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Abstract

Analyzing the stability of switched nonlinear systems under dwell-time constraints, this article inves-
tigates different scenarios where all the subsystems have a common globally asymptotically stable (GAS)
equilibrium, but for the switched system, the equilibrium is not uniformly GAS for arbitrarily values
of dwell-time. We motivate our study with the help of examples showing that, if near the origin all
the vector fields decay at a rate slower than the linear vector fields, then the trajectories are ultimately
bounded for large enough dwell-time. On the other hand, if away from the origin, the vector fields do
not grow as fast as the linear vector fields, then we can only guarantee local asymptotic stability for
large enough dwell-times, with region of attraction depending on the dwell-time itself. We formalize
our observations for homogeneous systems, and show that, even if origin is not uniformly GAS with
dwell-time switching for nonlinear systems, it still holds that the trajectories starting from a bounded
set converge to a neighborhood of the origin if the dwell-time is large enough.

1 Introduction

Stability analysis of switched systems has been a widely studied topic in the literature over the past two
decades. Depending upon the assumptions on the vector fields of individual subsystems, and the class
of switching signals under consideration, several techniques have been developed, as reviewed in classical
references as [15, 16, 22]. One of the basic settings in these works is to consider a switched systems with
asymptotically stable subsystems (sharing a common equilibrium). Since the switching from one subsystem
to another may introduce some transients which move the state trajectory away from the equilibrium for
a short time period, the trajectories of the switched system eventually converge to the origin if we restrict
the switching frequency. The dwell-time based stability conditions, introduced firstly in [19], formalize this
idea by providing lower bound on the duration between two consecutive switches. For possible extensions
of this idea for some related classes of switching signals, see [12]. From a computational viewpoint, the
references [4, 6, 10] provide some algorithms for calculating lower bounds on the dwell-time in the linear
case; for the non-linear setting see the overview given in [15, Chapter 3.2] or [14, 18, 24] and references
therein.

In the classical setup on dwell-time based stability conditions, it is assumed that the individual subsystems
have exponentially stable equilibrium, and thus admit an exponentially decreasing Lyapunov function. It is
further assumed that these Lyapunov functions are compatible with each other, in the sense that the maximum
growth in the value of Lyapunov functions at switching times is bounded by a linear function. The lower
bound on the dwell-time is then derived in terms of the smallest exponential decay rate among the individual
Lyapunov functions, and the maximum growth rate in the value of Lyapunov functions at switching times.
In particular, the existence of mutually compatible exponentially decaying Lyapunov functions implies that
the switched system is uniformly exponentially stable with respect to all the switching signals satisfying
a finite lower bound [23]. Some extensions of this multiple Lyapunov functions approach to provide lower
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bounds on stabilizing dwell-time constraints are provided in [12, 24, 25] and references therein. It is natural
to ask the question whether such a claim holds if the individual subsystems only admit an asymptotically
stable equilibrium instead of an exponentially stable one, where the growth in the value of Lyapunov function
does not necessarily respect a linear bound. Such questions have been investigated in some recent references
[17, 18, 24] in the context of input-to-state stability analysis. On one hand, the papers [18, 24] provide
sufficient conditions and a formula for calculating the lower bound on dwell-time for uniform asymptotic
stability, and on the other hand, [17] provides an example of a switched system with asymptotically stable
subsystems, where for each finite value of dwell-time, there exists an initial condition such that the resulting
trajectory grows unbounded. Thus, one can not expect asymptotic stability for dwell-time switched systems
when the individual subsystems are not exponentially stable.

In this article, we investigate stability related questions for switched systems where the subsystems only
admit an asymptotically stable equilibrium, where the corresponding Lyapunov functions do not necessarily
satisfy a linear growth condition at switching times. We analyze stability for dwell-time constrained switching
signals (which can be arbitrarily large) and show that uniform asymptotic stability of the origin is not
possible in such cases. While we lose global asymptotic stability in general, we study different stability
notions, and we present corresponding stability results that arise depending on the growth rate of the vector
field. With respect to the cited existing literature, the novelty our our work lies in the fact that the (in-
)stability results are proven without resorting any (multiple) Lyapunov functions construction, and moreover
they hold for a large class of nonlinear systems and for any dwell-time threshold. We use the framework
of homogeneous systems to make formal statements, which allows us to use time-scaling arguments in our
analysis. The possible applications of this framework are multiple: from one side it has been shown that
(non-linear) switched systems provide a modeling tool for several physical/engineering phenomena (see [15],
[22] and references therein), while it is known that homogeneous systems provide a natural framework for
the problem of finite-time (or practical) stabilization, see [21, 3, 20, 2].

The rest of the paper is organized as follows: In Section 2 we provide a motivation examples together with
some preliminaries of switched systems, while in Section 3 recall some results from homogeneous systems
literature. In Section 4 we provide our main technical results, and in Section 5 we illustrate some possible
extensions in broader settings. In Section 6 we propose some concluding remarks.

2 Preliminaries and Motivation

Given an index set I := {1, · · · , N} and a finite family of vector fields F := {fi}i∈I ⊂ C0(Rn \ {0},Rn), we
study the switched system

ẋ(t) = fσ(t)(x(t)), (1)

where σ ∈ S := {σ : R≥0 → I | σ piecewise constant} . Without loss of generality we suppose that signals
σ ∈ S are right-continuous. We recall that piecewise constancy implies that σ ∈ S has a finite number of
discontinuities in any bounded subinterval of R≥0. For σ ∈ S, we denote by {tσj } the points at which σ is
discontinuous, also called switching instants. The set {tσj } may be infinite or finite, possibly reduced to the
initial instant tσ0 := 0. For a x0 ∈ Rn, and a signal σ ∈ S, we denote with ϕF (t, x0, σ) the solution of (1)
starting at x0, evaluated at t ≥ 0.

Definition 1. System (1) is said to be uniformly globally asymptotically stable (UGAS) on Ŝ ⊂ S, if there
exists β ∈ KL such that1

|ϕF (t, x0, σ)| ≤ β(|x0|, t),
for all σ ∈ Ŝ, for all x0 ∈ Rn and for all t ≥ 0. ◁

1A function α : R≥0 → R≥0 is of class K (α ∈ K) if it is continuous, α(0) = 0, and strictly increasing; it is of class K∞
if, in addition, it is unbounded. A function β : R≥0 × R≥0 → R≥0 is of class KL if β(·, s) is of class K for all s, and β(r, ·) is
decreasing with β(r, s) → 0 as s → ∞, for all r.
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In this article, we will consider the subclass of dwell-time switching signals; for a fixed τ > 0, we denote
by

Sdw(τ) :=
{
σ ∈ S | tσj − tσj−1 ≥ τ, ∀ tσj > 0

}
, (2)

the class of switching signal with dwell time τ .
We formally introduce here the assumption imposed on the vector field of each subsystem, fi ∈ F .

Assumption 1. For each i ∈ I, fi : Rn → Rn satisfies:

1. fi ∈ C1(Rn \ {0}, Rn),

2. fi(0) = 0 and fi(x) ̸= 0 for all x ∈ Rn \ {0},

3. The system ẋ = fi(x), x(0) ∈ Rn, exhibits existence, forward uniqueness and forward completeness of
solutions from any initial condition.

Remark 1. While the notion of forward completeness is standard, with forward uniqueness we mean that,
for every x0 ∈ Rn, if ϕ′ : dom(ϕ′) → Rn and ϕ′′ : dom(ϕ′′) → Rn are solutions of the initial value problem
ẋ(t) = f(x(t)), x(0) = x0, then ϕ′(t) = ϕ′′(t) for all t ∈ dom(ϕ′) ∩ dom(ϕ′′) ∩ R≥0. ◁

2.1 Motivating Example

In what follows, we will show that in the general non-linear case, global asymptotic stability of every sub-
system ẋ = fi(x), i ∈ I does not generally imply the existence of a finite τ > 0 such that system (1) is
UGAS on Sdw(τ). To have an intuitive idea of “what goes wrong”, we present a planar system, obtained by
modifying a celebrated example proposed in [15, Page 19 or Example 2.1]. While the construction proposed
in our example is new, one can also look at the examples in [17, Section III] in the context of i-ISS of switched
systems for similar observations concerning the asymptotic behavior of the switched system.

Example 1. Consider A = {A1, A2} ⊂ R2×2 defined by A1 :=
(−0.2 −1

4 −0.2

)
and A2 :=

(−0.2 −4
1 −0.2

)
. Given

k ∈ R, we define fk
i : R2 → R2, i ∈ {1, 2} by

fk
i (x) := |Aix|k−1Aix, for x ̸= R2 \ {0} (3)

and fk
i (0) = 0. Since the matrices {Ai}i=1,2 are Hurwitz, and the functions x 7→ fk

i (x) in (3) are defined as
a positive scalar multiplication of the linear maps x 7→ Aix, the dynamical systems defined by ẋ = fk

i (x) are
globally asymptotically stable, for i ∈ {1, 2} and any k ∈ R. Fixing a k ∈ R, we want to study the stability
properties of the switched system defined by

ẋ(t) = fk
σ(t)(x(t)), (4)

considering switching signals σ ∈ S. Let us consider, first, the simplest case: k = 1, i.e. the linear switched
system

ẋ(t) = Aσ(t)x(t). (5)

As shown in [15, Page 19], system (5) is not UGAS on S. More specifically, it can be seen that there exist
unbounded trajectories of (5), i.e. there exist x0 ∈ Rn and σ ∈ S such that lim inft→∞ |ϕ(t, x0, σ)| = +∞.
On the other hand, following the idea of [15, Theorem 3.2] it is easy to show that (5) is UGAS on Sdw(τ)
for τ large enough.

Considering now the general case k ̸= 1, we note first that (4) is not UGAS on S, since system (5) is not.
To describe the asymptotic behavior of system (4) in the cases k < 1 and k > 1 on the class of dwell-time
switching signals, we consider, without loss of generality, k = 1

2 and k = 2.
Case k = 2: In this case, we show that for any τ > 0, there exist x0 ∈ Rn and σ ∈ Sdw(τ) such that
the property lim inft→+∞ |ϕ(t, x0, σ)| > 0 holds, that is, we can find solutions which do not converge to
the origin. To this end, consider, without loss of generality, the initial point x0 = [1 0]⊤. Now, consider
T1, T2 > 0 such that

ϕf1(T1, x0) = ϕf2(−T2, x0), (6)
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(a) Trajectory of (4) with k =
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(b) Trajectory of (4) with k =
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Figure 1: Particular solutions of (4). In particular, for the specific switching rules defined in Example 1,
note the periodic non-converging solution in the super-linear case (k = 2) and the diverging solution in the
sub-linear case (k = 1

2 ).

where ϕfi(·, x0) : R → Rn denotes the solution of subsystem ẋ = f2
i (x) starting at x0. Intuitively, T1, T2

represent some times for which the forward solution of ẋ = f2
1 (x) starting at x0 “meets” the backward

solution of ẋ = f2
2 (x) starting at x0. Let us consider the periodic switching rule (of period T1 + T2),

σ : R≥0 → {1, 2} defined by

σ(t) =

®
1, if t ∈ [0, T1),

2, if t ∈ [T1, T1 + T2).

It holds that σ ∈ Sdw(τ̃) with τ̃ := min{T1, T2} and, more importantly, ϕF (·, x0, σ) : R≥0 → Rn is periodic.
From (6), ϕF (j(T1 + T2), x0, σ) = x0, for any j ∈ N, i.e. ϕF (·, x0, σ) : R≥0 → Rn is not converging to 0, see
Figure 1a for an illustration by simulation. Considering a generic τ > 0, it suffices to consider a λ > 0 such
that Ti

λ2 > τ for any i ∈ {1, 2}, z0 := λx0 and the switching signal

σ′(t) :=

®
1, if t ∈ [0, T ′

1),

2, if t ∈ [T ′
1, T

′
1 + T ′

2),

with T ′
i := Ti

λ2 , for any i ∈ {1, 2}. With this definition, it is clear that σ′ ∈ Sdw(τ) and it can be seen that
ϕ(·, z0, σ′) is, once again, periodic and not-converging.
Case k = 1/2: In this case it can be shown that, for any τ > 0, there exists x0 ∈ Rn with |x0| large
enough and σ ∈ Sdw(τ) such that limt→+∞ |ϕF (t, x0, σ)| = +∞, that is, there exist diverging solutions
of (4). The formal definition of such “pathological” x0 and σ is avoided here, since a similar construction
has been recently proposed in [17, Section 3] for a slightly different (but qualitatively equivalent) example.
A graphical representation of a particular diverging solution is presented in Figure 1b. ◁

2.2 Our Methodology

Inspired by our motivating example, our basic idea for the stability analysis of (1) is to compare its solutions
with the solutions of another system obtained by applying a particular nonlinear transformation of the vector
fields. By formulating simpler questions for the transformed system, one can then deduce information about
the qualitative behavior of the original system. To follow this roadmap, we will work with the following
assumption:

Assumption 2 (Homogeneity). For each i ∈ I, the function fi : Rn → Rn, is homogeneous of degree k ∈ R,
that is,

fi(λx) = λkfi(x), ∀x ∈ Rn, ∀λ > 0. (7)

If fi : Rn → Rn satisfies (7), we write fi ∈ Hk
n. ◁
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Remark 2. In the context of dynamical systems, more general notions of homogeneity are often considered,
see for example [2], [11, Definition 3.8], [21, Theorem 2]. For a thorough historical discussion on “homogeneity
notions”, we refer to the monograph [20]. It is worth noting that there always exists a change of coordinates
which transforms any “generalized” homogeneous system (in the sense of [2, 11, 21]) to a system satisfying
Assumption 2, see [20, Theorem 8.9], and thus the subsequent results can be generalized for these more
general notions of homogeneity. ◁

Given f ∈ Hk
n, we define in what follows a transformation which can be seen as a “reduction of degree

1”.

Definition 2 (Reduction). Consider f ∈ Hk
n, satisfying Assumption 1. We define the reduction of degree 1

of f as the function gf ∈ H1
n defined by gf (0) = 0 and

gf (x) :=
|f(x)| 1k
|f(x)| f(x), ∀x ∈ Rn \ {0}, (8)

if k ̸= 0, and by gf (x) := |x| f(x)
|f(x)| if k = 0. ◁

When clear from the context, we write g instead of gf . In the case k ̸= 0, we have the property that
gf (x) = f(x), on the set Cf := {x ∈ Rn | |f(x)| = 1}, i.e. we are not modifying f on a closed hypersurface
surrounding the origin. Then, gf is defined simply as a “dilation” of degree 1 of f . In particular, if f is
homogeneous of degree 1 then f ≡ gf . The case k = 0 (i.e. vector fields which are constant along lines)
will not be treated explicitly, since it needs to be studied differently, due to the different expression of gf in
Definition 2. The qualitative behavior of this case is completely equivalent to the ones obtained in the case
k < 1, k ̸= 0.

In the context of switched systems, the usefulness of introducing the reduction of degree 1 of subsystems
ẋ = fi(x), as in Definition 2, is mainly given by the following statement; which is a well-known result in
the case of linear subsystems (see [19, Lemma 2]); the proof in the homogeneous of degree 1 case essentially
follows the construction presented in [15, Section 3.2.1] , and it is thus omitted.

Lemma 1. Consider the family of functions G = {gi}i∈I ⊂ H1
n satisfying Assumption 1 and suppose that

subsystem ẋ = gi(x) is GAS (and thus GES), for each i ∈ I. Then there exists a τG > 0 such that the system

ẋ(t) = gσ(t)(x(t))

is UGAS on Sdw(τG).

3 Analytical Tools for Homogeneous Systems

Given a k ∈ R \ {0}, consider a vector field f ∈ Hk
n satisfying Assumption 1; we note that the homogeneity

property is inherited by every solution of the system

ẋ = f(x). (9)

More precisely, we have, that ∀t ∈ R≥0,∀x ∈ Rn,∀λ > 0,

ϕf (t, λx) = λϕf (λ
k−1t, x), (10)

where ϕf (t, x) denotes the solution of (9) starting at x evaluated at t ≥ 0. Moreover, we have the following
characterization of stability, for the proof see [3, Corollary 5.4].

Lemma 2. Consider f ∈ Hk
n satisfying Assumption 1 and suppose that the corresponding system (9) is

GAS. Then:
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� If k = 1, the system is globally exponentially stable (GES), more precisely, there exist M1,M2, µ > 0 such
that

M1|x|e−µt ≤ |ϕf (t, x)| ≤ M2|x|e−µt

for any x ∈ Rn, and any t ≥ 0.

� If k > 1, there exist M1,M2 > 0 such that

M1(1 + |x|k−1t)
1

1−k |x| ≤ |ϕf (t, x)| ≤ M2(1 + |x|k−1t)
1

1−k |x|,

for any x ∈ Rn, and any t ≥ 0.

� If k < 1, the system (9) is finite-time stable, i.e., for every x ∈ Rn there exists a T (x) > 0 such that
ϕf (t, x) = 0, for all t ≥ T (x).

Note that if f satisfies Assumption 1, then gf ∈ C1(Rn \ {0},Rn) and, defining M := max|y|=1 |f(y)|, it
satisfies the linear growth condition |gf (x)| ≤ M |x|. Then gf is locally Lipschitz on Rn and in particular
the system ż = gf (z) exhibits existence, uniqueness and completeness (backward and forward) of solutions,
for any initial condition.

Lemma 3. Consider k ̸= 0 and f ∈ Hk
n satisfying Assumption 1 and its reduction of degree 1, gf ∈ H1

n as
in Definition 2. Consider the dynamical systems

ẋ = f(x), (11a)

ż = gf (z). (11b)

Denoting with ϕf and ϕg the flow maps of (11a) and (11b) respectively, define the map θ : R≥0×(Rn\{0}) →
R by

θ(t, x) =

∫ t

0

|f(ϕg(s, x))|
1
k

|f(ϕg(s, x))|
ds. (12)

Then
ϕg(t, x) = ϕf (θ(t, x), x), ∀x ̸= 0,∀t ∈ R≥0. (13)

The proof essentially follows the construction proposed in [9, Lemma 2.4]. Lemma 2 and Lemma 3 imply
that

(11a) is GAS ⇔ (11b) is GES. (14)

In the following we explicitly collect some remarkable properties of the time-scaling function θ, defined
in (12).

Proposition 1 (Properties of θ). Consider f ∈ Hk
n with k ̸= 0 satisfying Assumption 1. Then, the function

θ : R≥0 × (Rn \ {0}) → R in (12) satisfies

1. For each x ∈ Rn \ {0}, and each t ∈ R≥0, the functions θ(·, x) : R≥0 → R, and θ(t, ·) : Rn \ {0} → R are
continuous, respectively.

2. For each x ∈ Rn \ {0}, each t ∈ R≥0, and each λ > 0,

θ(t, λx) =
θ(t, x)

λk−1
. (15)

3. For each x ∈ Rn \ {0}, θ(0, x) = 0 and θ(·, x) : R≥0 → R is strictly increasing.

4. If k = 1, then θ(t, x) = t, ∀ t ∈ R≥0, ∀x ̸= 0.

4’. If k < 1 and system (9) is GAS, then, for all x ̸= 0, there exists T (x) > 0 such that lims→+∞ θ(s, x) =
T (x) and θ(·, x) is invertible, with inverse defined on [0, T (x)).
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4”. If k > 1 and system (9) is GAS, then, for all x ∈ Rn\{0}, lims→+∞ θ(s, x) = +∞ and θ(·, x) is invertible,
with inverse defined on [0,+∞).

Given any x ∈ Rn \ {0}, we denote by θ−1(·, x) the inverse of θ (with respect to the first argument);
note that the domain of definition depends on the homogeneity degree of f . Since reductions of degree 1
(Definition 2) of the subsystems ẋ = fi(x) will be used to study the behavior of switched systems as in (1),
we need the following result.

Lemma 4 (“Translation” of solutions). Consider k ̸= 0 and a finite family F = {fi}i∈I ⊂ Hk
n satisfying

Assumption 1. Suppose that ẋ = fi(x) is GAS, for each i ∈ I. Moreover, consider the set G = {gi}i∈I ⊂ H1
n

given by the reductions of degree 1 of the fi, as defined in Definition 2. Given any x0 ∈ Rn \ {0} and σ ∈ S,
define

Tσ(x0) := inf{t > 0 | ϕF (t, x0, σ) = 0},
with the possibility that Tσ(x0) = +∞. Then, there exists a σG ∈ S and a strictly increasing γ : [0, Tσ(x0)) →
R≥0 with γ(0) = 0, and limt→T (x0)− γ(t) = +∞, such that

ϕF (t, x0, σ) = ϕG(γ(t), x0, σG), ∀t ∈ [0, Tσ(x0)). (16)

Similarly, for any x0 ∈ Rn\{0} and any σG ∈ S, there exists a σ ∈ S and a strictly increasing χ : R≥0 → R≥0

with χ(0) = 0 and lims→+∞ χ(s) = Tσ(x0), such that

ϕG(s, x0, σG) = ϕF (χ(s), x0, σ), ∀s ∈ R≥0. (17)

Let us note that, by Lemma 2, the case Tσ(x0) < +∞ is possible only if k < 1; in all the other cases the
function γ is globally defined (and, similarly, the function χ is unbounded). The proof of Proposition 1 is
postponed to Appendix A.1 while the proof of Lemma 4 is postponed to Appendix A.2, to avoid breaking
the flow of the presentation.

4 Main Results

In this section we will consider a finite family of subsystems F = {fi}i∈I ⊂ Hk
n satisfying Assumption 1,

and we suppose that each subsystem ẋ = fi(x) is GAS, for each i ∈ I. Example 1 showed that this does
not necessarily imply the uniform global asymptotic stability of the switched system (1) under (any class of)
dwell-time switching signals. On the other hand, weaker results can be obtained; in particular we analyze
the cases k > 1 and k < 1 (the case k = 1 is already characterized by Lemma 1).

Theorem 1 (Case k > 1). Consider a finite family of vector fields satisfying Assumption 1, F = {fi}i∈I ⊂
Hk

n, with k > 1, and suppose that ẋ = fi(x) is GAS, for each i ∈ I. Consider the set G = {gi}i∈I ⊂ H1
n,

where gi ≡ gfi is defined as in Definition 2. Then, the following hold:

1. (Ultimate boundedness) For every τ > 0 there exists an R(τ) > 0 such that, for each x0 ∈ Rn and
σ ∈ Sdw(τ)

lim sup
t→+∞

|ϕF (t, x0, σ)| ≤ R(τ).

2. (Non-Stability) Suppose that there exist τ⋆G > 0, σG ∈ S(τ⋆G) and x0 ∈ Rn such that the solution of the
switched system ẋ = gσG(t)(x), denoted by ϕG(·, x0, σG) : R+ → Rn, is diverging, i.e.

lim sup
s→+∞

|ϕG(s, x0, σG)| = +∞.

Then, for every τ > 0, there exists a ball B(0, R(τ)), a sequence (x0ℓ)ℓ∈N, x0ℓ → 0, σℓ ∈ Sdw(τ) and
tℓ > 0 such that ϕF (tℓ, x0ℓ, σℓ) /∈ B(0, R(τ)) (i.e. 0 is not Lyapunov stable).2

2We denote by B(0, r) the open ball of radius r centered at 0, by B(0, r) the closure of B(0, r) (i.e. the corresponding closed
ball).

7



Proof. We denote by θi : R× (Rn \ {0}) → R the map defined by (12), when considering the sub-vector field
fi : Rn → Rn. With βi ∈ KL, we denote the function characterizing the GAS property of the subsystem
ẋ = fi(x), for each i ∈ I. Since, by (14), subsystem ẋ = gi(x) is GES for each i ∈ I, considering the switched
system

ẋ(t) = gσG(t)(x(t)), (18)

there exists a τG > 0, such that (18) is UGAS on Sdw(τG), as proved in Lemma 1. Let us call βG ∈ KL the
function characterizing the UGAS property of (18) on Sdw(τG), as in Definition 1.
■ Let us prove item 1. Fix τ > 0, we suppose from now on that the considered σ ∈ Sdw(τ) have an infinite
number of discontinuities (i.e. switching instants), indeed if σ has a finite number of discontinuities, we
necessarily have limt→+∞ |ϕF (t, x0, σ)| = 0, since all subsystems are GAS.
Let us consider R1(τ) > 0 big enough such that

θi(τG , x) ≤ τ, ∀|x| ≥ R1(τ), ∀i ∈ I. (19)

Such a choice is possible recalling Proposition 1, since, ∀ i ∈ I, θi(τG , ·) : Rn \ {0} → R is continuous and, as
shown in (15), θi(τG , ·) is strictly decreasing along lines, i.e.

θi(τG , λ1x) > θi(τG , λ2x), ∀ 0 < λ1 < λ2, ∀x ̸= 0,

and moreover limλ→+∞ θi(τG , λx) = 0, for all x ∈ Rn, see also Figure 2a. Using (19), the proof of item 1
follows from the next lemma, which will be also used in later sections.

Lemma 5. For a given τ > 0, consider R1(τ) such that (19) holds. Consider R2(τ) > 0 such that R2(τ) ≥
βi(0, R1(τ)), ∀ i ∈ I and define

R(τ) := βG(0, R2(τ)). (20)

Then item 1 holds.

Proof of Lemma 5. We proceed in two steps.
Step A: Consider x0 ∈ Rn such that |x0| > R1(τ), σ ∈ Sdw(τ) and define tσj := inf{tσj > 0 | |ϕF (t

σ
j , x0, σ)| ≤

R1(τ)}, that is, the first switching instant for which the solution starting at x0 is inside the ball B(0, R1(τ)).
We want to prove that tσj is finite. Consider the switching signal σG ∈ S and γ : R+ → R+, given by

Lemma 4, such that
ϕF (t, x0, σ) = ϕG(γ(t), x0, σG),∀t ∈ R+.

Defining xj := ϕF (t
σ
j , x0, σ) for all j ∈ N, by definition of tσj , we have |xj | > R1(τ) for all j < j. This, since

σ ∈ Sdw(τ) and recalling (19), implies that

θ−1
σ(tσj )

(tσj+1 − tσj , xj) ≥ θ−1
σ(tσj )

(τ, xj) ≥ τG , ∀j < j.

By the definition of γ : R+ → R+ in (35) in Appendix A.2, we finally have that tσG
j+1 − tσG

j = θ−1
σ(tσj )

(tσj+1 −
tσj , xj) ≥ τG , for all j < j. Rephrasing, we have proved that the signal σG has a dwell time τG , at least until
the switching instant tσG

j , implying that

|ϕF (t, x0, σ)| = |ϕG(γ(t), x0, σG)| ≤ βG(γ(t), |x0|), (21)

for every t ∈ [0, tσj ]. Since by definition limt→+∞ γ(t) = +∞, and lims→+∞ βG(s, |x0|) = 0, we conclude that

tσj is finite, if not we have a contradiction. In other words, we have proved that, for any initial condition

x0 /∈ B(0, R1(τ)), solutions of (1) reach B(0, R1(τ)) (for a finite switching instant).
Step B: Consider any x0 ∈ Rn such that |x0| ≤ R1(τ) and any σ ∈ Sdw(τ), consider

tσj⋆ := inf{tσj > 0 | |ϕF (t
σ
j , x0, σ)| > R1(τ)}.
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Intuitively, tσj⋆ is defined as the first switching instant (if any) for which the solution starting at x0 is outside

the set B(0, R1(τ)), (if such switching instant does not exist, we set tσj⋆ = +∞). Consider any tσj < tσj⋆ , by
definition, we have |ϕF (t

σ
j , x0, σ)| ≤ R1(τ) and supposing σ(tσj ) = ij ∈ I, we have

|ϕF (t, x0, σ)| ≤ βij (t− tσj , |ϕF (t
σ
j , x0, σ)|)

≤ βij (0, R1(τ)) ≤ R2(τ),
(22)

for every t ∈ [tσj , t
σ
j+1]. By arbitrariness of tσj < tσj⋆ we thus have |ϕF (t, x0, σ)| ≤ R2(τ), for all t ∈ [0, tσj⋆ ].

Since, by definition, xj⋆ := ϕF (t
σ
j⋆ , x0, σ) is such that |xj⋆ | > R1(τ), reasoning as in (21) in Step A, it is easy

to see that
|ϕF (t, x0, σ)| ≤ βG(0, |xj⋆ |) < βG(0, R2(τ)) = R(τ), ∀ t ≥ tσj⋆ .

A generic solution of (1) can be reconstructed concatenating “partial trajectories” lying in the two cases
(|x0| > R1(τ) and |x0| ≤ R1(τ)) analyzed in Steps A and B, concluding the proof of Lemma 5.

■ Let us now prove item 2: consider τ⋆G > 0, σG ∈ Sdw(τ
⋆
G) and x0 ∈ Rn such that the corresponding

solution of the reduced system (18) is diverging, i.e., more explicitly, ∀M > 0, there exists an sM ∈ R+ such
that |ϕG(sM , x0, σG)| > M. For any λ > 0, the solution ϕG(·, λx0, σG) : R+ → Rn is also diverging, since
ϕG(s, λx0, σG) = λϕG(s, x0, σG) for all s ≥ 0, by (10). Let us fix τ > 0, and consider the ball B(0, R(τ)), with
R(τ) > 0 small enough in order to satisfy

θi(τ
⋆
G , x) ≥ τ, ∀ |x| ≤ R(τ), ∀i ∈ I. (23)

Again, this is possible by recalling property (15). Consider any sequence {λℓ}ℓ∈N, 0 < λℓ <
R(τ)
|x0| such that

λℓ → 0 as ℓ → ∞. Define the sequence x0ℓ := λℓx0 → 0 and

Sℓ := inf{s ∈ R+ | |ϕG(s, x0ℓ, σG)| ≥ R(τ)},

i.e. the first time at which the solution starting at x0ℓ w.r.t. σG is outside the ball B(0, R(τ)). For all
ℓ ∈ N, Sℓ is finite, since ϕG(·, x0ℓ, σG) is a diverging solution. For any ℓ ∈ N, consider the switching signal
σℓ ∈ Sdw(τ), and the function χℓ : R+ → R+, given by Lemma 4, such that

ϕG(s, x0ℓ, σG) = ϕF (χℓ(s), x0ℓ, σℓ), ∀s ∈ R+.

Defining tℓ := χℓ(Sℓ) we now prove the statement in item 2. For any switching instant tσℓ
j < tℓ, let us define

xℓ
j := ϕF (t

σℓ
j , x0ℓ, σℓ). By definition of R(τ) in (23) and using (36) in Appendix A.2, we have

tσℓ
j+1 − tσℓ

j = θσG(t
σG
j )(t

σG
j+1 − tσG

j , xℓ
j) ≥ θσG(t

σG
j )(τ

⋆
G , x

ℓ
j) ≥ τ,

since |xℓ
j | < r(τ), and thus σℓ ∈ Sdw(τ) (at least until tℓ), for any ℓ ∈ N. Recalling (17) we have

ϕF (tℓ, λℓx0, σℓ) = ϕG(Sℓ, λℓx0, σG) /∈ B(0, R(τ)),

by definition of Sℓ, thus proving item 2.

Remark 3. Rephrasing our result, in proof of item 1 of Theorem 1 we have proved that, fixing a τ > 0, for
any x0 ∈ Rn and any σ ∈ Sdw(τ) there exists a finite time T (x0, σ) ≤ 0 such that |ϕF (t, x0, σ)| ≤ R(τ),
∀ t ≥ T (x0, σ). Considering the “worst” switching signal and using Lemma 2, it is possible to provide a
finite upper bound T > 0 such that T (x0, σ) ≤ T , for any x0 ∈ Rn and any σ ∈ Sdw(τ). An estimation of
this bound is provided in [1, Theorem 3], where a construction relying on converse Lyapunov theorems for
homogeneous systems is proposed. ◁
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R1(τ)

τ

Case k > 1

|x|

θi(τG , ·)

(a) Construction of R1(τ)
in (19).

r1(τ)

τ

Case k < 1

|x|

θi(τG , ·)

(b) Construction of r1(τ)
in (26).

Figure 2: Qualitative behavior of the functions θi : R≥0 × Rn → R≥0 with respect to the second argument.

Remark 4. The “negative” part of Theorem 1, i.e. Item 2, requires, as hypothesis, the existence of diverging
solution of the reduced switched system ẋ(t) = gσ(t)(x(t)), for some τ > 0 and σ ∈ Sdw(τ). This problem,
i.e. the existence of diverging solutions, is non-trivial even for switching systems with linear sub-dynamics,
see [8]. Recent works ([7] and [5, Section 2.2]) discuss some aspects of computing Lyapunov exponent and
its relation with boundedness of solutions of dwell-time switched systems. ◁

The crucial property used in the proof of Theorem 1, is the fact that, if k > 1, for a fixed τ > 0, the
function

θi(τ, ·) : Rn \ {0} → R is radially decreasing, and

∀x̂ ∈ Sn−1, lim
λ→+∞

θi(τ, λx̂) = 0, lim
λ→0+

θi(τ, λx̂) = +∞,
(24)

for each i ∈ I, recalling (15). In the case k < 1, k ̸= 0, these properties are somehow inverted: fixing any
τ > 0, we have

θi(τ, ·) : Rn \ {0} → R is radially increasing, and

∀x̂ ∈ Sn−1, lim
λ→+∞

θi(τ, λx̂) = +∞, lim
λ→0+

θi(τ, λx̂) = 0,
(25)

for each i ∈ I, again by (15). In the case (k < 1), we extend by continuity the functions θi(τ, ·) to the
whole Rn, defining θi(τ, 0) = 0 for any i ∈ I, τ > 0. Noting this change in the asymptotic properties of the
“time-translation” functions, we obtain the following result.

Theorem 2 (Case k < 1). Consider a finite family of vector fields satisfying Assumption 1, F = {fi}i∈I ⊂
Hk

n, with k < 1, k ̸= 0 and suppose that the subsystem ẋ = fi(x) is GAS, for each i ∈ I. Consider the set
G = {gi}i∈I ⊂ H1

n obtained by the reductions of degree 1 of the fi. Then:

1’ (Local Asymptotic Stability) For every τ > 0, there exists an r(τ) > 0 such that the origin is a uniform
(local) asymptotically stable equilibrium in B(0, r(τ)) of (1) on Sdw(τ); i.e. the property in Definition 1
holds only when considering |x0| < r(τ).

2’ (Diverging Solutions) Suppose that there exist τ⋆G > 0, σG ∈ Sdw(τ
⋆
G) and x0 ∈ Rn such that the solution

of the switched system ẋ = gσG(t)(x) denoted by ϕG(·, x0, σG) : R≥0 → Rn is diverging, i.e.

lim sup
s→+∞

|ϕG(s, x0, σG)| = +∞.

Then, for every τ > 0, there exists z0 ∈ Rn and σ ∈ Sdw(τ) such that lim supt→∞ |ϕF (t, z0, σ)| = +∞.

Since this proof is obtained as a “dual” version of the proof of Theorem 1, some details are omitted.

Proof. Again, we will denote by θi : R×Rn → R and ϕgi : R×Rn → Rn, the maps defined by (13) and (12),
respectively, when considering the sub-vector field fi : Rn → Rn. Recalling Lemma 1, there exists a τG > 0,
such that (18) is GAS on Sdw(τG); βG ∈ KL denotes the function characterizing the GAS property, as in

10



Definition 1.
■ Let us prove item 1’: consider any τ > 0, take r1(τ) > 0 small enough such that

θi(τG , x) ≤ τ, ∀|x| ≤ r1(τ), ∀ i ∈ I, (26)

which is possible due to (25), see also Figure 2b. Using this relation, we can prove item 1’ using the following
lemma:

Lemma 6. For a given τ > 0, consider r1(τ) > 0 that satisfies (26). If r(τ) > 0 is chosen small enough
such that

βG(0, r(τ)) ≤ r1(τ), (27)

then item 1’ holds, considering the ball B(0, r(τ)).

Proof of Lemma 6. Take any x0 ∈ B(0, r(τ)) and any σ ∈ Sdw(τ). The solution ϕF (·, x0, σ) : R≥0 → Rn

corresponds, after re-scaling the time-axis, to a solution ϕG(·, x0, σG) : R≥0 → Rn of system (18) for some
σG ∈ S. More precisely, define T := inf{t ≥ 0 | ϕF (t, x0, σ) = 0}. This T > 0 could be finite, since, recalling
Lemma 2, subsystems ẋ = fi(x) are finite-time stable. Then, as stated in (16) in Lemma 4, there exist
a continuous increasing function γ : [0, T ) → R≥0 and a σG ∈ S such that ϕF (t, x0, σ) = ϕG(γ(t), x0, σG),
∀t ∈ [0, T ). Since |x0| < r(τ), recalling (26), (27) and (35), it can be iteratively shown that σG ∈ Sdw(τG)
and the solution ϕF (·, x0, σ) = ϕG(γ(·), x0, σG) : [0, T ) → Rn does not leave B(0, r1(τ)). Thus,

|ϕF (t, x0, σ)| ≤ βG(γ(t), x0), ∀t ∈ [0, T )

|ϕF (t, x0, σ)| = 0, ∀t ∈ [T,+∞)

concluding the proof of Lemma 6.

■ We now prove item 2’. Consider σG ∈ Sdw(τ
⋆
G) for some τ⋆G > 0, and x0 such that the corresponding

solution of system (18) is diverging. For a fixed τ > 0, consider a scalar r(τ) > 0 such that

θi(τ
⋆
G , x) > τ, ∀|x| ≥ r(τ), ∀ i ∈ I, (28)

which, again, is possible by (25). Let us now consider λ > 0 large enough, such that xj := ϕG(t
σG
j , λx0, σG) /∈

B(0, r(τ)) for all switching instant tσG
j ≥ 0. This is possible since, by definition of diverging solution, we have

that inf{|ϕG(t
σG
j , x0, σG)| | tσG

j ≥ 0} > 0, and recalling that ϕG(s, λx0, σG) = λϕG(s, x0, σG), for any s ∈ R≥0

and any λ > 0. By Lemma 4, there exist σ ∈ S, and a continuous increasing function χ : R≥0 → R≥0 with
χ(0) = 0 such that

ϕF (χ(s), λx0, σ) = ϕG(s, λx0, σG) ∀s ∈ R≥0.

Since ϕG(·, λx0, σG) is diverging and solution of (1) are forward complete, it is clear that lims→∞ χ(s) = +∞,
see the reasoning in Lemma 4. Recalling that xj /∈ B(0, r(τ)), for any j ∈ N, by (28) and (36) we have that
σ ∈ Sdw(τ). We concluding noting that lim sups→+∞ ϕF (χ(s), λx0, σ) = lim sups→+∞ ϕG(s, λx0, σG) =
+∞.

Remark 5. In Theorem 1 and Theorem 2 we provided, for any dwell-time threshold τ > 0, some “partial”
stability properties, i.e. ultimate boundlessness in the case k > 1 (item 1 of Theorem 1), and local stability
in the case k < 1 (item 1’ of Theorem 2). We showed how the attracting set and the region of attraction,
respectively, depend on the chosen τ > 0. On the other hand, avoiding the trivial case of systems asymptot-
ically stable under arbitrary switching signals, we proved how these properties cannot be extended on the
whole state space, proving instability in the case k > 1 (item 2 of Theorem 1) and the existence of unbounded
solutions in the case k < 1 (item 2’ of Theorem 2). We have thus proven how the fact that, for a family
of GAS subsystems, there always exists a (large enough) dwell time for which the switched system (1) is
globally asymptotically stable (proven in [19, Lemma 2] for the linear case) cannot be, in general, extended
to the non-linear case. Moreover, in Theorem 1 and Theorem 2, the common idea is to fix a dwell time
τ > 0, and then study the (in-)stability properties of (1) with respect to some sets. The following corollary
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provides the statements in other direction: fixing a neighborhood of the origin (for k > 1) or a neighborhood
of infinity (for k < 1), it is possible to select a τ > 0 big enough such that stability/convergence properties
hold in an appropriate sense with respect to the chosen sets. ◁

Corollary 1. Consider a finite family of vector fields F = {fi}i∈I ⊂ Hk
n satisfying Assumption 1 and

suppose that each subsystem ẋ = fi(x) is GAS, i ∈ I. Then:

A) If k > 1, then, ∀ ε > 0, there exists τ(ε) > 0 such that

lim sup
t→∞

|ϕF (t, x0, σ)| ≤ ε, ∀x0 ∈ Rn, ∀σ ∈ Sdw(τ(ε)),

or, in other words, B(0, ε) is a compact attractor of (1) on Sdw(τ(ε)).

B) If k < 1, k ̸= 0, then, ∀M > 0, there exists τ(M) > 0 such that

lim
t→∞

ϕF (t, x0, σ) = 0, ∀x0 ∈ B(0,M), ∀σ ∈ Sdw(τ(M)),

or, in other words, B(0,M) is contained in the region of attraction of (1) on Sdw(τ(M)).

Proof. Denote again by gi : Rn → Rn, ϕgi : R×Rn → Rn and θi : R×Rn → R the maps defined by (8), (13)
and (12) respectively, when considering the sub-vector field fi : Rn → Rn. With βi ∈ KL, we denote the
function characterizing the GAS property of the system ẋ = fi(x), for any i ∈ I. Fix τG > 0, such that (18) is
UGAS on Sdw(τG); βG ∈ KL denotes the function characterizing the UGAS property, as in Definition 1. For
proving item A), consider r(ε) := maxi∈I βi(0, ε) and define τ(ε) > 0 big enough such that θi(τG , x) ≤ τ(ε),
∀|x| ≥ r(ε), ∀ i ∈ I which is possible due to the properties stated in (24). The statement then follows by
Lemma 5.

For proving item B), consider R(M) := maxi∈I βi(0,M), and consider τ(M) > 0 big enough such that
θi(τG , x) ≤ τ(M), ∀ |x| ≤ R(M), ∀ i ∈ I, which is again possible due to (25). Using Lemma 6, the solutions
starting in B(0,M) therefore converge to zero.

Concluding this section, we note that our results (Theorem 1, Theorem 2 and Corollary 1) can be
generalized in the case of homogeneous vector fields {fi}i∈I with mode-dependent degrees ki ∈ R, i ∈ I,
with the same “limiting behavior”, i.e. ki > 1 (or ki < 1), for all i ∈ I.

5 Beyond Homogeneity: General Case

In Section 4, we analyzed stability/boundedness properties of switching systems composed of homogeneous
subsystems. The crucial hypothesis in the proofs of previous results was the “extremal” nature of the subsys-
tems, i.e. the behavior of lim|x|→0+ |fi(x)|, and lim|x|→+∞ |fi(x)|. Thus, it seems reasonable that, regardless
of the specific structure of the subsystems, when these critical regions (neighborhoods of origin/infinity) are
disregarded, the stability properties are somehow conserved by the switched system (1), under (sufficiently
large) dwell-time policy. This intuition is formalized in the following semi-global and practical result.

Proposition 2 (Semi-global & practical dwell-time stability). Consider a finite family of vector fields F =
{fi}i∈I ⊂ C1(Rn \ {0},Rn) satisfying Assumption 1, and suppose that ẋ = fi(x) is GAS, for each i ∈ I. For
every M > ε > 0 there exists a τ = τ(ε,M) > 0 such that

lim sup
t→+∞

|ϕF (t, x0, σ)| ≤ ε, ∀|x0| ≤ M, ∀σ ∈ Sdw(τ). (29)

Similarly, for every τ > 0 there exist ε = ε(τ) > 0 and M = M(τ) > 0 for which (29) holds.

Proof. Let us consider functions βi ∈ KL characterizing the GAS property of the subsystems ẋ = fi(x), for
each i ∈ I, respectively. Consider M > ε > 0, and select 0 < ε2 ≤ ε1 ≤ ε such that

βi(0, ε1) ≤ ε, ∀ i ∈ I, and βi(0, ε2) ≤ ε1, ∀ i ∈ I, (30)
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(this is possible by finiteness of I and by definition of KL-functions). Fix any 0 < ξ < 1, it now suffices to
consider a τ > 0 large enough such that

βi(τ, s) ≤ (1− ξ)s, ∀s ∈ [ε2,M ], ∀ i ∈ I. (31)

Again this choice is possible by finiteness of I and by compactness of the interval [ε2,M ] ⊂ R≥0 \ {0}. Let
us now prove that (29) holds: consider x0 ∈ B(0,M) and σ ∈ Sdw(τ). Without loss of generality, we can
suppose that σ has an infinite number of discontinuities since for eventually constant signals condition (29)
trivially holds. Denote the set of switching instants by {tσj }j∈N. Let us call xj := ϕF (t

σ
j , x0, σ), j ∈ N, i.e.

the values of the solution at switching instants, and let j := inf{j ∈ N | |xj | ≤ ε2} (possibly j = 0). Using
(31), for all j ≤ j, we get |xj | ≤ (1−ξ)j |x0| ≤ (1−ξ)jM and since (1−ξ)j → 0 as j → ∞, it follows that j is
finite. From (30), we now have |x(t, x0, σ)| ≤ ε, ∀ t ≥ tσ

j
. Since x0 ∈ B(0,M) is arbitrary, and σ ∈ Sdw(τ),

then (29) holds.
Next, for a fixed τ > 0, we construct 0 < ε(τ) < M(τ) for which (29) holds, simply following the ideas

already presented. Take 0 < ξ < 1, and chose ε2 > 0 and M > 0 such that (31) holds. Then define
ε1, ε > 0, such that 0 < ε1 ≤ ε and (30) holds. We can now conclude, following the reasoning we have
already developed, that (29) holds.

Interestingly, an alternative proof of Proposition 2 can be obtained relying on a Lyapunov converse
argument, using the ideas sketched in [23, Section 4.1]. Despite this general result, proof techniques based
on reduction of the degree used in Section 4 (see Lemma 3), seem unfeasible in a generic setting. However, the
proposed method can be adapted for the particular (but remarkable) case of positive scalar multiplications
of linear systems.

Proposition 3 (Scalar multiples of linear subsystems). Consider A := {Ai}i∈I ⊂ Rn×n such that Ai is
Hurwitz, ∀ i ∈ I. Consider, for any i ∈ I a function φi : R≥0 → R such that φi(0) = 0, φi(s) > 0 if s ̸= 0
and φi ∈ C1(R≥0 \ {0},R). Consider the subsystems defined by fi(x) := φi(|x|)Aix and the switched system

ẋ = fσ(t)(x). (32)

1. If there exists K∞ > 0 such that
lim inf
s→+∞

φi(s) ≥ K∞, ∀ i ∈ I, (33)

then for some τ > 0, (32) is uniformly ultimately bounded on Sdw(τ) (cf. item 1 of Theorem 1).

2. If there exists k0 > 0 such that
lim inf
s→0+

φi(s) ≥ k0, ∀ i ∈ I, (34)

then for some τ > 0, (32) is uniformly (locally) asymptotically stable on Sdw(τ) (cf. item 1’ of Theorem
2).

Proof. Recalling Lemma 1, let us fix τA > 0 as the dwell-time (possibly minimal) for which the switched
system ẋ = Aσ(t)x is UGAS on Sdw(τA). Denoting by ϕi : R≥0 ×Rn → Rn the flow-maps of the subsystems
ẋ = fi(x) and reasoning as in Lemma 3, it can be shown that eAitx = ϕi(θi(t, x), x), ∀t ∈ R≥0, ∀x ∈ Rn,
∀ i ∈ I, where the functions θi : R≥0 × Rn → R are defined by

θi(t, x) :=

∫ t

0

1

φi(|eAisx|) ds.

Case 1 : Fix a 0 < K < K∞, by (33), there exists η∞ > 0 such that φi(s) > K, ∀s > η∞, ∀i ∈ I. Consider
R1 ≥ η∞ such that |eAitx| > η∞ , ∀|x| ≥ R1, ∀ t ∈ [0, τA] and ∀ i ∈ I. Considering any x ∈ Rn, |x| ≥ R1, we
thus have

θi(τA, x) :=

∫ τA

0

1

φi(|eAisx|) ds ≤
∫ τA

0

1

K
ds =

τA
K

.
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We can now choose τ > 0 large enough such that τ > τA
K , concluding that θi(τA, x) ≤ τ , ∀|x| ≥ R1, ∀ i ∈ I.

We can now conclude the ultimate boundedness by applying Lemma 5, mutadis mutandis.
Case 2 : Fix a 0 < k < k0, by (34) there exists η0 > 0 such that φi(s) > k, ∀ 0 < s < η0, ∀ i ∈ I. Consider
r1 > 0 such that |eAitx| < η0, ∀ |x| ≤ r1, ∀ t ∈ [0, τA] and ∀ i ∈ I. Now take any x ∈ Rn such that |x| ≤ r1
and any i ∈ I, computing we obtain

θi(τA, x) =

∫ τA

0

1

φi(|eAisx|) ds ≤
∫ τA

0

1

k
ds =

τA
k
.

Let choose τ > 0 big enough such that τ > τA
k , implying θi(τA, x) ≤ τ , ∀ |x| ≤ r1, ∀ i ∈ I. The arguments

for local asymptotic stability follow from the proof of Lemma 6.

6 Conclusion

We studied stability of switched nonlinear systems under dwell-time constraints. Differently from the linear
subsystems case, the stability of each subsystem does not imply, in general, the existence of a large enough
dwell time which stabilizes the switched system. Nonetheless, we provided new results, showing how weaker
stability/asymptotic properties could be proved, depending on the behavior of the subsystems close and/or
far from the origin. The statements are first developed for homogeneous subsystems, and then some general-
izations in a generic framework are provided. As possible future research path, we plan to use the proposed
results to designing switching signals for practical stability (for the case of degree k > 1) or local stability
(k < 1) of homogeneous switched systems.

A Appendix

In this Appendix we prove Proposition 1 and Lemma 4..

A.1 Proof of Proposition 1

Proof. Item 1: The continuity of θ(·, x) : R≥0 → R for each x ∈ Rn \ {0} follows directly from its definition
in (12). The continuity with respect to second argument follows by the fact that f ∈ C1(Rn\{0},Rn) and, by
continuous dependence on initial conditions, ϕg(t, ·) : Rn → Rn is continuous, see for example [13, Theorem
3.5].
Item 2: Exploiting the relation (10) and the homogeneity of f and gf , we have, for every x ∈ Rn \ {0} and
t ≥ 0, and each λ > 0,

θ(t, λx) =

∫ t

0

|f(ϕg(s, λx))|
1
k

|f(ϕg(s, λx))|
ds =

∫ t

0

|f(ϕg(s, λx))|
1
k

|f(λϕg(s, x))|
ds

=

∫ t

0

λ|f(ϕg(s, x))|
1
k

λk|f(ϕg(s, x))|
ds

=
1

λk−1

∫ t

0

|f(ϕg(s, x))|
1
k

|f(ϕg(s, x))|
ds =

1

λk−1
θ(t, x),

so that (15) holds.
Item 3: Due to the uniqueness of solutions (obtained from Assumption 1), we note that ϕg(t, x) ̸= 0 for

all x ̸= 0, for all t ∈ R≥0. This yields
|f(ϕg(t,x))|

1
k

|f(ϕg(t,x))| > 0 for all t ∈ R≥0, and the desired statement follows

from (12).

Item 4: Straightforward, since gf = f in the case k = 1, thus θ(t, x) =
∫ t

0
1 ds, for any x ∈ Rn \ {0}.

Items 4’. and 4”. Given any x ∈ Rn \ {0}, the behavior of θ(t, x) in the cases (k < 1) and (k > 1) as t goes
to infinity follows from (13) and Lemma 2.
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A.2 Proof of Lemma 4

Proof. Consider x0 ̸= 0, σ ∈ S and the associated set of switching instant {tσj }. We proceed by induction
on j in defining σG and γ as in (16). Firstly, by convention, recall that tσ0 = tσG

0 = 0; and let i0 := σ(0) ∈ I.
We proceed by a recursion argument.
Case j = 0: We consider two scenarios depending upon when tσ1 occurs.

� If the first switching instant tσ1 does not exist (because σ “never jumps” ) or tσ1 ≥ T , we define®
σG(s) = σ(0) = i0 ∀ s ∈ [0,+∞),

γ(t) := θ−1
i (t, x0), t ∈ [0, T ).

Recalling (13), it is clear that ϕF (t, x0, σ) = ϕfi0
(t, x0) = ϕgi0

(γ(t), x0) = ϕG(γ(t), x0, σG), for each
t ∈ [0, T ), concluding this (trivial) case.

� If tσ1 < T , define tσG
1 = θ−1

i0
(tσ1 , x0), σG(s) = σ(0) = i0, for s ∈ [tσG

0 , tσG
1 ), γ|[0,tσ1 )

(t) = θ−1
i0

(t, x0). Again

by (13), for every t ∈ [0, tσ1 ), we have, ϕF (t, x0, σ) = ϕfi0
(t, x0) = ϕgi0

(γ(t), x0) = ϕG(γ(t), x0, σG).

Recursive Step. Let us suppose that, for some j > 0 we have already defined tσG
j > 0, σG(s) for every

s ∈ [0, tσG
j ) and γ(t) for every t ∈ [0, tσj ). Call xj := ϕF (t

σ
j , x0, σ) ∈ Rn \ {0} and ij = σ(tσj ).

� If the next switching instant tσj+1 does not exist or tσj+1 ≥ T , we define®
σG(s) = σ(0) = i0 ∀ s ∈ [tσG

j ,+∞),

γ(t) := θ−1
ij

(t− tσj , xj) + tσG
j , ∀t ∈ [tσj , T ).

Recalling (13), it is clear that ϕF (t, x0, σ) = ϕfij
(t − tσj , xj) = ϕgij

(θ−1
ij

(t − tσj , xj), xj) = ϕgij
(γ(t) −

tσG
j , xj) = ϕG(γ(t), x0, σG), for all t ∈ [tσj , T ), concluding the proof in this case.

� If tσj+1 < T , define

tσG
j+1 = tσG

j + θ−1
ij

(tσj − tσj−1, xj), (35)

σG(s) = σ(0) = ij , ∀s ∈ [tσG
j , tσG

j+1),

γ|[tσ
j
,tσ

j+1
)
(t) = θ−1

ij
(t− tσj , xj) + tσG

j ,

Again by (13), we have ϕF (t, x0, σ) = ϕfij
(t − tσj , xj) = ϕgij

(γ(t) − tσG
j , xj) = ϕG(γ(t), x0, σG), for all

t ∈ [tσj , t
σ
j+1).

Iterating the procedure a countable number of times (while allowing for σ not eventually constant and
T = +∞), we get the desired statement.

The statement in the other direction, leading to (17), can be obtained with a completely similar argument
which is briefly sketched here. Given x0 ̸= 0 and σG ∈ S, by convention tσG

0 = tσ0 = 0, and call σ(0) =
σG(0) = i0 ∈ I. For all j ≥ 0, suppose tσj , σ(t

σ
j ), and χ|[0,tσj ) are already defined. Call xj = ϕG(t

σG
j , x0, σG),

and ij = σ(xj). Defining

tσj+1 = tσj + θij (t
σG
j+1 − tσG

j , xj), (36)

σ(t) = σG(t
σG
j+1), ∀t ∈ [tσj , t

σ
j+1)

χ|
[t
σG
j

,t
σG
j+1

)
(s) = θij (s− tσG

j , xj) + tσj ,

it can be seen that, iterating, one obtains (17).
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