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a b s t r a c t

Modern applications require advanced techniques and tools to process large volumes of uncertain

data. For that purpose we introduce cardinality constraints as a principled tool to control the

occurrences of uncertain data. Uncertainty is modeled qualitatively by assigning to each object a

degree of possibility by which the object occurs in an uncertain instance. Cardinality constraints

are assigned a degree of certainty that stipulates on which objects they hold. Our framework

empowers users to model uncertainty in an intuitive way, without the requirement to put a pre-

cise value on it. Our class of cardinality constraints enjoys a natural possible world semantics,

which is exploited to establish several tools to reason about them.We characterize the associated

implication problemaxiomatically and algorithmically in linear input time. Furthermore,we show

how to visualize any given set of our cardinality constraints in the form of an Armstrong sketch.

Even though the problem of finding an Armstrong sketch is precisely exponential, our algorithm

computes a sketch with conservative use of time and space. Data engineers may therefore com-

pute Armstrong sketches that they can jointly inspectwith domain experts in order to consolidate

the set of cardinality constraints meaningful for a given application domain.
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1. Introduction

1.1. Background

The notion of cardinality constraints is fundamental for understanding the structure and semantics of data. In traditional concep-

tual modeling, cardinality constraints were introduced in Chen's seminal paper [7]. They have attracted significant interest and tool

support ever since. Intuitively, a cardinality constraint consists of a set of attributes and a positive integer b, and holds in an instance

if there are no b+1distinct objects in the instance that havematching values on all the attributes of the constraint. For example, bank

customers with nomore than 5 withdrawals from their bank account per month may qualify for a special interest rate. Traditionally,

cardinality constraints empower applications to control the occurrences of certain data, and therefore have significant applications in

data cleaning, integration, modeling, processing, and retrieval.

1.2. Motivation

Traditional conceptual modeling was targeted at certain data for applications such as accounting, inventory and payroll. Modern

applications, such as information extraction, radio-frequency identification (RFID), scientific data management, data cleaning, and
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financial risk assessment produce large volumes of uncertain data. For example, RFID can track movements of endangered species

of animals, such as the Indiana bat in Georgia, USA. For such an application, data comes in the form of objects associated with some

discrete level of confidence in the signal reading; for example based on the quality of the signal received. More generally, uncertainty

can be modeled qualitatively by associating objects with the degree of possibility (p-degree) that the object is perceived to occur in

the instance. Fig. 1 shows such a possibilistic instance (p-instance), where each object is associated with an element from a finite

scale of p-degrees: α1 N … N αk+1. The top degree α1 is reserved for objects that are ‘fully possible’, the bottom degree αk+1 for

objects that are ‘impossible’ to occur. Intermediate degrees are used as required and linguistic interpretations attached as preferred,

such as ‘quite possible’ (α2) and ‘somewhat possible’ (α3).

As this scenario is typical for a broad range of applications, we investigate in this article how cardinality constraints can benefit

from the p-degrees assigned to objects. More specifically, we investigate cardinality constraints on uncertain data, where uncertainty

is modeled qualitatively in the form of p-degrees.

The degrees of possibility are a natural source for extending the expressivity of traditional cardinality constraints. In fact, our use of p-

degrees enjoys a natural possible world semantics, as illustrated on the running example in Fig. 1. Here, the worldw1 contains the RFID

readings of high quality only, that is, all the objectswithp-degreeα1. Theworldw2 contains RFID readings of high or goodquality, that is,

all the objectswith p-degreeα1 orα2. Finally,worldw3 contains RFID readings of high, good, or lowquality, that is, all the objectswith p-

degree α1, α2 or α3. This possible world semantics enables us to express traditional cardinality constraints with different degrees of cer-

tainty. The certainty by which a traditional cardinality constraint holds is derived from the possible worlds in which it holds.

For example, we can express that for all low, good, and high quality readings, there are atmost three readings recorded in the same

zone, by declaring the cardinality constraint card(Zone) ≤ 3 to be ‘fully certain’. That is, card(Zone) ≤ 3must hold in the largest possible

worldw3, and therefore also in all theworlds it contains. Similarly, we can express that for all good and high quality readings, at most

two bats are recorded in the same zone at the same time, by declaring the cardinality constraint card(Zone, Time) ≤ 2 to be ‘quite cer-

tain’. That is, card(Zone, Time) ≤ 2must hold in the second largest possibleworldw2, but not necessarily in the largestworldw3. Finally,

we can express that for all high quality readings, the zone and time together identify the bat, by declaring the cardinality constraint

card(Zone, Time) ≤ 1 to be ‘somewhat certain’. That is, card(Zone, Time) ≤ 1 must hold in the smallest possible world w1, but not

necessarily in the worlds w2 or w3.

1.3. Contributions

Our objective is to apply possibility theory from artificial intelligence to establish qualitative cardinality constraints (QCs) as a

fundamental tool to control the occurrences of uncertain data. Our contributions can be summarized as follows:

• Modeling. We introduce qualitative cardinality constraints as a class of integrity constraints on uncertain data. Here, uncertainty is

modeled qualitatively by assigning to each object a degree of possibility with which it occurs in the instance. The p-degrees bring

forward a nested chain of possible worlds, with each world being a classic instance that has some possibility. Hence, the higher

the possibility of a world the fewer objects it contains. This empowers us to assign degrees of certainty to cardinality constraints,

stipulating to which possible worlds they apply. The degrees of certainty (c-degree) are usually denoted by β1 N … N βk N βk+1,

where βk+1 denotes the bottom c-degree reserved for constraints that are satisfied by any p-instance. Cardinality constraints

that apply to the largest possible world hold with ‘full certainty’, denoted by the top c-degree β1, while cardinality constraints

that apply to the smallest possible world are only ‘somewhat certain’ to hold, denoted by the c-degree βk. Fig. 1 shows the possible

Fig. 1.P-instance and its possibleworlds as the result of integrating RFID readings of different qualities; Armstrongp-sketch of the qualitative cardinality constraints that

the p-instance satisfies.



worldsw1,w2 andw3 of our running example. Here,w2 satisfies card(Zone, Time) ≤ 2 but violates card(Zone, Time) ≤ 1, which holds

only on world w1.

• Reasoning. We establish axiomatic and algorithmic solutions to the implication problem associated with qualitative cardinality

constraints. The implication problem is to decide, for any given qualitative cardinality constraint and any set of such constraints

over a given object type, whether the constraint is implied by the set, that is, whether every instance over the object type that

satisfies every element of the set also satisfies the constraint. Technically, the algorithmic solution to the implication problem is

derived from a linear-time characterization of the inference problem,where onemust compute for any given traditional cardinality

constraint and any given set of qualitative cardinality constraints on any given object type, the highest degree of certainty with

which the constraint is implied by the given set. Our algorithmic solution allows us to detect and remove any redundant constraints

from a given set, thereby reducing the number of cardinality constraints that must actively be enforced on given sets of objects to a

minimal level necessary. This ability results in time savings proportional to the size of the data sets. That means our solutions

empower us to efficiently enforcemany desirable properties of uncertain data arising frommodern application domains. For exam-

ple, Fig. 2 shows a cover for the qualitative cardinality constraints that the p-instance from Fig. 1 satisfies. In the figure a qualitative

cardinality constraint (card(X) ≤ b, β) is represented as follows: the cube under the c-degree β features all attribute sets Xwith the

minimal upper bound b that applies to them. The constraints that form a minimal cover∑ for the set of all qualitative cardinality

constraints satisfied by the p-instance are shown in bold font. For example, the constraint (card(Time) ≤ 2, β2) is implied by the

constraint (card(Time) ≤ 2, β1). We also show that our findings cannot only be used to control the integrity of uncertain data, but

also have interesting applications to query processing. For example, our solution of the implication problem can be used to compute

upper bounds on the number of query answers without actually having to query the potentially big data set.

• Acquisition. The benefits of applying qualitative cardinality constraints effectively to an application are inhibited by the difficulty of

identifying those constraints that actually hold on the domain of the application. In the idealized special casewhere only fully certain

objects occur in the data, it is already difficult to identify the correct upper bound. In the context of uncertain data, the problem

becomes evenmore intricate as the correct degree of certainty has to be identified for any given upper bound. It is therefore impor-

tant to provide computational support to business analysts who need to discover meaningful qualitative cardinality constraints.

For this purpose, we investigate Armstrong samples for the class of qualitative cardinality constraints. A p-instance is said to be

Armstrong for a given set of qualitative cardinality constraints if and only if for every qualitative cardinality constraint, it holds

that it is implied by the given set if and only if it is satisfied by the p-instance. An Armstrong p-instance therefore tells us the highest

degree of certainty by which a qualitative cardinality constraint is implied by the given set. While there are sets of qualitative

cardinality constraints which require every Armstrong p-instance to be infinite, we show that every set of qualitative cardinality

constraints enjoys Armstrong p-sketches, which are finite representations of potentially infinite Armstrong p-instances. Even

though the problem of finding an Armstrong p-sketch is precisely exponential, we establish an algorithm that computes an

Armstrong p-sketch with conservative use of time and space. Business analysts may therefore compute Armstrong p-sketches

that they can jointly inspect with domain experts in order to consolidate the correct degree of certainty with which cardinality

constraints should hold in the given application domain. For example, the p-instance from Fig. 1 is a finite Armstrong p-instance

for the set ∑ of qualitative cardinality constraints above. An Armstrong p-sketch for ∑ is shown on the right of Fig. 1. Although

p-sketches aremostly useful to finitely represent infinite Armstrong p-instances, they are alsomore concise representations of finite

Armstrong p-instances. They are more concise as they require fewer objects and focus the attention of the people who inspect

them on only the relevant patterns of data. For instance, the row (Card:2, Zone:Z7, Time:*, RFID:R8, α3) summarizes the fact that

any p-instance that thep-sketch representsmust feature twodifferent objects that both have the value Z7 on Zone, each have unique

values on Time, both have the value R8 on RFID, and both have associated p-degree α3.

• Tool support and experiments.We implemented our algorithm for computing Armstrong p-sketches in a prototype system, and con-

ducted several experiments regarding the size of the output and the time to compute the sketches. Our prototype successfully transfers

the concept of Armstrongp-sketches from theory into practice. Our results suggest that Armstrongp-sketches, as computed by our pro-

totype, are small enough for effective use during the requirements acquisition phase, and can be computed very quickly.

Fig. 2.Minimal cover for the set of qualitative cardinality constraints that the p-instance from Fig. 1 satisfies.



In summary, we introduce a new class of cardinality constraint that is useful in terms of i) expressing the semantics of uncertain

data within a given application domain, ii) the small effort required to reason about them and process updates and queries more

efficiently, and iii) the computational support available to acquire them.

1.4. Organization

In Section 2 we summarize briefly the vast research on cardinality constraints from the community. This points out the lack

of qualitative approaches to constraints on uncertain data. We propose a semantics for qualitative cardinality constraints on

instances of uncertain data in Section 3. In Section 4 we establish axiomatic and linear-time algorithmic characterizations for

the associated implication problem of qualitative cardinality constraints, and linear-time algorithmic characterizations for the

associated inference problem. This section also features two applications of our results. The first application is an algorithm

for computing a minimal cover for a given set of qualitative cardinality constraints, which can be used to determine a minimal

set of constraints that must be enforced when updates are processed. The second application illustrates the usefulness of our

results for processing queries. Section 5 details how to visualize arbitrary sets of qualitative cardinality constraints in the

form of Armstrong p-sketches. While the problem of finding an Armstrong p-sketch is shown to be precisely exponential, our

computed Armstrong p-sketch is always at most quadratic in the size of a minimum-sized Armstrong p-sketch and the given

set of constraints. We briefly present our prototype system in Section 6, and the results of our experiments in Section 7. In

Section 8 we conclude and discuss future work.

2. Related work

Cardinality constraints are one of the most influential contributions conceptual modeling has made to the study of database

constraints. They were present in Chen's seminal paper [7] on conceptual database design. It is no surprise that today they are part

of all major languages for data and knowledge modeling, including UML, EER, ORM, XSD, or OWL. Cardinality constraints have

been extensively studied in database design [1,6,8,14,15,18,19,23–25,27,31,32,35,37,42,43]. For a recent survey, see [44].

There are many quantitative approaches to uncertain data, foremost probability theory [41]. Research about constraints on prob-

abilistic data is still in its infancy [5,26,38]. Qualitative approaches to uncertain data deal with either query languages or extensions of

functional dependencies [4]. In [28] we introduced the class of possibilistic keys on qualitatively uncertain data, established axiomatic

and algorithmic characterizations of their associated implication problem, and showed how to construct finite Armstrong p-instances

for them. Possibilistic keys can be expressed by qualitative cardinality constraints of the form (card(X) ≤ 1,β). In contrast to qualitative

cardinality constraints, Armstrong p-instances for any set of possibilistic keys are guaranteed to be finite. Qualitative approaches to

cardinality constraints on uncertain data have not been studied yet to the best of our knowledge. Our contributions extend results on

cardinality constraints from traditional conceptual modeling, covered by the special case of two degrees of possibility. These include

findings on the implication problemandArmstrong databases [20]. The definition of Armstrong p-sketches asfinite representations of

potentially infinite Armstrong p-instances is original.

Possibilistic logic is a well-established tool for reasoning about uncertainty [9,12] with numerous applications in artificial intelli-

gence [11], including approximate reasoning [45], non-monotonic reasoning [16], qualitative reasoning [40], belief revision

[10,17,36], soft constraint satisfaction problems [3], decision-making under uncertainty [39], and pattern classification and prefer-

ences [2]. Our results show that possibilistic logic is suitable to extend the classical notion of cardinality constraints from certain to

qualitatively uncertain data.

The current article is an extended version of the conference paper [29]. The extensions are manifold. 1) We introduce the new

concept of Armstrong p-sketches. This concept is highly useful for the discovery of meaningful qualitative cardinality constraints

because finite Armstrong p-sketches exist for any given set of these constraints. In contrast, there are sets of qualitative cardinality

constraints that require infinite Armstrong p-instances. The conference paper [29] was restricted to the study of Armstrong

p-instances only. As these are only finite in cases where for each underlying attribute some finite upper bound has been specified

with full certainty, the use of Armstrong p-instances is limited in practice. Even in the case where a finite Armstrong p-instance

does exist, anArmstrong p-sketch still provides amore concise summary. 2)We study the inference problemof qualitative cardinality

constraints, which has not been considered in previous research. Our linear-time solution to this problem can also be used to decide

the associated implication problem in linear time in the input. 3)We have included some applications of our results, notably an algo-

rithm to compute some minimal cover for a given set of qualitative cardinality constraints and can be applied to enforce cardinality

constraints on uncertain data without redundancy; as well as an example that illustrates the applications of our findings to

query processing and cardinality estimation. 4)While the conference paper [29] did not include any proofs, we include all proofs

in the current article. This not only makes it possible to understand the validity of our results and algorithms, but also provides

all details for the techniques and constructions we establish. 5) A detailed running example is provided to illustrate the concepts

and findings throughout the article. Our proofs and findings may become more accessible for the reader, or at least provide a

showcase to which they are applied. 6) We have transferred the concept of Armstrong p-sketches from theory into practice

by implementing our algorithm in a prototype system. 7) We conducted several experiments with our prototype, showing

that Armstrong p-sketches are small enough to use them successfully during the requirements acquisition phase and can be

computed very quickly with our prototype.



3. Qualitative cardinality constraints

In this section we extend object types that model certain objects in traditional conceptual modeling to model uncertain objects

qualitatively. Based on our model to attribute to each object a degree of possibility with which it occurs, we can attribute degrees

of certainty to traditional cardinality constraints that say to which objects they apply.

We start by recalling some basic definitions of attributes, object types, objects and their projections, and instances. An object

type, denoted by O, is a finite non-empty set of attributes. Each attribute A ∈ O has a domain dom(A) of values. An object o over O is

an element of the Cartesian product ∏A ∈ Odom(A). For X ⊆ O we denote by o(X) the projection of o on X. An instance over O is a set ι
of objects over O. Note that an instance may be infinite.

As our running examplewe use the object type TRACKINGwith attributes Zone, Time, and Rfid. Objects either belong or do not belong

to an instance. For example, we cannot express that we have less confidence for the bat identified by Rfid value B5 to be in Zone Z5 at

01 am than for the same bat to be in Z4 at 12 am.

We model uncertain instances by assigning to each object some degree of possibility with which the object occurs in an instance.

Formally, we have a possibility scale, that is, a finite strict linear order S ¼ ðS;bÞwith k+1 elements, denoted by α1 N⋯ N αk N αk+1.

The elements αi ∈ S are called possibility degrees, or p-degrees for short. Here,α1 is reserved for objects that are ‘fully possible’ to occur,

while αk+1 is reserved for objects that are ‘impossible’ to occur in an instance, and any intermediate p-degree might linguistically be

interpreted by some graded version of possibility such as ‘somewhat possible’ or ‘rather possible’. Of course, a linguistic interpretation

is not necessary at all. The use of a specific possibility scale should simply reflect the requirements of an organization to distinguish

between different degrees of possibility with which it perceives its data to occur. In our running example, we choose k = 3 and

interpret α1 as ‘fully possible’, α2 as ‘quite possible’, α3 as ‘somewhat possible’, and α4 as ‘impossible’, reflecting the perceived quality

of the RFID readings. We point out that humans like to use simple scales in everyday life to communicate, compare, or rank. Here,

simple means to classify items qualitatively rather than quantitatively by putting precise values on them. Finally, we point out that

classical instances are subsumed by the special case where k = 1. Here, objects that are assigned p-degree α1 are the objects of the

instance, while all objects that do not occur in the instance are assumed to be assigned p-degreeα2. As we demonstrate below, objects

that are assigned the top p-degree α1 are not just ‘fully possible’ to occur, but in fact, ‘fully certain’ to occur as well. Therefore, classical

instances are a special case of uncertain instances.

A possibilistic object type ðO;SÞ, or p-object type, consists of an object type O and a possibility scaleS. A possibilistic instance, or

p-instance, over ðO;SÞ consists of an instance ι over O, and a function Possι that assigns to each object o ∈ ι a p-degree PossιðoÞ∈
S−fαkþ1g. We sometimes omit Poss when denoting a p-instance. Fig. 1 shows a p-instance over (TRACKING, S ¼ fα1;…;α4g).

P-instances enjoy a possible world semantics. For i= 1,…, k letwi consist of all objects in ι that have p-degree at least αi, that is,

wi = {o ∈ ι|Possι(o) ≥ αi}. Indeed, we have w1 ⊆ w2 ⊆ ⋯ ⊆ wk. The possibility distribution πι for this linear chain of possible worlds is

defined by πι(wi) = αi. Note that wk+1 is not a possible world, since its p-degree π(wk+1) = αk + 1 means ‘impossible’. Vice versa,

Possι(o) for an object o ∈ ι is the maximum p-degree max{αi|o ∈ wi} of a world to which o belongs. If o ∉ wk, then Poss(o) = αk+1.

Every object that is ‘fully possible’ occurs in every possible world, and is therefore also ‘fully certain’. Hence, instances are a special

case of uncertain instances. Fig. 1 shows the possible worlds w1 ⊊ w2 ⊊ w3 of the p-instance in the same figure.

We introducequalitative cardinality constraints, or QCs, as cardinality constraints that have someassociated degree of certainty. As

cardinality constraints are fundamental to applications with certain data, QCs will serve a similar role for applications with uncertain

data. A cardinality constraint over object typeO is an expression card(X) ≤ bwhere∅ ≠ X ⊆ O and b is a positive integer. The cardinality

constraint card(X) ≤ b over O is satisfied by an instance w over O, denoted by ⊨w card(X) ≤ b, if there are no b + 1 distinct objects

o1, …, ob+1 ∈ w with matching values on all the attributes in X. For example, Fig. 1 shows that card(Zone) ≤ 1 is not satisfied by

any instance w1, w2 or w3; card(Zone, Time) ≤ 1 is satisfied by w1, but not by w2 nor w3; card(Rfid) ≤ 2 is satisfied by w1 and w2, but

not by w3; and card(Rfid) ≤ 3 is satisfied by w1, w2 and w3.

The p-degrees of objects result in degrees of certainty by which QCs hold. As card(Rfid) ≤ 3 holds in every possible world, it is

‘fully certain’ to hold on ι. As card(Rfid) ≤ 2 is only violated in a ‘somewhat possible’ world w3, it is ‘quite certain’ to hold on ι. As
the smallest world that violates card(Zone, Time) ≤ 1 is the ‘quite possible’ world w2, it is ‘somewhat certain’ to hold on ι. As
card(Zone) ≤ 1 is violated in the ‘fully possible’ world w1, it is ‘not certain at all’ to hold on ι.

Similar to the scale S of p-degrees αi for objects we use a scale ST of certainty degrees βj, or c-degrees, for cardinality constraints.

As indicated in the last paragraph, we use ‘fully certain’, ‘quite certain’, ‘somewhat certain’, and ‘not certain at all’ in our running

example. Formally, the correspondence between p-degrees in S and the c-degrees in ST is defined by the mapping αi ↦ βk+2 − i

for i=1,…, k+1. Hence, the certainty Cι(card(X) ≤ b) bywhich the cardinality constraint card(X) ≤ b holds on the uncertain instance

ι is either the top degree β1 if card(X) ≤ b is satisfied bywk, or theminimum among the c-degrees βk + 2 − i that correspond to possible

worlds wi in which card(X) ≤ b is violated, that is,

Cι card Xð Þ≤bð Þ ¼
β1 ; if ⊨wk

card Xð Þ≤b

min βkþ2−ij⊭wi
card Xð Þ≤b

n o

; otherwise

(

:

When ι denotes the p-instance from Fig. 1, then the c-degree Cι(card(Rfid) ≤ 3) is β1 as card(Rfid) ≤ 3 is even satisfied in

the world w3. Similarly, the c-degree Cι(card(Rfid) ≤ 2) is β2 as the smallest possible world that violates card(Rfid) ≤ 2 is w3.

The c-degree Cι(card(Zone, Time) ≤ 1) is β3 as the smallest possible world that violates card(Zone, Time) ≤ 1 is w2. Finally, the

c-degree Cι(card(Zone) ≤ 1) is β4 as the smallest possible world that violates card(Zone, Time) ≤ 1 is w1.



We can now define the syntax and semantics of qualitative cardinality constraints.

Definition 1. Let ðO;SÞ denote a p-object type. A qualitative cardinality constraint (QC) over ðO;SÞ is an expression (card(X) ≤ b, β)where

card(X) ≤ b denotes a cardinality constraint over O andβ∈ST. A p-instance (ι, Possι) over ðO;SÞ satisfies the QC (card(X) ≤ b,β) if and only if
Cι(card(X) ≤ b) ≥ β.

Qualitative cardinality constraints form a class of integrity constraints tailored to uncertain data. Indeed, a QC (card(X) ≤ b, βi)

separates semantically meaningful from meaningless p-relations by allowing violations of the cardinality constraint card(X) ≤ b

only by objects with a p-degree αj where j ≤ k + 1 − i. For i= 1,…, k, the c-degree βi of (card(X) ≤ b, βi) means that the cardinality

constraint card(X) ≤ b must hold in the possible world wk + 1 − i. This constitutes a conveniently flexible mechanism to enforce the

targeted level of integrity effectively.

Example 1. Let Σ denote the set consisting of the following qualitative cardinality constraints: (card(Zone) ≤ 3, β1), (card(Time) ≤ 2, β1),

(card(Rfid) ≤ 3, β1), (card(Zone, Rfid) ≤ 2, β1), (card(Zone) ≤ 2, β2), (card(Rfid) ≤ 2, β2), (card(Zone, Rfid) ≤ 1, β2),

(card(Time, Rfid) ≤ 1, β2), (card(Zone, Time) ≤ 1, β3). The p-instance ι from Table 3 satisfies all of these QCs. However, ι violates
(card(Rfid) ≤ 2, β1), (card(Rfid) ≤ 1, β2), and (card(Zone, Time) ≤ 1, β2).

4. Reasoning about qualitative cardinality constraints

In this section we will establish tools to reason about qualitative cardinality constraints. These subsume existing tools for the rea-

soning about traditional cardinality constraints as the special case where only two p-degrees are used. We will introduce implication

and inference problems as core problems associated with the reasoning about qualitative cardinality constraints. We will then estab-

lish a theorem that allows us to reduce any instance of the implication problem for qualitative cardinality constraints to an instance

of the implication problem for traditional cardinality constraints. This result will be used to establish a finite axiomatization for the

implication of qualitative cardinality constraints by a simple set of Horn axioms. These axioms will allow us to establish a linear-

time algorithm for solving the inference problem, which can also be used to decide the implication problem in linear time. Finally,

we will show that efficient integrity enforcement and query processing are two major areas in which our results can be applied.

4.1. Implication and inference problems

We first define two core problems associated with the reasoning about qualitative cardinality constraints. For this purpose, let

Σ ∪ {φ} denote a set of QCs over ðO;SÞ. As we will show later, we can always assume without loss of generality that this set is finite.

We say that∑ (finitely) implies φ, denoted by Σ ⊨(f) φ, if and only if every (finite) p-instance (ι, Possι) over ðO;SÞ that satisfies every

QC in∑ also satisfies φ. In other words, there is no (finite) p-instance (ι, Possι) over ðO;SÞ that satisfies every QC in∑ but violates φ.
We use Σ(f)

∗ = {φ|Σ ⊨(f) φ} to denote the (finite) semantic closure of∑. The (finite) implication problem for QCs is to decide, given any

p-object type, and any set Σ ∪ {φ} of QCs over the p-object type, whether Σ ⊨(f) φ holds.

Our first observation is that the finite implication problem and the implication problem coincide for the class of qualitative

cardinality constraints. That is, for every object type and every set Σ ∪ {φ} of QCs over that object type, it is true that Σ ⊨ φ if and

only it is true that Σ ⊨(f) φ.

Theorem 1. Finite and unrestricted implication problem coincide for the class of qualitative cardinality constraints.

Proof. Let Σ ∪ {φ} denote a finite set of QCs over object type ðO;SÞ.

If∑ implies φ, then it follows immediately that ∑ finitely implies φ since every finite p-instance is also a p-instance.

It remains to show the following: if ∑ does not imply φ, then ∑ does not finitely imply φ. Let φ = (card(X) ≤ b, ≥ βi) and

suppose that Σ ⊭ φ. Hence, there must be some (possibly infinite) p-instance (ι, Possι) over ðO;SÞ that satisfies all QCs in ∑

and violates φ. Consequently, there must be b + 1 distinct objects o1, …, ob + 1 ∈ ι such that Possι(oj) ≥ αk + 1 − i holds for all

j = 1, …, b + 1, and oi(X) = oj(X) holds for all 1 ≤ i ≤ j ≤ b + 1. Let ðι f ; Possι f Þ denote the finite p-instance over ðO;SÞ where

ιf = {o1,…, ob + 1} and Possι f ðo jÞ ¼ Possιðo jÞ for all j=1,…, b+ 1. By construction, ðι f ; Possι f Þ is finite and violates φ. In addition,

ðι f ; Possι f Þ also satisfies every QC in ∑ since ιf ⊆ ι holds and (ι, Possι) satisfies every QC in ∑. We have just shown that ∑ does

not finitely imply φ, which completes the proof. □

PROBLEM: (Finite) Implication problem for qualitative cardinality constraints

INPUT: Object type ðO;SÞ,

Finite set Σ ∪ {φ} of QCs over ðO;SÞ

OUTPUT: Yes, if Σ ⊨(f) φ; No, otherwise



Theorem 1 allows us to speak of the implication problem of qualitative cardinality constraints.

Example 2. Let ∑ be as in Example 1. Further, let φ denote the QC (card(Rfid) ≤ 2, β1). Then ∑ does not imply φ as the following

p-instance witnesses:

We now return to our previous claim that we can assume without loss of generality that a given set ∑ of qualitative cardinality

constraints over a given object type is finite. In a nutshell, for each fixed attribute set X and each c-degree βi it only matters

which smallest upper bound bX
i is given to us. If ∑ is infinite, then there must be some infinite subset of ∑ of the form ΣX,i =

{(card(X) ≤ bj, βi) ∈ Σ}. In this case, however, we can replace ΣX,i in∑ by the singleton (card(X) ≤ bX
i , βi) where bX

i =min{bj|(card(X) ≤

bj, βi)∈ΣX,i}. IfΣf denotes the result of replacing for every non-emptyX ⊆O and every i=1,…, k,ΣX,i by the singleton (card(X) ≤ bX
i , βi),

then∑ implies every elements of Σf and Σf implies every element of∑. That is, Σf is a cover of∑, which is finite. In particular, the

semantic closure Σ∗ of a given∑ of QCs is always infinite, but has a finite cover by the construction above.Wemay therefore assume

without loss of generality that a set of qualitative cardinality constraints is given in the form of a finite cover.

While the implication problem is a decision problem, qualitative cardinality constraints also have an interesting computational

problem associated with them. Given a set∑ of QCs and a traditional cardinality constraint card(X) ≤ b, we may ask what the max-

imum c-degree β is, with which (card(X) ≤ b, β) is implied by ∑. This is the inference problem of qualitative cardinality constraints.

Note that the inference problem also has a finite and unrestricted version, which both coincide due to Theorem 1.

Example 3. Let∑ be as in Example 1. Then themaximumc-degreewithwhich card(Rfid) ≤ 2 is implied by∑ is β2. In fact, Example 2 has

shown that (card(Rfid) ≤ 2, β1) is not implied by ∑, and (card(Rfid) ≤ 2, β2) ∈ Σ.

In what follows wewill establish an axiomatic characterization of the implication problem, fromwhichwewill derive algorithmic

characterizations of the inference and implication problems.

4.2. The magic of β-cuts

We will now establish a strong correspondence between instances of the implication problem for qualitative cardinality

constraints and instances of the implication problem for cardinality constraints.

Definition2. Let∑ denote a set of qualitative cardinality constraints over the possibilistic object typeðO;SÞ. For each c-degreeβ∈ST where

β N βk+1, let Σβ denote those cardinality constraints card(X) ≤ b over object type O for which there is some (card(X) ≤ b, β′) ∈ Σ where

β′ ≥ β, that is,

Σβ ¼ card Xð Þ ≤ bj card Xð Þ ≤ b;β
0$ %

∈ Σ and β
0
≥ β

& '

:

We call Σβ the β-cut of∑.

For the set∑ of QCs from Example 1, the following cardinality constraints form the β2-cut of∑: card(Zone) ≤ 3, card(Time) ≤ 2,

card(Rfid) ≤ 3, card(Zone, Rfid) ≤ 2, card(Zone) ≤ 2, card(Rfid) ≤ 2, card(Zone, Rfid) ≤ 1, and card(Time, Rfid) ≤ 1.

It turns out that β-cuts suffice to decide the implication problem for qualitative cardinality constraints, as the following theorem

establishes.

Theorem 2. Let Σ ∪ {(card(X) ≤ b, β)} be a QC set over ðO;SÞ where β N βk + 1. Then Σ ⊨ (card(X) ≤ b, β) if and only if Σβ ⊨ card(X) ≤ b.

Proof. Suppose (ι, Possι) is some p-instance over ðO;SÞ that satisfies∑, but violates (card(X) ≤ b, β). In particular, Cι(card(X) ≤ b) b β
implies that there is some world wi that violates card(X) ≤ b and where βk + 2 − i b β.

Let card(Y) ≤ b′∈Σβ, where (card(Y) ≤ b′,β′)∈Σ. Since ι satisfies (card(Y) ≤ b′,β′)∈Σwehave Cι(card(Y) ≤ b′) ≥β′ ≥β. Ifwi violated

card(Y) ≤ b′, then β N βk+2 − i ≥ Cι(card(Y) ≤ b′) ≥ β, a contradiction. Hence, wi satisfies Σβ and violates card(X) ≤ b.

Zone Time Rfid Poss. degree

Z3 11 pm B5 α1

Z4 12 am B5 α1

Z5 01 am B5 α3

PROBLEM: Inference problem for qualitative cardinality constraints

INPUT: Object type ðO;SÞ,

Finite set ∑ of QCs over ðO;SÞ, and

Cardinality constraint card(X) ≤ b over O

OUTPUT: maxfβ∈ST jΣ⊨ðcardðXÞ≤b;βÞg



Let ι′ denote some instance that satisfies Σβ and violates card(X) ≤ b, without loss of generality ι′= {o1,…, ob + 1}. Let ι be the
p-instance over ðO;SÞ that consists of ι′ andwhere Possι(o1)=…= Possι(ob)= α1 and Possι(ob + 1)= αi, such that βk + 1 − i= β.
Then ι violates (card(X) ≤ b, β) since Cι(card(X) ≤ b) = βk + 2 − i, as wi = ι′ is the smallest world that violates card(X) ≤ b, and

βk + 2 − i b βk + 1 − i = β. For (card(Y) ≤ b′,β′)∈Σwedistinguish two cases. Ifwi satisfies card(Y) ≤ b′, thenCι(card(Y) ≤ b′)=β1 ≥β.
If wi violates card(Y) ≤ b′, then card(Y) ≤ b′ ∉ Σβ, i.e., β′ b β = βk + 1 − i. Therefore, β′ ≤ βk + 2 − i = Cι(card(Y) ≤ b′) as wi = ι′ is
the smallestworld that violates card(Y) ≤ b′.We conclude that Cι(card(Y) ≤ b′) ≥β′. Consequently, (ι, Possι) is a p-instance that satisfies
Σ and violates (card(X) ≤ b, β). □

Theorem2 allows us to apply achievements from cardinality constraints for certain data to qualitative cardinality constraints. It is a

major tool to establish the remaining results in this article.

Example 4. Let Σ be as in Example 1. Then Σβ1
consists of the cardinality constraints card(Zone) ≤ 3, card(Time) ≤ 2, card(Rfid) ≤ 3 and

card(Zone, Rfid) ≤ 2. Theorem 2 says that Σβ1
does not imply card(Rfid) ≤ 2. The possible world w3 of the p-instance from Example 2:

satisfies Σ, and violates card(Rfid) ≤ 2.

4.3. Axiomatic characterization

In this sectionwewill establish an axiomatic characterization for the implication problemof qualitative cardinality constraints by a

finite set of Horn axioms. For this purpose, we first recall some basic definitions regarding axiomatizations.

In fact, we determine the semantic closure Σ∗ of a set Σ of QCs by applying inference rules or axioms of the form premise
conclusion. In logic,

inference rules of this form are known as Horn axioms. For a set ℜ of inference rules let Σ ⊢ ℜφ denote the inference of φ from Σ

by ℜ. That is, there is some sequence σ1, …, σn such that σn = φ and every σi is an element of Σ or is the conclusion that results

from an application of an inference rule in ℜ to some premises in {σ1, …, σi − 1}. Let Σℜ
+ = {φ|Σ ⊢ ℜφ} be the syntactic closure of Σ

under inferences byℜ.ℜ is sound (complete) if for every set Σ over every p-object type ðO;SÞwe have Σℜ
+ ⊆ Σ∗ (Σ∗ ⊆ Σℜ

+). The (finite)

setℜ is a (finite) axiomatization ifℜ is both sound and complete. Table 1 shows an axiomatization ℭ′ for the implication problem of

traditional cardinality constraints [21]. In these rules, it is assumed thatO is an arbitrarily given object type, X, Y ⊆O are non-empty and

b a positive integer. Theorem 2 and the fact that ℭ′ forms a finite axiomatization for the implication of cardinality constraints can be

exploited to showdirectly that the set ℭ fromTable 2 forms an axiomatization for the implication of QCs. Here, it is assumed that ðO;SÞ

is an arbitrarily given p-object type, X, Y ⊆ O are non-empty, b a positive integer, and β;β0∈ST some c-degrees. In particular, βk+1

denotes the bottom certainty degree in ST .

Theorem 3. The set ℭ forms a finite axiomatization for the implication of qualitative cardinality constraints.

Proof. The soundness proof is straightforward. Let Σ denote a set of QCs over p-object type ðO;SÞ. Let (ι, Possι) denote a p-instance

over ðO;SÞ. The soundness of the top axiom T follows from the fact that ι is a set of objects over O and can therefore not contain

any duplicate objects. Consequently, card(O) ≤ 1 holds with c-degree β1 (and therefore with any other c-degree). For the soundness

of the relax axiomℛ suppose that (ι, Possι) satisfies (card(X) ≤ b, βi). That is the instancewk + 1 − i satisfies card(X) ≤ b. Sinceℛ′ is

sound for the implication of cardinality constraints, wk + 1 − i also satisfies card(X) ≤ b + 1, which means that (ι, Possι) satisfies
(card(X) ≤ b+ 1, βi). For the soundness of the superset axiom S suppose that (ι, Possι) satisfies (card(X) ≤ b, βi). That is the instance

wk+ 1 − i satisfies card(X) ≤ b. SinceS
0 is sound for the implication of cardinality constraints,wk+ 1 − i also satisfies card(XY) ≤ b, which

means that (ι, Possι) satisfies (card(XY) ≤ b,βi). Since for (card(X) ≤ b,βk+ 1) to be satisfied by somep-instance there is no requirement

that any possible world satisfies card(X) ≤ b, the bottom axiomℬ is sound, too. Finally, for the soundness of the weakening axiomW

assume that (ι, Possι) satisfies (card(X) ≤ b, βi). Consequently,wk + 1 − i satisfies card(X) ≤ b and every world that wk + 1 − i contains

must also satisfy card(X) ≤ b, including wk + 1 − j for every k ≥ j ≥ i. Hence, (ι, Possι) satisfies (card(X) ≤ b, βj) for every βj ≤ βi. This

establishes the soundness of ℭ.

Table 1

Axiomatization ℭ
0 ¼ fT 0

;R0
;S0g of traditional cardinality constraints.

cardðOÞ≤1
ðtop; T 0Þ

cardðXÞ≤b

cardðXÞ≤bþ 1
ðrelax; R0Þ

cardðXÞ≤b

cardðXYÞ≤b
ðsuperset; S0Þ

Zone Time Rfid

Z3 11 pm B5

Z4 12 am B5

Z5 01 am B5



For completeness, we apply Theorem 2 and the fact that ℭ′ axiomatizes the implication of cardinality constraints. Let ðO;SÞ

be a p-object type with jSj ¼ kþ 1, and Σ ∪ {(card(X) ≤ b, β)} a QC set such that Σ ⊨ (card(X) ≤ b, β). We need to show that

Σ ⊢ ℭ(card(X) ≤ b, β) holds.

For Σ ⊨ (card(X) ≤ b, βk + 1) we have Σ ⊢ ℭ(card(X) ≤ b, βk + 1) by applying B. Let now β b βk + 1. From Σ ⊨ (card(X) ≤ b, β) we

conclude Σβ ⊨ card(X) ≤ b by Theorem 2. Since ℭ′ is complete for the implication of cardinality constraints, Σβ⊢ℭ
0cardðXÞ≤b holds.

Let Σβ
β = {(card(Y) ≤ b′, β)|card(Y) ≤ b′ ∈ Σβ}. Thus, the inference of card(X) ≤ b from Σβ using ℭ′ can be turned into an inference of

(card(X) ≤ b, β) from Σβ
β by ℭ, simply by adding β to each QC in the inference. Hence, whenever T 0 orS0 is applied, one applies instead

T or S, respectively. Consequently, Σβ
β ⊢ ℭ(card(X) ≤ b, β). The definition of Σβ

β ensures that every QC in Σβ
β can be inferred from Σ by

applyingW. Hence, Σβ
β ⊢ ℭ(card(X) ≤ b, β) means that Σ ⊢ ℭ(card(X) ≤ b, β). □

Algorithm 1. Inference

Example 5. Let Σ be as in Example 1. The QC (card(Zone, Rfid) ≤ 4, β2) is implied by Σ. Indeed, applying the superset rule S to

(card(Zone) ≤ 3, β1) ∈ Σ results in (card(Zone, Rfid) ≤ 3, β1) ∈ Σℭ
+. Applying the relax rule ℛ to this QC results in

(card(Zone, Rfid) ≤ 4, β1) ∈ Σℭ
+. Finally, an application of the weakening rule W to the last QC results in (card(Zone, Rfid) ≤ 4, β2) ∈ Σℭ

+.

4.4. Algorithmic characterization

In practice, the semantic closure Σ∗ of a finite set Σ of QCs is infinite and even though there always is some finite cover, it is often

unnecessary to determine all implied QCs. In fact, the implication problem for QCs has as input Σ ∪ {φ} and the question is whether Σ

impliesφ. ComputingΣ∗ and checkingwhetherφ∈Σ∗ is hardly efficient. In fact,wewill nowestablish a linear-time algorithm for com-

puting themaximum c-degree β such that (card(X) ≤ b, β) is implied by Σ. The following theorem allows us to reduce the implication

problem for QCs to a single scan of the input.

Theorem4. Let Σ ∪ {(card(X) ≤ b, β)} denote a set of QCs over ðO;SÞwith jSj ¼ kþ 1. Then Σ implies (card(X) ≤ b, β) if and only if β=

βk+1, or X = O, or there is some (card(Y) ≤ b′, β′) ∈ Σ such that Y ⊆ X, b′ ≤ b and β′ ≥ β.

Proof. Theorem2 shows for i=1,…, k thatΣ implies (card(X) ≤ b,βi) if and only ifΣβ implies card(X) ≤ b. It is easy to observe from the

axiomatization ℭ′ of cardinality constraints that Σβ implies card(X) ≤ b if and only if O= X, or there is some card(Y) ≤ b′ ∈Σβ such that

Y ⊆ X and b′ ≤ b hold. As Σ implies (card(X) ≤ b, βk + 1), the theorem follows. □

Theorem 4 enables us to design Algorithm 1, which returns for a given cardinality constraint card(X) ≤ b themaximum c-degree β
for which (card(X) ≤ b, β) is implied by a given set Σ of QCs over p-object type ðO;SÞ. If X=O, thenwe return β1 due to the soundness

Table 2

Axiomatization ℭ ¼ fT ;ℛ;S;ℬ;Wg of qualitative cardinality constraints.

ðcardðOÞ≤βÞ
ðtop; T Þ

ðcardðXÞ≤b;βÞ

ðcardðXÞ≤bþ 1;βÞ
ðrelax;RÞ

ðcardðXÞ≤b;βÞ

ðcardðXYÞ≤b;βÞ
ðsuperset;SÞ

ðcardðXÞb;βk þ 1Þ
ðbottom;ℬÞ

ðcardðXÞ≤b;βÞ

ðcardðXÞ≤b;β0Þ
ðweakening;WÞ

β0 ≤β



of the top axiomT . Otherwise, startingwithβ= βk + 1 the algorithm scans all input QCs (card(Y) ≤ b′, β′) and setsβ to β′wheneverβ′
is larger than the current β, X contains Y and b′ ≤ b.

Theorem 5 states the correctness of Algorithm 1, which follows from Theorem 4, as well as the time complexity. Note that ||Σ||

denotes the sum of the total number of attributes and the logarithm of the associated c-degree’s index that occur in the QCs of Σ.

Theorem5. On inputððO;SÞ;Σ; cardðXÞ≤bÞ,Algorithm1 returns inOðjjΣ∪fðcardðXÞ≤b;βkþ1ÞgjjÞ time themaximum c-degreeβ for which

(card(X) ≤ b, β) is implied by Σ.

Algorithm 2. Minimal Cover

Example 6. Let Σ be as in Example 1, and use Algorithm 1 to determine the maximum c-degree β for which QC (card(Rfid) ≤ 2, β) is
implied by Σ. In fact, β becomes β2 as soon as the QC (card(Rfid) ≤ 2, β2) is selected as part of the input Σ. This c-degree cannot be increased

and is therefore the output.

Theorem 5 allows us to decide the associated implication problem efficiently, too. Given ððO;SÞ;Σ; ðcardðXÞ≤b;β0ÞÞ as an input to

the implication problem we can use Algorithm 1 to compute β :=max{β′′|Σ ⊨ (card(X) ≤ b, β′′)} and return an affirmative answer if

and only if β′ ≤ β.

Corollary 1. The implication problem of qualitative cardinality constraints can be decided in linear time in the input. □

Example 7. Following on from Example 6, let Σ be as in Example 1. Then the QC (card(Rfid) ≤ 2, β3) is implied by Σ. Indeed, the maximum

c-degree β for which (card(Rfid) ≤ 2, β) is implied by Σwas determined as β2 in Example 6. Since β3 ≤ β2, the given QC is indeed implied.

4.5. Applications to integrity enforcement and query processing

We conclude this section with some applications of our results. Our first application is the computation of a minimal cover for a

given set Σ of qualitative cardinality constraints.

Recall from before that a cover of the given set Σ is a set Σ′ of QCs such that every σ′ ∈ Σ′ is implied byΣ and every σ ∈ Σ is implied

byΣ′. In other words, Σ′ is a faithful representation of Σ. A cover Σ′ of Σ is said to beminimal if and only if there is no proper subset Σ′′

of Σ′ that is also a cover of Σ. In other words, a minimal cover Σ′ does not feature any QCs σ′ that are redundant with respect to Σ′,

i.e., redundant in the sense that σ′ is implied by Σ′− {σ′}. Our algorithmic solution to the implication problem suggests the following

strategy for computing aminimal cover of a givenQC setΣ: scan, one by one, each elementσ ∈Σwhether it is implied byΣ− {σ}, and
remove σ from Σ if that is the case. The resulting subset of Σ is a minimal cover. This strategy is manifested in Algorithm 2.

The upper time bound of the following theorem follows from the linear time complexity of the associated implication problem, as

established in Corollary 1.

Theorem 6. Algorithm 2 computes a minimal cover in time OðjjΣjj2Þ in the size of the input Σ of qualitative cardinality constraints. □

The importance of minimal covers results from their application in integrity enforcement. To guarantee that the objects resulting

from updates against the given instance conform to the rules of the application, the resulting instance must be validated against the

given set of business rules. The overhead for this enforcement of business rules can be optimized by removing redundant business

rules. The optimization is indirectly proportional to the number of objects in the instance. That is, the more objects are in the instance

the more time savings can be achieved by enforcing only non-redundant rules. For this purpose, a minimal cover is desirable.

Example 8. Let Σ′ be the set of qualitative cardinality constraints represented in Fig. 2. Recall that these form a cover of the qualitative

cardinality constraints satisfied by the p-instance in Fig. 1. Given Σ′, Algorithm 2 may compute a minimal cover Σ of Σ′ as given in

Example 1, or in other words, the qualitative cardinality constraints highlighted in bold font in Fig. 2.

As our second application we demonstrate the benefit of qualitative cardinality constraints on query processing. Therefore, we

simply add the attribute P-degree to the object type TRACKINGwith attributes Zone, Time, and Rfid. Suppose we are interested in finding



out which bats have been tracked in which zone, but we are only interested in answers that come from ‘certain’ or ‘quite possible’

objects in the instance. A user might enter the following SQL query:

which removes duplicate answers. When applied to the p-instance from Fig. 1, the query returns the answers on the right.

Our framework allows users to ask such queries having available the p-degrees of objects. Answers can be ordered according to the

p-degree, whichmakes it possible for users to appreciate their significance. The example shows howour framework can be embedded

with standard technology, here SQL. Finally, the QC card(Zone, Rfid) ≤ 1 holds with maximum c-degree β2. That is, {Zone, Rfid} forms a

key on theworldw2 that contains fully certain and quite possible objects. Consequently, the DISTINCT clause becomes superfluous in

the query above. A query optimizer, capable of reasoning about QCs, can remove the DISTINCT clause from the input query without

affecting its output. This optimization saves response time when answering queries, as duplicate elimination is an expensive opera-

tion and therefore not executed bydefault in SQL databases. Note thatwe do not view the enforcement ofmeaningful constraints as an

overhead, but a requirement that is necessary in data processing. Qualitative cardinality constraints, and the ability to reason about

them, have therefore direct applications to query processing.We illustrate this point by a further example. Supposewe have a provid-

er answering queries on large data sets as a service to customers. The customer will only pay for the service when the price is not

too high, but the provider will onlywant to invoke the service for a paying customer. Our reasoning abilities can be used to determine

a “quote” for the price of some queries in the form of an upper bound on the number of query answers without the need to evaluate

the query at all. The query

will return atmost two answerswhen evaluated on any data set conforming to the setΣ of rules fromExample 1. The reason is that the

qualitative cardinality constraint (card(Zone, Time) ≤ 2, β2) is implied by Σ. Being able to decide implication in linear time of the con-

straints not only makes this feedback to the customer very efficient in practice, but also very affordable to the provider.

5. Armstrong samples for qualitative cardinality constraints

In this section we develop a theory of Armstrong samples for sets of qualitative cardinality constraints. The concept of an Armstrong

database is well established in database research [13]. They are widely regarded as an effective tool to visualize abstract sets of con-

straints in a user-friendly way [13,33,34]. As such data engineers exploit Armstrong databases as a communication tool in their interac-

tion with domain experts in order to determine the set of constraints that are meaningful to the application at hand [22,30,33,34]. As

Fig. 3 illustrates, a design teamgenerates anArmstrong sample dbΣ that perfectly represents their current perceptions of the setΣ of con-

straints that should be enforced. The team then jointly inspects the samplewith domain experts in order to discover flaws or shortcom-

ings in the perception of the design team. Evidently, the Armstrong sample helps designers and domain experts communicate more

effectively, thereby overcoming the mismatch in expertise [30]. This process repeats until all parties are happy.

Fig. 3. The use of Armstrong samples in requirements engineering.



We now introduce the concept of an Armstrong p-instance for qualitative cardinality constraints. While we show that Armstrong

p-instances do exist for arbitrary sets of QCs, some of these sets require every Armstrong p-instance to be infinite. Obviously, this is a

strong inhibitor to the usefulness of Armstrong samples in practice, as illustrated in Fig. 3.We overcome this challenge by introducing

the new concept of an Armstrong p-sketch, which is a finite representation of some potentially infinite Armstrong p-instances. We

establish sufficient and necessary conditions for when a given p-instance is Armstrong for a given set of qualitative cardinality con-

straints. Based on these conditions, we show how to compute Armstrong p-sketches for an arbitrary set of such constraints. While

the problem of finding an Armstrong p-sketch is precisely exponential in the size of the input, our algorithm computes an Armstrong

p-sketch whose size is always guaranteed to be bounded by the product of the size of a minimum-sized Armstrong p-sketch and the

cardinality of the input. Finally, we characterize the situation when finite Armstrong p-instances exist and that their existence can be

decided in linear time in the input.

5.1. Armstrong instances and sketches

We first restate the original definition of Armstrong databases [13] in our context.

Definition 3. A p-instance ι is said to be Armstrong for a given set Σ of qualitative cardinality constraints on a given p-object type ðO;SÞ if

and only if for all qualitative cardinality constraints φ over ðO;SÞ it is true that ι satisfies φ if and only if Σ implies φ.

Armstrong p-instances for Σ are exact visual representations of Σ. Fig. 1 shows an Armstrong p-instance for the set Σ of QCs from

Example 1. While Armstrong p-instances always exist there are QC sets that require infinite Armstrong p-instances. As infinite

samples cannot be used directly to communicate with domain experts, we introduce the new concept of Armstrong p-sketches.

Definition 4. Let Σ be a set of qualitative cardinality constraints over p-object type ðO;SÞ. Let O∗ denote the object type that results from

O by adding to the domain of each attribute the distinguished symbol *. A p-sketch over ðO;SÞ consists of a finite p-instance (ς =

{ω1, …, ωn}, Possς) over ðO/;SÞ, and a function Cardς that maps each ωi ∈ ς to a value ci = Cardς(ωi) ∈ ℕ ∪ {∞}. A p-expansion of

(ς, Possς, Cardς) is a p-instance (ι, Possι) over ðO;SÞ such that

• ι ¼ ∪n
i¼1fo

1
i ;…; ocii g;

• (preservation of p-degrees) for all i=1,…, n, for all j=1,…, ci, Possι(oi
j)= Possς(ωi), and all other objects receive the bottom p-degree,

• (preservation of domain values) for all i = 1,…, n, for all j = 1, …, ci, for all A ∈ O∗, if ωi(A) ≠ ∗, then oi
j(A) = ωi(A),

• (uniqueness of values substituted for *) for all i=1,…, n, for all A ∈O∗, ifωi(A)= ∗, then for all j=1,…, ci, for all l=1,…, n, and for all

m = 1, …, cl (where j ≠ m, if l = i), oi
j(A) ≠ ol

m(A).

Sometimes we omit Possς and Cardς and simply refer to the p-sketch (ς, Possς, Cardς) by ς. We call ς an Armstrong p-sketch for Σ if and

only if every p-expansion of ς is an Armstrong p-instance for Σ.

Example 9. Fig. 1 shows an Armstrong p-sketch ς for the QC set Σ from Example 1. The Armstrong p-instance ι in Table 3 is a p-expansion

of ς, which yields the p-instance from Fig. 1 after suitable substitutions.

Armstrong p-sketches are most beneficial when they have only infinite expansions, as characterized in Theorem 11 later. The fol-

lowing example illustrates how Armstrong p-sketches can still finitely represent sets of qualitative cardinality constraints for which

only infinite Armstrong p-instances exist.

Example 10. Table 4 shows an Armstrong p-sketch for the following set of QCs: (card(Zone) ≤ 3, β1), (card(Time) ≤ 3, β1),

(card(Time, Rfid) ≤ 2, β1), (card(Rfid) ≤ 1,β2) and (card(Zone, Time) ≤ 2,β3). Notably, every p-expansion of this p-sketch requires infinitely

many objects. Designers and domain expert who jointly inspect this p-sketch are immediately alerted to the fact that no ‘fully certain’ finite

upper bound has been specified on Rfid.

Our ultimate aim in this section is to compute Armstrong p-sketches for any given set of qualitative cardinality constraints. For this

purpose it is useful tofind conditions that allowus to saywhen a givenp-instance is Armstrong for a given set of qualitative cardinality

constraints. Section 5.2 addresses this subject.

5.2. Structural characterization

For characterizing the structure of Armstrong p-instances we define notions of agreement between objects of an instance. Cardi-

nality constraints require us to compare any number of distinct objects. Intuitively, the agree set of two objects consists of all attributes

on which the two objects have the same value; and the b-agree set of an instance consists of the intersection of all agree sets for all

pairs of any b distinct objects that are part of the instance.

Definition 5. Let O be an object type, w an instance, and o1, o2 two objects of O. The agree set of o1 and o2 is defined as ag(o1, o2) =

{A ∈ O|o1(A) = o2(A)}. For every b ∈ ℕ ∪ {∞}, b N 1 we define the b-agree set of w as agb(w) = {∩1≤ i bj ≤ bag(oi, oj)| ∃ o1, …, ob ∈
w(∀ 1 ≤ i b j ≤ b(oi ≠ oj))}, and ag1(w) = {O}.



Note that ag∞(w) = ∅ whenever w is finite.

Example 11. For the worlds w1, w2 and w3 from our running example in Fig. 1 we obtain ag2(w1) = {{Zone}, {Time}, {Rfid}} and

agb(w1) = t for all b N 2, ag2(w2) = {{Zone}, {Time}, {Rfid}, {Zone, Time}} and agb(w2) = t for all b N 2, ag2(w3) =

{{Zone}, {Time}, {Rfid}, {Zone, Time}, {Zone, Rfid}, {Time, Rfid}}, and ag3(w3) = {{Zone}, {Rfid}} and agb(w3) = ∅ for all b N 3.

An Armstrong p-instance ι violates all QCs not implied by the given QC set Σ. It suffices for any non-empty set X to have

card(X) ≤ bX
i − 1 violated by theworldwk + 1 − i of ιwhere bX

i denotes theminimumpositive integer forwhich card(X) ≤ bX
i is implied

byΣβi
. If there are implied card(X) ≤ bX

i and card(Y) ≤ bY
i such that bX

i = bY
i and Y ⊆ X, then it suffices to have card(X) ≤ bX

i − 1 violated by

wk+1 − i. Finally, if there are implied card(X) ≤ bX
i and card(X) ≤ bX

j such that bX
i = bX

j and i b j, then it suffices to have card(X) ≤ bX
j − 1

violated bywk+1 − j. This motivates the following definition of duplicate sets Xwith certainty βi and their associated cardinalities bX
i .

Intuitively, if we know these sets and cardinalities, we can construct an Armstrong p-sketch by generating objects with associated

p-degrees that violate the qualitative cardinality constraints (card(X) ≤ bX
i − 1, βi).

Definition 6. Let Σ be a set of qualitative cardinality constraints over p-object type ðO;SÞwith jSj ¼ kþ 1. For t ≠ X⊂ O and i=1,…, k,

let

b
i
X ¼

min b∈ℕjΣβi
⊨card Xð Þ≤b

n o

; if b∈ℕjΣβi
⊨card Xð Þ≤b

n o

≠t

∞ ; otherwise

(

:

The set dupΣβi
ðOÞ of duplicate sets of c-degree βi is defined as dupΣβi

ðOÞ ¼ fX⊆OjbiX N1∧ð∀A∈O−XðbiXAbb
i
XÞÞ∧∀ jN iðb j

Xbb
i
XÞg.

p-Sketch ς

Card Zone Time Rfid p-Degree

2 cZ,1 * * α1

1 cZ,1 * * α3

2 * cT,2 * α1

2 * * cR,3 α1

1 * * cR,3 α3

2 cZ,4 cT,4 * α2

2 cZ,5 * cR,5 α3

2 * cT,6 cR,6 α3

p-Expansion ι of ς

Zone Time Rfid p-Degree

cZ,1 cT,1
1 cR,1

1 α1

cZ,1 cT,1
2 cR,1

2 α1

cZ,1 cT,1
3 cR,1

3 α3

cZ,2
1 cT,2 cR,2

1 α1

cZ,2
2 cT,2 cR,2

2 α1

cZ,3
1 cT,3

1 cR,3 α1

cZ,3
2 cT,3

2 cR,3 α1

cZ,3
3 cT,3

3 cR,3 α3

cZ,4 cT,4 cR,4
1 α2

cZ,4 cT,4 cR,4
2 α2

cZ,5 cT,5
1 cR,5 α3

cZ,5 cT,5
2 cR,5 α3

cZ,6
1 cT,6 cR,6 α3

cZ,6
2 cT,6 cR,6 α3

Table 4

An Armstrong p-sketch for the QC set from Example 10 without finite p-expansion.

Card Zone Time Rfid p-Degree

2 cZ,1 cT,1 ∗ α1

1 cZ,1 cT,1 ∗ α2

3 cZ,2 ∗ ∗ α1

3 ∗ cT,2 ∗ α1

2 ∗ cT,3 cR,1 α3

3 cZ,3 ∗ cR,2 α3

∞ ∗ ∗ cR,3 α3

Table 3
Armstrong p-sketch for set Σ from Example 1 and one of its p-
expansions.



Example 12. Consider the setΣ over p-object typeðO;SÞ from Example 1. Fig. 4 shows the non-trivial subsets X of O associatedwith their bX
i

values for i=1, 2, 3 from left to right. Among these, the duplicate sets of c-degree β1 (left figure), β2 (middle figure) and β3 (right figure) are

indicated in bold font. Here, Y={Zone, Time} is not a duplicate set of c-degreeβ1 as bY
2=2= bY

1. Similarly, Z={Rfid} is not a duplicate set of

c-degree β2 since bZ
3 = 2 = bZ

2.

Next we characterize the structure of Armstrong p-instances. A given p-instance satisfies a given QC cardðXÞ ≤ b ∈ Σβi
if there are

not b+ 1 distinct objects in world wk + 1 − i that have matching values on X. Also, a given p-instance violates all non-implied QCs if

every duplicate set X of c-degree βi is contained by some attribute set on which bX
i distinct objects in wk+1− i agree.

Theorem 7. Let Σ denote a set of qualitative cardinality constraints, and let (ι, Possι) denote a p-instance over ðO;SÞwith jSj ¼ kþ 1. Then

(ι, Possι) is an Armstrong p-instance forΣ if and only if for all i=1,…, k, the world wk + 1 − i is Armstrong forΣβi
. That is, for all i=1,…, k,

for all X∈dupΣβi
ðOÞ there is some Z∈ag

biX
ðwkþ1−iÞ such that X ⊆ Z, and for all cardðXÞ≤b∈Σβi

and for all Z ∈ agb+1(wk+1− i), X ⊈ Z.

Proof. The p-instance (ι, Possι) is Armstrong for Σ if and only if for all i = 1, …, k, for all QCs (φ, βi), it holds that ⊨ðι;PossιÞðφ;βiÞ iff

Σ ⊨ (φ, βi). However, ⊨ðι;PossιÞðφ;βiÞ iff ⊨wkþ1−i
φ, and Σ ⊨ (φ, βi) iff Σβi

⊨φ. Therefore, the p-instance (ι, Possι) is Armstrong for Σ if

and only if for all i = 1,…, k, wk + 1 − i is Armstrong for Σβi
. The second statement follows from the known result that a world w is

Armstrong for a set Σ of cardinality constraints if and only if for all X ∈ dupΣ(O) there is some Z ∈ agbX ðwÞ such that X ⊆ Z, and for

all card(X) ≤ b ∈ Σ and for all Z ∈ agb + 1(wk + 1 − i), X ⊈ Z [20,33]. □

Example 13. Consider the p-instance ι from Fig. 1 and the set Σ of QCs from Example 1. Examples 11 and 12 show that ι satisfies the con-
ditions of Theorem 7, and is therefore a finite Armstrong p-instance for Σ.

5.3. Computational characterization

We now apply Theorem 7 to compute Armstrong p-sketches for any given QC set over any given p-object type. It follows

that Armstrong p-sketches always exist, even though finite Armstrong p-instances may not. While the problem of finding an

Armstrong p-sketch is precisely exponential in the size of the given constraints we show that the size of our output Armstrong

p-sketch is always bounded by the product of the number of the given constraints and the size of a minimum-sized Armstrong

p-sketch. Finally, we show that there are Armstrong p-sketches whose size is logarithmic in the size of the given constraints. We

recommend using both representations: i) the set Σwhich explicitly lists the qualitative cardinality constraints, and ii) an Armstrong

p-sketch for Σ.

For a givenQC setΣ over a given p-object type ðO;SÞand jSj ¼ kþ 1, we visualizeΣ by computing anArmstrong p-sketch ς for Σ. If
finite Armstrong p-instances exist for Σ, then we may compute one in the form of a p-expansion of ς. Theorem 7 provides us with a

strategy to compute anArmstrongp-sketch forΣ. Themain complexity of this strategy goes into the computation of duplicate sets and

their associated cardinalities. Conceptually, we could proceed in three stages. First, we compute for all i=1,…, k and for all non-trivial

X⊂O, bX
i by startingwith∞ and setting bX

i to bwhenever there is somecardðYÞ≤ b ∈ Σβi
such that Y ⊆ X and b b bX

i . Secondly, for all i=

1,…, k and starting with all non-trivial subsets X as the set of duplicate sets of c-degree βi, we remove Xwhenever bX
i =1 or there is

some A ∈ O− X such that bXA
i = bX

i . Algorithm 3 calls this procedure in the loop at lines 1–3, which computes an Armstrong p-sketch

for a given QC set Σ over some given p-object type ðO;SÞ. We now outline the remaining steps of Algorithm 3.

Algorithm 3 computes objects over O∗ for each duplicate set X of c-degree βi, starting from i = k down to 1. Before moving on to

another duplicate set of c-degree βi, the algorithm processes all occurrences of X as a duplicate set of c-degree βl ≥ βi (lines 8–9),

introducing an object ωr (lines 10–18) with p-degree αk+1− l (line 16) and cardinality bX
l − b (line 17) where b is the cardinality

of the duplicate set X already processed in the previous steps (line 19). Line 23 marks X as processed to exclude it from repeated

computations in the future (line 6).

For a set S let |S| denote the number of elements in S. An Armstrong p-sketch for Σ is said to be minimum-sized if there is no

Armstrong p-sketch for Σ with fewer objects.

Theorem 8. Let ςmin denote a minimum-sized Armstrong p-sketch for Σ. Algorithm 3 computes an Armstrong p-sketch ςc for Σ such that

|ςc| ≤ |ςmin| × |Σ|.

Fig. 4. Attribute sets X, duplicate sets in bold font and their cardinalities bX
i for i = 1, 2, 3 from left to right.



Proof. The soundness of Algorithm 3 follows from Theorem 7: every p-expansion of the Armstrong p-sketch computed by

Algorithm 3meets the conditions in Theorem 7 by construction. The upper bound on the size of the Armstrong p-sketch ςc computed

by Algorithm 3 follows from a series of arguments. Firstly, the number of objects in ςc equals the number of duplicate sets of c-degree

βi for i = 1, …, k. Secondly, for each duplicate set of c-degree βi there is some (card(Y) ≤ b, βj) ∈ Σ such that Y ⊆ X and j ≤ i. Thirdly,

different duplicate sets X; Z ∈ dupΣβi
ðOÞ that both derive their cardinalities bX

i = bZ
i = b from the same (card(Y) ≤ b, βj) ∈ Σ

must have different objects with p-degree αk + 1 − i in every Armstrong p-sketch. Finally, the number of objects in any Armstrong

p-sketch ς equals the number of objects in its largest “world” wk. We therefore get the following:

jςcj ¼
X

k

i¼1

X

X∈dup∑βi
Oð Þ1

≤
X

k

i¼1
∑ σ ;β jð Þ∈∑; j≤ i ∑X∈dup∑βi

σ ;β jð Þ1

) *) *

≤
X

k

i¼1
∑ σ ;β jð Þ∈∑; j≤ i w

min
kþ1−i

+

+

+−
+

+

+w
min
kþ1−i−1

+

+

+

+

+

+

, -, -

≤ j∑j 0 jw
min
k j

¼ j∑j 0 jς
min

j

which shows the upper bound. □

Algorithm 3. Armstrong p-sketch

Note that Theorem 8 shows that qualitative cardinality constraints enjoy Armstrong sketches, that is, for every given p-object type

and every given QC set Σ over this p-object type there is an Armstrong p-sketch for Σ.

Corollary 2. Qualitative cardinality constraints enjoy Armstrong p-sketches.



We show next that the computational problem of finding an Armstrong p-sketch for Σ is precisely exponential in the size of Σ.

That is, an Armstrong p-sketch for Σ can be found in time at most exponential in the size of Σ, and there are QC sets Σ such that

every Armstrong p-sketch for Σ requires a number of objects that is exponential in the size of Σ.

Theorem 9. Finding an Armstrong p-sketch is precisely exponential in the size of the given set Σ of qualitative cardinality constraints.

Proof. Algorithm3 computes anArmstrongp-sketch forΣ in time atmost exponential in its size. SomeQC setsΣhave only Armstrong

p-sketches with exponentially many objects in the size of Σ. For O = {A1, …, A2n}, S ¼ fα1;α2g and Σ = {(card(A1, A2) ≤ 1, β1), …,

(card(A2n − 1, A2n) ≤ 1, β1)} with size 2 ⋅ n, dupΣβ1
ðOÞ consists of the 2n duplicate sets ∪ j = 1

n Xj where Xj ∈ {A2j − 1, A2j}.

We also show that there other extreme cases where there are Armstrong p-sketches for QC sets Σ′ that only require a size loga-

rithmic in that of Σ′.

Theorem 10. There are sets Σ′ of qualitative cardinality constraints for which there are Armstrong p-sketches whose size is logarithmic in

that of Σ′.

Proof. Such a set Σ′ is given by the following 2n QCs: for all i=1,…, n, for all X= ∪ i = 1
n Xi where Xi ∈ {A2i − 1, A2i}, (card(X) ≤ 1, β1).

Then the size of Σ′ isn 0 2n ∈ Oð2nÞ and there is no equivalent set for Σ′ of smaller size. Furthermore, dupΣβ1
ðOÞ consists of the n setsO

− {A2i − 1, A2i} for i = 1,…, n. Thus, Algorithm 3 computes an Armstrong p-sketch for Σ′ whose number of objects is in OðnÞ. □

Due to Theorems9 and10we recommend the use of both abstract constraint sets and their Armstrongp-sketches. Indeed, the con-

straint sets enable design teams to identify constraints that they currently incorrectly perceive as semantically meaningful; and the

Armstrong p-sketches enable design teams to identify constraints that they currently incorrectly perceive as semantically

meaningless.

Our final result characterizes the situations in which finite Armstrong p-instances exist, and that the problem of decidingwhether

there is a finite Armstrong p-instance for a given QC set can be decided efficiently.

Theorem 11. Let Σ be a set of QCs over some given p-object type ðO;SÞ. Then there is a finite Armstrong p-instance forΣ if and only if for all

A ∈ O there is some b ∈ ℕ such that Σ implies (card(A) ≤ b, β1). It can therefore be decided in time OðjOj 1 jjΣjjÞ whether there is a finite

Armstrong p-instance for Σ.

Proof. If it is true that for allA∈O there is some b∈ℕ such thatΣ implies (card(A) ≤ b, β1), then bX
i
b∞ for all non-empty X⊂O. Hence,

every p-expansion of an Armstrong p-sketch that Algorithm 3 computes is finite. Vice versa, suppose there is some A ∈ O such that Σ

does not imply (card(A) ≤ b, β1) for any b ∈ ℕ. Consequently, there is some duplicate set X of c-degree β1 and A ∈ X such that bX
1 = ∞.

Theorem7 shows that every Armstrongp-instance forΣmust contain infinitelymanyobjects that agree onX. The condition that for all

A ∈ O there is some b ∈ ℕ such that Σ implies (card(A) ≤ b, β1) can be verified in time OðjOj 1 jjΣjjÞ. □

6. Implementation

Wehave implemented Algorithm 3within a prototype system. The system enables users to enter a p-object type and a finite set of

p-cardinality constraints over this type, and computes an Armstrong p-sketch for the constraint set. We illustrate the basic function-

ality of our system by some examples.

6.1. Running example

We begin with some screenshots that show how the instance from Example 10 is processed by our system. The left of Fig. 5 shows

the input interface where the p-object type and input constraint set of Example 10 have been entered. The figure also shows that our

system can randomly generate input that complies with any user specification of the following parameters: number of p-degrees,

number of attributes, and number of cardinality constraints.

The left of Fig. 6 shows the Armstrong p-sketch for the input constraint set of Example 10 as computed by our prototype system.

Note that only integer values are used as domain values and that these can be interpreted as indices for actual domain values, where

different indices represent different domain values. Similarly, the integer i in the column Poss represents the p-degreeαi. Observe that

the p-sketch shown in the left of Fig. 6 is isomorphic to the p-sketch shown in Table 4.

As an explanation of the p-sketch, our prototype system can also show the duplicate sets it computes as part of Algorithm 3. The

right of Fig. 6 shows the duplicate sets for the input constraint set of Example 10. The system shows for each attribute subset X and for

each c-degree βi, theminimum upper bound bX
i that can be inferred from the input constraints. The system indicates by T that a given

attribute subset is a duplicate set of c-degree βi.

6.2. Extreme cases

Fig. 5 shows that our system can automatically generate instances of the extreme cases of p-cardinality constraints reported in

Theorems 9 and 10, for any given even number of attributes. The left of Fig. 7 shows the output for the case n = 3 of Theorem 9,



where the attributes A,…, F are used instead of A1,…, A6, respectively. In this case, the three input constraints result in a p-sketchwith

eight objects. The right of Fig. 7 shows the output for the case n=3 of Theorem 10, with the same use of attribute names. In this case,

the eight input constraints result in a p-sketch with three objects.

7. Computational experiments

We conducted a series of experiments with our prototype system. These provide some insight into the actual feasibility for the

usefulness of Armstrong p-sketches in the acquisition of meaningful possibilistic cardinality constraints. Section 7.1 presents our

results for the case of p-cardinality constraints from Theorem 9. Among other results, the experiments show that the computation

of Armstrong p-sketches with 512 objects for an input constraint set with 18 attributes can be done in less than 3 s. Section 7.2

presents our results for the case of p-cardinality constraints from Theorem 10. Among other results, the experiments show that the

computation of Armstrong p-sketches with 9 objects for an input constraint set with 4608 attributes can be done in less than 3 s,

too. Finally, Section 7.3 presents our results for the average case in which sets of p-cardinality constraints were generated randomly.

The results show that, on average, the growth in size of p-Armstrong sketches is low-degree polynomial in both the size of the input

constraint set, and the number of different p-degrees available for a fixed input constraint set. Furthermore, the results show that, on

average, the growth in time required to compute p-Armstrong sketches is low-degree polynomial in the size of the input constraint

set, and linear in the number of different p-degrees available on a fixed input constraint set. We conclude that on problem instances

Fig. 5. User interface of our prototype system to enter input for the computation of Armstrong p-sketches.

Fig. 6. Armstrong p-sketch and duplicate sets for the input from Example 10.



of practically relevant sizes, Armstrong p-sketches can be computed very quickly and consist of a number of objects that makes it

possible to use the sketches in the requirements acquisition phase. We will now discuss our experiments in more detail.

7.1. Exponential case

Here, we consider the case Σ from Theorem 9 in which only Armstrong p-sketches with exponentially many objects in the size of

Σ exist. For On = {A1, …, A2n}, S ¼ fα1;α2g and Σn = {(card(A1, A2) ≤ 1, β1), …, (card(A2n − 1, A2n) ≤ 1, β1)} with size 2 ⋅ n, dupΣβ1
ðOÞ

consists of the 2n duplicate sets ∪ j = 1
n Xj where Xj ∈ {A2j − 1, A2j}. The left of Fig. 8 shows the exponential growth of the output size in

the input size for n = 1, …, 9. The right of Fig. 8 shows the time required by our tool to compute the sketches. In fact, the following

table shows these times.

7.2. Logarithmic case

Here, we consider the case Σ′ from Theorem 10 in which Armstrong p-sketches exist that have a number of objects that is loga-

rithmic in the size of Σ′. For all i = 1, …, n, for all X = ∪ i = 1
n Xi where Xi ∈ {A2i − 1, A2i}, (card(X) ≤ 1, β1). Then the size of Σ′ is

n ⋅ 2n anddupΣβ1
ðOÞ consists of the n setsO− {A2i − 1, A2i} for i=1,…, n. The left of Fig. 9 shows the logarithmic growth of the output

size in the input size for n= 1,…, 9. The right of Fig. 9 shows the time required by our tool to compute the sketches. In fact, the fol-

lowing table shows these times.

7.3. Average case

Experiments were conducted over a set of randomly generated input constraints in order to determine the impact of increasing

numbers of p-degrees and increasing sizes of input on the computational effort required, and the size of the resultingArmstrongp-sketch.

7.3.1. Experiment design

We experiment over different input constraints. For each number n = 3, …, 12 of attributes, the object type On contains n

attributes.We randomly generate 500 constraint sets for everyOn. The classical constraint sets, denoted Σn,j for j=1,…, 500, are gen-

erated to contain betweenn and n2/2 cardinality constraints. Each cardinality constraint is constructed by selecting a randomattribute

Fig. 7. Armstrong p-sketches for the input constraints of case n = 3 from Theorems 9 and 10.

n 1 2 3 4 5 6 7 8 9

‖∑n‖ 2 4 6 8 10 12 14 16 18

time (ms) 0.07 0.12 0.18 0.76 3.39 18.93 105.37 557.32 2683.24

n 1 2 3 4 5 6 7 8 9

‖∑
n
′ ‖ 4 8 24 64 160 384 896 2048 4608

time (ms) 0.01 0.03 0.18 0.68 3.21 17.6 104.53 561.46 2706.84



Fig. 8. Size of Armstrong p-sketches and time to compute them for the exponential case.



Fig. 9. Size of Armstrong p-sketches and time to compute them for the logarithmic case.



Fig. 10. Size of Armstrong p-sketches and time to compute them in the size of the input for the average case.



Fig. 11. Size of Armstrong p-sketches and time to compute them in the number of different p-degrees for the average case.



fromOn and adding an additional attributewhile a coin toss is heads. Fromeachof these classical constraint sets, a range of possibilistic

cardinality constraint sets are generated by assigning a maximumnumber k of p-degrees and assigning to each cardinality constraint

in Σn,j a c-degree from β1 to βk. Themaximum k is iterated from 1 to 15. This gives us for each n and k, 500 possibilistic constraint sets

denoted asΣn,j,k, whose average size is determined by dividing the sum∑j||Σn,j,k|| by 500. The average input size for each n=3,…, 12

forms the x-axis, which is the same for all k=1,…, 15 and each fixed n. The y-axes are, for each k, made up of the average sizes of the

computed Armstrong p-sketches and the average computation time required, respectively.

Fig. 10 shows for each number k of available p-degrees the average size of the computed Armstrong p-sketches and the average

time to compute them, respectively, in the average input constraint size for each number n = 3, …, 12. The results suggest that

both size and time exhibit a low-degree polynomial growth in the input size. The average sizes of the computed Armstrong

p-sketches suggest that it is possible in practice to effectively use the sketches in the requirements analysis phase, and the average

execution times suggest that the sketches can be computed quickly.

Fig. 11 shows for each of the fixed input constraint sizes for n=8,…, 12, the growth of the computed Armstrong p-sketches and

the growth in time to compute them, respectively, in the growing number k=1,…, 15 of available p-degrees. The results suggest that

for each fixed input constraint size, the size of the computed Armstrong p-sketches exhibits a low-degree polynomial growth and

the time to compute them exhibits a linear growth in the number of available p-degrees. This provides some insight for selecting

an appropriate number of p-degrees in practice.

8. Conclusion and future work

Cardinality constraints occur naturally inmost aspects of life. Consequently, they have received invested interest from the data and

knowledge engineering community over the last three decades.Wehave introduced cardinality constraints to control the occurrences

of uncertain data patterns in modern applications, including big data. Uncertainty has been modeled qualitatively by applying the

framework of possibility theory. Our cardinality constraints stipulate upper bounds on the number of occurrences of uncertain data

patterns, an ability that can capture many real-world requirements. Our results show that cardinality constraints can be reasoned

about efficiently. We have illustrated how reasoning about cardinality constraints is useful for the efficient processing of updates

and queries. Despite several challenges we have shown that every set of cardinality constraints can be visualized perfectly in

the form of an Armstrong p-sketch. The concept of an Armstrong p-sketch overcomes the problem of visualizing infinite Armstrong

p-instances. We also implemented a tool that computes Armstrong p-sketches for any given set of cardinality constraints.

Our experiments with the tool suggest that, on average, the times for computing Armstrong p-sketches show low-degree poly-

nomial growth in the size of the input constraint set, and linear growth in the number of available p-degrees on a fixed input

size. In practice, execution times were fast, ranging from an average of about half a second to an average of under four seconds

on the largest fixed input size with one to fifteen available p-degrees, respectively. Our experiments suggest further that, on

average, the sizes of the computed Armstrong p-sketches show low-degree polynomial growth in both the size of the input con-

straint set, and in the number of available p-degrees per fixed input size. The sizes were ranging from an average of 40 objects to

an average of 180 objects on the largest fixed input size ranging from one to fifteen available p-degrees, respectively. Business

analysts can therefore show our small sketches to domain experts in order to jointly consolidate the cardinality constraints that

are meaningful for a given application domain.

Our framework opens up several questions for future investigation, including the benefits of processing data with the help of

cardinality constraints,more expressive cardinality constraints and their interactionwith other constraints, and empirical evaluations

for the use of Armstrong p-instances and p-sketches. It is interesting to apply the concept of Armstrong sketches to other classes

of constraints, including constraints in standard relational databases. Finally, constraints have not received much attention yet in

probabilistic databases.
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