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Abstract

In this paper we show how coalition
logic can be reduced to the fusion of a
normal modal STIT logic for agency and
a standard normal temporal logic for
discrete time, and how this multi-modal
system can be suitably extended with an
epistemic modality. Both systems are
complete, and we provide a new axiom-
atization for the STIT-fragment. The
epistemic extension enables us to ex-
press that agents see to something under
uncertainty about the present state or
uncertainty about which action is being
taken. In accordance with established
terminology in the planning community,
we call this version of STIT the ‘confor-
mant STIT’. The conformant STIT en-
ables us to express that agents are able
to perform a uniform strategy. As a
final word of recommendation for this
paper we want to point out that its
subject is at the junction of four acad-
emic fields, viz. modal logic, philosophy,
game-theory and AI-planning.

1 Introduction

Coalition Logic, CL for short, was proposed by
Pauly in [Pau01] as a logic for reasoning about so-
cial procedures characterized by complex strate-
gic interactions between agents, individuals or
groups. Examples of such procedures are fair-
division algorithms or voting processes. CL fa-
cilitates reasoning about abilities of coalitions in

games by extending classical logic with operators
〈[J ]〉ϕ for groups of agents J , reading: “the coali-
tion J has a joint strategy to ensure that ϕ”.1

In this paper we show how CL is naturally embed-
ded in a variant of STIT theory [BPX01]. STIT
theory is the most prominent account of agency
in the philosophy of action. It is the logic of con-
structions of the form “agent i sees to it that ϕ
holds”. Our variant of STIT theory is the fusion
of a multi-agent version of the so-called Chellas
STIT operator2 with a temporal next-time oper-
ator. We thus assume no interaction between the
STIT operator and the next-time operator. We
acknowledge that any reasonable logic for time
and agency cannot present the action and time di-
mensions as logically independent, but our point
in this paper is that we do not need the inter-
action to give a correct embedding of Coalition
Logic. For easy reference, we adopt the name
NCL (‘Normal Simulation of Coalition Logic’) for
the fusion of our multi-agent STIT operator and
the next-time operator. The embedding of CL in
NCL is an interesting result since it shows how
to extend CL with capabilities of reasoning about
what a coalition is actually doing (as opposed to
what it could do).

1Note that we use 〈[J ]〉ϕ as an alternative notation
for Pauly’s non-normal operator [J ]ϕ. We introduce
this alternative syntax for two reasons: (1) the new
syntax evokes the quantifier combination ∃ − ∀ un-
derlying the semantics, and (2) we use Pauly’s origi-
nal syntax [J ]ϕ to denote the STIT operator, thereby
emphasizing that this is a normal modal necessity
operator.

2The logic of Chellas STIT together with the logic
of the deliberative STIT form what is called the delib-
erative STIT theories and have been axiomatized in
[BPX01, Chap. 17].



In social choice theory, in particular since
Harsanyi, the interaction between ability models
and epistemic models has been a main focus of
research. It has been realized that intentionality
of action presupposes awareness or knowledge of
the means by which effects are ensured. Philoso-
phers refer to this ability of agents as having the
power to ensure a condition. So, in order to say
that an agent ‘can’ or ‘has the power to’ ensure
a condition, there should not only be an action
in the agent’s repertoire that ensures the condi-
tion, the agent should also know how to choose
the action.

More recently the issue of ‘knowing how to act’
has come up in the logic ATEL [vdHW02] which
is the epistemic extension of the logic of strate-
gic ability ATL [AHK02]. The problem is often
referred to as the problem of uniform strategies.
In particular, ATEL does not allow to distinguish
the situations where:

1. the agent a knows it has a particular ac-
tion/choice in its repertoire that ensures ϕ,
possibly without knowing which choice to
make to ensure ϕ.

2. the agent a ‘knows how to’ / ‘can’ / ‘has the
power to’ ensure ϕ.

In this paper we do not reason about series of
choices, alias strategies, which is why our start-
ing point is CL instead of ATL. We extend NCL
with an S5 modal operator for knowledge and
show that the resulting complete logic, that we
refer to as ENCL, solves the problem of uniform
strategies. Furthermore, the epistemic extension
enables us to define a notion of ‘seeing to it un-
der uncertainty’. In accordance with established
terminology in the planning literature, we call
this version of STIT, the ‘conformant STIT’. Fi-
nally, we give an argument for our view that
ATEL-based approaches to the problem of uni-
form strategies are not likely to succeed.

2 Coalition Logic

Let AGT be a finite set of agents and Prop a
countable set of atomic formulas. The syntax of
Coalition Logic is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈[J ]〉ϕ

where p ranges over Prop and J ranges over the
subsets of AGT . The other boolean connectives
are defined as usual.

2.1 Coalition model semantics

Definition 1 (effectivity function). Given a fi-
nite set of agents AGT and a set of states S, an
effectivity function is a function E : 2AGT −→
22S

. An effectivity function is said to be:

• J-maximal iff for all X ⊆ S, if S\X 6∈ E(J)
then X ∈ E(J).

• outcome monotonic iff for all X ⊆ X ′ ⊆ S
and for all J ⊆ AGT , if X ∈ E(J) then
X ′ ∈ E(J).

• superadditive iff for all X1, X2, J1, J2 such
that J1 ∩ J2 = ∅, X1 ∈ E(J1) and X2 ∈
E(J2) imply that X1 ∩X2 ∈ E(J1 ∪ J2).

E intuitively associates every coalition J to a set
of X ⊆ S (a set of possible outcomes) for which
J is effective. That is, J can force the world to
be in some state of X at the next step.

Definition 2 (playable effectivity function). An
effectivity function E : 2AGT −→ 22S

is said to
be playable iff

1. ∀J ⊆ AGT , ∅ 6∈ E(J); (Liveness)

2. ∀J ⊆ AGT , S ∈ E(J); (Termination)

3. E is AGT -maximal;

4. E is outcome-monotonic; and

5. E is superadditive.

Definition 3. A coalition model is a pair
((S,E), V ) where:

• S is a nonempty set of states;

• E : S −→ (2AGT −→ 22S

) is a playable
effectivity structure;

• V : S −→ 2Prop is a valuation function.

The mapping E associates every state s to a
playable effectivity function E(s). We will write
Es(J) instead of E(s)(J).



Truth conditions are standard for classical formu-
las. We evaluate the coalitional operators against
a coalition model M and a state s according to:

M, s |= 〈[J ]〉ϕ iff {s | M, s |= ϕ} ∈ Es(J).

Note that Coalition Logic is a non-normal weak
modal logic, and that the semantics given above
is a so-called ‘neighborhood semantics’. For in-
stance, the outcome monotonicity property can
be reformulated as reachability of neighborhoods
being closed under supersets.

2.2 Game semantics

In [Pau02], Marc Pauly investigates an alterna-
tive semantics for CL in terms of game structures.
Below we use the equivalence of both semantics to
prove that we can safely assume, that is, without
changing the (weak) modal logic, that any joint
choice (also called choice profile) of all agents
AGT in the system yields a single outcome state.
Definition 4. A strategic game is a tuple G =
(S, {Σi|i ∈ AGT}, o) where S is a nonempty set,
Σi is a nonempty set of choices for every agent
i ∈ AGT , o :

∏
i∈AGT Σi −→ S is an outcome

function which associates an outcome state in S
with every combination of choice of agents (choice
profile).

It appears that there is a strong link between
a coalition model (whose effectivity structure is
playable by definition) and a strategic game.
Definition 5. Given a strategic game G, the ef-
fectivity function EG : 2AGT −→ 22S

of G is
defined as X ∈ EG(C) iff there is σC ∈ ∏

i∈C Σi

such that for every σC ∈ ∏
i∈C Σi we have o(σC×

σC) ∈ X.

Pauly then gives the following characterization:
Theorem 1 ([Pau02]). An effectivity function E
is playable iff it is the effectivity function of some
strategic game.
Definition 6. Let E be an effectivity function. A
set Y ⊆ S is called a minimal effectivity outcome
at s for J iff (1) Y ∈ Es(J) and (2) there is no
Y ′ ∈ Es(J) s.t. Y ′ ⊂ Y .
Definition 7. The non-monotonic core of E

is the mapping µE : 2AGT × S −→ 22S

such
that µE(J, s) = {Y | Y is a minimal effectivity
outcome at s for J }.

The outcome of a strategic game is completely
determined when every agent has made its choice.

Proposition 1. µE(AGT , s) is a set of single-
tons.

Proof. With Definition 5 this is a corollary of
Theorem 1.

2.3 Axiomatization

The set of formulas that are valid in coalition
models is completely axiomatized by the follow-
ing principles [Pau02].

(ProTau) any sufficient set of proposi-
tional logic schemas

(⊥) ¬〈[J ]〉⊥

(>) 〈[J ]〉>

(N) ¬〈[∅]〉¬ϕ → 〈[AGT ]〉ϕ

(M) 〈[J ]〉(ϕ ∧ ψ) → 〈[J ]〉ψ

(S) 〈[J1]〉ϕ∧〈[J2]〉ψ → 〈[J1∪J2]〉(ϕ∧ψ)
if J1 ∩ J2 = ∅

(MP ) from ϕ and ϕ → ψ infer ψ

(RE) from ϕ ↔ ψ infer 〈[J ]〉ϕ ↔ 〈[J ]〉ψ

Theorem 2 ([Pau02]). The principles (ProTau),
(⊥), (>), (N), (M), (S), (MP ) and (RE) are
complete with respect to the class of all coalition
models.

Note that the (N) axiom corresponds to AGT -
maximality of the effectivity structures. It says
that if a formula is not settled true, the coalition
of all agents (AGT ) can always coordinate their
choices to make its negation true. The axiom
(S) corresponds to superadditivity and says that
two disjoint coalitions can combine their efforts
to ensure a conjunction of properties. Note that
from (S) and (⊥) it follows that 〈[J1]〉ϕ∧ 〈[J2]〉¬ϕ
is not satisfiable for disjoint J1 and J2. So, two
disjoint coalitions cannot ensure opposed facts.

Theoremhood and consistency are defined as
usual.



3 A Normal Simulation of
Coalition Logic

Let AGT = {0, . . . , n−1} be a finite set of n ≥ 1
agents and Prop a countable set of atomic for-
mulas. The logic NCL has the following syn-
tax, where p ranges over elements of Prop and
J ranges over the set of subsets of AGT :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | [J ]ϕ

Other boolean connectives are defined by ab-
breviations, as usual. Furthermore, we define
〈J〉ϕ =def ¬[J ]¬ϕ. The intended meaning for
the operator X is ‘next time’, and for the opera-
tor [J ] ‘agents J see to it that’.

Axiomatization We give the following axiom
schemas for NCL.

(ProTau) any sufficient set of proposi-
tional logic schemas

S5([J ]) any sufficient set of S5-
schemas, for every [J ]

(Mon) [J1]ϕ → [J1 ∪ J2]ϕ

Elim([∅]) 〈∅〉ϕ → 〈J〉〈J〉ϕ
Triv([AGT ]) ϕ → [AGT ]ϕ

K(X) X(ϕ → ψ) → (Xϕ → Xψ)

D(X) Xϕ → ¬X¬ϕ

Det(X) ¬X¬ϕ → Xϕ

We also assume the standard inference rules of
modus ponens, and necessitation for X and [∅].
From the latter necessitation for every [J ] fol-
lows by the inclusion axiom (Mon). J denotes
the complement of J w.r.t. AGT . The axiom
Elim([∅]) will be central in this section. Note that
the converses of Elim(∅) and Triv(AGT ) can be
proved from (Mon), S5(∅) and S5(AGT ). Hence,
we have ` 〈∅〉ϕ ↔ 〈J〉〈J〉ϕ and ` ϕ ↔ [AGT ]ϕ

Semantics An NCL-model is a tuple M =
(W,R, FX , π) where:

• W is a set of worlds (alias contexts);

• R is a collection of equivalence relations RJ

(one for every coalition J ⊆ AGT ) such that:

– RJ1∪J2 ⊆ RJ1

– R∅ ⊆ RJ ◦RJ

– RAGT = Id;

• FX : W −→ W is a total function;

• π : W −→ 2Prop is a valuation function.

The truth conditions are:

• M, w |= p iff p ∈ π(w)

• M, w |= Xϕ iff M, FX(w) |= ϕ

• M, w |= [J ]ϕ iff for all u ∈ RJ(w), M, u |=
ϕ

together with the usual definitions for the other
operators. Validity and satisfiability are also de-
fined as usual.
Theorem 3. NCL is determined by the class of
NCL-models.

Proof. Soundness is obtained by a routine ar-
gument and completeness is immediate from
Sahlqvist’s theorem, cf. [BdRV01].

In the rest of the section we prove two lemmas
that are useful in the sequel.
Lemma 1. ` 〈∅〉ϕ → 〈J1〉〈J2〉ϕ if J1 ∩ J2 = ∅.

Proof. By Elim(∅) we have ` 〈∅〉ϕ → 〈J1〉〈J1〉ϕ.
Then, by hypothesis, J1 ∩ J2 = ∅, or equivalently
J2 ⊆ J1. Thus, by (Mon), ` 〈J1〉ϕ → 〈J2〉ϕ.
We obtain ` 〈J1〉〈J1〉ϕ → 〈J1〉〈J2〉ϕ by standard
modal principles for [J1]. We conclude that `
〈∅〉ϕ → 〈J1〉〈J2〉ϕ.

In [BPX01, Chap. 17] the authors provide an ax-
iomatization of the theories of deliberative STIT
in terms of a family of axiom schemas (AIAk).
These capture a central idea of multi-agent STIT
theories saying that agents’ choices are indepen-
dent. We now give a theorem of NCL that gener-
alizes (AIA1) from individuals to coalitions, and
that will be instrumental later in the proof of su-
peradditivity in Theorem 4.
Lemma 2. ` 〈∅〉[J0]ϕ0∧〈∅〉[J1]ϕ1 → 〈∅〉([J0]ϕ0∧
[J1]ϕ1) for J0 ∩ J1 = ∅.

Proof. Suppose J0 ∩ J1 = ∅. We establish the
following deduction:



1. 〈∅〉[J0]ϕ0 → 〈J1〉〈J0〉[J0]ϕ0 by Lemma 1

2. 〈∅〉[J0]ϕ0 → 〈J1〉[J0]ϕ0 from 1 by S5([J0])

3. 〈∅〉[J0]ϕ0 ∧ [J1]ϕ1 → 〈J1〉[J0]ϕ0 ∧ [J1][J1]ϕ1

from 2 by S5([J1])

4. 〈∅〉[J0]ϕ0 ∧ [J1]ϕ1 → 〈J1〉([J0]ϕ0 ∧ [J1]ϕ1)
from 3 by S5([J1])

5. 〈∅〉(〈∅〉[J0]ϕ0 ∧ [J1]ϕ1) → 〈∅〉〈J1〉([J0]ϕ0 ∧
[J1]ϕ1)

from 4 by standard modal principles

6. 〈∅〉[J0]ϕ0 ∧ 〈∅〉[J1]ϕ1 → 〈∅〉〈J1〉([J0]ϕ0 ∧
[J1]ϕ1)

from 5 by S5([∅])
7. 〈∅〉[J0]ϕ0 ∧ 〈∅〉[J1]ϕ1 → 〈∅〉([J0]ϕ0 ∧ [J1]ϕ1)

from 6 by (Mon) and S5([∅])

In [[Sch07, BGH+07]] it is shown that it follows
that the problem of deciding the satisfiability of
a formula of NCL is NEXPTIME-complete.

4 Translating Coalition Logic

We give the following translation from Coalition
Logic to NCL.

tr(p) = p
tr(〈[J ]〉ϕ) = 〈∅〉[J ]Xtr(ϕ)

and homomorphic for the other connectives.
Theorem 4. If ϕ is a theorem of CL then tr(ϕ)
is a theorem of NCL.

Proof. First, the translations of the CL ax-
iom schemas are theorems of NCL. The only
non trivial cases are superadditivity and AGT -
maximality. We start with the latter:

tr(¬〈[∅]〉¬ϕ → 〈[AGT ]〉ϕ) = ¬〈∅〉[∅]X¬tr(ϕ) →
〈∅〉[AGT ]Xtr(ϕ). Since [AGT ]ψ ↔ ψ
by Triv(AGT ), and 〈∅〉[∅]ψ ↔ [∅]ψ by
S5([∅]), the translation of (N) is equivalent to
¬[∅]X¬tr(ϕ) → 〈∅〉Xtr(ϕ). This is equivalent to
〈∅〉¬X¬tr(ϕ) → 〈∅〉Xtr(ϕ) which is proved a the-
orem from applying [∅]-necessitation to Det(X)
and applying a variant of the K-axiom.

For superadditivity we have:

tr(〈[J1]〉ϕ ∧ 〈[J2]〉ψ → 〈[J1 ∪ J2]〉(ϕ ∧
ψ)) = 〈∅〉[J1]Xtr(ϕ) ∧ 〈∅〉[J2]Xtr(ψ) →
〈∅〉[J1 ∪ J2]X(tr(ϕ) ∧ tr(ψ))

1. 〈∅〉[J1]Xtr(ϕ) ∧ 〈∅〉[J2]Xtr(ψ) →
〈∅〉([J1]Xtr(ϕ) ∧ [J2]Xtr(ψ)).

by Lemma 2

2. [J1]Xtr(ϕ)∧[J2]Xtr(ψ) → [J1 ∪ J2]Xtr(ϕ)∧
[J1 ∪ J2]Xtr(ψ).

by (Mon)

3. 〈∅〉([J1]Xtr(ϕ) ∧ [J2]Xtr(ψ)) →
〈∅〉([J1 ∪ J2](Xtr(ϕ) ∧Xtr(ψ))

from previous line by standard modal
principles

4. 〈∅〉[J1]Xtr(ϕ) ∧ 〈∅〉[J2]Xtr(ψ) →
〈∅〉[J1 ∪ J2]X(tr(ϕ) ∧ tr(ψ))

from lines 1 and 3 by standard modal
principles for X.

Second, clearly the translation of modus ponens
preserves validity. To prove that the translation
of CL’s (RE) preserves validity suppose tr(ϕ ↔
ψ) = tr(ϕ) ↔ tr(ψ) is a theorem of NCL. We have
to prove that tr(〈[J ]〉ϕ ↔ 〈[J ]〉ψ) = 〈∅〉[J ]tr(ϕ) ↔
〈∅〉[J ]tr(ψ) is a theorem of NCL. This follows from
the theoremhood of tr(ϕ) → tr(ψ) by standard
modal principles.

Lemma 3. Let M = ((S, E), V ) a coalition
model and selec : S −→ S some mapping such
that if selec(s) = s′ then {s′} ∈ µE(AGT , s).3
Let M = (W,R,FX , π) be constructed as follows:

• W = {〈s, s′〉 | s ∈ S, {s′} ∈ µE(AGT , s)}
• RJ = {(〈s, s1〉, 〈s, s2〉) | ∃Y ∈ µE(J, s),

s1, s2 ∈ Y }
• FX(〈s, s′〉) = 〈s′, selec(s′)〉
• π(〈s, s′〉) = V (s)

Then M is an NCL-model.

Proof. The proof consists in checking that the
constructed model satisfies every constraint on
NCL models. Everything is almost immediate.
The main point is that we are permitted to de-
fine FX this way because of Proposition 1.

3Such a function exists by the axiom of choice.



A peculiarity of the models thus constructed is
that next moments are chosen using a selection
function. The reason this is possible is that we
have chosen not to impose a logical relation be-
tween the temporal dimension and the action (/
choice) dimension in NCL. Now we can turn to the
proof of satisfiability preservation of the transla-
tion and the model construction.

Theorem 5. If ϕ is CL-satisfiable then tr(ϕ) is
NCL-satisfiable.

Proof. Given a coalition model M = ((S,E), V )
we construct an NCL-model MNCL =
(W,R, FX , π) for some mapping selec as in
Lemma 3. We prove by structural induction
that M, s |= ϕ iff there is a 〈s, s′〉 ∈ W s.t.
MNCL, 〈s, s′〉 |= tr(ϕ).

The cases of atoms and classical connectives are
straightforward, so we just consider the case of
ϕ = 〈[J ]〉ψ.

1. Suppose, M, s |= 〈[J ]〉ψ. Then, there is Z ′ ∈
Es(J) such that for all t ∈ Z ′,M, t |= ψ.
Then there is a minimal effectivity outcome
Z ∈ µE(J, s) such that for all t ∈ Z, M, t |=
ψ. By induction hypothesis, there is a 〈s, s′〉
such that MNCL, 〈s, s′〉 |= tr(ψ).

2. By construction, FX(〈s, y〉) = 〈y, selec(y)〉,
for all t ∈ Z and {y} ∈ µE(AGT , s) such
that {y} ⊆ Z.

3. By (1) and (2) it follows that for all
{y} ∈ µE(AGT , s) such that {y} ⊆ Z,
MNCL, 〈s, y〉 |= Xtr(ψ), and thus, since
Z ∈ µE(J, s), it follows that there is {y} ⊆ Z
such that MNCL, 〈s, y〉 |= [J ]Xtr(ψ).

4. Finally, there is 〈s, y〉 ∈ W such that
MNCL, 〈s, y〉 |= 〈∅〉[J ]Xtr(ψ).

The other direction of the induction hypothesis
is verified by reverse arguments.

Corollary 1. ϕ is a theorem of CL iff tr(ϕ) is a
theorem of NCL.

Proof. The right-to-left direction is Theorem 4.
The left-to-right direction follows from Pauly’s
completeness result for Coalition Logic and The-
orem 5.

5 Seeing to it under imperfect
knowledge: an epistemic
extension

In this section we extend NCL with an S5 knowl-
edge operator. This enables us to express that
an agent sees to something although it is uncer-
tain about the present state or the action being
taken. In the planning community this kind of
actions are called conformant [GB96]; they en-
sure a property (‘the goal’) in spite of uncertainty
about the present state. The logic presented here
enables us to express this as Ki[{i}]ϕ for “agent i
knows that it sees to it that ϕ, without necessarily
knowing the present state”. In accordance with
established terminology in the planning commu-
nity we call this combination of the knowledge
operator and the STIT operator the ‘Conformant
STIT’.

The idea of combining a logic for multi-agency
with a logic for knowledge naturally stems from
game theory [OR94]. In game theory, con-
formant plans are called ‘uniform strategies’.
In ATEL [vdHW02], the epistemic extension of
Alternating-time Temporal Logic (ATL), which in
turn extends coalition logic by allowing coalitions
to perform series of choices to ensure a certain
condition, the issue of how to express existence of
uniform strategies has drawn considerable atten-
tion [JvdH04, JÅ06]. The problem concerns the
disambiguation of the notion of knowing a strat-
egy : ATEL is not expressive enough to distinguish
the sentence

“for all epistemically indistinguishable
states, there exists a strategy of J that
leads to ϕ”.

from

there exists a strategy σ of the coalition
J such that for all states epistemically
indistinguishable for J , σ leads to ϕ.”

The former is a ∀−∃ schema of “knowing a strat-
egy”, in philosophy referred to as the de dicto
reading. It is opposed to the de re reading ex-
emplified by the latter sentence, which is a ∃ − ∀
schema.

In [BHT06] we sketched how the problem can
be solved in a STIT-extension of ATL we called



ATL-STIT. In the present setting we are only con-
cerned with one step choices. We show how, as
an extension of NCL, we can easily obtain a com-
plete system whose semantics distinguishes be-
tween uniform and non-uniform strategies. The
logic system we present here does not have the
restricted syntax of the first presented proposal
in [HT06] and, in addition, has a complete and
straightforward axiomatization as an extension of
NCL. The problem of ‘uniform strategies’ already
arises with individual knowledge. For purpose of
simplicity we thus do not consider group knowl-
edge.

ENCL has the following syntactic form, where p
ranges over Prop, J ranges over 2AGT and i over
AGT :

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | [J ]ϕ | Kiϕ

Axiomatization The logic is obtained by
adding to NCL the principles of the standard epis-
temic logic S5 for every individual agent i.

Semantics ENCL-models are tuples M =
(W,R, FX ,∼, π) where:

• (W,R,FX , π) is a model of NCL.

• ∼ is a collection of equivalence relations ∼i

(one for every agent i ∈ AGT ).

Theorem 6. ENCL is determined by the class of
models of ENCL.

To explain how this logic solves the problem of
uniform strategies, we consider two scenarios.

Example 1. Ann is in a room. She is blind and
cannot distinguish a world where the light is off
from a world where the light is on. The light in
the room is controlled by a button that activates
a timer. When the button is pushed the light bulb
will shine for a determinate time. When the light
is on, there is no way to switch it off. Ann can
also do nothing (skip). In the actual situation the
light is off and Ann is pushing the button.

3 4 5 6

off on

ononoffon

skip skip skip skip

push skip pushskip

1 2

The above picture represents the example, and
we now explain how the picture can be seen as
an ENCL-model. The worlds of the semantics of
NCL and ENCL are here state-action pairs. The
states are positions before and after execution of
an action. In the picture there are 6 of these
positions. For this example this results in 8 ENCL
worlds. We thus have the following ENCL-model
M1 = 〈W,R,FX ,∼, π〉: (we abbreviate ‘push’ to
p, and ‘skip’ to s)

• W = {(1, p), (1, s), (2, s), (2, p), (3, s), (4, s),
(5, s), (6, s)}

• R∅ = {〈(1, p), (1, s)〉, 〈(2, s), (2, p)〉,
〈(3, s), (3, s)〉, 〈(4, s), (4, s)〉, 〈(5, s), (5, s)〉,
〈(6, s), (6, s)〉}?

• RAnn = {〈w, w〉 | w ∈ W}
• FX is defined by FX((1, p)) =

(3, s), FX((1, s)) = (4, s), FX((2, s)) =
(5, s), FX((2, p)) = (6, s), FX((3, s)) =
(3, s), FX((4, s)) = (4, s), FX((5, s)) =
(5, s), FX((6, s)) = (6, s)

• ∼Ann = {〈(1, p), (2, p)〉, 〈(1, s), (2, s)〉}?

• π is defined by π((2, p)) = π((2, s)) =
π((3, s)) = π((5, s)) = π((6, s)) = ‘on’, and
π((1, p)) = π((1, s)) = π((4, s)) = ‘off’

where ? is a reflexive, symmetric and transitive
closure. It is not difficult to check that M1

is a genuine ENCL-model, satisfying also all the
constraints we defined for the NCL-sub-models.
The reader may have noticed that the model
adds detail to the example. In particular, Ann
is given the choice between pushing and skip-
ping only once, and “determinate time” is inter-
preted as forever. Of course, the model is a very
simple one, with only one agent in the system:



AGT = {Ann}. Ann’s actions thus coincide with
system actions, and all her choices are determin-
istic.

The four basic properties we consider are:

ϕ1 = “One of Ann’s choices ensures the light
will be on” = 〈∅〉[{Ann}]X on

ϕ2 = “Ann knows one of her choices ensures
the light will be on” = KAnn〈∅〉[{Ann}]X on

ϕ3 = “Ann knows she has the power to ensure
the light is on” = 〈∅〉KAnn[{Ann}]X on

ϕ4 = “Ann conformantly sees to it that the
light is on” = KAnn[{Ann}]X on

It is easy to verify that in M1 the first three
formulas are true in the first four possible ENCL
worlds: M1, w |= ϕ1 ∧ ϕ2 ∧ ϕ3 for all w ∈
{(1, p), (1, s), (2, s), (2, p)}. In particular, in the
actual world (1, p) the third property holds, say-
ing that Ann has a uniform strategy to ensure
the light is on. In the actual world also the
fourth property holds (M1, (1, p) |= ϕ4), while
in the two worlds where Ann skips, it does not
(M1, (1, s) 6|= ϕ4 and M1, (2, s) 6|= ϕ4).
Example 2. Ann is in a room. She is blind and
cannot distinguish a world where the light is off
from a world where the light is on. The light in
the room is controlled by a switch. In her reper-
toire of actions, Ann can toggle or remain passive
(skip), which correspond to switching the state of
the light and maintaining the state of the light,
respectively. In the actual situation the light is
off and Ann toggles.

3 4 5 6

off on

onoffon

skip skip skip skip

skip skip
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toggle toggle

off

This example is encoded by the following ENCL-
model M2 = 〈W,R, FX ,∼, π〉: (we abbreviate
‘toggle’ to t, and ‘skip’ to s)

• W = {(1, t), (1, s), (2, s), (2, t), (3, s), (4, s),

(5, s), (6, s)}
• R∅ = {〈(1, t), (1, s)〉, 〈(2, s), (2, t)〉,
〈(3, s), (3, s)〉, 〈(4, s), (4, s)〉, 〈(5, s), (5, s)〉,
〈(6, s), (6, s)〉}?

• RAnn = {〈w, w〉 | w ∈ W}
• FX is defined by FX((1, t)) =

(3, s), FX((1, s)) = (4, s), FX((2, s)) =
(5, s), FX((2, t)) = (6, s), FX((3, s)) =
(3, s), FX((4, s)) = (4, s), FX((5, s)) =
(5, s), FX((6, s)) = (6, s)

• ∼Ann = {〈(1, t), (2, t)〉, 〈(1, s), (2, s)〉}?

• π is defined by π((2, t)) = π((2, s)) =
π((3, s)) = π((5, s)) = ‘on’, and π((1, t)) =
π((1, s)) = π((4, s)) = π((6, s)) = ‘off’

Now, in the actual world where the light is off
and Ann toggles, the light will actually be on, so
the formula Xon holds. Yet, Ann does not con-
formantly see to it that the light is on, since she
does not know that the light is off at the present
moment. So, the fourth of the above proper-
ties does not hold: M2, (1, t) 6|= ϕ4. Also, she
does not have a uniform strategy, and indeed the
third of the above properties does not hold ei-
ther: M2, (1, t) 6|= ϕ3. The first and the sec-
ond property do hold in the actual world, since
in each state Ann indeed has an action that en-
sures the light is on and she knows that: But her
problem is that the decision which one to take
depends on the state she is in, which is some-
thing she does not know: M2, w |= ϕ1 ∧ ϕ2 for
all w ∈ {(1, t), (1, s), (2, s), (2, t)}.
Let us compare our approach with the situation
in ATEL. For representing uncertainty in ATEL
a family of equivalence relations among states
(one for each agent) is assumed, interpreting a
standard normal S5 operator Ki in the language.
Since our uncertainty relations are among state-
action pairs, our knowledge operator is more ex-
pressive.

We will now argue that the known approaches
to the problem of uniform strategies in the lit-
erature are unlikely to succeed. Note first that
in example 2 above we might have given differ-
ent names to the actions. And there is no reason
why this renaming should be uniform. In partic-
ular, the left toggle action can be called ‘put the
light on’ and the right toggle action ‘put the light



off ’. Obviously, non-uniform renaming of actions
should not influence Ann’s basic capabilities or
her knowledge concerning her capabilities. Our
theory satisfies this consideratum, since changing
the names of the actions in the way described,
does not in any way change the evaluation of
ENCL formulas. In particular, Ann still does not
have a uniform strategy: using the new terminol-
ogy provided by the new action names she now
‘cannot distinguish between putting the light on
when it is off and putting the light off when it
is on’. However, all ATEL-based approaches in
the literature do not satisfy the consideratum. In
these variants and extension of ATEL (see e.g.
[Sch04]) the following condition is imposed on
the models: if one state is indistinguishable from
another, then any action name appearing for a
choice in the first state also appears as an ac-
tion name for a choice in the second state. It
is clear right away that under this restriction, a
non-uniform renaming of actions as we discussed
above, may result in uncertainty relations being
eliminated, and thus in a gain in knowledge. In
particular, in the renamed version of example 2
above, Ann would always be able to distinguish
the two states, and there would be no uncertainty
left at all, which directly contradicts the require-
ment having to express that Ann does not know
a uniform strategy in this situation.

6 Concluding remarks

We have some brief concluding remarks. The es-
tablishment of complete axiomatizations for NCL
and ENCL opens up interesting perspectives on
the use of (semi)-automatic theorem provers for
reasoning about properties of games. Such the-
orem provers could then also be used for confor-
mant planning, through the established link be-
tween planning and satisfiability checking [KS92].

A natural investigation concerns the introduction
of group knowledge in the present picture. In par-
ticular the integration of common knowledge is a
worth challenge. But, while it is straightforward
to import the principles of common knowledge in
NCL, completeness of the resulting logic does not
follow immediately, as with standard epistemic
logic.

As a third future perspective we want to point out
the relation with product update [BM04]. In the

models after a product update, uncertainty rela-
tions also range over state-action pairs. And it
is actually quite easy to describe our examples of
the previous section as updates of epistemic mod-
els with suitable epistemic action models. The
difference with product update as described by
Baltag is that in our product models, we should
not take the intersection of the original uncer-
tainty relations but the union. This is because
in the present setting actions are not ‘suspected
observations’ like in the work of Baltag. In our
setting we assume ‘no learning’ and uncertainty
may either come from performing a known ac-
tion in an unknown state, or an unknown action
in a known state, which is why in product mod-
els we have to take the union of the uncertainty
relations. However, this is not the place to dis-
cuss this in more detail, and we leave the issue
for future research.

Some more detailed issues remain unresolved.
For instance, if we would replace the axiom
schema Triv([AGT ]) of NCL, that is, ϕ →
[AGT ]ϕ, by the weaker 〈∅〉Xϕ → 〈∅〉[AGT ]Xϕ
we would still be able to prove that we can em-
bed CL (see the proof of the translation of AGT -
maximality in Theorem 4, which is the only place
where Triv([AGT ]) is used). This seems to sug-
gest that RAGT need not be a ‘normal’ relation.
Another issue is the extension with the schema
[J ]Xϕ → X[J ]ϕ. This property seems essential
for STIT-semantics, since it adds an interaction
between time and action for which it is hard to
find intuitive counter-examples. The reason that
it was not studied before in STIT-semantics is
that discrete time itself is never assumed. We
plan to consider these and more issues in an ex-
tended version of this paper.

Last but not least, a clear objective is to extend
the axiomatizations we gave to the setting with
extensive form games. We already studied the
semantics for this extension in [BHT06]. The
most notable feature of the generalization of the
semantics to extensive form games is that eval-
uation should be defined with respect to state-
strategy pairs.
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