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Abstract: The seismic activity observed in the vicinity of Ulaanbaatar (UB) capital city has been
increased since 2005. Several active faults have been identified in the UB area. Most of the Mongolian
population is concentrated around UB (1.5 million), which is the main political and economic center
of the country. Hence, the study of seismic hazard is of first importance for the country. In this
paper, we present the GPR results obtained on the Songino fault which is situated at 20 km west-
southwest of UB at the northeast tip of Khustai fault. The combination of the morphotectonic, GPR
and paleoseismological investigations brings essential information for seismic hazards assessments.
The 2D GPR profiles are measured by using 250 and 500 MHz antennae and the topography using a
differential GPS. An appropriate processing of the GPR data, including the topographic migration,
allows us to bring out indirect characteristics of these faults. The objective is to identify near-surface
geometry and coseismic deformation along the mapped fault. The 250 MHz GPR images of the
Songino fault show the evolution of the sub-surface deformation mode induced by the arched
geometry of the Songino fault. We observe a clear compressive structure at its NW section, strike slip
at its central section and extensive structure in its SE part.

Keywords: GPR; active faults; Songino; Ulaanbaatar; deformation; Mongolia

1. Introduction

During the 20th century, Mongolia was one of the most seismically active intra-
continental areas in the world with four large earthquakes (above M 8) along its active
faults in the western part of the country (Munkhuu et al., 2010 [1]; Schlupp et al., 2012 [2]).
Despite that the seismic activity observed around Ulaanbaatar (UB), the capital of Mongolia
(where about half of the population lives), is relatively low compared to the activity
observed in Western Mongolia (Munkhuu et al., 2010 [1]), the study of seismic hazard and
the estimation of the probability of future large and potentially destructive earthquakes are
of first importance for UB and the country.

The observation of an increase of the seismic activity near UB since 2005 and the
discovery of a new active fault, Emeelt, at about 10 km west of UB (Schlupp et al., 2012 [2];
Adiya, 2016 [3]) focused the attention in the area (Figure 1). The aim is to identify another
unknown active structure and to characterize its activity. However, in the region, the geo-
morphology of the faults has been smoothed out due to erosion processes and a low slip rate
(most likely less than 1 mm per year, Munkhuu et al., 2010 [1]); thus, the exact location of the
fault is hidden in a several meter strip. In such a context, the GPR method has been proven
to provide good results to characterize faults by identifying offsets of radar reflections
and deformation along the strike of the fault (Christie 2009 [4]; McClymont, et al., 2010 [5];
Pauselli, et al., 2010 [6]; Yalçiner, et al., 2012 [7]; Beauprêtre et al., 2012 [8]; Dujardin, et al.,
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2014 [9]; Maurizio et al., 2015 [10]). In general, features such as sedimentary structures,
lithological boundaries, fractures and/or faults are clearly visible with GPR (Rashed et al.,
2003 [11]; Deparis et al., 2007 [12]; Dujardin, 2014 [13]), even when these features dif-
fer only by small changes in the nature, size, shape, orientation and packing of grains
(Guillemoteau et al., 2012 [14]). Therefore, several GPR campaigns were conducted near
UB in 2012, 2013 and 2017 using 250 and 500 MHz shielded antennas (see Figure 2 for the
position of the profiles) associated with differential GPS in order to measure the topography.
In this study, we present the preliminary results of 2D GPR measurements performed along
the Songino fault. This work is part of the complex characterization studies of active faults
around the city of UB, capital of Mongolia.
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Figure 1. Seismicity map (orange symbols) around Ulaanbaatar city from 1994 to 2015 (NDC data,
IAG, MAS). The green star indicates the UB city center. Red lines indicate the trace of main active
faults. The Songino fault (blue rectangle) located between Emeelt and Khustai faults is about 20 km
long and situated about 25 km SW of UB’s western end.
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yellow one is the 3rd trace location after 2nd seismic event. (b) Modeling with time showing the 
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(extensive). The locations of GPR profiles discussed are indicated by blue (NW) and red (SE) 
arrows (modified from Tsend Ayaush, 2021 [15]). 
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Figure 2. (a) Google Earth (2009) image showing the location of the Songino active fault. Red line
indicates the 1st trace location, blue line represents 2nd trace location after the 1st seismic event,
yellow one is the 3rd trace location after 2nd seismic event. (b) Modeling with time showing the
variation in deformation process between NW (compressive), central (strike slip) and SE (extensive).
The locations of GPR profiles discussed are indicated by blue (NW) and red (SE) arrows (modified
from Tsend Ayaush, 2021 [15]).
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2. Seismo-Tectonic Environment of UB Area

The Khustai fault’s northeastern tip is located at 15 km west from Ulaanbaatar
(Figure 1). This main fault of 80 km long may produce an M 7.5 earthquake, and it displays
regular microseismicity with five events M 4+ and an M 5.4 since 1974 (Ferry et al., 2012 [16]).
Exploratory trenches located along the central section of the active trace reflect the transten-
sional nature of the fault with mixed normal and left lateral strike slip, (Schlupp et al.,
2012 [2]; Ferry et al., 2012 [16]).

The recently discovered Emeelt fault (swarm area in Figure 1) is located less than
10 km from the westernmost area of UB (Schlupp et al., 2012 [2]; Adiya, 2016 [3]). Its surface
trace can be mapped over about 5 km and shows a right lateral strike slip with a vertical
component. A paleo-river crossing the fault was mapped in detail by using a pseudo
three-dimensional GPR profile (Dujardin et al., 2014 [9]; Dujardin, 2014 [13]). Previous
studies show that the Emeelt fault could produce an earthquake with a magnitude of at
least M 6.4 and up to M 6.7-7 (Schlupp et al., 2012 [2]; Dujardin, et al., 2014 [9]; Adiya,
2016 [3]). The Avdar and Sharkhai faults, located about 35 to 45 km south of the capital, are
oriented between N040◦ E and N070◦ E at a length of about 45 km for each. They are left
lateral strike slip faults that can be divided into several segments suggesting earthquakes
magnitude between 6 and 7 (Al Ashkar, 2015 [17]).

The Songino Fault

The Songino Fault (see location in Figure 1) was discovered in 2012 by a geomor-
phological approach (Schlupp et al., 2012 [2]). Branched at the northeastern end of the
Khustai active fault, it is about 20 km long and situated at 25 km southwest of UB. The
geomorphology of the Songino fault is clearly visible on a high-resolution satellite image,
with a smoothed but high scarp observed in the northwestern part of the fault (Figure 2).
From northwest to southeast, the height of the Songino scarp gradually changes. While
being quite high (about 20 m) at its northwestern end, it decreases towards the south
before almost disappearing in some places in the middle. By continuing to the southeast,
it gradually increases again up to about 0.5–1.5 m high. This is due to the curvature of the
fault. The rather linear central part, oriented NW-SE with left lateral slip, induces at the
northwestern end, nearly NS, a transpressional deformation and at the southeastern end,
nearly EW, a transtensional deformation (Figure 2b).

No large earthquake has historically been reported on this fault; however, its structure
gives indications of activity and a potential large seismic event (M 6.5) which could impact
the city of UB.

3. GPR Investigations on Songino Fault

Several 2D GPR profiles were conducted across the morphological evidence of recent
deformation at the SE transtensional section (see red arrow in Figure 2) in 2013 with
250 MHz and 500 MHz antennae (Tsend-Ayush et al., 2017 [18]; 2018 [19]) and at the NW
transpressional section (see blue arrow in Figure 2) in August 2017 with seven close GPR
profiles with 250 MHz shielded antenna. The aim was to image and describe, underneath
the sedimentary sequence, its deformation induced by past earthquakes and describe the
near surface geometry of the fault or deformation.

In this survey, we have used a Ramac GPR system, and the GPR profiles (see Figure 2
for the position of the profiles), perpendicular to Songino fault, have been acquired in
Common Offset (CO) method. Traces are recorded every 2 cm for the 500 MHz antenna
profiles and 5 cm for the 250 MHz antenna. A stack of 16 has been used to improve the
signal to noise (S/N) ratio. Along with the GPR data lines, a differential GPS system has
also been used in order to measure the topography. The processing of all GPR profiles
has been performed with our own software written in Matlab (Dujardin et al., 2014 [9];
Dujardin, 2014 [13]). We used a common flow procedure including a constant shift to adjust
the time zero, a dc filter to remove the low frequencies, a flat reflections filter to remove
continuous flat reflections noise, a band-pass filter, a time varying gain function and finally
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the topographic corrections. Band-pass filters are chosen to be 50–450 and 100–800 MHz
for the 250 and 500 MHz antennae, respectively.

3.1. GPR Observation at Transpressional Part of the Fault (NW Part of Songino Fault)

GPR images still show the presence of sedimentary deposits, potentially datable and
affected by deformations that could be related to previous earthquakes with clear offsets of
radar reflections (Figure 3). The location chosen for GPR profiles (blue arrow in Figure 2)
is where the fault affects deposits accumulated by a stream flowing from an eastern hill.
The GPR image converted in depth (Figure 3) shows a clear thrust structure, with several
compressive structures (red lines) in front of the scarp that has been smoothed since the
last events. The black arrows indicate the movement direction of the deformation. The
scarp height in this area is approximately 2 m and the uphill slope at east is about 4◦. The
deposits appear to be folded, but their complexity and the location of the GPR profile
at the level of recent stream deposits with possible interbedded features should not be
over-interpreted. The western part of the profile rises due to local erosion and is possibly
related to the associated horizontal slip.
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Figure 3. Result of GPR image of the profile 7 acquired in August 2017 with a 250 MHz antenna in the northwestern part of
the Songino fault (blue arrow in Figure 2). (a) GPR image in time scale; the topographic correction is performed using a
velocity of 0.1 m/ns. (b) Interpretation of the GPR image converted in depth, showing the thrust fault structure indicated
by black arrows. The apparent scarp is about 2 m and the uphill slope is 4◦. Red lines show compressive structures.
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3.2. GPR Observation at Transtensionnal Part of the Fault (SE Part of Songino Fault)

The GPR profile with a 250 MHz antenna across the transtensional section of the fault
(see red arrow in Figure 2) exhibits a strong reflection, which is offset (see white arrows).
This vertical apparent displacement of about 1.3 m (Figure 4) probably does not correspond
to the real vertical displacement as the fault is also associated with a strike-slip component.
Indeed, when non-horizontal layers are affected by a pure strike-slip, a vertical shift (up
or down) of these layers appears in a perpendicular section or trench. This process could
account for a part of the vertical apparent displacement. In addition, the thickness of the
sediment (composed of sand and silt) over this strong reflection is much greater uphill (left
side of Figure 4) than downhill (on the right).It can be either due to a lateral shift (thicker
sediments are moved laterally) or to deposits against a natural dam built by a vertical
component on the fault (uphill, north) and lower deposits or even erosion (downhill, south).
The GPR image shows a normal subsurface deformation that is enhanced by competent
layer structure under the scarp (see white arrows). A change in GPR reflections is observed
in the fault zone below the concave surface topography, indicating a filling zone with
a different sedimentation and without visible stratification. The GPR reflections in this
zone are less continuous compared to the reflections on both sides of the fault (uphill
and downhill).
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Another GPR profile at about 150 m east of the previous one (red arrow in Figure 2)
was conducted with a 250 MHz antenna in September 2012. The black arrow at around
48 m horizontally indicates the fault zone (Figure 5b).

On the left (north part) of the fault zone (black arrow at 48 m in Figure 5b), we observe
reflections with a good continuity down to 1 m and a clear continuous reflection located
between 20 and 40 m horizontally (white arrow of Figure 5b), whereas on the right of the
fault zone (south part), the reflections are irregular and might correspond to the weathered
bedrock. As in the case of Figure 4, the thickness of the sediment on the left of the scarp is
more important uphill (left side in Figure 5) than downhill (on the right), showing a jump
in the sedimentation process when crossing the fault zone. The height of the fault scarp
in Figures 4 and 5 is around 0.5 m. On both GPR profiles, the uphill has been lowering,
suggesting a counter-slope of the fault.
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4. Discussion and Conclusions

The GPR profiles made it possible to image the underground structures at the two
ends of the fault which are associated with opposite vertical deformations (compressive in
NW, extensive in SE). The overall fault dip to the north-northeast, probably more vertical in
its central section, inducing an extensive counter-slope scarp in the SE section with a recent
accumulation of deposits. The 250 MHZ antenna appears to be the best adapted to the
local context, with depth penetration close to the target for most of the paleo-seismological
trenches of the order of 3 m.

The 250 MHz GPR images of the Songino fault show the evolution of the sub-surface
deformation mode induced by the arched geometry of the Songino fault. We observe a
clear compressive structure at its NW section, strike slip at its central section and extensive
structure in its SE part with an apparent vertical displacement of around 1.2–1.3 m. This
shows that it is necessary to make GPR measurement at various places along the fault to
follow its behavior. As the fault is also associated with a strike-slip shift, a major component
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at the central part decreasing toward the NW and SE, the observed vertical displacement
in GPR profiles does not correspond to real offset.

These non-destructive observations allowed us to observe recent geological deposits,
potentially datable, as well as sub-surface deformations induced by past earthquakes. This
helps us to optimize the location of a paleo-seismological trench which will be presented in
detail by Tsend-Ayush (2021 [15]), in preparation).

This study confirms that, after morphotectonic analysis, the GPR method contributes
to the characterization of active faults, in particular near UB in Mongolia, in a context low
slip rate where the geomorphologic features have been strongly smoothed due to erosion
processes combined with a very long return period. The main result of this study is that it
is possible to distinguish between active fault compression and tensile effects by combining
the GPR imagery with the geomorphology of active faults.

Despite the very shallow penetration depth (up to 2–4.0 m with the 500 and 250 MHz
antennae), the information obtained by the GPR profiles was very useful for better choosing
the location of paleoseismological trench sites.

The next step of this study will be the paleoseismological investigations close to GPR
profiles. These will be compared with our observations and GPR results before giving
the final conclusions on this active fault and its relations with regional structures around
UB city.
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