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Data Fusion with Split Covariance Intersection for Cooperative Perception

Antoine Lima1, Philippe Bonnifait1, Véronique Cherfaoui1 and Joelle Al Hage1

Abstract— Cooperative Perception is an emergent technology
that profits from the exchanged perception information between
vehicles. However, the inconsistency resulting from the reuse of
the same information is a main issue that arises. In this paper,
we focus on the study of the Split Covariance Intersection Filter
(SCIF), a method capable of handling both independent and
arbitrarily correlated estimates and observation errors. We are
interested in its use in a Cooperative Perception application
to incorporate information coming from other vehicles, which
may or may not have been tracked, in a generic tracking
solution. A simple case study is first presented to build a deep
understanding of the filter tuning, then real experiments carried
out with three vehicles equipped with GNSS, camera, LiDAR
and High Definition (HD) map features are reported to study
how a full tracking architecture relying on SCIF behaves in a
real-world situation.

I. INTRODUCTION

Perception of the environment is a key component for
intelligent vehicles in the field of Intelligent Transportation
Systems (ITS). It can provide information to Advanced
Driver-Assistance System (ADAS) or to control and
decision making algorithms for autonomous vehicles.
In those safety-critical systems, a complete view of the
environment and redundant perception modalities are
essential. That is why the trend in the last couple of years
has been to add more and more exteroceptive sensors on
vehicles. However, the inherent physical limitations of
sensors coupled with an economic and ecologic desire
to reduce the number of sensors have pushed research
towards the sharing of perceptive information in what is
now called Cooperative Perception (CP). The advantages
of CP are numerous: extended field of views, perception
beyond physical boundaries such as static or moving objects
and reduction of the number of sensors required to get a
complete and redundant perception.

However, multiple issues have to be solved before this
technology can be used at large scale: information exchange
loops, communication delays, incorporation of foreign data
that can be untrustworthy or inaccurate... In this paper,
we are interested to the first issue, that can introduce data
incest, the fact that a same piece of information is fused
multiple times and lead to an over-confident estimate. This
is a classical data fusion issue that can be managed with
adapted approaches, such as the Covariance Intersection
(CI). It is capable of handling unknown correlation between
observations and thus avoid overconfidence by realizing a
convex combination of two estimates. The main issue with
this family of approaches is its pessimism [1]. To alleviate
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this issue, approaches such as in [2] have been implemented,
where local data is carefully separated from shared data
in order to apply a Kalman Filter (KF) on the local data
and CI to the shared one. This showed good performance,
especially in terms of consistency of the estimates.

In this study we compare this approach to an automatic
handling of the unknown cross-correlation using the Split Co-
variance Intersection Filter (SCIF) in order to build a generic
Track-To-Track Fusion (T2TF) system. The SCIF combines
the resiliency to unknown degrees of cross-correlation be-
tween estimates inherited from the Covariance Intersection
Filter (CIF) with the optimality of the KF when some
noises are known to be independent from others. However,
the filter raises some challenges, such as the necessity to
maintain a split estimate of the error covariance, making the
filter harder to tune. To get a good understanding of the
different parameters involved in the modeling of the system,
we propose a basic example described in Section III. Even
if this case study is conducted with mobiles evolving in
one dimension (1D) to obtain the simplest possible state
space models, it captures all types of problems that arise,
particularly in terms of information exchange cycles. Thanks
to the good understanding of the tuning parameters provided
by these simulations, we study a complete real-life situation
that implements a complete tracking architecture across three
vehicles in Section IV using the SCIF.

II. STATE OF THE ART

The field of CP deals with the exchange of localization
and perception information between multiple agents and the
infrastructure. CP has been achieved by exchange of raw
sensor information in [3], [4], of intermediary representations
in [5], and more prominently of processed information to
lighten the communications [1], [6], [7]. In general, the
estimations are realized on each agent independently to avoid
having a centralized entity that would hinder scalability.
For the same reason, the estimates are generally disjoint,
meaning that each object is considered independent from
others. That processed information can be at the feature level
or at the track level, in which case the local and remote tracks
can become correlated. To counteract this, some approaches
attempt to estimate the cross-correlation [8] by keeping track
of all exchanges but this rapidly becomes unpractical due to
the number of agents and exchanges. A simpler solution is
to use a fusion operator resilient to unknown correlation.
While the classical KF [9] works on the assumption that all
estimates are independent, and thus cannot be used in such
scenarios, other approaches have been developed in the field
of T2TF [10]. In [11], Vasic et. al proposed an extension on



the Probability Hypothesis Density (PHD) to collaborative
perception. The Information Matrix Fusion (IMF) [12], in
which the common information between two estimates is
explicitly removed before fusing the estimates in informa-
tional form. The CI [13] and its derivatives are also common
solutions. CI is designed such that two consistent estimates
are fused into a consistent estimate, independently of the
cross-correlation that might exist between them. The method
works by realizing a convex combination of the two estimates
based on the minimization of the resulting estimation error
covariance. It can be interpreted geometrically as finding
the intersection between the estimates covariance ellipses.
Variations on the CI have also been proposed, such as the
Improved Fast CI [14] or Information Theoretic CI [15]
that replace the optimization step by an analytic expression,
or the Inverse CI that takes inspiration from the IMF to
provide a less pessimistic estimate. These methods have been
compared and applied to CP [1], [16], [17], [18], where the
CI has generally been deemed pessimistic, motivating the
choice for other methods. The Split CI [19] is one of these
variations that proposes to separate the covariances into an
independent and dependent parts. This way, it is possible to
take advantage of knowledge about partial independence. The
SCIF has been applied to cooperative localization situation
problems in [20] and [21].

III. CASE STUDY

A. System modelling

Let’s consider an elementary example of mobile vehicles
in mutual interaction moving in parallel along a one di-
mensional path. As each vehicle uses variables seen from
multiple point of views, let the notation kaj be the variable
a of j as seen by k. They compose the system S =

{
xj

}
j∈N

and have the ability to measure their absolute position s
as well as that of others thanks to exteroceptive sensors.
Their goal is to estimate the state of all vehicles with
the best possible accuracy while maintaining consistency of
estimates. For this, the state of a vehicle k is modeled as a
position sk and constant velocity vk:

xk = [sk, vk]
T (1)

which is assumed to have a constant velocity affected by
a random model scalar error α. Assuming that the current
velocity is the average of two samples, the model can be
written as:

xk(t+ ∆t|t) = F xk(t|t) + Gα(t) (2)

with
F =

[
1 ∆t
0 1

]
, G =

[
∆t/2

1

]
, (3)

where F is the transition matrix of the evolution model and
G input matrix of the model error.
The model evolution error α is described by the covariance
matrix Q. It is split in two parts such that Q = Qd+Qi with
Qi an independent part that describes model errors as in a
classical Kalman filter and Qd a dependent part that models
the part of the estimation error that has an unknown degree of

correlation with other agents in cooperation. The estimation
kxj is associated with a covariance kPj that characterizes
the variance of the estimation error kej which is split
into a dependent and independent components (themselves
independent of each other) such that kej = kej,d + kej,i and
kPj = kPj,d + kPj,i for all j.

Let us define two observation models that are typical of the
problems we encounter in CP. The first one corresponds to a
GNSS receiver, which gives to a vehicle its absolute position
affected by a random noise βGNSS,i, modeled to be white and
independent:

kyk = sk + βGNSS,i

HGNSS =
[
1 0
]
, RGNSS,d = 0, RGNSS,i = ΣGNSS

(4)

with H the observation model such that y = Hx and ΣGNSS
the known variance of the GNSS noise.
The second corresponds to an embedded perception sensor
(e.g. a LiDAR) that gives to a vehicle the relative position of
other vehicles. The estimated position of the ego vehicle ksk
is then used to transform this measurement into an absolute
position observation as well:

kyj = ksk + (sj − sk) + βLiDAR,i

= sk + kek + (sj − sk) + βLiDAR,i

= sj + kek,d + kek,i + βLiDAR,i

HLiDAR =
[
1 0
]
, kRLiDAR,d = kPk,s,d

kRLiDAR,i = kPk,s,i + ΣLiDAR

(5)

with ΣLiDAR the known variance of the LiDAR noise. Note
that for this kind of observation, the position estimation error
of the measuring vehicle with covariance kPk,s is added to
the uncertainty of the sensor measurement.
Finally, the vehicles exchange their estimates of the system
kS =

{
kxj ,

kPj

}
j∈S

with each other. The states estimated

by others locally become observations and the covariance
matrices of the estimation errors become covariance matrices
of the observations. For this, we define a third observation
model, where vehicle c expresses itself on vehicle j:

cyCom,j = cxj , HCom =

[
1 0
0 1

]
,

cRCom,j,d = cPj,d,
cRCom,j,i = cPj,i

(6)

This process is described by Algorithm 1 for each vehicle k.

B. Filtering

In this section, we remind the equations of filters that will
be studied in Section III-C. First, the Kalman Filter (KF)
[9], which is the optimal filter for linear systems affected by



Algorithm 1 Cooperative Perception Algorithm

kxk,
kPk ← Predict1(kxk,

kPk) . GNSS
kxk,

kPk ← Update1(kxk,
kPk,

kyk,RGNSS,HGNSS)

for j ∈ S \ k do . LiDAR
kxj ,

kPj ← Predict1(kxj ,
kPj)

kxj ,
kPj ← Update1(kxj ,

kPj ,
kyj ,

kRLiDAR,HLiDAR)
end for

for c ∈ S \ k do . Cooperative Estimation
for j ∈ S do

kxj ,
kPj ← Update2(kxj ,

kPj ,
cyCom,j ,

cRCom,j ,
HCom)

end for
end for

white noises:

x+ = Fx

P+ = FPFT + GQGT

K = P+HT
(
HP+HT + R

)−1
x = x+ + K

(
y −Hx+

)
P = (I−KH) P+ (I−KH)

T
+ KRKT

(7)

The Covariance Intersection Filter (CIF) [13] which is usu-
ally given in informational form is here given in a Kalman
form for the sake of consistency, according to [2].

x+ = Fx

P+ = FPFT + GQGT

K = P+

ω HT
(
HP+

ω HT + R
1−ω

)−1
x = x+

ω + K
(

y
1−ω −Hx+

ω

)
P = (I−KH) P+

ω

(8)

with ω found by minimizing the volume of the resulting
covariance matrix:

ω = arg min
0<ω+<1

det(P) (9)

From Equation (8), one might get a sense of how the CIF
works compared to a KF: it essentially adds a weighting
factor ω to Equation (7), which determines how much of
one or the other estimate is taken into account in the convex
combination.
Finally, the Split Covariance Intersection Filter (SCIF) [19]
in which the covariance P is split into two components, one
containing the estimation error that is known to be perfectly
independent Pi and one containing the estimation error that
might contain correlation Pd. Intuitively, the SCIF combines
a KF and a CIF, where the KF handles the independent part
and the CIF handles the correlated one. There is however a
subtlety: the distinction of a dependent and independent part

(a) ksk Standalone (b) ksk Cooperative

(c) kvk Cooperative (d) kωk

Fig. 1: Estimation errors and ±3σ confidence domains (meters over
time in seconds). KF only updates in blue, CIF only updates in red
and K/CIF in purple.

in the model and observation noises Q and R.

x+ = Fx

Pd
+ = F PdF

T + G QdG
T

Pi
+ = F PiF

T + G QiG
T

P+ =
Pd

+

ω + Pi
+

R =
R+

d

1−ω + R+
i

K = P+HT
(
HP+HT + R

)−1
x = x+ + K

(
y −Hx+

)
P = (I−KH) P+ (I−KH)

T
+ KRKT

Pi = (I−KH) Pi
+ (I−KH)

T
+ K RiK

T

Pd = P− Pi

(10)

C. Comparative Study

In order to evaluate the performance of different filtering
approaches, one with a combination of KF and CIF, one
with a SCIF and another with a SCIF in T2TF configuration,
Algorithm 1 is applied in simulation. N = 3 vehicles move
along parallel straight lines with speeds that change over
time. Therefore, the constant velocity model has a non-null
modelling error. To simplify the analysis of the study, decor-
related white noises have been added to the sensors. The code
and parameters to run these simulations can be found on
https://gitlab.utc.fr/-/snippets/52. In the
following comparisons, we study both standalone (with on-
board sensors only) and cooperative (with on-board sensors
and estimates communicated by others) estimation, respec-
tively represented by Update1 and Update2 in Algorithm 1.

1) Manual Kalman and CI Updates
The incorporation of cooperative data introduces information
loops and leads to data incest. Figures 1a and 1b illustrates
that, while functioning as usual on standalone data, a KF
is not able to properly handle cooperative data fusion. The
estimate can be seen to over-converge on the wrong value,



(a) ksk Standalone (b) ksk Cooperative

(c) csk Standalone (d) csk Cooperative

Fig. 2: Estimation errors and ±3σ confidence domains. K/CIF in
purple and SCIF in green. Continuous lines are the total confidence
domains and dashed the independent part.

and not being able to correct itself as a consequence.
On the other hand, if the CIF is used for both standalone and
cooperative data, such an issue does not arise but the estima-
tion is pessimistic. This is because the filter has a tendency
to "jump" on the best estimate during the optimization step
when the associated covariances are homogeneously shaped,
which is the case in our 1D scenario. Indeed, the intersecting
effect of the CI works best when two estimate errors are
orthogonal to one another, and the filter displays more of
a copying effect otherwise. This effect can be seen more
prominently in Figures 1b and 1d, where the cooperative
estimate is the same as the standalone because it is the
best estimate of all vehicles, as illustrated by the ω that is
always found to be 1. We can however observe that indirectly
observed quantities such as the velocity can be estimated
as well, although slowly in Figure 1c. Indeed, with partial
observations, the CIF must deal with infinite uncertainties
[20]. It finds an ω that balances the loss of information on the
observed part with the small gain on the indirectly observed
part introduced by those infinite uncertainties. This can be
seen in Figure 1d, where ω starts by taking a lot of the
observation, and as the velocity converges, also converges
on an higher value.
The best result is obtained when using a KF on standalone
data and CIF on cooperative data, which will be denoted
K/CIF. In this case, the KF refines its estimation as in
Figure 1a and the CIF copies the best KF estimate over all
vehicles.

2) Split CI Filtering
In this second evaluation, we compare the K/CIF to letting
a SCIF automatically handle the correlation between tracks.
In this case, both standalone and cooperative updates are
done with Equation (10). In Figure 2a, one can notice
that when standalone, the K/CIF and SCIF yield almost
identical results. This is because observation errors are
entirely independent in both cases, thus constraining the
independent part of the estimate. There is however a pro-

(a) ksk Standalone (b) ksk Cooperative

Fig. 3: Estimation errors and ±3σ confidence domains. Observation
based SCIF in green and track based SCIF in brown. Continuous
lines are the total confidence domains and dashed the independent
part.

gressive separation of the independent and total covariance
due to the incorporation of evolution noise on the dependent
part instead of the independent. The copying behavior of
the CIF is again noticeable in Figure 2b, while the SCIF
slightly reduces errors and uncertainties. This is because
the remaining independent noise from the standalone steps
is filtered by the KF part, while the dependent uncertainty
prevents it from over-converging in its CIF part. This is close
to the perfect use case for the SCIF but it is not always
so reliable. Indeed, the SCIF does not naturally introduces
dependent covariance if observation and model errors are
independent. This can lead, in a subsequent filtering step, to
the same behavior as Figure 1b because the SCIF resolves
to a KF when observations are independent. This can be
alleviated by the introduction of dependent model noise, such
as in [20], [21] that interpreted Pd as a way to express the
temporal correlation of an error.
When observing another vehicle as standalone, in Figure 2c,
the two behave slightly differently. The SCIF provides more
pessimistic estimates because the observation noise includes
the observer’s own covariance (see Equation (5)). This leads
to the inclusion of dependent covariance in the observation
that is properly handled by the SCIF, but not the KF,
that ignores the correlation and provides an over-confident
estimate.

3) Track-To-Track Fusion (T2TF)
Until this point, sensor observations from a vehicle were
directly used in its cooperative estimation. This is a viable
option is such a small system but in more complex situations,
a filter might have to deal with many sensors that have
different modalities and frequencies. To allow for better
separation and adaptativeness, the classical solution is to
use a Track-To-Track Fusion (T2TF) architecture [22], in
which observations are used in one filter and the resulting
estimates are used by other filters. Figure 3b illustrates the
results of such an architecture compared to the previous
one. While the estimates tend to converge too quickly, they
usually give similar results to observation based filters. This
means that the introduction of dependent covariance is even
harder to tune than before, but the trade-off in flexibility is
often sufficient to overcome this limitation. In those cases,
a possible way to tune the filters is to first consider all
covariance as dependent and to find their power using usual
KF tuning methods. In a second time, dependent covariance



RMSE (m) 3σ CD Coverage
K/CIF 0.30 1.24 99.94%
SCIF 0.27 1.15 99.11%
T2TF 0.29 0.99 99.62%

TABLE I: Average Root Mean Square Error (RMSE), confidence
domain and coverage for the different comparisons over 30 simu-
lations. Coverage measures the consistency.

can be gradually transferred from dependent to independent
until inconsistent.

4) Summary
Despite requiring manual separation of standalone and coop-
erative information when implementing the filter, the K/CIF
is a viable solution to fuse shared estimates. This is also the
case of the SCIF that provides a generic data fusion method
easy to program but harder to tune. The use of dependent
covariance is powerful tool in a SCIF in order to represent
the temporal correlation of its errors. Its introduction by
the model noise Qd progressively transfers independent
estimation error filtered by the optimistic KF, to a dependent
estimation error filtered by the cautious CIF, and makes it an
important tuning factor to ensure both consistency and small
Confidence Domains (CD) in T2TF scenarios. Indeed, as the
independent part can over-converge, it must be compensated
by dependent uncertainty, and a compromise must be found
between a pessimistic standalone estimate and a consistent
cooperative estimate. Finally, even when standalone, the
SCIF is able to manage partially correlated model and
observation noises better than a KF. Table I provides results
averaged over 30 runs of the simulation. We have noticed
that the introduction of cooperative information is always
beneficial in terms of error and uncertainty reduction, and
that while less consistent, the SCIF in observation and T2TF
scenarios are similar. In terms of computation performance,
the CIF takes half a dozen milliseconds to run, due to the
optimization step, which is ten times longer than a KF. The
SCIF takes twice as much time as it performs more inversions
and more computation than a CIF. In addition, whereas there
exist variants of the CIF that replace the optimization step
with an analytic expression [14], [15], this is not the case
for the SCIF.

IV. EXPERIMENTS

In this section, we evaluate our simulation conclusions on a
complete tracking architecture that uses real data. The fusion
scheme is first described in Section IV-A then results are
showed in Section IV-B.

A. Description

The experiment, illustrated in Figure 4, is composed of
three Renault ZOE experimental vehicles from the Heudi-
asyc laboratory driving around a roundabout in the city of
Compiègne, France. Each vehicle is equipped with a Novatel
SPAN-CPT Inertial Measurement Unit with Post-Processed
Kinematics corrections for centimeter-level positioning, a
Velodyne VLP-32C LiDAR sensor and a Mobileye camera
for perception.

Fig. 4: View of the scene from an infrastructure camera and cyber
views of different vehicles. Tracked cars and signs are represented
by Oriented Bounding Boxes (OBB) colored in blue for vehicle 1,
green for 2 and red for 3. Behind are the surface of the road and
signs from an HD map.

Two types of objects are detected in this experiment: cars
and road signs. They are easy to detect using existing
methods, while representing two important classes of object,
moving and static. Cars are represented by a constant yaw
rate and acceleration model as described in [23] where
x =

[
x, y, θ, v, ω, a

]T
. Signs are represented by static states

x =
[
x, y, θ

]T
, where θ is the normal to the sign surface.

Positions are referenced in an ENU working frame.

1) Observations
In order to study the performance of our tracking solution, a
simple perception system that can provide reliable observa-
tions has been implemented. The SPAN sensor outputs the
ego pose Skyk =

[
xk, yk, θk

]T
at 50 Hz. The Mobileye

directly outputs a list of objects for many classes and with
estimated quantities (such as the velocity) at 35 Hz. Only
cars and signs are kept in order to simplify the association
process. The observation space is also reduced to oriented
bounding boxes (OBB) Mkyj =

[
xj , yj , wj , lj

]T
, where x

and y are the box centroid, w the width and l the length
of an object. Other quantities returned by the Mobileye are
estimated in an internal filter whose uncertainties are not
given and cannot be modeled, in addition to not always being
estimated correctly.
For the Velodyne VLP-32C, two processes take place in
parallel on the point cloud. To obtain signs observations, our
methodology is similar to [24], in which signs are recognized
by their high reflectivity and OBB are fit on them. To obtain
cars observations, our methodology is similar to [25], in
which non-ground points are clustered and OBB are fit on
those belonging to the road surface. Thus, for each point
cloud, at 10Hz, those processes output a list of observations
Lkyj =

[
xj , yj , θj , wj , lj

]T
.

Both sensors have common issues: they do not provide
an estimation of their observation uncertainty and provide
relative observations. To fix both issues at once, a trans-
formation step is applied to transform observations in the
working frame using a vehicle’s own pose estimation, similar
to Equation (5). The localization error covariance is added
the the observation error covariance matrix, which is found
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Fig. 5: Tracking Architecture

by empirical study of the innovation. As the camera provides
measurements that are tracked in an unknown manner, we
define

RMobileye,i = 0.5ΣMobileye, RMobileye,d = 0.5ΣMobileye

ΣMobileye =

[
42 0
0 2.252

]
(11)

and for the LiDAR, whose processing is snapshot

RLiDAR,i = ΣLiDAR, RLiDAR,d = 0

ΣLiDAR =

[
0.252 0

0 0.252

]
(12)

2) Tracking
The tracking architecture is described in Figure 5. Each track-
ing step is composed of a Out-Of-Sequence (OOS) measure-
ment management, that applies the reprocessing algorithm as
described in [26]. While this method is heavy, in particular
with important delays, it is more optimal than a solution
that introduces more model noise. Indeed, when received
observations are tracks, they can be predicted to the tracker
time to align them temporally [27]. The association between
tracks and observations is realized with a gated Mahalanobis
distance that includes a penalty when classes are different
to avoid matching cars with signs. Finally, the prediction
and update steps are realized with Equation (10). In this
experiment, all the model noise is considered dependent, and
since trackers are cascaded (from sensor, to vehicle, up to
cooperation), the power of the model noise is increased at
each step.

3) Communication
Vehicles periodically exchange their tracks. As the experi-
ment were realized offline, the communications were simu-
lated following the Cooperative Perception Message (CPM)
standard, where communications are limited to 10 Hz. A
communication delay was artificially added by waiting a
random time tCom ∼ N (150, 50) ms before reception.

B. Results

To establish those results, the tracks coming from the co-
operative tracker are associated and compared to a ground
truth when possible. For cars, the SPAN positions of the three
vehicles are used and for signs, their positions as stored in
an HD map are used. It is to be noted that a vehicle’s own
estimation is not communicated. This is because the position
accuracy is significantly better than the perception, and with

all vehicles communicating their own position the impact of
perception would not be perceivable.
The 2D errors and uncertainty bounds of one vehicle about
the three vehicles and signs are illustrated in Figure 6. Those
curves are computed using a similar method to [28], where
the error bound is computed along the direction of the error.
That way, the estimate can be considered consistent as long
as it is within its bound, while also hinting at the scale of
the uncertainty. For example, on the third curve, one can
notice that although the error does not vary significantly,
its uncertainty changes from high to low at times t = 12,
18, 28, 38 and 48. This corresponds to when vehicle 3 is
directly observed or simply communicated. In Table II, the
Root Mean Square Error (RMSE), confidence domains and
coverage of estimates from all vehicles are synthesized. The
coverage is consistent in all cases but two, when vehicles
2 and 3 observe vehicle 1. This is because for the first
half of the experiment, vehicle 1 is static and the used
evolution model (constant acceleration) cannot efficiently
converge, resulting in an erroneous position estimate. Except
for those two cases, this cooperative perception system is
likely consistent with both dynamic and static objects. As
a comparison, the KF/CI method performed in a similar
fashion, if not marginally better, yielding an RMSE of 0.704,
a 3σ CD of 3.475 and a coverage of 99.288% for example
for Vehicle 2 as seen from Vehicle 1.

V. CONCLUSION

In this paper, different filtering solutions based on the Covari-
ance Intersection Filter (CIF) or Split Covariance Intersection
Filter (SCIF) have been studied. Through a case study on a
simple example with several vehicles, we have shown how
measurement, model and estimation errors are involved in
a cooperative perception problem. Through this study, we
have implemented a SCIF that has shown a good ability to
estimate quantities not measured directly while maintaining
the consistency of the estimates even when this filter is
used to perform track-to-track data fusion in a cooperative
framework in which there are information exchange cycles.
Thanks to the good knowledge we gained in simulation on
both modeling and tuning, we were able to easily implement
a SCIF on real data in a realistic scenario with 3 vehicles
exchanging their perceptions of each others and of fixed
signs. This work has thus shown that, for a SCIF to work
properly, great importance must be given to the modeling of
the sources of uncertainty and that it is necessary to inject
a dependent model noise covariance, especially in T2TF
architectures. In future work, this filter will be used as a base
for developing new approaches for cooperative perception.
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Vehicle 1 Vehicle 2 Vehicle 3 Signs
RMSE 3σ CD Coverage RMSE 3σ CD Coverage RMSE 3σ CD Coverage RMSE 3σ CD Coverage

Vehicle 1 0.031 0.518 100.000% 0.674 3.727 99.526% 0.739 4.004 99.525% 0.264 0.738 99.360%
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