc.org/abstract/MED/7238647
http://europepmc.org/abstract/MED/7238647
https://ashpublications.org/blood/article/92/8/2629/261414/Cyclical-Neutropenia-and-Other-Periodic
https://ashpublications.org/blood/article/92/8/2629/261414/Cyclical-Neutropenia-and-Other-Periodic
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-25.3.226
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-25.3.226
https://science.sciencemag.org/content/248/4953/378
https://doi.org/10.1007/s10928-008-9092-6
https://doi.org/10.1007/s00285-017-1125-6
https://doi.org/10.1007/s00285-017-1125-6
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/iub.322


Loeffler M, Pantel K, Wulff H, Wichmann HE (1989) A mathematical model of erythropoiesis
in mice and rats Part 1: Structure of the model. Cell Proliferation 22(1):13–30, DOI 10.
1111/j.1365-2184.1989.tb00198.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1365-2184.1989.tb00198.x

Ma J, Dou Y, Zhang H, Thijssen S, Williams S, Kuntsevich V, Ouellet G, Wong MMY, Persic V,
Kruse A, Rosales L, Wang Y, Levin NW, Kotanko P (2017) Correlation between Inflammatory
Biomarkers and Red Blood Cell Life Span in Chronic Hemodialysis Patients. BPU 43(1-3):200–205,
DOI 10.1159/000452728, URL https://www.karger.com/Article/FullText/452728

Mackey MC (1978) Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis.
Blood 51(5):941–956, URL http://europepmc.org/abstract/MED/638253

Mackey MC (1979) Periodic auto-immune hemolytic anemia: An induced dynamical disease. Bltn
Mathcal Biology 41(6):829–834, DOI 10.1007/BF02462379, URL https://doi.org/10.1007/
BF02462379

Mackey MC (1997) 8. Mathematical models of hematopoietic cell replication and control. In: Case
Studies in Mathematical Modeling-Ecology, Physiology and Cell Biology, New York, pp 151–182

Mackey MC (2001) Cell kinetic status of haematopoietic stem cells. Cell Proliferation 34(2):71–
83, DOI 10.1046/j.1365-2184.2001.00195.x, URL https://onlinelibrary.wiley.com/doi/abs/
10.1046/j.1365-2184.2001.00195.x

Mackey MC, Glass L (1977) Oscillation and Chaos in Physiological Control Systems. Science
197(4300):287–289, DOI 10.1126/science.267326

Mahaffy JM, Bélair J, Mackey MC (1998) Hematopoietic Model with Moving Boundary Condition and
State Dependent Delay: Applications in Erythropoiesis. Journal of Theoretical Biology 190(2):135–
146, DOI 10.1006/jtbi.1997.0537, URL http://www.sciencedirect.com/science/article/pii/
S0022519397905373

Meyer RJ, Hoffman R, Zanjani ED (1978) Autoimmune hemolytic anemia and periodic pure red
cell aplasia in systemic lupus erythematosus. The American Journal of Medicine 65(2):342–345,
DOI 10.1016/0002-9343(78)90829-X, URL http://www.sciencedirect.com/science/article/
pii/000293437890829X

Morley A (1969) Blood-Cell Cycles in Polycythæmia Vera. Australasian Annals of Medicine
18(2):124–126, DOI 10.1111/imj.1969.18.2.124, URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/imj.1969.18.2.124

Morley A (1979) Cyclic hemopoiesis and feedback control. Blood cells 5(2):283–296, URL http:
//europepmc.org/abstract/MED/299070

Morley A, Stohlman F (1969) Erythropoiesis in the Dog: The Periodic Nature of the Steady
State. Science 165(3897):1025–1027, DOI 10.1126/science.165.3897.1025, URL https://science.
sciencemag.org/content/165/3897/1025, publisher: American Association for the Advancement
of Science

Morley A, Baikie A, Galton D (1967) Cyclic leucocytosis as evidence for retention of normal ho-
moeostatic control in chronic granulocytic leukaemia. The Lancet 290(7530):1320–1323, DOI
10.1016/S0140-6736(67)90910-5, URL https://doi.org/10.1016/S0140-6736(67)90910-5, pub-
lisher: Elsevier

Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, Risler T, Wieder T, Lang F (2003)
Inhibition of Erythrocyte Cation Channels by Erythropoietin. JASN 14(11):2750–2757, DOI 10.
1097/01.ASN.0000093253.42641.C1, URL https://jasn.asnjournals.org/content/14/11/2750

27

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2184.1989.tb00198.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2184.1989.tb00198.x
https://www.karger.com/Article/FullText/452728
http://europepmc.org/abstract/MED/638253
https://doi.org/10.1007/BF02462379
https://doi.org/10.1007/BF02462379
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2184.2001.00195.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2184.2001.00195.x
http://www.sciencedirect.com/science/article/pii/S0022519397905373
http://www.sciencedirect.com/science/article/pii/S0022519397905373
http://www.sciencedirect.com/science/article/pii/000293437890829X
http://www.sciencedirect.com/science/article/pii/000293437890829X
https://onlinelibrary.wiley.com/doi/abs/10.1111/imj.1969.18.2.124
https://onlinelibrary.wiley.com/doi/abs/10.1111/imj.1969.18.2.124
http://europepmc.org/abstract/MED/299070
http://europepmc.org/abstract/MED/299070
https://science.sciencemag.org/content/165/3897/1025
https://science.sciencemag.org/content/165/3897/1025
https://doi.org/10.1016/S0140-6736(67)90910-5
https://jasn.asnjournals.org/content/14/11/2750


Orr JS, Kirk J, Gray KG, Anderson JR (1968) A Study of the Interdependence of Red Cell
and Bone Marrow Stem Cell Populations. British Journal of Haematology 15(1):23–34, DOI
10.1111/j.1365-2141.1968.tb01509.x, URL http://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1365-2141.1968.tb01509.x

Pujo-Menjouet L (2016) Blood Cell Dynamics: Half of a Century of Modelling. Math Model Nat
Phenom 11(1):92–115, DOI https://doi.org/10.1051/mmnp/201611106

Pujo-Menjouet L, Bernard S, Mackey MC (2005) Long Period Oscillations in a G0 Model of
Hematopoietic Stem Cells. SIAM Journal on Applied Dynamical Systems 4(2):312–332, DOI
https://doi.org/10.1137/030600473

Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko WJ (2004) Pharmacokinetic and
Pharmacodynamic Modeling of Recombinant Human Erythropoietin After Single and Multi-
ple Doses in Healthy Volunteers. The Journal of Clinical Pharmacology 44(9):991–1002, DOI
10.1177/0091270004268411, URL http://accp1.onlinelibrary.wiley.com/doi/abs/10.1177/
0091270004268411

Ranløv P, Videbæk A (1963) Cyclic Haemolytic Anaemia Synchronous with Pel-Ebstein
Fever in a Case of Hodgkin’s Disease. Acta Medica Scandinavica 174(5):583–588, DOI 10.
1111/j.0954-6820.1963.tb07957.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.0954-6820.1963.tb07957.x

Reimann HA (1971) Haemocytic periodicity and periodic disorders: Periodic neutropenia, thrombocy-
topenia, lymphocytosis and anaemia. Postgrad Med J 47(549):504–510, URL https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2467202/

Rogg S, Fuertinger DH, Volkwein S, Kappel F, Kotanko P (2019) Optimal EPO dosing in hemodial-
ysis patients using a non-linear model predictive control approach. J Math Biol DOI 10.1007/
s00285-019-01429-1, URL https://doi.org/10.1007/s00285-019-01429-1

Sato Y, Mizuguchi T, Shigenaga S, Yoshikawa E, Chujo K, Minakuchi J, Kawashima S (2012) Short-
ened Red Blood Cell Lifespan Is Related to the Dose of Erythropoiesis-Stimulating Agents Re-
quirement in Patients on Hemodialysis. Therapeutic Apheresis and Dialysis 16(6):522–528, DOI
10.1111/j.1744-9987.2012.01089.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1744-9987.2012.01089.x

Shampine LF, Thompson S (2001) Solving DDEs in Matlab. Applied Numerical Mathemat-
ics 37(4):441–458, DOI 10.1016/S0168-9274(00)00055-6, URL http://www.sciencedirect.com/
science/article/pii/S0168927400000556

Singh R, Grinenko T, Ramasz B, Franke K, Lesche M, Dahl A, Gassmann M, Chavakis
T, Henry I, Wielockx B (2018) Hematopoietic Stem Cells but Not Multipotent Progenitors
Drive Erythropoiesis during Chronic Erythroid Stress in EPO Transgenic Mice. Stem Cell Re-
ports 10(6):1908–1919, DOI 10.1016/j.stemcr.2018.04.012, URL http://www.sciencedirect.com/
science/article/pii/S2213671118301802

Woo S, Krzyzanski W, Jusko WJ (2006) Pharmacokinetic and Pharmacodynamic Modeling of Re-
combinant Human Erythropoietin after Intravenous and Subcutaneous Administration in Rats.
J Pharmacol Exp Ther 319(3):1297–1306, DOI 10.1124/jpet.106.111377, URL http://jpet.
aspetjournals.org/content/319/3/1297

Wu H, Klingmüller U, Besmer P, Lodish HF (1995) Interaction of the erythropoietin and stem-cell-
factor receptors. Nature 377(6546):242–246, DOI 10.1038/377242a0, URL https://www.nature.
com/articles/377242a0

28

http://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2141.1968.tb01509.x
http://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2141.1968.tb01509.x
http://accp1.onlinelibrary.wiley.com/doi/abs/10.1177/0091270004268411
http://accp1.onlinelibrary.wiley.com/doi/abs/10.1177/0091270004268411
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0954-6820.1963.tb07957.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0954-6820.1963.tb07957.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2467202/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2467202/
https://doi.org/10.1007/s00285-019-01429-1
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-9987.2012.01089.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-9987.2012.01089.x
http://www.sciencedirect.com/science/article/pii/S0168927400000556
http://www.sciencedirect.com/science/article/pii/S0168927400000556
http://www.sciencedirect.com/science/article/pii/S2213671118301802
http://www.sciencedirect.com/science/article/pii/S2213671118301802
http://jpet.aspetjournals.org/content/319/3/1297
http://jpet.aspetjournals.org/content/319/3/1297
https://www.nature.com/articles/377242a0
https://www.nature.com/articles/377242a0

	Introduction 
	Erythropoiesis Modeling
	Red blood cell production, destruction and regulation
	Erythropoiesis Model
	Bone marrow cell compartment
	Red Blood Cell compartment


	Reduction of the model
	Local asymptotic stability of the steady state
	Linearization about the equilibrium
	Local stability with respect to parameter variations

	Application to periodic oscillations of erythrocytes
	In rabbits
	In humans

	Further improvements of the model
	Summary and conclusion

