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Abstract: The Bochner integral is a generalization of the Lebesgue integral, for functions
taking their values in a Banach space. Therefore, both its mathematical definition and its
formalization in the Coq proof assistant are more challenging as we cannot rely on the proper-
ties of real numbers. Our contributions include an original formalization of simple functions,
Bochner integrability defined by a dependent type, and the construction of the proof of the
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Une formalisation en Coq de l’intégrale de Bochner

Résumé : L’intégrale de Bochner est une généralisation de l’intégrale de Lebesgue pour des
fonctions à valeurs dans un espace de Banach. Sa définition mathématique et sa formalisation
dans l’assistant de preuve Coq en sont donc plus difficiles puisque l’on ne peut pas s’appuyer
sur les propriétés des nombres réels. Nos contributions incluent une formalisation originale des
fonctions simples, l’intégrabilité de Bochner définie par un type dépendant, et la construction
de la preuve de l’intégrabilité de fonctions mesurables sous une hypothèse de séparabilité faible.
Puis, nous définissons l’intégrale de Bochner et prouvons plusieurs théorèmes, dont la convergence
dominée et l’équivalence avec une formalisation préexistante de l’intégrale de Lebesgue pour les
fonctions mesurables positives.

Mots-clés : Preuve formelle, Coq, Théorie de la mesure, Intégrale de Bochner
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1 Introduction

This work is devoted to the Coq formalization of the Bochner integral. Among a huge variety
of integrals, e.g. see [7], the Bochner integral [3] is a generalization of the Lebesgue integral,
for real-valued functions, to the case of functions taking their values in a Banach space, i.e. a
complete normed vector space. Thus, it is perfectly suited for the study of partial differential
equations involving time and space variables. For instance, given a real number T > 0 and a
regular enough space domain Ω ⊂ R3, one might be interested in integrating functions mapping
the time interval [0, T ] to the Hilbert space L2(Ω) of functions Ω → R that are square Lebesgue-
integrable, which of course is also a Banach space. In a formal proof setting, it also allows us to
have a single definition and set of theorems for integrating on either R, C, or Rn.

The building of the Bochner integral follows a similar scheme to that of the Lebesgue integral:
first consider simple functions, that only take a finite number of values, define their integral by
summing terms of the form measure of preimage × value, and then extend to the limit of simple
functions. The main difference here is the absence of order in a normed vector space, which prevents
the use of monotonicity and of the LUB property, as in R, and thus prohibits infinite terms in the
integral. Instead, it relies on completeness, and on the additional assumption of separability of
the Banach space, or at least of the range of the integrand function. Note that some mathematical
authors and the other formalizations prefer second countability, which is stronger than separability
in general, but actually equivalent in the case of metric spaces (and Banach spaces are). Rather
than the seminal paper by S. Bochner, or the monograph by J. Mikusiński [13], we chose to follow
the modern presentation of the course in real analysis by G. Teschl [16].

The formalization is available at the following link:

https://lipn.univ-paris13.fr/coq-num-analysis/tree/Bochner.1.0/Lebesgue/bochner_integral

where the tag Bochner.1.0 corresponds to the code of this article.

The paper is organized as follows. After drawing up the state of the art in Section 2, Sec-
tion 3 presents the Coq formalization of the Lebesgue integral [6] we rely on, and Section 4 some
preliminary topological results. Section 5 is dedicated to simple functions. Bochner integrability
is addressed in Section 6, and the Bochner integral is defined in Section 7. Finally, Section 8
concludes and gives some perspectives.

2 State of the art

Measure theory and nonnegative Lebesgue integration has been formalized in formal proof as-
sistants such as Mizar1, PVS [15], Isabelle/HOL [14], HOL42, Lean [8, 10], and Coq3. We may
cite [2, 9] in Mizar, dedicated libraries in PVS4, Isabelle/HOL5, and Lean6, [12] in HOL4, and
dedicated libraries7 and [6] in Coq.

There are few proof assistants that provide the Bochner integral, while the Riemann or
Lebesgue integrals are more widespread. To the best of our knowledge, there are already two
available formalizations.

First, Isabelle/HOL provides Bochner integrability and integral and the dominated convergence
theorem [1]. Their goal is probability and the central limit theorem and this generic integral easily

1https://fm.mizar.org/
2https://hol-theorem-prover.org/
3https://coq.inria.fr/refman/
4https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/library/measure_integration.html, https://

shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/library/lebesgue.html
5https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/Measure_Space.html, https://isabelle.in.

tum.de/dist/library/HOL/HOL-Analysis/Nonnegative_Lebesgue_Integration.html
6https://leanprover-community.github.io/mathlib_docs/measure_theory/measure/measure_space.html,

https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/lebesgue.html
7https://github.com/math-comp/analysis/
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encompasses C and Rn. They assume a second-countable topology (while we add the weaker
separability hypothesis at the only needed point). Their definitions are rather similar to ours
except for Bochner integrability: f is Bochner-integrable if and only if f is measurable and its
L1-norm is finite (which is equivalent to saying that f is absolutely integrable). See our definition
in Section 6.

Second and last, Lean provides Bochner integrability and integral, the dominated convergence
theorem and the Fubini theorem [17]. They assume second-countable real Banach space. The
main difference is that the quotient space L1 is defined and that the Bochner integral applies to
equivalent classes of functions. Moreover, the definition of the integral is very different from ours:
they extend to L1 the continuous linear map that is the integral on integrable simple functions.

As a conclusion on this state of the art, the proved theorems are similar, contrary to the
definitions. A difference is that they require second-countability while we locally require weak
separability. Another difference is the simple function definitions: they both rely on the fact that
the image is a finite set while we use a dependent type. See our definition in Section 5.

The present formalization uses the real standard library of Coq, based on [11], and the Co-
quelicot library [4] extension. These libraries provide support for classical real numbers, which is
consistent with the fact that the mathematics we are formalizing are based on classical logic, as
most of the real analysis results do.

3 The Lebesgue integral in Coq

This work is based on several existing Coq libraries. We of course rely on the standard library,
and in particular for the real numbers [11].

We also rely on Coquelicot [4], which is a conservative extension of the real numbers. We use
several features of this library: the extended real numbers and their operations; the algebraic
hierarchy in particular for the normed modules and Banach spaces; the underlying topology based
on filters. We refer the reader to [4] for more details.

We have also taken inspiration from a recent work defining the Lebesgue integral for non-
negative functions [6]8 and require its latest version. Here are the important design choices of
this library. The measurability of subsets of X is formalized as an inductive type parameterized
by gen : (X → Prop) → Prop, that represents the corresponding generated σ-algebra. When X is
a metric space, in Coquelicot X : UniformSpace, one generally uses the Borel σ-algebra that is
generated by all the open subsets.

Simple functions are based on lists. More precisely, a function is a simple function when its
image is included in a finite list of values. Then this list may be canonized (by removing unused
values and duplicates and sorting the values) and this canonical list is used to compute the integral
of a simple function (provided a given measure). This cannot be applied here as Banach space
values cannot be sorted, contrary to real numbers.

The integral for nonnegative measurable functions is then defined as in mathematics textbooks:∫
M+

f dµ = sup
ψ∈SF+

ψ≤f

∫
SF+

ψ dµ

with SF+ being the set of nonnegative simple functions, and M+ the set of nonnegative mea-
surable functions. The integral of a nonnegative measurable function f is the supremum of the
integral of the nonnegative measurable simple functions ψ less than or equal to f pointwise. Basic
lemmas (such as monotony, scalar multiplication, addition) are provided in [6], as well the Beppo
Levi (monotone convergence) theorem and Fatou’s lemma.

For the sake of readability in the sequel, we do not always specify the scope in the Coq scripts.

8https://lipn.univ-paris13.fr/MILC/
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(a) The full space (in 2D) is separable with the given
points.

(b) The subset Y is heart-shaped. For ensuring its
separability, we may provide points inside Y . But
it is easier to only ensure weak separability by con-
sidering the same points as on the left, that may or
may not belong to Y .

Figure 1: Separability and weak separability: a figurative view.

4 Some topology in normed modules

We present here some preliminary needed results: a few lemmas above Coquelicot are given in
Section 4.1 and separability is described in Section 4.2.

4.1 Additions to Coquelicot

In order to formalize the Bochner integral in Coq, one needs at first some topology in normed
vector spaces, and especially in Banach spaces. In this development, we choose to use the existing
formalization of filters and open subsets of Coquelicot [4]. The main notion required is the limit
of sequences, which is straightforwardly given within Coquelicot. Given a type S : UniformSpace,
we may denote

Definition lim_seq (u : nat → S) := lim (filtermap u eventually).

Starting from this definition, one can easily prove its equivalence with the more common
textbook definition, that may also be more practical than filters in some cases.

Lemma is_lim_seq_epsilon {A : AbsRing} {E : NormedModule A} :
∀ u : nat → E, ∀ l : E, is_lim_seq u l ↔
∀ ε, 0 < ε → ∃ N, ∀ n, N ≤ n → ‖ minus (u n) l ‖ < ε.

Another useful lemma we may derive from this notion is the following, stating the (Borel) mea-
surability of a pointwise limit of measurable functions in any vector space. (Actually, this is not
as easy as in the real case, where one may use LimSup and LimInf to get a simple proof.)

Lemma measurable_fun_lim_seq {X : Set} {gen : (X → Prop) → Prop} :
∀ s : nat → X → E, (∀ n, measurable_fun gen open (s n)) →
∀ f : X → E, (∀ x : X, is_lim_seq (λ n ⇒ s n x) (f x)) → measurable_fun gen open f.

Similarly, we define equivalent Cauchy sequences in a normed vector space, which may be
easier to handle than Cauchy filters in practice:

Definition NM_Cauchy_seq {A : AbsRing} {E : NormedModule A} (u : nat → E) : Prop :=
∀ ε, ε > 0 → ∃ n, ∀ p q, p ≥ n → q ≥ n → ball_norm (u p) ε (u q).

4.2 Separability

Next, we need a formalization of separability in normed vector spaces. Let us remind the mathe-
matical definition of this property.

Definition 1 (separability). A topological space (E, τ) is said separable when it contains a count-
able dense subset, i.e. when there exists a sequence (un)n∈N ∈ EN such that (U is any nonempty
open subset)

∀U ∈ τ, U 6= ∅ ⇒ U ∩ {un |n ∈ N} 6= ∅.

RR n° 9456
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It suffices in our case to define a more practical weaker version in which we do not require the
countable part to dwell inside the separable one.

Definition 2 (weak separability). Let (E, τ) be a topological space. A subset Y ⊆ E is said
weakly separable in E when there exists a sequence (un)n∈N ∈ EN such that

∀U ∈ τ, U ∩ Y 6= ∅ ⇒ U ∩ {un |n ∈ N} 6= ∅.

For example, let E be R equipped with the usual topology, Y be R \ Q ⊆ E and (un)n∈N be
a sequence whose range is exactly Q. Then Y (with the induced topology) and (un)n∈N does not
satisfy the first definition since (un)n∈N is not a sequence in Y , but we may say from the second
definition that Y is weakly separable in E, thus avoiding the building of a sequence of irrationals
in Y . A more visual and figurative example is given in Figure 1.

For normed modules, the norm induces the topology, therefore we get the following character-
ization, easier to formalize.

Lemma 3 (weak separability in normed vector spaces). Let (E, ‖ · ‖) be a normed vector space.
A subset Y ⊆ E is weakly separable in E if and only if there exists a sequence (un)n∈N ∈ EN such
that

∀y ∈ Y, ∀ε > 0, ∃n ∈ N, ‖y − un‖ < ε.

Given E:NormedModule R_AbsRing, we define it in Coq as

Definition NM_seq_separable_weak (u : nat → E) (P : E → Prop) : Prop :=
∀ x : E, P x → ∀ ε : posreal, ∃ n, ball_norm x ε (u n).

Note that the sequence u is explicit in this definition.
For instance, Coq real numbers are weak separable.

Lemma NM_seq_separable_weakR :
NM_seq_separable_weak (λ n ⇒ Q2R (bij_NQ n)) (λ _ : R_NormedModule ⇒ True).

The sequence u ranges over the rationals, relying on the bijection bij_NQ from N onto Q.

5 Formalizing simple functions

A first important step towards Bochner integrability and integral is the definition of simple func-
tions on a Banach space. Even if the Lebesgue integral also needs simple functions [6], their
formalization is not applicable in our case and we have provided an original definition described in
Section 5.1, as well as the Bochner-integrability. The value of the integral is given in Section 5.2.

5.1 Definition and properties

Following [16], we start by formalizing simple functions. Then in Section 7, we define the Bochner
integral as a limit of integrals of simple functions (as for the Lebesgue integral).

Let us consider a measurable space (X,Σ), and E a normed vector space that is assumed
to be equipped with its Borel σ-algebra (generated by all open subsets). In Coq, we have
X : Set, the σ-algebra Σ is represented by some generator gen : (X → Prop) → Prop (see Sec-
tion 3), E : NormedModule A with A : AbsRing, and its Borel σ-algebra is generated by the generic
open : (E → Prop) → Prop. Then, the mathematical definition of (measurable) simple function is
the following.

Definition 4 (simple function). A function f : X → E is said simple when its range is finite and
all the preimages are measurable.

In [6], as explained in Section 3, the simple functions for the Lebesgue integral were defined
by the existence of a list that collects the values taken by the function. This was chosen because
by forcing the list to be sorted, and not to contain any duplicates or unnecessary value, one gets
a canonical representation of a simple function. However, this is no longer possible with vector-
valued functions, where no order can be used on the image space. But it is known that Definition 4
is equivalent to the two following characterizations.

Inria
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f : X

x

N

0

1

2

which(x)

max_which

E

val(0)

val(1) = val(2)

val (which(x))

0

which val

Figure 2: Coq representation of simple functions.
Given a cutting of the set X into max_which+1 pairwise disjoint measurable parts, the function
which : X → nat maps elements of each part to a distinct index, an integer in the range [[0, max_which]].
Then, the function val : nat → E maps each index of the previous range to some vector value in E. The
greatest index max_which is mapped to zero. The represented simple function f : X → E is actually the
composition of which and val. Note that several indices (here 1 and 2) may be mapped to the same vector
value v (here val 1 equals val 2), meaning that the preimage f−1({v}) is actually the (disjoint) union of
the parts mapped to the indices. Thus, the representation is not unique. Of course, parts need not be
convex, nor connected, and some of them may be empty, including the last one, associated with the value
zero.

Lemma 5 (characterization 1). A function f : X → E is simple if and only if it is a linear
combination of characteristic functions of measurable subsets.

Lemma 6 (characterization 2). A function f : X → E is simple if and only if there exists a finite
partition (Ai)i∈I of X such that for all i ∈ I, f is constant over Ai, and Ai is measurable.

We tried to formalize both in Coq and the second proved to be much more efficient to handle.
The chosen data structure takes the following form.

Record simpl_fun := mk_simpl_fun {
which : X → nat;
val : nat → E;
max_which : nat;
ax_val_max_which : val max_which = zero;
ax_which_max_which : ∀ x : X, which x ≤ max_which;
ax_measurable : ∀ n : nat, n ≤ max_which → measurable gen (λ x ⇒ which x = n);
}.

Such a record tells us that in order to build a simple function, there are three values that
should be given to Coq: which, val, and max_which, see Figure 2, and several proofs. The function
which corresponds to a cutting of the space X, or to an index in the finite set of preimages. The
integer max_which is the maximal value allowed for which (it ensures the finiteness of the cutting).
The function val provides the value corresponding to a given integer.

For instance, suppose we want to construct in Coq the simple function corresponding to f of
type X → E with the finite partition (Ai)i∈I of Lemma 6. First of all, because I is finite, we can
suppose that it is of the form [[0, n]] for some n ∈ N (implicitly, here we also suppose that X is
not empty), then:

RR n° 9456



8 S. Boldo, F. Clément, & Louise Leclerc

• the number of parts minus one in our cutting (i.e. |I| − 1 or n in the above description) is
stored into max_which;

• because (Ai)i∈I forms a pairwise disjoint cover of X, for each x ∈ X, there exists a unique
i ∈ I such that x ∈ Ai. The function which associates this i ∈ N with each x ∈ X. So inside
Coq, this becomes which : X → nat.

• Finally, for every i ∈ I, f takes over Ai a value vi ∈ E. This is stored inside val i, for every
i : nat. As we see below, the value of val for i > n does not matter in our formalization.

In addition to these three values, there is a need for properties that ensure such a structure
correctly represents a simple function and behaves nicely.

• First, we need to ensure that val takes the value zero on max_which. The proof is stored into
ax_val_max_which. This is not a mathematical consideration but a commodity in order to
manipulate integrability of simple functions. This allows us to deal with the preimage of 0
separately from the others, and especially to allow An to be of infinite measure for integrable
simple functions.

• Secondly, because which has its values in nat while mathematically, it should have it in
[[0, max_which]], we must ensure that which does not exceed max_which. The proof is stored
into ax_which_max_which.

• Finally, we have to ensure the measurability of the simple function, i.e. the measurability of
all its preimages. The proof is stored into ax_measurable.

It is convenient to use the record defining a simple function as a function, so we also define the
following coercion.

Definition fun_sf (sf : simpl_fun) : X → E := λ x ⇒ sf.val (sf.which x).

(* So we may write "sf x" for sf : simpl_fun E gen, and x : X. *)

Coercion fun_sf : simpl_fun >−> Funclass.

For instance, for the indicator function of a (measurable) subset A, we would have which that
returns 0 on A and 1 on ¬A; max_which that is 1; and val(n) that is 1 when n = 0 and 0 elsewhere.
All assumptions hold. Therefore, for x ∈ A, we have sf x = sf.val (sf.which x) = sf.val 0 = 1,
and for x ∈ ¬A, we have sf x = sf.val (sf.which x) = sf.val 1 = 0.

Note that the type simpl_fun actually carries more structure than just the definition of simple
functions. As a consequence, the representation of a simple function f by an instance of the record
is not unique. Indeed, the same value v ∈ E could be associated with several distinct indices,
meaning that the actual preimage f−1({v}) could be represented by several (pairwise disjoint)
parts with distinct indices. And of course, this may occur for the value zero, already associated
with the index max_which.

Nevertheless, we may recover usual properties about simple functions. An interesting one is
their measurability as defined in [6].

Lemma measurable_fun_sf : ∀ sf : simpl_fun E gen, measurable_fun gen open sf.

We have also explicitly constructed an instance of simpl_fun E gen for the sum, opposite, sub-
traction, scalar product, norm or power of simple functions.

As an example, given two simple functions f, g : X → E with respective decomposition
(Ai)i∈[[0, n]] and (Bj)j∈[[0,m]], we get a correct decomposition for f+g with (Ai∩Bj)(i, j)∈[[0, n]]×[[0,m]].
To formalize this decomposition in Coq, we used an explicit bijection between [[0, n]]× [[0, m]] and
[[0, (n+ 1) · (m+ 1)− 1]].

We use in the sequel the following notations:

”sf + sg” := sf_plus sf sg.
”− sg” := sf_scal (opp one) sg.
”sf − sg” := sf_plus sf (sf_scal (opp one) sg).

Inria



A Coq Formalization of the Bochner Integral 9

”a · sf” := sf_scal a sf.
”‖ sf ‖” := sf_norm sf.
”sf ˆ p” := sf_power sf p.

Over these simple functions, one also needs to define the integrability property stating that
preimages have a finite measure, except possibly for that of zero (corresponding at least to the
index max_which). This allows in Section 5.2 to sum terms of the form measure of preimage ×
value. For the sake of smoothness, we require all the parts of index smaller than max_which to have
finite measure. It therefore prevents parts of infinite measure with val n = zero and n < max_which.
This is allowed in mathematics but impractical in formal proofs and moreover, this case may be
kept out (see below).

Definition integrable_sf (sf : simpl_fun) :=
∀ n, n < sf.max_which → is_finite (µ (λ x ⇒ sf.which x = n)).

Indeed, this definition is not equivalent to the usual mathematical definition of integrability.
Simple functions whose representation involves zero values for indices n < max_which are not recog-
nized as integrable when the corresponding preimages have infinite measure. But, both definitions
match when we ensure that the only part associated with the value zero is the last one (with index
max_which). And this can be proved through the following result.

Lemma sf_remove_zeros (sf : simpl_fun E gen) :
{ sf’ : simpl_fun E gen | (∀ x : X, sf x = sf’ x) ∧ (∀ n, n < sf’.max_which → sf’.val n 6= zero) }.

Here, we used a sig from Coq, that is a dependent type containing an instance of simple_fun E gen

together with a proof of (∀ x : X, sf x = sf’ x) and (∀ n, n < sf’.max_which → sf’.val n 6= zero).
So we may use it to remove unwanted zero values from our structure representing a simple function.

The proof of this proposition is straightforward though tedious: browsing all the values in val,
suppressing the redundant zeros and redefining which in order to have which x = sf ’.max_which

each time we have that sf.val (sf.which x) = zero.
Note also that the previous decomposition for the sum of simple functions maintains the

integrability.

5.2 The Bochner integral for simple functions

Now that we have defined simple functions, we are able to define the integral of such functions.
Following Section 5.1, let us now consider a measure space (X,Σ, µ) where µ is a measure on

the measurable space (X,Σ), and E is now a normed vector space over R. In Coq, we have now
µ : measure gen and E : NormedModule R_AbsRing. Then, we stick to the following mathematical
definition.

Definition 7 (Bochner integral of simple function). Given an integrable simple function s of type
X → E, its Bochner integral (relatively to measure µ on X) is defined by∫

s dµ :=
∑
v∈E

µ
(
f−1{v}

)
· v,

with the convention ∞ · 0E := 0E.

The former sum is finite according to the definition of integrable simple function, and this may
be translated in our formalization by

Definition BInt_sf (µ : measure gen) (sf : simpl_fun _ gen) : E :=
sum_n (λ n ⇒ scal (real (µ (nth_carrier sf n))) (sf.val n)) (sf.max_which).

where nth_carrier is the preimage defined by

Definition nth_carrier (sf : simpl_fun) (n : nat) : (X → Prop) := λ x ⇒ sf.which x = n.

From this definition we may derive the usual properties of the integral such as linearity,

Lemma BInt_sf_lin {sf sg : simpl_fun E gen} (a b : R) :
integrable_sf µ sf → integrable_sf µ sg →
BInt_sf µ (a · sf + b · sg) = a · (BInt_sf µ sf) + b · (BInt_sf µ sg).
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Note that · is the scalar multiplication in the normed vector space. The mathematical proof
implies some factorizations and finite sums inversion. This is basic linear algebra, but has proved
slightly tedious. Here, the main difficulty is to handle the measure that takes values in R, and to
manage separately:

• α · v when v ∈ E and α ∈ R (i.e. with Coquelicot formalism, is_finite α);

• +∞ · 0E , which equals 0E by mathematical and Coquelicot conventions.

Another usual property is the triangle inequality.

Lemma norm_Bint_sf_le (sf : simpl_fun E gen) : ‖ BInt_sf µ sf ‖ ≤ BInt_sf µ ‖ sf ‖.
This lemma reduces by definition to the usual triangle inequality for a finite sum.

As explained, our formalization of simple function is not canonical, so it must be proved that
the value of BInt_sf sf only depends on the values taken by sf and not on the cutting we chose
to represent this function. This is stated in the following extensionality lemma:

Lemma BInt_sf_ext {sf sf’ : simpl_fun E gen} :
integrable_sf µ sf → integrable_sf µ sf’ →
(∀ x : X, sf x = sf’ x) → BInt_sf µ sf = BInt_sf µ sf’.

6 Bochner-integrable functions

Now we define the integrability of functions, by the means of an approximation by simple functions.
Following Section 5.2, let us still consider a measure space (X,Σ, µ), and E is now a Banach

space over R. In Coq, this becomes E : CompleteNormedModule R_AbsRing. As in textbooks, we
consider f : X → E as the pointwise limit of a sequence (sn)n∈N of simple functions, and such that∫
M+
‖f − sn‖ dµ −→

n→∞
0, with

∫
M+

the Lebesgue integral over nonnegative measurable functions.

In this case it may be proved that the sequence
(∫
sn dµ

)
n∈N

is a Cauchy sequence, thus converges,
thanks to the completeness of E, to a vector of E that we may define as the integral of f .

Therefore, we formally define Bochner-integrable functions as follows.

Definition 8. A function f : X → E is said Bochner-integrable (with regard to µ) when there
exists a sequence (sn)n∈N of integrable simple functions such that

• ∀x ∈ X, sn(x) −→
n→∞

f(x);

•
∫
M+
‖f − sn‖ dµ −→

n→∞
0.

This becomes in Coq

Record Bif {f : X → E} := mk_Bif {
seq : nat → simpl_fun E gen;
ax_notempty : inhabited X;
ax_int : ∀ n, integrable_sf µ (seq n);
ax_lim_pw : ∀ x : X, is_lim_seq (λ n ⇒ seq n x) (f x);
ax_lim_l1 : is_LimSup_seq’ (λ n ⇒ LInt_p µ ‖ f − seq n ‖) 0
}.
A function is therefore Bochner-integrable when there exists such a record with the required values
and proofs.

Once again, this record means that in order to prove that f is a Bochner-integrable function, we
need to provide a sequence seq : nat → simpl_fun E gen of simple functions, and several properties
corresponding to the mathematical requirements. In the above record, we used is_LimSup_seq’

which is a generalization to R-valued sequences of is_LimSup_seq from Coquelicot that only takes
reals.

The hypothesis ax_notempty is artificial. It is due to our will to be equivalent to the Lebesgue
integral [6] that requires a nonempty set for preventing empty lists. A solution would be to
convince the authors of [6] to switch to our simple functions.
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We then prove several lemmas. First, a Bochner-integrable function is measurable as it is the
pointwise limit of a sequence of measurable simple functions. Then, we also prove that ‖f‖ is
integrable in the sense of Lebesgue integration of Section 3.

We also define approximating sequences of integrable simple functions for the sum, opposite,
subtraction, scalar product and norm of a Bochner-integrable function. From these proofs and as
before, we define useful notations:

”bf + bg” := Bif_plus bf bg.
”− bf” := Bif_scal (opp one) bf.
”bf − bg” := Bif_plus bf (Bif_scal (opp one) bg).
”a · bf” := Bif_scal a bf.
”‖ bf ‖” := Bif_norm bf.

But such a definition of integrability for vector-valued functions, though easy to use, does not
make it really easy to prove that a given function is integrable so we look for equivalent properties.
First of all, notice that if a function f : X → E is the pointwise limit of simple functions, say
(sn)n∈N, then since every sn has a finite image, the range of f must be weakly separable according
to the previous definition. And since f must be integrable, we also know that

∫
M+
‖f‖ dµ is

finite. Reciprocally, given those two properties, one may wonder if it is possible to prove that f is
Bochner-integrable. The answer is yes, and we may even construct an explicit sequence of simple
functions, which is useful for Coq to compute the value of the integral of f . To construct such a
sequence, we followed [16]. Note that this requires some attention because it involves some careful
splitting of the range of f .

Lemma Bif_separable_range {f : X → E} {u : nat → E} :
inhabited X → measurable_fun gen open f → NM_seq_separable_weak u (inRange f) →
is_finite (LInt_p µ (λ x : X ⇒ ‖ f ‖ x)) → Bif µ f.

The first consequence of this characterization is that any measurable function f : X → R
such that

∫
M+
‖f‖ dµ < ∞ is Bochner-integrable, because we already know that R is (weakly)

separable.

Lemma R_Bif {f : X → R_NormedModule} :
inhabited X → measurable_fun gen open f → is_finite (LInt_p µ (‖ f ‖)) → Bif µ f.

So here we recover exactly the definition of integrability for the Lebesgue integral, which
makes both definitions compatible. But now, if we assume X separable and f continuous, one can
prove that the range of f is separable. For example, we deduce that every continuous function
f : Rn → E is Bochner-integrable.

For other cases where our function f seems too complicated to prove easily that its range is
separable, we still have the ability to prove its Bochner integrability by using yet another equivalent
property.

Lemma 9. A function f : X → E is Bochner-integrable if and only if

• it is the pointwise limit of a sequence of simple functions (without requiring any integrability);

•
∫
M+
‖f‖ dµ <∞.

Functions which are pointwise limit of simple ones (i.e. which satisfies the first dot above) are
said strongly measurable. This definition has been formalized inside the library too, and we have
proved several useful properties about strongly measurable functions. The most striking example
is that any pointwise limit of strongly measurable functions is still strongly measurable. Such a
property is of great use to prove the dominated convergence theorem.

7 The Bochner integral

The definition of the Bochner integral is straightforward from the integrability definition. Let us
still consider a measure space (X,Σ, µ), and E a Banach space over R.
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Definition 10. Let f : X → E. Let (sn)n∈N be a sequence of integrable simple functions such
that

• ∀x ∈ X, sn(x) −→
n→∞

f(x);

•
∫
M+
‖f − sn‖ dµ −→

n→∞
0.

Then the Bochner integral of f (relatively to measure µ on X) is defined by∫
f dµ := lim

n→∞

∫
sn dµ.

The Coq definition is quite short because the partial function lim_seq was used, so the con-
vergence of the sequence do need to be checked while defining BInt However, it was proved as an
independent lemma, which is essential to be able to use the properties of BInt bf as a limit.

Definition BInt {f : X → E} (bf : Bif µ f) := lim_seq (λ n ⇒ BInt_sf µ (seq bf n)).

The first property to ensure is that this definition does neither depend on the chosen sequence
(sn)n∈N, nor on the integrability proof. This is stated as the following extensionality lemma.

Lemma BInt_ext {f f’ : X → E} :
∀ (bf : Bif µ f) (bf’ : Bif µ f ’), (∀ x : X, f x = f’ x) → BInt bf = BInt bf’.

We then prove all the expected properties of the integral such as linearity or the triangular
inequality, by taking the limit of the already proved properties over simple functions.

A larger proof is the equality of BInt and LInt_p for nonnegative real-valued integrable func-
tions, as we had to prove the equivalence of the two formalizations (of simple functions, of in-
tegrability and of integrals). It makes our library compatible with the one about the Lebesgue
integral.

The next lemmas were chosen to ease the main perspective of this work, that is the definition
of Bochner spaces in Coq, which are a generalization of Lp spaces for the Lebesgue integral.

Theorem 11. A function f : X → E is zero µ-almost everywhere if and only if
∫
M+
‖f‖ dµ = 0.

Theorem 12 (dominated convergence). Given a nonnegative integrable function g : X → R, and
a pointwise convergent sequence (fn)n∈N of Bochner-integrable functions such that ∀n ∈ N, we
have ‖fn‖ ≤ g, then f := (x 7→ limn→∞ fn(x)) is Bochner-integrable, and

lim
n→∞

∫
fn dµ =

∫
f dµ.

8 Conclusion and perspective

We have defined the Bochner integral with a constructive point of view for Bochner integrability.
We have proved that a function is Bochner-integrable (with the constructive dependent type
definition) provided it is the pointwise limit of simple functions and that its range is weakly
separable. We have also proved that our definitions are consistent with those of a Coq formalization
of the Lebesgue integral.

Our design choices are twofold. Mathematically, we have conscientiously followed Teschl [16]
with a kind of weak separability instead of (regular) separability. Formally, we have simple func-
tions with an index function and Bochner-integrable by a dependent type. We have succeeded in
proving the common lemmas, from linearity to dominated convergence so this seems a good basis
to build upon.

This opens the way to the formalization of Bochner spaces of strongly measurable functions for
which the p-th power of the norm is Lebesgue integrable. They are a generalization of the usual
Lp Lebesgue spaces, where functions equal almost everywhere are also identified. Such spaces are
also Banach spaces for p ≥ 1. For instance, given a regular enough space domain Ω ⊂ R3, the
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square-integrable functions Ω → R form the Hilbert space L2(Ω) since R is a Banach space on
which Bochner integration applies. Moreover, given a real number T > 0, the square-integrable
functions from [0, T ] to L2(Ω) also form the Hilbert space L2([0, T ], L2(Ω)). And eventually, this
could be used to apply the Lax–Milgram theorem [5] in the context of the resolution of some set
of partial differential equations.
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