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Abstract. Self-exploration of movement possibilities and exploitation of natural
dynamics are two crucial aspects of intelligent autonomous systems. We intro-
duce a dynamical exploration strategy which combines chaotic neural activity with
feedback-induced resonance. The underlying mechanism satisfies three conditions:
(1) resonant patterns are discovered even in the presence of noisy sensory feedback;
(2) no preprocessing of the feedback signal is required; and (3) exploration is an
integral part of the mechanims. An embodied system endowed with our exploration
strategy, can autonomously discover and tune into the intrinsic resonant modes
most relevant to its body morphology. The mechanism not only allows to explore
stable behavioral patterns, but also unstable ones. We demonstrate the role played
by our exploration strategy on the emergence of movements through a simulation
of a bipedal robot. We analyze with spectral and temporal methods the synchronic-
ity of movements, spatio-temporal coordinations, and bifurcations in the couplings
between neural, body, and environmental dynamics.

Keywords. Natural dynamics, feedback resonance, coupled chaotic fields, morphology,
neural control

1. Introduction

The main question addressed in this paper is how an embodied system can autonomously
discover modes of movement coordination which exploit the natural dynamics of the
body. Traditional approaches to robot control [1] as well as soft-computing methodolo-
gies (e.g. reinforcement learning, neural networks, or genetic algorithms) conceive of the
control of actions as a mathematical problem neglecting the importance of the interaction
with the real world. The emphasis is placed more on precision, reproducibility, and plan-
ning of optimal movements guided by feedback. Although these approaches are success-
ful in particular well-controlled application domains (e.g. industrial environments), they
face considerable problems when the system’s parameters are unknown, the number of
sensor and actuators is subject to changes, or the robustness and adaptivity to unforeseen
situations is of the essence.

The difficulties have not gone unnoticed, and there have been recent attempts
at devising more adaptive control strategies grounded into dynamic systems theory
(e.g. [5,10]). The focus of this research effort is on the coupling of brain, body, and en-
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vironment, and the exploitation of the intrinsic dynamics of the individual components.
The "control loop" explicitly and purposively exploits factors such as morphology, ma-
terial properties, natural dynamics, and, more generally, the physical interaction with the
real world. In this paper, building up on these ideas and on previous work [6,11], we
present and discuss a framework for exploring and exploiting the bodily capabilities of a
complex embodied system. The core intuition is that small but well-timed perturbations
can be used to push the system into behavioral modes characterized by high behavioral
flexibility and low energetic cost. For this purpose, we investigate neural and physical
mechanisms involved in the emergence of actions that are driven by the interaction of
brain, body, and environment, and propose several tools to quantify them. We focus on
two key components governing such emergence: (1) feedback resonance (physical com-
ponent), and (2) coupled chaotic fields (neural component).

In the following section, we detail how these two components affect the emergence
of movements. We then describe our experimental setup and a set of methods aimed at
shedding some light on the complex interplay between brain, body, and environment. We
finally analyze the movement patterns produced by our system and discuss the results.

2. Exploration Mechanism

2.1. Physical component: feedback resonance

Feedback resonance is a mechanism to drive a nonlinear oscillator into resonance by
varying the frequency of an external perturbation as a function of the oscillation ampli-
tude [8]. The rationale is that such a perturbation destabilizes the system and induces it
to move from its current orbit to another more stable one, potentially driving the system
closer to resonance. In addition to external perturbations, changes of the system’s global
dynamics are also regulated through perturbations induced by the system’s internal dy-
namics. Modulating the internal dynamics can therefore also provide clues about which
external perturbations the system is sensitive to. This approach is inspired by the OGY-
method [7] which demonstrates how a small time-dependent change of a control param-
eter of a chaotic system can significantly affect the behavior of the system, e.g. turn a
chaotic behavior into a periodic one. It is also somewhat related to the notion of "inter-
vention dynamics" which was introduced as a means of funneling the global dynamics
of a system through particular characteristic via-points known as "focuses" [5].

Given two coupled systems A and B, we can formulate the principle underlying
feedback resonance as:

FA
i (t + 1) = FA

i (t) + γFB
i (t), with FA

i (t) >> γFB
i (t), (1)

where FA
i (t) denotes the "force" exerted on the ith degree of freedom of system A at

time t, and γ is a coupling constant. The term γFB
i (t) represents the influence of system

B on system A. Conversely, the same perturbation scheme can be applied to system B:

FB
i (t + 1) = FB

i (t) + ηFA
i (t), with FB

i (t) >> ηFA
i (t), (2)

where FB
i (t) is the value of the ith degree of freedom of B, and FA

i (t) indicates the
influence of system A on system B modulated by the coupling constant η. Eqs. 1 and 2
establish a coupling between the two systems which allows internal dynamics and ex-
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ternal perturbations to mutually entrain. Such mutual entrainment is typically accompa-
nied by resonant modes. In our framework, A and B are the neuro-body and the body-
environment sub-systems (Fig. 1 a).

Figure 1. Our model: a) theoretical framework, and b) simulated bipedal robot.

2.2. Neural component: dynamically coupled chaotic field

We model the neural part of our system as a dynamical network of decoupled chaotic
units. These units are connected through afferent connections to the sensors (input), and
through efferent connections to the actuators (output). The chaotic system is coupled to
the mechanical system (body) through feedback resonance (Eqs. 1 and 2). The effect of
entrainment is the emergence of correlations and modes of coordination accompanied
by an integrative field of neural units which can not be produced by a predefined and
static coupling. We suggest that the interaction between brain and body-environment
dynamics couples (or decouples) the chaotic units connected to the body parts involved
in the movement. Each chaotic unit is modeled as a logistic map whose chaoticity is
determined by the control parameter α:

xi(t + 1) = fα(xi(t)), (3)

fα(xi(t)) = 1− αxi(t)2 + ηFi(t), where 1− αxi(t)2 >> ηFi(t).

In all our experiments and for all units: α ∈ [0.0, 2.0].
The use of chaotic units is partially justified by findings on human locomotion show-

ing that variations between steps are not mere noise but have a chaotic structure [2].
Some evidence also indicates that chaos might occur at higher levels of the neuromuscu-
lar control system [2,3].

3. Methods

In this section, we introduce measures for quantifying movement patterns: the duty factor
(DF), the spectral bifurcation diagram (SBD), the wavelet transform (WT) and a novel
method derived from the wavelet transform, the wavelet bifurcation diagram (WBD).

The duty factor is typically used for quantifying and classifying different types of
locomotive patterns [14]. It is defined as the fraction of time the legs are on the ground
versus the duration of one locomotive cycle. In walking humans, for instance, each foot
is on the ground for more than half of the time (DF > 0.5). In running humans, however,
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γ η density damping stiffness sampling time (s)

10 0.01 0.6 10 10 0.05

Table 1. Parameters used in our experiments.

it is on the ground for less than half of the time (DF < 0.5). The spectral bifurcation di-
agram is an attempt to analyze qualitatively the dynamics of high dimensional dynamical
systems [9]. It superimposes the spectral density distribution of each variable relative to
the current value of the control parameter of the system under study. The wavelet trans-
form is a popular and powerful tool for time series analysis and signal compression [12].
It extends the Fourier representation to the temporal domain. An interesting property of
the wavelet transform is that it can be used to identify short- and long-range temporal
correlations in time series. We extended the wavelet transform to the analysis of corre-
lations among the chaotic units composing the neural system and the individual body
parts. In order to visualize the spatio-temporal patterns and the bifurcations at different
scales, we added a dimension spanning the index of the units of the system. We call this
measure the wavelet bifurcation diagram.

4. Experiments

For our experiments we used a simulated bipedal (two-legged) robot moving in the sagit-
tal plane (Fig. 1 b). Each leg was composed of two limbs linked by a damper-spring joint
and had two active and two passive joints. The legs were actuated at the hip by two mo-
tors controlled by a neural system consisting of two chaotic units. The input to the chaotic
units was provided by angle sensors located in the passive joints (the sensors measured
the angle between upper and lower limb). The parameters used for the simulation are
given in Table 4. All our simulations were performed with Matlab.

By changing the control parameter α, we observed many different movement pat-
terns. For 0 < α < 0.7, the dynamics of the chaotic system and of the body were weakly
coupled and perturbed each other only slightly. The small perturbations transmitted by
both systems, however, were not strong enough for any movements to occur.

For α = 0.7, the system started to rock slowly back and forth without actually
changing its position. By increasing α up to 0.8, the robot had enough energy to balance
but not enough to lift its legs and locomote, that is, the system began to "crawl" and then
from time to time returned to its initial (balanced) position (Fig. 3 a). For α = 0.85 the
system had finally enough inertia to lift one of its legs and started moving. The external
perturbations, and the speed increased too. This change is reflected by a drop of the duty
factor from about 0.65 to 0.40 for speeds v < 0.3 m/s.

For α = 0.9, the internal excitations of the chaotic system fed to the motors had
enough energy so that both legs could move separately. The system coordinated its legs
alternatively by hopping (Fig. 3 b; duty factor DF < 0.20 and speeds v < 0.5 m/s),
walking (Fig. 3 c), and jumping (Fig. 3 d; DF < 0.20, 0.5 m/s < v < 1.0 m/s).

Note that for α < 1.0 hopping was a more stable and reproducible behavior com-
pared to walking and jumping which require a more precise synchronization between
the legs. Systems with hard (k = 50) and soft (k = 10) springs displayed the same
stable behaviors (Fig. 2). For α > 1.0 we observed a change of the dynamics depending
on the spring stiffness. In the case of hard springs, the mechanical system moved in the
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same stable fashion quite immune to changes of the chaoticity of the neural system. The
system with soft springs was able to perform faster coordinated movements but as the
control parameter increased the movements were less stable. Its dynamics allowed it to
run and jump at v > 1.5 m/s for DF < 0.20. For α > 1.4, the system was highly un-
stable and did not display any coordinated movements. The perturbations of the chaotic
system strongly affected the body movements. External perturbations due to the body-
environment interaction had no measurable influence on the neural system.

Figure 2. Duty factor for different values of α and for joints with different stiffness. (a) Hard springs (k = 50);
and (b) soft springs (k = 10). α < 1.0 (circles); α > 1.0 (crosses). 600 samples for each category.

Figure 3. Gaits for different values of the control parameter: a) crawling, b) hopping, c) walking, and d)
jumping.

5. Analysis

Movement patterns have spatio-temporal structure resulting from changes in the coordi-
nation dynamics of both body and neural system. The spectral bifurcation diagram illus-
trates the spectral distribution of the coupling between the neural system and the body
as a function of the control parameter α (Fig. 4). The frequencies with high density cor-
respond to those of synchronization between the two dynamical systems. They repre-
sent the inner resonant states for which perturbations (or moments of energy exchange)
between the two coupled systems are significant.

Interestingly, for α < 1.0, the body dynamics has little effect on the neural dy-
namics and vice versa. We can distinguish the fundamental mode at a frequency of
10 Hz, and harmonics at regular intervals from the fundamental with an harmonic mode
around 256 Hz. This corresponds to the excitation of the passive dynamics of the damped
springs (the low frequencies) by the chaotic system (the higher frequencies) when the
mechanical system balances, crawls, and starts walking and hopping. These frequencies
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Figure 4. Spectral Bifurcation Diagram: (a) sensors, and (b) chaotic units.

represent the lowest energetic cost required by the system to move and locomote and at
the same time the maximum amount of external perturbation that the system can absorb
while performing the required actions. The wavelet transform for different values of α
for the time series extracted from the sensor located in the knee of the rear leg is plotted
in Fig. 5 (a). This figure also illustrates the stability and low complexity of the behavior
when the robot is poised in balance. Note that for α < 1.0 every scale lacks long-range
temporal correlations.

Conversely, for α = 0.97, a qualitative change occurs in the interaction between the
two dynamical systems. As a result a spectral bifurcation at frequency 128 Hz appears in
the SBD indicating more powerful hopping and walking patterns. The wavelet transform
in Fig. 5 (a) shows this qualitative change for s = 128 and for s < 50. Temporal corre-
lations are formed by the appearance of long almost single-scale (i.e. periodic) tempo-
ral patterns. The wavelet bifurcation diagram (WBD) in Fig. 6 (a) allows to visualize the
emergence of rhythmically stable spatio-temporal coordinations of the two legs (units 1
and 2) when the system starts to walk and hop (appearance of stripes at scales 1 and 2).
When α increases a little, these dynamical patterns become more unstable (Fig. 6 b).

For α > 1.13, the spectral bifurcation at 128 Hz diffuses and gradually activates all
the surrounding frequencies. This new modulation affects the stability of the coordina-
tion between the chaotic system and the body producing fast walking and running behav-
iors in addition to hopping and crawling. These frequencies represent the amount of en-
ergy that the system can actually absorb to perform these behaviors with regard to inter-
nal/external perturbations. These irregulars harmonics are characteristic of the change of
stiffness in springs as observed in [13], giving the property of the system to "harden" or
"soften" its springs, and thus to have higher flexibility. As can be seen in Fig. 5 (c) short-
lasting unstable motions for scales s < 25 form stable and repetitive long-range temporal
patterns at higher scales (s > 25, 128, 155 and higher). The stability of the dynamics has
changed scale with α implying that stability is scale-dependent. The same result is ob-
served in the case of the WBD (Fig. 6 c). For scales s > 2 the embodied system performs
stable "long-range" movements which are accompanied by short-range perturbance-like
movements at lower scales. The structure of the spatio-temporal patterns is fractal as in
human locomotion [2]. The patterns are formed at the lowest scales and are integrated
and coordinated in time at higher scales. Long-lasting movements are thus composed of
movements of smaller duration.

Increasing α beyond 1.25 gives rise to a second spectral bifurcation at frequency
256 Hz leading to chaotic interaction dynamics between the coupled systems. In this
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mode, the embodied system is highly sensitive to any kind of perturbations and is un-
stable (almost all the perturbations give rise to resonance). This result seems to contra-
dict the ones obtained with the wavelet transform (Fig. 5 d) and with the WBD (Fig. 6 d).
The movements, although unstable and dynamic for scales s < 25, are highly corre-
lated at the higher scales presenting stable movement patterns with long-range temporal
correlations. On other words, the stability of the dynamics has changed scale.

Figure 5. Wavelet Transform. From top-left to bottom-right the intervals of the control parameter α are: [0.90;
1.00]; [1.00; 1.10]; [1.10; 1.20]; and [1.20; 1.30]. The arrow indicates a spectral bifurcation.

Figure 6. Wavelet Bifurcation Diagram. From top to bottom the intervals of the control parameter α are: [0.90;
1.00]; [1.00; 1.10]; [1.10; 1.20]; and [1.20; 1.30]. The horizontal axis denotes time, the vertical axis denotes
the index of the chaotic unit. The individual graphs have different time-scale resolutions.
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6. Conclusion

In this paper, we addressed the question of how an embodied system can autonomously
explore its movement possibilities and exploit its natural dynamics. We proposed a gen-
eral framework based on two core phenomena: resonance and chaos. We also introduced
a set of quantitative measures to analyze the dynamics of coupled nonlinear system. We
observed that the stability of the emergent movement patterns in a simulated bipedal
robot is scale dependent and present a spatio-temporal fractal structure. Our future work
will be aimed at exploring how our framework might be combined with learning, plan-
ning, and intentional behavior.
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