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IRIT, Université Paul Sabatier, 31062 Toulouse Cedex (F)

aucher@irit.fr, herzig@irit.fr

Abstract. Dynamic epistemic logic (DEL) as viewed by Baltag et col.
and propositional dynamic logic (PDL) offer different semantics of events.
On the one hand, DEL adds dynamics to epistemic logic by introducing
so-called epistemic action models as syntactic objects into the language.
On the other hand, PDL has instead transition relations between possible
worlds. This last approach allows to easily introduce converse events. We
add epistemics to this, and call the resulting logic epistemic dynamic logic
(EDL). We show that DEL can be translated into EDL thanks to this use
of the converse operator: this device enables us to translate the structure
of the action (or event) model directly within a particular axiomatization
of EDL, without having to refer to a particular epistemic action (event)
model in the language (as done in DEL). It follows that EDL is more
expressive and general than DEL.

Note 1. This report is an extended version with proofs of a paper that has been
published (without proofs) in the proceedings of ECSQARU’07.

1 Introduction

Aim: reason about perception of events. To account for various modes of percep-
tion of events is the aim of a family of formal systems called dynamic epistemic
logics. These systems were proposed in a series of publications most prominently
by Plaza, Baltag, Gerbrandy, van Benthem, van Ditmarsch, and Kooi [10, 7, 6,
14, 16, 17]. Dynamic epistemic logics add dynamics to Hintikka’s epistemic logic
via transformations of its models.

The focus of dynamic epistemic logics is on particular events that are called
updates. Updates can be seen as announcements made to the agents. The sim-
plest case of updates are public announcements à la Plaza [10]; when the input
is propositional such announcements correspond to AGM expansion operations
[1]. Another example are group announcements à la Gerbrandy [6, 7]. Note that
DEL-updates differ from Katsuno-Mendelzon-like updates as studied in the AI
literature [9].

In [2, 4, 3] and elsewhere, Baltag et col. proposed a dynamic epistemic logic
that was very influential. We refer to it in this paper by the term DEL. It has



been shown that their account subsumes all other dynamic epistemic logics,
justifying our acronym. The semantics of DEL is based on two kinds of models:
a static model Ms (called state model by Baltag) and a (finite) dynamic model
Md (called epistemic action model by Baltag). Ms models the actual world and
the agents’ beliefs about it, and is nothing but a good old epistemic model à
la Hintikka. Md models the actual event taking place and the agents’ beliefs
about it. An agent’s beliefs can be incomplete (event a occurred, but agent
cannot distinguish occurrence of a from occurrence of a′) and even unsound (a
occurred, but agent wrongly perceived some a′). Ms and Md are then combined
by a restricted product construction which defines the situation after the actual
event took place, viz. the resulting actual world, and the agents’ beliefs about
it.

Semantics of events: products vs. accessibility relations. Naturally, we would be
interested to express in DEL that an event a occurred, viz to give semantics to
the converse event a− within the framework of DEL. It is not clear how this
should work precisely. The only approach we are aware of is that of Yap [19]
who fails to get a complete characterization.

On the other hand, in PDL, events are interpreted as transition relations on
possible worlds, and not as restricted products of models as in DEL. Converse
events a− can then easily be interpreted by inverting the accessibility relation
associated to a. The resulting logic is called the tense extension of PDL.

To this we then add an epistemic operator. We call (tensed) Epistemic Dy-
namic Logic EDL the combination of epistemic logic and PDL with converse.1

A semantics in terms of transition relations is more flexible than DEL’s prod-
uct semantics: we have more options concerning the interaction between events
and beliefs. Our main contribution here is to account for this delicate relationship
by means of constraints on the respective accessibility relations: a no-forgetting
and a no-learning constraint, and a constraint of epistemic determinism.

Translating DEL into EDL. To demonstrate the power of our approach we pro-
vide a translation from DEL to EDL: we express the structure of a DEL dynamic
model Md by a nonlogical theory Γ (Md) of EDL, and prove that any formula ϕ
is valid in DEL if and only if it is a logical consequence of Γ (Md) in EDL.

So, unlike DEL , we avoid to refer to a semantical structure (viz. the DEL
dynamic model Md) in the very definition of the language. Encoding the struc-
ture of a DEL dynamic model Md by a nonlogical theory Γ (Md) of EDL is done
thanks to converse events. For example [a]Bi(〈a−〉> ∨ 〈b−〉>) expresses that
agent i perceives the occurrence of a as that of either a or b.

1 EDL is related to Segerberg’s Doxastic Dynamic Logic DDL [12, 13]. Up to now re-
search on DDL focussed mainly on its relation with the AGM theory of belief revision,
and studied particular events of the form +ϕ (expansion by ϕ), ∗ϕ (revision by ϕ),
and −ϕ (contraction by ϕ). EDL and DDL coincides in what concerns propositional
announcements.



Organization of the paper. This paper is organized as follows. In section 2 we
introduce a language of belief, events and converse events. In section 3 we provide
a semantics for that language, and define our logic EDL. In section 4 we give
Baltag’s restricted product semantics for the fragment of the language without
converse, and define his logic DEL. In section 5 we associate a theory Γ (Md)
to each dynamic model Md, and prove that the consequences of Γ (Md) in EDL
match the DEL-validities. This suggests that EDL is more expressive and general
than DEL, and we will concentrate on that point to conclude in section 6.

2 The Languages

We suppose given sets of propositional symbols PROP = {p, q, . . .}, agent sym-
bols AGT = {i, j, . . .}, and event symbols EVT = {a, b, . . .}. All these sets
may be infinite (while in DEL AGT and EVT have to be finite). From these
ingredients the multi-modal language is built classically as follows:

ϕ := ⊥|p|¬ϕ|ϕ ∧ ϕ′|Biϕ|[a]ϕ|[a−]ϕ, p ∈ PROP , i ∈ AGT , a ∈ EVT

The formula Biϕ reads “agent i believes that ϕ”. [a]ϕ reads “ ϕ holds after
every possible occurrence of event a”. [a−]ϕ reads “ϕ held before a”. The dual
modal operators B̂i, 〈a〉, and 〈a−〉 are defined in the usual way: B̂iϕ abbreviates
¬Bi¬ϕ; 〈a〉ϕ abbreviates ¬[a]¬ϕ; 〈a−〉ϕ abbreviates ¬[a−]¬ϕ.

The language LEDL of EDL is the entire language. The language LDEL of DEL
is the set of those formulas of LEDL that do not contain the converse operator
[a−]. Finally, the epistemic language LEL is the set of those formulas of LEDL

that do not contain any dynamic operator, i.e. built from PROP , the Boolean
operators and the Bi operators alone. For example [a]Bi[a−]⊥ is an LEDL-formula
(that is not in LDEL).

3 EDL: Epistemic Dynamic Logic with Converse

When designing models of events and beliefs the central issue is to account for
the interplay of these two concepts. In our PDL-based semantics this is done by
means of constraints on the respective accessibility relations. These will ensure
what we call no-forgetting, no-learning and epistemic determinism.

3.1 Semantics

EDL-models are of the form

M = 〈W,V , {Aa}a∈EVT , {Bi}i∈AGT 〉

where W is a set of possible worlds, V : PROP −→ 2W a valuation, and the
Aa ⊆ W ×W and Bi ⊆ W ×W are accessibility relations on W . The relation
A−1

a is the inverse of Aa. We sometimes view accessibility relations as mappings



from worlds to sets of worlds, and write for example A−1
a (w) = {v : 〈w, v〉 ∈

A−1
a } = {v : 〈v, w〉 ∈ Aa}.

We suppose that EDL-models satisfy the following constraints of no forget-
ting, no learning and epistemic determinism:

(nf) If v(Aa ◦ Bi ◦ A−1
b )v′ then vBiv

′.
(nl) If (Aa ◦ Bi ◦ A−1

b )(v) 6= ∅ then (Bi ◦ Ab)(v) ⊆ (Aa ◦ Bi)(v).
(ed) If w1, w2 ∈ Aa(v) then Bi(w1) = Bi(w2).

To understand the no-forgetting principle, also known as perfect recall [5],
suppose that w results from the occurrence of event a in world v; if in world w,
the world w′ is an alternative for agent i, and w′ results from event b in a world
v′, then v′ was already possible for agent i in the world v (see figure below).

To understand the principle no-learning, also known as no miracle [15], as-
sume that agent i perceive the occurrence of a as that of b1, b2. . . or bn. Then,
informally, the no-learning principle says that all such alternatives resulting
from occurrence of b1, b2,. . . , bn in i’s alternatives before a are indeed alterna-
tives after a. Formally, assume that agent i perceives b as a possible alternative
of a (i.e. (Aa ◦ Bi ◦ A−1

b )(v) 6= ∅). If at v world w′ was a possible outcome of
event b for i, then w′ is possible for i at some w ∈ Aa(v) (see figure below).

Finally, the epistemic determinism principle says that an agent’s epistemic
state after an event does not depend on the particular nondeterministic out-
come. Formally, suppose we have vAaw1 and vAaw2. Then (ed) forces that the
epistemic states at w1 and w2 are identical: Bi(w1) = Bi(w2) (see figure below).
This follows from our hypothesis that events are feedback-free (also known as
uninformative events [8]): the agents cannot distinguish between their different
nondeterministic outcomes. These are events of which the agents only learn their
occurrence, but not their outcomes. Both public and private announcements are
examples of feedback-free events. Another example is the event of tossing a coin
without checking the result. An example of an event that is not feedback-free
is agent i’s event of testing if formula ϕ is true: beyond the mere occurrence of
the test, i also learns about its outcome, i.e. after the test i knows whether ϕ
is true or not. Thus the no-learning constraint is violated. Another example of
a non-feedback-free event is that of tossing a coin and looking at it: here the
epistemic determinism constraint is violated.

Truth of a formula ϕ in a world w of a model M is noted M, w |= ϕ and is
defined as usual:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff it is not the case that M, w |= ϕ

M, w |= ϕ ∧ ϕ′ iff M,w |= ϕ and M,w |= ϕ′

M, v |= Biϕ iff M, v′ |= ϕ for every w′ ∈ Bi(v)
M,v |= [a]ϕ iff M, w |= ϕ for every w ∈ Aa(v)

M,w |= [a−]ϕ iff M,v |= ϕ for every v ∈ A−1
a (w)
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Truth of ϕ in a EDL-model M is noted M |= ϕ and is defined as: M, w |= ϕ
for every w ∈ W . Let Γ be a set of LEDL-formulas. The (global) consequence
relation is defined by:

Γ |=EDL ϕ iff for every EDL-model M , if M |= ψ for every ψ ∈ Γ then M |= ϕ.

For example we have
{[b]ϕ, 〈a〉Bi〈b−〉>} |=EDL [a]Biϕ

and
|=EDL (Bi[b]ϕ ∧ 〈a〉Bi〈b−〉>) → [a]Biϕ. (*)

Consider ϕ = ⊥ in (*): Bi[b]⊥ means that perception of event b was un-
expected by agent i, while 〈a〉Bi〈b−〉> means that i actually perceives a as b.
By our no-forgetting constraint it follows that [a]Bi⊥ In fact, one would like to
avoid agents getting inconsistent: in such situations some sort of belief revision
should take place. We do not investigate this further here, and leave it to future
work to augment EDL by belief revision mechanisms.

3.2 Completeness

The axiomatics of EDL is made up of the principles of multi-modal logic K for
all the modal operators Bi, [a] et [a−], plus the axioms (Conv1), (Conv2), (NF)
et (NL) below:

(Conv1) `EDL ϕ → [a]〈a−〉ϕ
(Conv2) `EDL ϕ → [a−]〈a〉ϕ
(NF) `EDL Biϕ → [a]Bi[b−]ϕ
(NL) `EDL 〈a〉B̂i〈b−〉> → ([a]Biϕ → Bi[b]ϕ)
(ED) `EDL 〈a〉Biϕ → [a]Biϕ

(Conv1) and (Conv2) are the standard conversion axioms of tense logic and
converse PDL. (NF), (NL) and (ED) respectively axiomatize no forgetting, no
learning and epistemic determinism.



We write Γ `EDL ϕ when ϕ is provable from the set of formulas Γ in this
axiomatics.

EDL is strongly complete:

Proposition 1. For every set of LEDL-formulas Γ and LEDL-formula ϕ,

Γ |=EDL ϕ if and only if Γ `EDL ϕ.

Proof. The proof follows from Sahlqvist’s theorem [11]: all our axioms (NF),
(NL), (ED) are of the required form, and match the respective constraints (nf),
(nl), (ed).

3.3 Extensions of the Basic Logic

We are going to study how our constraint (nl) evolves when we add other con-
straints on the epistemic accessibility relation Bi, as it is often done in epistemic
logic.

Introspective Belief In the literature, the notion of belief is often supposed
to satisfy positive and negative introspection. That is to say, the axioms of
transitivity (4) and of euclidianity (5) are valid: Biϕ → BiBiϕ (4) and ¬Biϕ →
Bi¬Biϕ (5). Semantically, in that case every Bi satisfies:

(45) if wBiw
′ then Bi(w) = Bi(w′)

Proposition 2. Conditions (45), (nl), (nf) and (ed) are equivalent to conditions
(45), (nli), (nf) and (ed) where

(nli) Bi ◦ A−1
a ◦ Bi ◦ Aa ⊆ Bi

This proposition tells us that under (45), (nl) simplifies to (nli). The axiom
corresponding with (nli) is Biϕ → Bi[a−]Bi[a]ϕ.

Knowledge In the literature, the notion of knowledge is often supposed to
satisfy positive and negative introspection but also reflexivity (T): Biϕ → ϕ
(T). Semantically, (T) corresponds to

(t) wBiw

One can then show that with this extra condition Bi is an equivalence relation.

Proposition 3. Conditions (45), (t), (nl), (nf) ,(ed) are equivalent to (45), (t),
(nlt), (nf), (ed) where

(nlt) A−1
a ◦ Bi ◦ Aa ⊆ Bi.

Proposition 3 tells us that under (45) and (t), (nl) simplifies to (nlt). The
axiom corresponding with (nlt) is Biϕ → [a−]Bi[a]ϕ and is somewhat symmetric
w.r.t. axiom (NF).



4 DEL: Static Models, Dynamic Models, and their
Products

We here present the star-free version of Baltag’s dynamic epistemic logic DEL
[4, 3].

4.1 Semantics

– Static models are just models of the form Ms = 〈W,V, { s−→i}i∈AGT 〉,
where W is an arbitrary set, V : PROP −→ 2W a valuation and the s−→i ⊆
W×W are accessibility relations on W.

– Dynamic models are of the form Md = 〈EVT ,Pre, { d−→i}i∈AGT 〉, where
Pre : EVT −→ LEL is a precondition function associating epistemic formu-
las to events, and the d−→i ⊆ EVT×EVT are accessibility relations on EVT .

Intuitive interpretation. Informally, Pre(a) is the precondition that a world
must fulfill so that the event a can take place in this world. For example
Pre(a) = > means that action a can take place in any world. When we have

d−→i (a) = {b} then the occurrence of a is perceived by agent i as the occur-
rence of b; when d−→i (a) = {b1, b2} then the occurrence of a is perceived by
agent i indistinguishably as the occurrence of b1 or b2; etc.

We recall that the set EVT is the set of atomic events. In DEL it is supposed
to be finite. Moreover, every d−→i is supposed to be serial : for every a ∈ EVT
there is at least one b ∈ EVT such that a

d−→i b.

Remark 1. The basic logic DEL does not validate introspective principles.
DEL can be extended as usual such that for every i ∈ AGT , the s−→i and
the d−→i are transitive and Euclidian.

– Product construction. Given Ms = 〈W,V, { s−→i}i∈AGT 〉 and Md =
〈EVT ,Pre, { d−→i}i∈EVT 〉, their product Ms⊗Md is a static model describ-
ing the situation after the event described by Md occurred in Ms:

Ms ⊗Md = 〈W′,V′, { s−→i
′}i∈AGT 〉

where the new set of possible worlds is W′ = {〈w, a〉 : Ms, w |= Pre(a)},
the new valuation is V′(p) = {〈w, a〉 : w ∈ V(p)}, and the new static
accessibility relation is defined by

〈w1, a1〉 s−→i
′ 〈w2, a2〉 iff w1

s−→i w2 and a1
d−→i a2.

– While the truth condition for the epistemic operator is just as in Hintikka’s
epistemic logic and in EDL, the product construction gives a semantics to
the [a] operator which is quite different from that of PDL and EDL:



Ms, w |= [a]ϕ iff Ms, w |= Pre(a) implies Ms ⊗Md, 〈w, a〉 |= ϕ

Finally, validity of ϕ in DEL (noted |=DEL ϕ) is defined as usual as truth in
every world of every DEL-model. Note that validity means validity w.r.t. a
fixed dynamic model Md.

Remark 2. The truth condition for the dynamic operator highlights that
DEL is a dynamic extension of epistemic logic, while EDL is an epistemic
extension of PDL.

4.2 Completeness

Suppose given a dynamic model Md. The axiomatics of DEL is made of the
principles of the multi-modal logic K for the modal operators Bi and [a], together
with the following axioms [4, 3].

(A1) `DEL [a]p ↔ (Pre(a) → p)
(A2) `DEL [a]¬ϕ ↔ (Pre(a) → ¬[a]ϕ)
(A3) `DEL [a]Biϕ ↔ (Pre(a) → Bi[b1]ϕ ∧ . . . ∧ Bi[bn]ϕ)

where b1, . . . , bn is the list of all b such that a
d−→i b.

We note `DEL ϕ when ϕ is provable from these principles. Note that this
axiomatization depends on a particular dynamic model Md.

For example for every dynamic model Md where Pre(a) = >, Pre(b) = p, and
d−→i (a) = {b} we obtain `DEL [a]Bip. Indeed, `DEL [a]Bip ↔ (Pre(a) → Bi[b]p)

and `DEL Bi[b]p because `DEL [b]p.

5 From DEL to EDL

In this section we show that DEL can be embedded into EDL. We do that by
building a particular EDL-theory that encode syntactically the structure of a
given DEL dynamic model Md.

Definition 1. Let Md = 〈EVT ,Pre, { d−→i}i∈AGT 〉 be a dynamic model. The
set of formulas Γ (Md) associated to Md (‘the theory of Md’) is made up of the
following non-logical axioms:

(1) p → [a]p and ¬p → [a]¬p, for every a ∈ EVT and p ∈ PROP;
(2) 〈a〉> ↔ Pre(a), for every a ∈ EVT;
(3) [a]Bi(〈b−1 〉> ∨ . . . ∨ 〈b−n 〉>), where b1, . . . , bn is the list of all b such that

a
d−→i b;

(4) B̂iPre(b) → [a]B̂i〈b−〉>, for every 〈a, b〉 ∈ d−→i.

Note that Γ (Md) is finite because in EDL both the set of events EVT and
the set of agents AGT are finite.



Axiom 1 encodes the fact that events do not change propositional facts of the
world where they are performed (cf the definition of V ′(p) in Section 4.1). Axiom
2 encodes the fact that an event a can occur in a world iff this world satisfies the
precondition of event a (cf the definition of W ′ in Section 4.1). Axiom 3 encodes
the modal structure of the dynamic model. Axiom 4 encodes the definition of

s−→i
′
(cf Section 4.1).

Example 1. Consider that AGT = {A; B} and PROP = {p}. In the figure below
is represented the dynamic models Md

1 and Md
2 corresponding respectively to the

public announcement of ϕ and the private announcement of ϕ, where ϕ ∈ LEL.
Here, Pre(a) = ϕ in both models and Pre(b) = >.

Public announcement of ϕ : Private announcement of ϕ to A:

a : ϕ A,Bff a : ϕA 88 B
// b : > A,Bgg

Applying Definition 1, we get
Γ (Md

1 ) := {p → [a]p and ¬p → [a]¬p ; 〈a〉> ↔ ϕ ; [a]BA(〈a−〉>) ;
[a]BB(〈a−〉>) ; B̂Aϕ → [a]B̂A〈a−〉>} ; B̂Bϕ → [a]B̂B〈a−〉>}

and
Γ (Md

2 ) := {p → [a]p and ¬p → [a]¬p ; p → [b]p and ¬p → [b]¬p ; 〈a〉> ↔ ϕ
; 〈b〉> ↔ > ; [a]BA〈a−〉> ; [a]BB〈b−〉> ; [b]BA〈b−〉> ; [b]BB〈b−〉> ; B̂Aϕ →
[a]B̂A〈a−〉> ; B̂A> → [b]B̂A〈b−〉> ; B̂B> → [a]B̂B〈b−〉> ; B̂B> → [b]B̂B〈b−〉>}

It turns out that the axiom of determinism is a logical consequence of Γ (Md)
in EDL . This is comforting because the axiom of determinism is indeed valid in
DEL .

Lemma 1. For every LDEL-formula ϕ we have Γ (Md) |=EDL 〈a〉ϕ → [a]ϕ.

Thanks to this lemma, we can now prove that for every formula ϕ of the
language LDEL, |=DEL ϕ if and only if Γ (Md) |=EDL ϕ. We first prove two lemmas.

Lemma 2. Let Md be a DEL dynamic model, and let ψ be a formula from LDEL.
If 6|=DEL ψ then Γ (Md) 6|=EDL ψ.

Lemma 3. Let Md be a DEL dynamic model, and let ψ be a formula from LDEL.
If |=DEL ψ then Γ (Md) |=EDL ψ.

Putting these two results together we obtain the following key result:



Theorem 1. Let Md be a DEL dynamic model. Let ψ be a formula from LDEL.
Then

|=DEL ϕ iff Γ (Md) |=EDL ϕ

It follows that

`DEL ϕ iff Γ (Md) `EDL ϕ

This thus provides a new axiomatization of DEL-validities. This new axiomati-
zation is just made of Γ (Md) together with the axiomatization of EDL .

6 Discussion and Conclusion

We have presented an epistemic dynamic logic EDL whose semantics differs from
that of Baltag et al.’s dynamic epistemic logic DEL. We have shown that DEL
can be embedded into EDL. This result allows to conclude that EDL is an in-
teresting alternative to Baltag et al.’s logic, that allows to talk about agents’
perception of events just in the same way as DEL does. However, EDL is more
expressive than DEL because it allows to talk about past events. Another of its
advantages is that we can partly describe an event taking place and still draw
inferences from this partial description, whereas in DEL the action (event) model
has to specify everything. More generally, EDL seems more versatile than DEL
to describe events. This allows to model some events that could not be modelled
in DEL .

Let us demonstrate this last point by an example. Consider the situation
where there are two agents i and j, and there are two possible private announce-
ments a and b with respective preconditions p and ¬p. Suppose none of the agents
knows anything beyond the mere fact that both a and b could have happened,
i.e. 〈a−〉> ∨ 〈b−〉> is common knowledge. From this we should infer that the
agents do not know anything about the other agent’s perception (which is in-
deed true in reality). We can model this last fact as follows. First we recursively
define the following set of formulas.

– Φ0
i = Φ0

j = {〈a−〉>, 〈b−〉>}
– Φn

i = {Biϕj : ϕj ∈ Φn−1
j } ∪ {∧{ϕj :ϕj∈Φn−1

j } B̂iϕj}

For example we have

Φ1
i = {Bi〈a−〉>,Bi〈b−〉>, B̂i〈a−〉> ∧ B̂i〈b−〉>} and

Φ2
j = {BjBi〈a−〉>, BjBi〈b−〉>, Bj(B̂i〈a−〉> ∧ B̂i〈b−〉>)} ∪

{B̂jBi〈a−〉> ∧ B̂jBi〈b−〉> ∧ B̂j(B̂i〈a−〉> ∧ B̂i〈b−〉>)}.

We naturally claim that the set of all (
∨

Φn
i )∧(

∨
Φn

j ) represents the fact that the
agents do not know anything about the other agent’s perception. Then we can
prove by induction on n that {〈a−〉> ∨ 〈b−〉>} `EDL (

∨
Φn

i ) ∧ (
∨

Φn
j ) for every



n.2 This indicates that the agents’ incomplete knowledge of what is going on is
correctly represented by {〈a−〉> ∨ 〈b−〉>}. Such situations cannot be described
in DEL because this would require an infinity of atomic DEL-events, and the
dynamic model Md would have to be infinite. So, in a sense, EDL seems to be
more appropriate to represent situations where agents have only little cues about
what is going on.

Another approach mapping DEL to automata propositional dynamic logic
is [18]. He does not resort to converse events and translates dynamic models
into a transformation on PDL programs. As we said in section 1, Yap introduced
converse events into DEL but she failed to get a reduction axiom for the converse
modal operator. Like us, she does not deal with belief revision and we leave the
integration of belief revision mechanisms into EDL to further work. Another line
of research is to study decidability and complexity of EDL .
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A Proof of Proposition 2

Proposition 4 (Proposition 2). Conditions (45), (nl), (nf) and (ed) are equiv-
alent to conditions (45), (nli), (nf) and (ed) where

(nli) Bi ◦ A−1
a ◦ Bi ◦ Aa ⊆ Bi

Proof. To prove (nli) from (nl) and (ed), suppose w1(Bi ◦ A−1
b ◦ Bi ◦ Ab)w′2, i.e.

there are w′1, v′1, v′2 such that w1Biw
′
1A−1

b v′1Biv
′
2Abw

′
2. We have to prove that

w1Biw
′
2. As we have (Ab ◦Bi ◦A−1

b )(v′1) 6= ∅, v′1Abw
′
1 and v′1(Bi ◦Ab)w′2, by (nl)

we have w′1Biw
′
2. Then by transitivity of Bi we have w1Biw

′
2.

To prove (nl) from (nli) and (ed), suppose (Aa ◦ Bi ◦ A−1
b )(v) 6= ∅, i.e.

there are w1, w′1, v′1 such that vAaw1Biw
′
1A−1

b v′1. Moreover, suppose v(Bi ◦
Ab)w′2, i.e. there is v′2 such that vBiv

′
2Abw

′
2. We have to prove that for every

w2 such that vAaw2 we also have w2Biw
′
2. By (45) we have v′1Biv

′
2. We thus

have w1Biw
′
1A−1

b v′1Biv
′
2Abw

′
2. By (nli) we get w1Biw

′
2. Finally, by (ed) we have

w2Biw
′
2, too.

B Proof of Lemma 1

Lemma 4 (Lemma 1). For every LDEL-formula ϕ we have Γ (Md) |=EDL 〈a〉ϕ →
[a]ϕ.



Proof. Let Md = 〈EVT ,Pre, { d−→i}i∈AGT 〉 be given, and let M be an EDL-
model such that M |= ψ for every ψ ∈ Γ (Md). Assume w0Aav0 and w0Aau0

with v0 6= u0. We are going to show that u0 and v0 are bisimilar.

Ze is defined to be an epistemic bisimulation between models M1 and M2 if
Ze is a bisimulation between the restriction of these models to epistemic acces-
sibility relations. Let Ze := {(w, w) : w ∈ W}∪{(v0, u0)}. We are going to show
that Ze is an epistemic bisimulation. To do so, we need to prove

1. u0 ∈ V (p) iff v0 ∈ V (p) for all p ∈ PROP ;
2. if v0Biv

′ then u0Biv
′;

3. if u0Biu
′ then v0Biu

′.

(1) is guaranteed by Definition 1 (1). (2) and (3) are guaranteed by epistemic
determinism: (ed) makes that Bi(u) = Bi(v).

Now from Ze, we are going to build up a bisimulation. We proceed as follows.
Z0 := Ze;

Zn+1 := {(un+1, vn+1) : unAaun+1 and vnAavn+1 for some a ∈ EVT and unZnvn};
Z :=

⋃
n∈N Zn.

We are going to show that Z is a bisimulation.

1. We first show that Z is an epistemic bisimulation.
We prove by induction on n that every Zn is an epistemic bisimulation.
We have already proved that Z0 is an epistemic bisimulation. Assume it is
true for Zn and un+1Z

n+1vn+1. Then there are un, vn such that unZnvn,
unAaun+1 and vnAavn+1.
(a) un ∈ V (p) iff vn ∈ V (p) because Zn is an epistemic bisimulation. So

un+1 ∈ V (p) iff vn+1 ∈ V (p) by Definition 1 (1).
(b) Assume un+1Biu

′
n+1. As by seriality of d−→i the set {b : a

d−→i b} is
nonempty, there is b ∈ EVT , u′n ∈ W such that u′nAbu

′
n+1 by Definition

1 (3).
Then unBiu

′
n by (nf).

Then there is v′n ∈ W such that vnBiv
′
n and v′nZnu′n by induction hy-

pothesis.
But M,u′n |= Pre(b) and besides for all ϕ ∈ Le, M, v′n |= ϕ iff M, u′n |= ϕ
because Zn is an epistemic bisimulation by induction hypothesis.
So M, v′n |= Pre(b).
Then there is v′n+1 such that v′nAbv

′
n+1 by Definition 1 (2).

So v′n+1 ∈ Bi ◦ Ab(vn).
Besides M, un |= B̂iPre(b), so M, vn |= B̂iPre(b) by induction hypothe-
sis and because B̂iPre(b) ∈ Le.
So M, vn |= [a]B̂i〈b−〉> by Definition 1 (4).
But M, vn |= 〈a〉>, so M, vn |= 〈a〉B̂i〈b−〉>.
So (Aa ◦ Bi ◦ A−1

b )(vn) 6= ∅.
So (Bi ◦ Ab)(vn) ⊆ Bi(vn+1) by (nl).
So v′n+1 ∈ Bi(vn+1)



Besides u′nZnv′n and u′nAbu
′
n+1, v

′
nAbv

′
n+1.

So by definition of Zn+1, u′n+1Z
n+1v′n+1.

So there is v′n+1 such that vn+1Biv
′
n+1 and u′n+1Z

n+1v′n+1

(c) The case vn+1Biv
′
n+1 is similar.

So for all n ∈ N, Zn is an epistemic bisimulation. Henceforth Z is also a
bisimulation.

2. Now we are going to show that Z is a full bisimulation. Assume uZv for
some u, v ∈ W . Then uZnv for some n ∈ N.
(a) If uAau′ then M,u |= Pre(a) by Definition 1 (2). So M, v |= Pre(a)

because Z is an epistemic bisimulation and Pre(a) ∈ Le.
So there is v′ such that vAav′. But then u′Zn+1v′ by construction of Zn.
So u′Zv′.

(b) Similarly we prove that if vAav′ then there is u′ such that uAau′ and
u′Zv′.

C Proof of Lemma 2

For any formula ϕ we define the integer δ(ϕ) as the maximal number of nested
event operator occurrences as follows:

– δ(p) = 0
– δ(ϕ1 ∧ ϕ2) = max(δ(ϕ1), δ(ϕ2)))
– δ(¬ϕ) = δ(Biϕ) = δ(ϕ)
– δ([a]ϕ) = δ([a−]ϕ) = δ(ϕ) + 1

Lemma 5 (Lemma 2). Let Md be a DEL dynamic model, and let ψ be a
formula from LDEL. If 6|=DEL ψ then Γ (Md) 6|=EDL ψ.

Proof. We have to prove that if there is a static DEL-model Ms and a w in Ms

such that Ms, w |= ψ then Ms can be turned into a EDL-model M such that
M |= Γ (Md), with a w′ in M such that M, w′ |= ψ.

The proof iteratively applies the product construction to the initial Ms as
follows: we set M0 = Ms, and

Mn+1 = Mn ⊗EDL Md = 〈Wn+1,V n+1, {An+1
a }a∈EVT , {Bn+1

i }i∈AGT 〉, ,
where

– Wn+1 = Wn ∪ {〈w, a〉 : w ∈ Wn and Ms, w |= Pre(a)};
– V n+1(p) = V n(p) ∪ {〈w, a〉 : w ∈ Wn and w ∈ V n(p)};
– An+1

a = An
a ∪ {〈w, 〈w, a〉〉 : w ∈ Wn};

– Bn+1
i = Bn

i ∪ {〈〈w1, a1〉, 〈w2, a2〉〉 : w1Bn
i w2 and a1

d−→i a2}.
Note that we use ⊗EDL to distinguish our product construction here from DEL’s.
Finally, we set M∞ = 〈W∞,V∞, {A∞a }a∈EVT , {B∞i }i∈AGT 〉, where W∞ =⋃

n Wn, V∞(p) =
⋃

n V n(p), A∞a =
⋃

nAn
a , and B∞i =

⋃
n Bn

i . Note that is
just as Yap’s construction [19]. We are going to prove that M∞, w |= ϕ. Then
we will show that M∞ |= Γ (Md). First we prove a lemma:



Lemma 6. Let k ≥ 0. (Ms ⊗Md)k, 〈w, a〉↔– Mk+1, 〈w, a〉, where (Ms ⊗Md)k

is the result of the iteration process applied k times to the static model Ms⊗Md

and the dynamic model Md.

Proof. We prove it by induction on k.

k = 0: (Ms ⊗Md)0 = Ms ⊗Md and M1 = Ms ⊗EDL Md. Then by definition
of ⊗EDL, we clearly have (Ms ⊗Md)0, 〈w, a〉↔– M1, 〈w, a〉

k + 1: (Ms⊗Md)k+1 = (Ms⊗Md)k⊗EDLMd. Now (Ms⊗Md)k, 〈w, a〉↔– Mk+1, 〈w, a〉
by induction hypothesis. So (Ms ⊗Md)k ⊗EDL Md, 〈w, a〉↔– Mk+1 ⊗EDL

Md, 〈w, a〉 because for any M,M ′ if M,w↔– M ′, w′ then M⊗EDLMd, w↔– M ′⊗EDL

Md, w′.
Then (Ms ⊗Md)k+1, 〈w, a〉↔– Mk+2, 〈w, a〉.

Now we prove a second lemma:

Lemma 7. For all ϕ ∈ LDEL, Ms, w |= ϕ iff M∞, w |= ϕ

Proof. We set P(k): “For all ϕ ∈ LDEL such that δ(ϕ) = k, Ms, w |= ϕ iff
Mk, w |= ϕ”, where Ms is the static model and Mk is the iteration of the
product construction.

We prove P(k) for all k by induction on k.

k = 0: Then ϕ is epistemic so it works by definition of ⊗EDL.
k + 1: We prove it by induction on ϕ.

– ϕ = [a]ϕ′.
Ms, w |= [a]ϕ′

iff if Ms, w |= Pre(a) then Ms ⊗Md, 〈w, a〉 |= ϕ′

iff if Ms, w |= Pre(a) then (Ms ⊗ Md)k, 〈w, a〉 |= ϕ′ by Induction
Hypothesis because δ(ϕ′) ≤ k,
iff if Ms, w |= Pre(a) then Mk+1, 〈w, a〉 |= ϕ′ by Lemma 6
iff if Mk+1, w |= Pre(a) then Mk+1, 〈w, a〉 |= ϕ′

iff Mk+1, w |= [a]ϕ′ by definition of ⊗EDL

iff Mk+1, w |= ϕ.
– ϕ = ϕ1 ∧ ϕ2 works by Induction Hypothesis.
– ϕ = Biϕ

′ works as well.
– ϕ = p is impossible because k + 1 ≥ 1.

Then we can easily prove that for all ϕ such that δ(ϕ) = k, Mk, w |= ϕ
iff M∞, w |= ϕ. Then for all k, for all ϕ such that δ(ϕ) = k, Ms, w |= ϕ iff
M∞, w |= ϕ

i.e. for all ϕ ∈ LDEL,M
s, w |= ϕ iff M∞, w |= ϕ. In particular, because

Ms, w |= ψ, we have M∞, w |= ψ.

It remains to prove that M∞ |= Γ (Md). Conditions (1) and (2) of definition
5.1 are clearly fulfilled. As for condition (3), let w ∈ W∞, w′ is such that



wAaw′ iff w′ = 〈w, a〉. Now 〈w, a〉Biu iff u = 〈v, b〉 with wBiv and a
d−→i b by

definition of ⊗EDL. So for all u such that 〈w, a〉Biu, there is b and v such that
a

d−→i b and vAbu. This proves that M∞, w |= [a]Bi(〈b−1 〉>∨ . . .∨〈b−n 〉>) where
b1, . . . , bn is the list of all b such that a

d−→i b. Finally, concerning condition (4),
assume M∞, w |= B̂iPre(b) and wAa〈w, a〉. Then there is v such that wBiv and
vAb〈v, b〉. So by definition of ⊗EDL, because a

d−→i b, we have 〈w, a〉Bi〈v, b〉.
Hence M∞, 〈w, a〉 |= B̂i〈b−〉> and finally M∞, w |= [a]B̂i〈b−〉>.

D Proof of Lemma 3

Lemma 8 (Lemma 3). Let Md be a DEL dynamic model, and let ψ be a
formula from LDEL. If |=DEL ψ then Γ (Md) |=EDL ψ.

Proof. We take advantage of the complete axiomatization of DEL-validities given
in [4, 3], and show that the DEL-axioms are EDL-valid, and that the DEL-
inference rules preserve EDL-validity. As the inference rules of DEL and EDL
are identical (viz. modus ponens and necessitation) it is clear that the DEL-
inference rules preserve EDL-theoremhood. It is straightforward to show that
every instance of the DEL-axioms not involving dynamic operators is EDL-valid.
So what remains is to prove that the schemas

(A1) [a]p ↔ (Pre(a) → p)
(A2) [a]¬ϕ ↔ (Pre(a) → ¬[a]ϕ)
(A3) [a]Biϕ ↔ (Pre(a) → Bi[b1]ϕ ∧ . . . ∧ Bi[bn]ϕ)

where b1, . . . , bn is the list of all b such that a
d−→i b, are logical consequences of

Γ (Md) in EDL.

(A1) Axiom (A1) can be proved from the nonlogical axioms 1 (1) p → [a]p and
1 (2) 〈a〉> ↔ Pre(a) of the theory Γ (Md).

(A2) For the left-to-right direction of (A2) we have
Γ (Md) |=EDL ([a]¬ϕ ∧ Pre(a) ∧ [a]ϕ) → ⊥

because of the nonlogical axiom 1 (2) 〈a〉> ↔ Pre(a) of Γ (Md).
For the right-to-left direction, on the one hand we have Γ (Md) |=EDL

¬Pre(a) → [a]⊥ again by the nonlogical axiom 1 (2), and on the other
hand Γ (Md) |=EDL ¬[a]ϕ → [a]¬ϕ by Lemma 1.

(A3) For the left-to-right direction of (A3), suppose
M, w |= [a]Biϕ ∧ Pre(a),

and suppose M,w |= ¬Bi[b]ϕ for some b such that a
d−→i b. So there must

exist worlds w′ and v′ such that wBiw
′, w′Abv

′ and M, v′ |= ¬ϕ. There-
fore M, w′ |= Pre(b) by nonlogical axiom 1 (2), and M, w |= B̂iPre(b). As
〈a, b〉 ∈ d−→i, our nonlogical axiom 1 (4) tells us that M, w |= B̂iPre(b) →
[a]B̂i〈b−〉>, and hence M,w |= [a]B̂i〈b−〉>. As by hypothesis M,w |=
Pre(a), by nonlogical axiom 1 (2) (Aa ◦ Bi ◦ A−1

b )(w) 6= ∅. By the con-
straint (nl) on EDL-models we have



(Bi ◦ Ab)(w) ⊆ (Aa ◦ Bi)(w),
i.e. v′ ∈ (Aa ◦ Bi)(w). As we have supposed that M, w |= [a]Biϕ, we must
have M,v′ |= ϕ, which is contradictory.
For the right-to-left direction of (A3), we know that Γ (Md) |=EDL ¬Pre(a) →
[a]⊥ again by the nonlogical axiom 1 (2), so it remains to prove that

Γ (Md) |=EDL (Bi[b1]ϕ ∧ . . . ∧ Bi[bn]ϕ) → [a]Biϕ.
where b1, . . . , bn is the list of all b such that a

d−→i b.
Suppose M, w |= Bi[b1]ϕ ∧ . . . ∧ Bi[bn]ϕ, and suppose M, w |= ¬[a]Biϕ.
The latter implies that there are worlds v and v′ such that wAavBiv

′ and
M, v′ |= ¬ϕ. By the nonlogical axiom 1 (3) we have

[a]Bi(〈b−1 〉> ∨ . . . ∨ 〈b−n 〉>).
where b1, . . . , bn is the list of all b such that a

d−→i b.
Hence M, v′ |= 〈b−1 〉>∨ . . .∨〈b−n 〉>. By seriality of d−→i the set {b : a

d−→i

b} is nonempty. We therefore get that M, v′ |= 〈b−〉> for some b such that
a

d−→i b: there is some w′ such that w′Abv
′. Now by (nf) we must have

wBiw
′. As M,w |= Bi[b]ϕ we must have M,w′ |= [b]ϕ, and thus M, v′ |= ϕ,

which is contradictory.


