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Path differentiability of ODE flows

Swann Marx1 and Edouard Pauwels2

Abstract

We consider flows of ordinary differential equations (ODEs) driven by path dif-
ferentiable vector fields. Path differentiable functions constitute a proper subclass
of Lipschitz functions which admit conservative gradients, a notion of generalized
derivative compatible with basic calculus rules. Our main result states that such
flows inherit the path differentiability property of the driving vector field. We show
indeed that forward propagation of derivatives given by the sensitivity differential
inclusions provide a conservative Jacobian for the flow. This allows to propose a
nonsmooth version of the adjoint method, which can be applied to integral costs
under an ODE constraint. This result constitutes a theoretical ground to the ap-
plication of small step first order methods to solve a broad class of nonsmooth
optimization problems with parametrized ODE constraints. This is illustrated with
the convergence of small step first order methods based on the proposed nonsmooth
adjoint.

1 Introduction

1.1 General context

We consider the ordinary differential equation (ODE for short), for some T > 0

Ẋ(t) = F (X(t)), ∀t ∈ [0, T ] (1)

X(0) = x,

where F : Rp → Rp is a Lipschitz function and x ∈ Rp. We denote by φ : Rp× [0, T ]→ Rp

the corresponding flow which associates to (x, t) ∈ Rp × [0, T ] the value X(t) where
X : R → Rp is the solution to (1) with X(0) = x. The flow φ typically inherits the
regularity of F . For example if F is C1, then φ is also C1 (see e.g. [25, Section 17.6]).

In our setting, the flow φ is Lipschitz (see e.g., [25, Section 17.4]). A notion of generalized
derivative adapted to Lipschitz function is due to Clarke. The Clarke Jacobian takes
values in subsets of Rp×p. We denote by JF : Rp ⇒ Rp×p the Clarke Jacobian of F [18,
Section 2.6]. For x ∈ Rp, it is defined as follows

J cF (x) = conv
{
v ∈ Rp×p, {xk}k∈N ⊂ R, xk → x, JacF (xk)→ v, k →∞

}
,
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where R is any full measure set where F is differentiable and JacF is the usual Jacobian
of F . Our main question of interest is to obtain generalized derivatives of φ from the
knowledge of Clarke Jacobian of F . This question requires to take a more detailed look
at the regularity of F .

1.2 Path differentiability of the flow

The class of Lipschitz functions F is too large for our purpose. Indeed, for generic Lipschitz
F the Clarke Jacobian, ∂cF carries no information about the function itself [39, 13, 14].
In particular, it is proved in [13] that generic 1-Lipschitz functions have the same constant
subgradient.

Therefore, to obtain meaningful calculus rules, we need to restrict F to be in a well be-
haved subclass. We choose the class of path differentiable functions, which was identified
by several authors to be well behaved from a nonsmooth analysis perspective [38, 12, 7].
Let us emphasize that, although this is a negligible subclass of Lischitz functions, it is
ubiquitous in potential applications as all semi-algebraic functions (more generally de-
finable functions) are path differentiable [7]. This encompasses virtually any function
Lipschitz F which can be written using an elementary logical formula involving elemen-
tary real operations including powers, exponential, logarithms, quotients, including large
classes of numerical programs [8].

Following [7], F is called path differentiable, if it satisfies a chain rule along absolutely
continuous curves: for any absolutely continuous γ : [0, 1] → Rp, we have for almost all
t ∈ [0, 1],

d

dt
F (γ(t)) = Dγ̇(t), ∀D ∈ J cF (γ(t)) ⊂ Rp×p.

In a first step, we will be interested in the following question regarding regularity of φ

Does path differentiability of F imply path differentiability of φ?

We provide a positive answer to this question. The result is stated in Corollary 1. The
proof is based on a differential inclusion which generalizes the variational equation for
smooth ODEs (see for example [25, Section 17.6]) to the Lipschitz vector field F . This
variational inclusion is described in [18, Section 7.4]. For any x ∈ Rp, the latter is defined
by the differential inclusion

V̇ (t) ∈ J cF (φ(x, t))V (t), for almost all t ∈ [0, T ]

V (0) = I ∈ Rp×p. (2)

where V is to be found among absolutely continuous functions from [0, T ] to Rp×p. Equa-
tion (2) can be seen as a formal differentiation of equation (1). As proved in [18, Theorem
7.4.1], the Clarke Jacobian of the flow J cφ is to be found among the solutions of (2). More
precisely, denoting by ψ the function x 7→ φ(x, T ), we have

J cψ(x) ⊂ U(x) := {V (T ), V solution of (2) }
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for all x ∈ Rp. However, as shown in [4, Example 3.8], this inclusion can be strict even
for a relatively simple F in R2 (see Section 2.1). Following [7], path differentiability of
the flow is characterized by existence of a conservative Jacobian for ψ. More precisely,
we show that the set valued map U , despite not being necessarily equal to the Clarke
Jacobian of ψ, still satisfies the chain rule: for any absolutely continuous γ : [0, 1] → Rp,
we have for almost all t ∈ [0, 1],

d

dt
ψ(γ(t)) = Dγ̇(t), ∀D ∈ U(γ(t)) ⊂ Rp×p.

This is the result given in Theorem 1. Thanks to this chain rule property, U is a con-
servative Jacobian of ψ, characterized as the set of solutions to a sensitivity differential
inclusion. The existence of such a conservative Jacobian implies that ψ inherits the path-
differentiable regularity of F .

The mapping U being a conservative Jacobian of ψ has several consequences for the flow.
For example, as given in [7, Corollary 5], we have for Lebesgue almost all x ∈ Rp

U(x) = {Jacψ(x)},

which means that the differential inclusion (2) provides a unique matrix that is the (clas-
sical) Jacobian of ψ. This allows to draw a connection with more classical notions of
generalized derivatives. For example, using [23, Theorem 6.5], the mapping U (restricted
to the set where it is a singleton) can be interpreted as a weak derivative of the flow ψ in
the sense of Sobolev spaces.

1.3 Optimizing integral costs under ODE constraints

First motivations to address path differentiability of the flow relates to optimization prob-
lems of the form

min
θ∈Rm

L(θ) :=

∫ t=T

t=0

`(Z(t))dt+ `T (Z(T )), (3)

where Z(0) = z̄

Ż(t) = H(Z(t), θ), ∀t ∈ [0, T ]

where ` : Rp → R, `T : Rp → R and H : Rp × Rm → Rp are Lipschitz, path differen-
tiable functions and z̄ ∈ Rp is fixed. Note moreover that the flow depends on a given
parameter θ ∈ Rm. The decision variable in problem (3) is a parameter vector θ. Such an
optimization problem appears in many applications such as machine learning [16], data
assimilation [28] or geophysics [32].

We will consider first order methods of gradient type to tackle problem (3) algorithmically.
These methods generate sequences by recursively following negative gradient directions.
The function L is Lipschitz and possibly nonsmooth so we need to use a generalized notion
of gradient. The integral part of the loss L consists in a composition of the flow and a
Lipschitz integral cost. However, Clarke Jacobian of the flow may be strictly contained in
solutions of the variational inclusion (2), see [4, Example 3.8]. Fortunately, conservative
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gradients can be used in place of usual gradients in a nonsmooth optimization context,
provided that the objective function is path differentiable [7, 9]. Therefore, the main
questions we need to adress are the following:

Is the loss L path differentiable? How to obtain a conservative gradient for L?

We leverage our main result on path differentiability of the flow, and the compatibility
of conservative Jacobian with calculus rules to show that L is indeed path differentiable.
More precisely, we show that a formal differentiation of L (application of integral differ-
entiation rules which hold in the smooth case) using solutions of the variational inclusion
(2) provides a conservative gradient for L, this is described in Corollary 5.

Numerical computation of a solution of the variational inclusion (2), for example using
Euler discretization [21], requires to solve a differential inclusion of size p×p. In the context
of smooth ODEs, it is known that the size of the system to be solved can be reduced to
p by using the adjoint method (see e.g., [15]) at the cost of solving an ODE backward in
time. We derive a nonsmooth counterpart of the adjoint system using the conservative
Jacobian framework and show that solutions to the adjoint system are elements of the
conservative gradient for the loss L given in Corollary 5. This is described in Corollary 6.

Application of known results in nonsmooth optimization [9] show that using the prosposed
conservative gradient in place of a gradient in a small step first order method context
induces a minimizing behavior and generates sequences attracted by sets defined by an
optimality condition. In other word, the output given by the proposed adjoint methods
may be used as a first order optimization oracle to implement gradient type methods for
the problem (3). This result is formally described in Corollary 7.

1.4 Related work

Combination of adjoint differentiation and small step methods of gradient type is at
the heart of numerical methods for training neural ordinary differential equations models
[16, 22]. Our results provide a theoretical ground for these approaches for which dedicated
numerical librairies exist and are broadly used, such as torchdiffeq in python. These
constitute one of the motivations for our investigation.

The use of Clarke’s generalized derivatives in a dynamical systems context has been at the
heart of nonsmooth analysis developments [18], in variational analysis [17] and stability
analysis [19, 1]. More recent contributions include existence and Lipschitz regularity of
nonsmooth differential algebraic equations [37] and generalizations in Wasserstein space
[10].

The variational inclusion dates back to the work of Clarke [18]. Providing meaning to
this equation has been an active topic of research. Let us mention the work of [31] which
prove semismoothness of the flow induced by semismooth gradient fields. In this case the
variational inclusion becomes an equation and allows to obtain directional derivatives.
This result was extended by [27] to handle possibly discontinuous time dependency and
lexicographic derivatives [30]. Deducing lexicographic derivatives from variational equa-
tion was extended to differential algebraic equations in [36]. All these works are centered
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around notions of directional derivatives and forward derivative propagation. We are not
aware of further interpretations of the variational inclusion (2) beyond directional deriva-
tives and forward propagation. In an optimization context, directional derivatives are
not sufficient as one needs to find candidate descent directions. This constitutes another
motivation for the proposed developments.

1.5 Organization

The paper is organized as follows. Section 2 provides notations, definitions and details
about the example of Clarke Jacobian forward propagation failure in [4, Example 3.8].
Section 3 contains preliminary results with their proofs. Section 4 is devoted to the first
main result, the flow of (1) inherits path differentiability of F . Section 5 shows that
integral costs in optimization with ODE constraints are path differentiable as soon as the
the loss function is path differentiable. It is also proved that the adjoint method can be
applied in this context to estimate elements of the corresponding conservative gradient.
Section 6 is devoted to an extension of these results, from initial conditions dependency
to the more general parametric case described in (3). The latter includes also convergence
guaranties for the small step gradient like method. Some concluding remarks are collected
in Section 7 together with further research lines. Finally, Appendix A gathers technical
results used throughout the paper.

2 Notation and definitions

Notation. Set R+ = [0,∞). Given p ∈ N, we will denote ‖ · ‖ the norm and 〈·, ·〉 the
scalar product in Rp. We will denote by ‖ · ‖op the operator norm for matrices, i.e. if
A ∈ Rp×p, then ‖A‖op := sup‖v‖≤1 ‖Av‖. The Frobenius norm is defined and denoted by

‖A‖F :=
√

Tr(A>A), where A ∈ Rp×p, Tr is the trace operator and A> is the transpose
of A. The supremum norm is denoted by ‖ · ‖∞.

We recall that, due to Rademacher theorem [23, Theorem 3.1], any locally Lipschitz
function is almost everywhere differentiable. Absolutely continuous curves γ : R → Rp

are functions admitting a Lebesgue integrable derivative (defined for almost all t ∈ R),
such that for any t ≥ 0:

γ(t)− γ(0) =

∫ t

0

γ̇(s)ds.

Given three metric spaces H, S and Y , a Carathédory function f : (x, t) ∈ H × S 7→
f(x, t) ∈ Y is a function such that x 7→ f(x, t) is Borel measurable for each t ∈ S and
such that t 7→ f(x, t) is continuous for each x ∈ H. We say that a function f : Rp → R is
lower semi-continuous, if for every every sequence (xk)k∈N ⊂ Rp such that limk→∞ xk = x̄,
one has f(x̄) ≤ lim infk→+∞ f(xk).

A set valued map D : Rp ⇒ Rq is a function from Rp to a subset of Rq. We say that D
has a closed graph if, for any convergent sequences (xk)k∈N ⊂ Rp and (vk)k∈N ⊂ Rq, with
vk ∈ D(xk), one has limk→∞ vk ∈ D(limk→+∞ xk).
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Path differentiablity and conservative Jacobians. The notion of path differen-
tiable functions has been introduced in [7], this class of regularity allows to apply basic
differential calculus rules such as the chain rule. As explained in [7], the notion of con-
servativity, defined just below, is crucial to define path differentiable functions.

Definition 1 (Conservative Jacobian) Let D : Rp ⇒ Rn×p be a locally bounded, graph
closed, nonempty valued map and f : Rp → Rn be a locally Lipschitz continuous function.
Then, D is said to be a conservative Jacobian of f if and only if, for any absolutely
continuous curve γ : [0, 1]→ Rp, the function t 7→ f(γ(t)) satisfies, for almost all t ∈ [0, 1]

d

dt
f(γ(t)) = V γ̇(t), ∀V ∈ D(γ(t)).

Equivalently, D is a conservative Jacobian of f if and only if, for any measurable selection
V (t) ∈ D(γ(t)) for all t ∈ [0, 1],:

f(γ(1))− f(γ(0)) =

∫ 1

0

V (t)γ̇(t)dt.

When n = 1, we say that D is a conservative gradient.

Conservatives gradients are defined in the same way for real valued functions (see [7]).
Throughout the paper, we require conservative gradients and Jacobians to be convex.
This is not too restrictive due to the following remark.

Remark 1 It follows from the definition that if D is conservative, then its pointwise
convex hull x⇒ conv{D(x)} is also conservative [7].

Conservativity leads to the notion of path differentiability:

Definition 2 (Path differentiable function) We say that f : Rp → Rn is path dif-
ferentiable if there exists a set valued map D such that D is a conservative Jacobian for
f .

Remark 2 If Jf is a conservative Jacobian for f , then we have J cf (x) ⊂ conv{Jf (x)} for
all x [7], in particular J cf is conservative. Hence J cf being conservative is a characterization
of path differentiability of f as stated in the intoduction.

Dynamical systems. Consider F : Rp → Rp the Lipschitz function given in (1) that
is assumed path differentiable. We denote by JF : Rp ⇒ Rp a bounded convex valued
conservative Jacobian for the vector field F which appears in (2). Throughout the paper,
we denote by K > 0 a bound on the operator norm of JF , that is,

sup
x∈Rp,J∈JF (x)

‖J‖op ≤ K. (4)
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We introduce the following map

U : Rp × [0, T ]→ Rp×p

(x, t) ⇒ V (t) V solution to (2), (5)

which is a candidate for being a conservative Jacobian for the flow φ of (1). The main
result of this paper is to show that (x, t) ⇒ (U(x, t), F (φ(x, t)) is a conservative Jacobian
for the flow φ, where we have used matrix concatenation.

Since F is assumed to be Lipschitz, the set of solutions to (2) is composed by Lipschitz
functions, as stated in the following lemma.

Lemma 1 For any x ∈ Rp, T > 0, the set of solutions to (2) is non empty and only
contains L-Lipschitz functions with L = K

√
p exp(KT ).

Proof : By hypotheses on JF , the solution set of (2) is nonempty and defined on maximal
intervals invoking [3, Theorem 4, p. 101].

It remains to show that solutions to (2) are bounded. Indeed, once one has a bound on V ,
one deduces a bound on V̇ through the following inequality, which holds for a.e. t ∈ [0, T ]
and is sufficient to ensure Lipschicity,

‖V̇ (t)‖F ≤ K‖V (t)‖F . (6)

Using (2), (4) and (6), for a.e. t ∈ [0, T ], one has:

d

dt
‖V (t)‖2

F = 2Tr(V (t)>V̇ (t)) ≤ 2K‖V (t)‖2
F .

Thanks to Lemma 6, and using the fact that V (0) = I (see (2)), one deduces that, for all
t ∈ [0, T ]:

‖V (t)‖2
F ≤ ‖V (0)‖2

F exp(2KT ) = p exp(2KT )

This latter equation together with (6) shows that the solutions V to (2) are L-Lipschitz
with L = K

√
p exp(KT ). This concludes the proof of the Lemma. �

Remark 3 (On the Lipschitz assumption) The vector field F has been supposed to
be Lipschitz with a uniform bound on a conservative Jacobian in (4), which is a stronger
assumption than the (classical) local Lipschitz assumption. Under local Lipschicity, so-
lutions only exist in a time interval which could be bounded with endpoint depending on
initial condition. The global Lispchicity assumption allows to avoid such discussions, but
there exist possible extensions which would allow to relax it:

1. If we suppose the trajectories (and the initial condition) to belong to some compact
set, then local and global Lipschicity will be essentially equivalent for our purpose.
For example if F maximal monotone [6, Chapter 7], one can show that the trajec-
tories of (1) are bounded, independently of the initial condition.
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2. A different possibility is to assume that all solutions to (1) are well defined on
[0, T ] for any initial condition. One can see our global Lipschicity assumption as a
sufficient condition.

Remark 4 It is worth mentioning that the unknown of (2) is a matrix, and not a vector
as it is commonly defined in textbooks such as [3, 24]. It is always possible to identify
a p × p matrix with a vector of dimension p × p, and the meaning of matrix differential
inclusion follows by using this identification.

2.1 Failure of formal differentiation with Clarke Jacobian

Following [4, Example 3.8], consider an instance of (1) as follows(
Ẋ1

Ẋ2

)
=

(
(1−X2)|X1|

1

)
,

it can be proved that for any initilization X1(0) and X2(0) = 0, we have X1(2) = X1(0)
and X2(2) = X2(0)+2, therefore, the flow is differentiable at T = 2 and its Jacobian is the
identity matrix. Furthermore, if X1(0) = 0, then we actually have X1(t) = 0 for all t ∈ R.
However the variational inclusion (2) for the particular initialization X1(0) = X2(0) = 0
reads

Ṁ ∈
(

[−|1− t|, |1− t|] 0
0 0

)
M

with M(0) = I where we chose the conservative derivative of absolute value to be the
usual derivative everywhere except at 0 where it is the segment [−1, 1]. All entries of
M remain constant in time, except for the first one which we denote by m. The two
extreme solutions for m are given by ṁ = |1 − t|m and ṁ = −|1 − t|m which leads to
m(2) ∈ [1/e, e]. Therefore the variational inclusion fails to provide the correct subgradient
for X1(2) with respect to the initial condition X1(0) (this should be 1). This example
highlights the fact that it is not possible to prove that the sensitivity analysis differential
inclusion (2) provides subgradients in general. In this example, the discrepancy occurs at
the origin only, and, as described in the forthcoming results, the solutions to (2) actually
provide a conservative Jacobian for the flow.

3 Preliminary results

Fix any T > 0, we define the following mapping:

U : Rp ⇒ C([0, T ],Rp×p)

x⇒ {t 7→ V (t), V solution to (2) } .

We call the mapping U the solution mapping of the differential inclusion (2) whose values
are Lipschitz functions from [0, T ] to Rp×p (see Lemma 1). Note that, for all t ∈ [0, T ],
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U(x, t) = {V (t), V ∈ U(x)}, where U is defined in (5). We introduce a Castaing rep-
resentation for functions with values in Lipschitz subsets of C([0, T ]) which will allow to
specify some technical measurability issues for U .

Proposition 1 (Castaing representation of solution mappings) Given T > 0, L >
0, denote by L the space of L-Lipschitz functions from [0, T ] to Rq, endowed with the supre-
mum norm. Consider a set-valued map V : Rm ⇒ L with closed graph and non empty
values. Then V admits a Castaing representation, that is, a sequence of Borel measurable
functions from Rm to L, (Mn)n∈N, such that V = {M1(x),M2(x), . . .}, for each x ∈ Rm,
where the closure and Borel measurability are induced by L∞ norm over continuous func-
tions. Furthermore, for all i ∈ N, Mi can be seen as a function Rm × [0, T ]→ Rq and we
have that (x, t) 7→ Mi(x, t) is a Carathéodory function, L Lipschitz in t for fixed x and
Borel measurable in x for fixed t.

Proof : Recall that σ-compact sets are sets defined as the union of countably many
compact subspaces. Since the domain of the V is obviously σ-compact and takes values in
the space L which is, by Lemma 10, also σ-compact, then on can invoke [2, Theorem 18.20]
to deduce that V is Borel measurable. Finally, using [2, Corollary 18.14], there exists a
Castaing representation for V . Moreover, by [2, Theorem 4.55], this representation is
actually a sequence of Carathéodory functions, which is our desired result. �

We are now in position to state a technical representation result for the set of solutions
of (2). Fix any T > 0 and any absolutely continuous function γ : [0, 1]→ Rp. We define
the following mapping:

Uγ : [0, 1] ⇒ C([0, T ],Rp×p)

r ⇒ V ∈ U(γ(r)),

which corresponds to the set of solutions to (2) with the initial condition given by x = γ(r)
in (1).

Lemma 2 The map Uγ is locally bounded, has a closed graph, is Borel measurable and
admits a countable collection of dense Carathéodory selections M : [0, 1] × [0, T ] 7→ Rp×p

which are absolutely continuous in time and Borel measurable in r. For each such M ,
there is a Lebesgue measurable selection S(r, t) ∈ JF (φ(γ(r), t) for all (r, t) ∈ [0, 1] × R,
such that, for all r ∈ [0, 1] and for almost all t ∈ [0, T ],

∂

∂t
M(r, t) = S(r, t)M(r, t).

Proof : Since JF is bounded, φ is Lipschitz and γ is absolutely continuous, one can deduce
that Uγ is locally bounded. Using the fact that γ is absolutely continuous (and therefore
has a closed graph) and invoking [24, Corollary 1 and Theorem 3, §7, Chapter 2], one can
deduce that Uγ has a closed graph.
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Using Proposition 1, Uγ admits a Castaing representation as the closure of a countable
dense set of Carathéodory selections. It remains to show that the functions composing
this representation satisfy the claimed differential equation and to construct the proposed
S.

Fix M an element of this Castaing representation. With a slight abuse of notation,
for the rest of this proof, we will see M as a function of (r, t) by identifying M with
(r, t) 7→M(r, t). As a Carathéodory function, M is jointly Borel measurable in r and t as
stated in [2, Lemma 4.51]. Denote by ∂

∂t
M the partial derivative of M with respect to t

when it exists. Since M is Lipschitz (hence absolutely continuous) with respect to t, for
any r ∈ [0, 1], ∂

∂t
M(r, t) is defined for almost all t ∈ [0, T ].

Consider the set E ⊂ [0, 1] × [0, T ] the set where ∂
∂t
M(r, t) exists. By Lemma 3, E has

full Lebesgue measure and (r, t) 7→ ∂
∂t
M(r, t) is Lebesgue measurable. Furthermore, for

all r ∈ [0, 1], {t ∈ [0, T ], (r, t) ∈ E} has full measure by Lipschicity of M in the variable t
for fixed r. The set E is a measure space with the induced subspace measure.

Consider the function

f : Rp×p × E → R+

(S, r, t) 7→
∥∥∥∥ ∂∂tM(r, t)− SM(r, t)

∥∥∥∥2

,

which is jointly Lebesgue measurable in (r, t) for a fixed S ∈ Rp×p since the sum of the
Lebesgue measurable functions ∂

∂t
M and −SM(r, t) is Lebesgue measurable, and because

the composition of this sum with the norm function (which is continuous) is also Lebesgue
measurable. This function is also continuous in S for fixed (r, t) ∈ [0, 1]× [0, T ], implying
then that f is a Carathédory function. Consider K > 0 the global upper bound on ‖JF‖op
as in (4). By [2, Corollary 18.8], the set valued map

S1 : E ⇒ Rp×p

(r, t) ⇒
{
S ∈ Rp×p, ‖S‖ ≤ K, f(S, r, t) = 0

}
is measurable since S belongs to a compact set. We extend S1 to [0, 1]× [0, T ] by setting
S1(r, t) = ∅ if (r, t) 6∈ E. Measurability of S1 is preserved applying [2, Definition 18.1].
Now consider the set valued function

S2 : [0, 1]× [0, T ] ⇒ Rp

(r, t) ⇒ JF (φ(γ(r), t)).

Since the graph of JF is closed, and using moreover the continuity of the functions φ and γ,
the function S 7→ dist(S, JF (φ(γ(r), t))) is lower semicontinuous, hence Borel measurable
by Lemma 4. It implies that it is a Carathéodory function, proving that S2 is Borel
measurable [2, Theorem 18.5]. Now consider the intersection set valued map:

S : [0, 1]× [0, T ] ⇒ Rp

(r, t) 7→ S1(r, t) ∩ S2(r, t).

It is measurable [2, Lemma 18.4, Item 3] and compact valued. Consider the set Ẽ =
{(r, t) ∈ [0, 1] × [0, T ], S(x, t) 6= ∅}, which is measurable (see discussion after Definition
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18.1 in [2]). We have that Ẽ ⊂ E because S is empty valued outside of E and Ẽ =
{(r, t) ∈ E, d

dt
M(r, t) ∈ JF (φ(γ(r), t))M(r, t)} by construction.

Since for any r ∈ [0, 1], M(r) ∈ Uγ(r), it holds for almost all t ∈ [0, T ] that d
dt
M(r, t) ∈

JF (φ(γ(r), t))M(r, t). In other words, for all r ∈ [0, 1], {t ∈ [0, T ], (r, t) ∈ Ẽ} has full
measure. This is by definition of Uγ. Therefore, by Fubini’s Theorem [34, Theorem 16
Section 20.2], Ẽ has full measure.

Set for all (r, t) ∈ [0, 1] × [0, T ], S̃(r, t) = S(r, t) if S(r, t) 6= ∅ (that is (r, t) ∈ Ẽ), and
JF (φ(γ(r)), t) otherwise, it satisfies S̃(r, t) ⊂ JF (φ(γ(r), t)) for all (r, t) ∈ [0, 1] × [0, T ]
and has nonempty values. The mapping S̃ is measurable and has non empty closed values
[2, Theorem 18.13]. Therefore it admits a measurable selection S : [0, 1]× [0, T ] 7→ Rp×p,
which is the desired function. This achieves the proof. �

Remark 5 Given M and S as in Lemma 2, we have by [24, Theorem 2, §1, Chapter1]
that, for all r ∈ [0, 1], t 7→M(r, t) is the unique absolutely continuous solution to

∂

∂t
M(r, t) = S(r, t)M(r, t).

Remark 6 Note that, using the same arguments, the solution mapping U defined at the
beginning of the section is also locally bounded and has a closed graph. Indeed, since JF is
bounded and φ is Lipschitz, it is clear that U is locally bounded. Then using [24, Corally
1 and Theorem 3, §7,Chapter 2], one deduces that U has a closed graph.

4 Path differentiability of the flow

This section is devoted to the proof of our main result, conservativity of the mapping
defined in (2) for the flow of (1). We first prove that, for any T ≥ 0, the mapping U
evaluated at t = T is conservative for the flow evaluated at t = T .

Theorem 1 For all T ≥ 0, the mapping x⇒ U(x, T ) is conservative for x 7→ φ(x, T ).

Proof : If T = 0, then the statement is obvious. Then, we restrict our analysis to the
case where T > 0.

Consider an absolutely continuous path γ : [0, 1] → Rp. Let M : [0, 1] × [0, T ] → Rp×p

be a Carathéodory function as in Proposition 1 such that, for all (r, t) ∈ [0, 1] × [0, T ],
M(r, t) ∈ U(γ(r), t). Consider the Lebesgue measurable selection S(r, t) ∈ JF (φ(γ(r), t))
for all (r, t) ∈ [0, 1]× [0, T ] as given by Lemma 2, such that, for all r ∈ [0, 1] and almost
all t ∈ [0, T ]

∂

∂t
M(r, t) = S(r, t)M(r, t). (7)
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In addition, we have, for all r ∈ [0, 1] and all t ∈ [0, T ],

φ(γ(r), t)− γ(r) =

∫ s=t

s=0

F (φ(γ(r), s))ds, (8)

since φ(γ(r), 0) = γ(r).

Since φ is Lipschitz, for each s ∈ [0, T ], r 7→ φ(γ(r), s) is an absolutely continuous loop.
Therefore, it is differentiable at almost all r ∈ [0, 1]. Applying Lemma 3 shows that the
function

g : (r, s) 7→ d

dr
φ(γ(r), s),

is well defined for all s ∈ [0, t] and almost all r ∈ [0, 1], and Lebesgue measurable in (r, s).
Therefore, for all t ∈ [0, T ], for almost all r ∈ [0, 1], it follows from (8) that

g(r, t)− γ̇(r) =
d

dr

∫ s=t

s=0

F (φ(γ(r), s))ds.

The integrand is jointly integrable in (r, s), and absolutely continuous in r for each s. It
follows by Lemma 5 that, for all t ≥ 0 and for almost all r ∈ [0, 1]

g(r, t)− γ̇(r) =

∫ s=t

s=0

∂

∂r
F (φ(γ(r), s))ds.

Since F is path differentiable, we have, for all s ∈ [0, t], for almost all r ∈ [0, 1]

∂

∂r
F (φ(γ(r), s)) = J × g(r, s) ∀J ∈ JF (φ(γ(r), s))

= S(r, s)g(r, s),

where S is the Lebesgue measurable selection defined in (7). Therefore, by integration,
we have, for all t ∈ [0, T ], for almost all r ∈ [0, 1]

g(r, t)− γ̇(r) =

∫ s=t

s=0

S(r, s)g(r, s)ds, (9)

Now, we rewrite (7) by integration, for all (r, t) ∈ [0, 1]× [0, T ], using M(r, 0) = I

M(r, t)− I =

∫ s=t

s=0

S(r, s)M(r, s)ds.

Multiplying both sides of the latter equation by γ̇(r), that is defined for almost all r ∈
[0, 1], one has, for all t ≥ 0, for almost all r ∈ [0, 1]

M(r, t)γ̇(r)− γ̇(r) =

∫ s=t

s=0

S(r, s)M(r, t)γ̇(r)ds. (10)

12



Combining both (9) and (10), we have, for all t ≥ 0, for almost all r ∈ [0, 1]

‖M(r, t)γ̇(r)− g(r, t)‖ =

∥∥∥∥∫ s=t

s=0

S(r, s)(M(r, s)γ̇(r)− g(r, s))ds

∥∥∥∥
≤
∫ s=t

s=0

‖S(r, s)(M(r, s)γ̇(r)− g(r, s))‖ ds

≤ K

∫ s=t

s=0

‖(M(r, s)γ̇(r)− g(r, s))‖ ds

where K is a bound on JF given in (4). Integrating with respect to r and using Fubini’s
theorem, we have, for all t ∈ [0, T ]∫ r=1

r=0

‖M(r, t)γ̇(r)− g(r, t)‖dr ≤ K

∫ s=t

s=0

∫ r=1

r=0

‖(M(r, s)γ̇(r)− g(r, s))‖ drds

By Lemma 7, one obtains that, for all t ≥ 0∫ r=1

r=0

‖M(r, t)γ̇(r)− g(r, t)‖dr = 0.

Therefore, we have, for all t ≥ 0 and all r ∈ [0, 1]

φ(γ(r), t)− φ(γ(0), t) =

∫ u=r

u=0

g(u, t)du =

∫ u=r

u=0

M(u, t)γ̇(u)du.

Since M was an arbitrary Carathéodory function in a countable dense subset of such
selections, one can apply Lemma 8. This shows that x ⇒ U(x, t) is conservative for
x 7→ φ(x, t). This concludes the proof. �

From the latter result, one can deduce that the flow φ is path differentiable for all t ≥ 0.
It is stated in the following corollary.

Corollary 1 The mapping (x, t) ⇒ (U(x, t), F (φ(x, t))) is conservative for φ and in par-
ticular, φ is path differentiable.

Proof : Consider the following dynamical system on Rp+1

Ẏ (s) = α(s)F (Y (s)) (11)

α̇(s) = 0

Consider F̃ : Rp+1 → Rp+1 the vector field associated to the ODE in (11) with the state
(Y, α). It is given by

F̃ (Y (s), α) =

(
αF (Y (s))

0

)
We can compute a conservative Jacobian for F̃ using the product rule of differential cal-
culus and component-wise aggregation, both valid for conservative Jacobians [7, Lemmas
3 and 5]. We obtain a conservative Jacobian for F̃ as follows:

13



(x, α) ⇒

(
αJF (x) F (x)

0 0

)
(12)

Denote by φ̃ : Rp+1 → Rp+1 the flow associated to (11), and recall that φ is the flow of
the system (1). We have, by a simple rescaling of time, for any x ∈ Rp, α ∈ R and any
s ∈ [0, 1]

φ(x, αs) = φ̃(x, α, s). (13)

Setting α = t and s = 1, by Theorem 1, the mapping (x, t) 7→ φ̃(x, t, 1) = φ(x, t) is path
differentiable jointly in (x, t). Let us compute a conservative Jacobian from Theorem 1.
The differential inclusion in (2) can be expressed blockwise. Fix x0 ∈ Rp and α0 ∈ R
initial conditions for (11) and denote by Y : [0, 1] → Rp the solution to (11), note that
α(t) = α0 for all t ∈ [0, 1]. Then, one has, for all t ∈ [0, 1], Y (s) = X(α0s) where X is the
solution to (1) starting at x0. Moreover, one has(
V̇1(s) V̇2(s)

V̇3(s) V̇4(s)

)
∈
(
α0JF (Y (s))V1(s) + F (Y (s))V3(s) α0JF (Y (s))V2(s) + F (Y (s))V4(s)

0 0

)
,

(14)

where V1 ∈ Rp×p and V1(0) is the identity, V2 ∈ Rp×1 and V2(0) = 0, V3 ∈ R1×p and
V3(0) = 0, V4 ∈ R and V4(0) = 1. It follows that V3 = 0 and V4 = 1 for all t and

V̇1(s) ∈ α0JF (Y (s))V1(s) = α0JF (X(α0s))V1(s)

V̇2(s) ∈ α0JF (Y (s))V2(s) + F (Y (s)). (15)

The two dynamics are independant. Furthermore, solutions of the first line are also
solutions of (2) modulo a simple time rescaling by a factor α0. This is more explicitly
written V1(s) ∈ U(x0, αs) for all s ∈ [0, 1], where U is given in (5). Conversely, any
V ∈ U(x0, αs) is related to a solution of the first line of (15). Let us show that V2 : t 7→
sF (X(α0s)) is the unique solution to the second line. By path differentiability of F , the
function s 7→ F (X(α0s)) is differentiable for almost all t, such that

d

ds
F (X(α0s)) = J(X(α0s))

d

ds
X(α0s)) ∀J ∈ JF (X(α0s))

= α0J(X(α0s))F (X(α0s)) ∀J ∈ JF (X(α0s))

The function s 7→ sF (X(α0s)) is absolutely continuous and multiplication by s is a
differentiable operation. Then, for almost all s ∈ [0, 1], substituting Y for X

d

ds
[sF (Y (s))] = α0J(Y (s)) [sF (Y (s))] + F (Y (s)) ∀J ∈ JF (Y (s)) (16)

Now, given a measurable selection in s 7→ S(s) ∈ JF (Y (s)), the function (s, V2) 7→ S(s)V2

is Lipschitz in its second argument, so that the corresponding solution V2 in (15) is
unique [24, Theorem 2, §1, Chapter 1]. Moreover, by (16), since 0F (Y (0)) = 0, we have
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V2(s) = sF (Y (s)) for all s ∈ [0, 1]. This shows that any solution to (14) is given by
V3 = 0, V4 = 1, and for all s ∈ [0, 1],

V1(s) ∈ U(x0, α0s)

V2(s) = sF (X(α0s)).

Thanks to Theorem 1, we have

(x, α) ⇒ (U(x, α), F (φ(x, α))),

is conservative for the mapping (x, α) 7→ φ̃(x, α, 1). Using the fact that φ(x, α) = φ̃(x, α, 1)
for all x ∈ Rp, α ∈ R, this proves the desired result using α = t. �

5 Consequences: backward and forward derivatives

In this section, we focus on an optimization of integral costs under ODE constraint and
prove that, as soon as the ODE vector field and the integrand are path differentiable, then
the integral cost is itself path differentiable. One should see these results as consecutive
results of Sections 3 and 4. We provide further results about forward and backward
derivatives propagation with a nonsmooth adjoint system.

5.1 Differentiation of a terminal cost

The following result is a direct consequence of Theorem 1 and the fact that product of
conservative Jacobian is a also conservative Jacobian, as stated in [7, Lemma 5].

Corollary 2 Let δT : Rp → R be locally Lipschitz and path differentiable. Let DδT : Rp ⇒
Rp be conservative gradient for δT . Then the following set

DT : x⇒
{
V >u, V ∈ U(x, T ), u ∈ DδT (φ(x, T ))

}
(17)

is a conservative gradient for x 7→ δT (φ(x, T )).

5.2 Forward propagation of derivatives of integral costs

In this subsection, we show how our framework allows to compute forward derivatives of
integral costs. Such results already exist in a nonsmooth context with other classes of
functions such as the functions admitting lexicographic derivatives (see e.g., [4]). Note
that this result will be instrumental in deriving a backward derivative propagation in the
form of an adjoint system.

Theorem 2 Let δ : Rp → R be locally Lipschitz and path differentiable. Let Dδ : Rp ⇒ Rp

be a conservative Jacobian for δ, with convex values. For T > 0, set

∆(x) =

∫ t=T

t=0

δ(φ(x, t))dt. (18)
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Then the following set valued field is a conservative gradient for ∆,

D∆ : x⇒

{∫ t=T

t=0

V (t)>w(t)dt, V ∈ U(x), w ∈ W(x)

}
(19)

where W(x) is the set of measurable selections w(t) ∈ Dδ(φ(x, t)) for all t ∈ [0, T ] and
x ∈ Rp. In particular V could be any solution of (2).

Proof : We prove first that D∆ has a closed graph, nonempty values and is locally
bounded. Both U(x) and W(x) are nonempty valued and locally bounded thanks to the
local boundedness of Dδ, φ and U proved in Lemma 1. Therefore D∆ is locally bounded
and nonempty valued. Second, we sketch the proof of graph closedness. Consider a
sequence (xk)k∈N converging to x̄, and (dk)k∈N converging to d̄, such that, for each k ∈ N,
the sequence (dk)k∈N is defined by

dk =

{∫ t=T

t=0

Vk(t)
>wk(t)dt, Vk ∈ U(xk), wk ∈ W(xk)

}
.

The sequence (Vk)k∈N is bounded and Lipschitz (as proven in Lemma 1) uniformly in k,
therefore we can use the Arzelá-Ascoli’s Theorem [6, Theorem 4.25]: up to a subsequence,
Vk converges to a given V̄ uniformly on [0, T ]. As detailed in Remark 6, it holds that
V̄ ∈ U(x̄). The sequence (wk)k∈N is bounded in L2([0, T ]) (and in L∞([0, T ])) so it has
a weakly convergent subsequence by [34, Theorem 17, Section 14] whose limit will be
denoted by w̄ : [0, T ]→ Rp. Up to a convex combination, the convergence occurs strongly
and therefore pointwise almost everywhere by invoking Mazur’s Lemma [6, Corollary 3.8].
We deduce that w̄(t) ∈ Dδ(φ(x̄, t)) for almost all t ∈ [0, T ] using the fact that Dδ has
convex values. Combining uniform convergence of Vk to V̄ ∈ U(x̄) and weak convergence

of wk to w̄, we have that dk →
∫ t=T
t=0

V̄ (t)>w̄(t)dt ∈ D∆(x̄) and d̄ ∈ D∆(x̄) by uniqueness
of the limit.

From now on, we fix a Borel measurable selection d∆ such that d∆(x) ∈ D∆(x) for all
x ∈ Rp. This means that, for all x ∈ Rp, there is a continuous function Vx ∈ U(x) and a
measurable function wx ∈ W(x) such that

d∆(x) =

∫ t=T

t=0

Vx(t)
>wx(t)dt.

Now, fix an absolutely continuous path γ : [0, 1] → Rp. Since δ and φ are Lipschitz
functions, and since γ is absolutely continuous, we have that

r 7→ ∆(γ(r)) :=

∫ t=T

t=0

δ(φ(γ(r), t))dt,

is absolutely continuous. By Corollary 2, for all t ∈ [0, T ], for a.e. r ∈ [0, 1],

∂

∂r
δ(φ(γ(r), t)) = γ̇(r)>M>v, ∀v ∈ Dδ(φ(γ(r), t)), ∀M ∈ U(φ(γ(r), t)). (20)
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Denote by E ⊂ [0, 1]×[0, T ] the set where (20) holds. Let us show that this set is Lebesgue
measurable.

Consider the function

f : (M, v, r, t) 7→
∥∥∥∥ ∂∂rδ(φ(γ(r), t))− γ̇(r)TMTv

∥∥∥∥2

if ∂
∂r
δ(φ(γ(r), t)) and γ̇(r) are well defined, and 1 otherwise. The function f is jointly

Lebesgue measurable in (r, t) for fixed M and v and jointly continuous in (M, v) for fixed
(r, t) ∈ [0, 1]× R+. Then, it is a Carathéodory function. Therefore, the function

f̃ : (r, t) 7→ max

∥∥∥∥ ∂∂rδ(φ(γ(r), t))− γ̇(r)TMTv

∥∥∥∥2

s.t. v ∈ Dδ(φ(γ(t), t))

M ∈ U(φ(γ(r), t))

is Lebesgue measurable thanks to [2, Theorem 18.19]. The set {(r, t) ∈ [0, 1]×R+, f̃(r, t) =
0} is Lebesgue measurable and corresponds to the set where (20) holds. Therefore, (20)
holds on a jointly measurable set. Furthermore, since (20) holds for all t ∈ [0, T ] for
almost all r ∈ [0, 1], E has actually full measure.

Now consider the set

S =

{
(r, t) ∈ [0, 1]× [0, T ],

∂

∂r
δ(φ(γ(r), t)) = γ̇(r)>Vγ(r)(t)

>wγ(r)(t)

}
.

Clearly, E ⊂ S so that Sc ⊂ Ec. Moreover, since Ec has zero measure we deduce that Sc

has zero (Lebesgue) measure. Therefore S is measurable jointly in (r, t) and the function
(r, t) → γ̇(r)Vγ(r)(t)wγ(r)(t) is also (Lebesgue) measurable [34, Proposition 3, Section
18.1]. From Lemma 5, we have that r 7→ ∆(γ(r)) is absolutely continuous and for almost
all r ∈ [0, 1],

d

dr
∆(γ(r)) =

∫ t=T

t=0

∂

∂r
δ(φ(γ(r), t))dt

=

∫ t=T

t=0

γ̇(r)>Vγ(r)(t)
>wγ(r)(t)dt

= γ̇(r)>
∫ t=T

t=0

Vγ(r)(t)
>wγ(r)(t)dt

= γ̇(r)>d∆(r).

Note that d∆ was an arbitrary measurable selection in D∆. Since D∆ has a closed graph, it
admits a countable Castaing representation ([2, Corollary 18.14] and [2, Theorem 18.20]).
Then Lemma 8 applies and conservativity is proved, which leads to the desired result. �

5.3 Path differentiable adjoint method for integral costs

We describe a path differentiable version of the adjoint method for integral costs under
ODE constraints.
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Corollary 3 Let δ, δT : Rp 7→ R be locally Lipschitz and path differentiable functions. Let
Dδ : Rp ⇒ Rp and DδT : Rp ⇒ Rp be conservative Jacobians for δ and δT , respectively
where Dδ has convex values.

For any x ∈ Rp, any w : [0, T ] → Rp measurable such that w(t) ∈ Dδ(φ(x, t)) for all
t ∈ [0, T ], any J : [0, T ] → Rp×p measurable such that J(t) ∈ JF (φ(x, t)) for all t ∈ [0, T ]
and any u ∈ DδT (φ(x, T )), the unique absolutely continuous solution λ : [0, T ] → Rp to
the system

λ̇(t) = −w(t)− J(t)>λ(t),

λ(T ) = u (21)

satisfies λ(0) ∈ D∆(x)+DT (x) where D∆ and DT are defined in Corollary 2 and Theorem
2.

Proof : Fix x ∈ Rp. Fix w and J as in the statement of the corollary. This defines a
unique M ∈ U(x) by solving (2) Ṁ(t) = J(t)M(t) with M(0) = I [24, Theorem 2, §1,
Chapter 1].

For any absolutely continuous function λ : [0, T ]→ Rp, we have∫ t=T

t=0

M(t)>w(t)dt =∫ t=T

t=0

M(t)>w(t) + (J(t)M(t)− J(t)M(t))> λ(t)dt

Using Lemma 9, we have∫ t=T

t=0

(J(t)M(t))>λ(t)dt =

∫ t=T

t=0

Ṁ(t)>λ(t)dt =− λ(0) +M(T )>λ(T )

−
∫ >

0

M(t)>λ̇(t)dt.

Hence, we have for any u ∈ DT (φ(x, T )),

M(T )>u+

∫ t=T

t=0

M(t)>w(t)dt

=

∫ t=T

t=0

M(t)>
(
w(t) + J(t)>λ(t) + λ̇(t)

)
dt+M(0)λ(0) +M(T )>(u− λ(T ))

The latter holds for any absolutely continuous function λ, and in particular, using [24,
Theorem 2, §1, Chapter 1], one can choose λ as the unique absolutely continuous solution
to

λ̇(t) = −w(t)− J(t)>λ(t) (22)

λ(T ) = u. (23)

Using the fact that M(0) is the identity, one has finally

M(T )>u+

∫ t=T

t=0

M(t)>w(t)dt =M(0)λ(0) = λ(0).
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The term λ(0) being defined as the sum of two specific elements in D∆ and DT (see
Corollary 2 and Lemma 2), this means that λ(0) ∈ D∆(x) +DT (x), which concludes the
proof. �

Remark 7 The system (21) is typically solved backward in time. Setting g : s 7→ λ(T−s),
we have, for all s ∈ [0, T ],

g(0) = u

ġ(s) = −λ̇(T − s) = w(T − s) + J(T − s)λ(T − s),

which is the backpropagation equation.

6 Minimization of integral costs with parameterized

ODEs constraints

This section is centered around problem (3). The results combine conservative calculus
rules with the elements developed in Section 5.

6.1 Problem setting

We consider the optimization problem described in (3) and introduce further notations.
First the constraints in (3) relate to the following parametrized ODE, given T > 0, for all
t ∈ [0, T ]

Ż(t) := H(Z(t), θ), Z(0) = z, (24)

where θ ∈ Rm denotes a vector of parameters and H : Rp+m → Rp is a Lipschitz path
differentiable function. We assume that JH : Rp+m ⇒ Rp is a conservative Jacobian for H
and that it is bounded. We denote ψ(z, θ, t) ∈ Rp the flow associated to the ODE (24).
Throughout this section, z will be a fixed initial condition in Rp.

We denote by LI : Rm → R the integral part of the loss in (3),

LI : θ 7→
∫ T

0

`(ψ(z, θ, t))dt.

Recall that ` : Rp → R is a locally Lipschitz, path differentiable functions from Rp to
R, we further assume that it admits a conservative gradients, D` : Rp ⇒ Rp with convex
values.

Furthermore, we denote by LT : Rm → R the integral part of the loss in (3),

LT : θ 7→ `T (ψ(z, θ, T )).

Recall again that `T : Rp → R a locally Lipschitz, path differentiable function and assume
that it admits a conservative gradients D`T : Rp ⇒ Rp.
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With a slight abuse of notations, problem (3) can be reformulated equivalently as an
unconstrained minimization problem with cost L := LI + LT with respect to variable θ,
that is,

inf
θ∈Rm

L(θ) = inf
θ∈Rm

∫ T

0

`(ψ(z, θ, t))dt+ `T (ψ(z, θ, T )). (25)

The purpose of this section is to specify the results presented in Section 5 to the parametrized
ODE (24) and cost (25) in order to address problem (3). This will result in expressions
for conservative gradients, DI for LI and DT for LT . Setting DL = DI +DT , the sum of
these conservative gradients, we obtain a conservative gradient for L [7, Corollary 4]. To
this end, we see the parametrized flow of (24) as an unparametrized flow in a lifted space
and justify formal differentiation operations using conservative calculus rules [7] to make
connections with results presented in Section 5. This results in an adjoint method which
can in turn be used as an oracle for DL. This allows to provide a convergence result for
the corresponding small step first order optimization method to seek solutions of problem
(25).

6.2 Conservative Jacobian of the flow

The following corollary reformulates Theorem 1 in the context of system (24).

Corollary 4 Let ψ be defined as in equation (24) with H : Rp+m → Rp a Lipschitz path-
differentiable function and JH : Rp+m ⇒ Rp a bounded conservative Jacobian. Consider
the matrix differential inclusion with unknown M ∈ Rp×m, for almost all t ∈ [0, T ]

Ṁ(t) = Jz(t)M(t) + Jθ(t) (26)(
Jz(t) Jθ(t)

)
∈ JH(ψ(z, θ, t), θ),

with initial condition M(0) = 0pm ∈ Rp×m, where we used block matrix notations in the
second line. Then the set {M(T ), M solution to (26)} forms a conservative Jacobian for
θ 7→ ψ(z, θ, T ).

In particular, for any `T : Rp → R, path differentiable with conservative gradient D`T and
for any z ∈ Rp, the following set valued map

DT : (z, θ) ⇒
{
M(T )Tu, M solution to (26), u ∈ D`T (ψ(z, θ, T ))

}
is a conservative gradient for the function LT : θ 7→ `T (ψ(z, θ, T )).

Proof : We first introduce notations allowing to interpret the system (24) as a system
of the form (1) on an extended state space Rp+m. We rewrite (24) as follows, for all
t ∈ [0, T ]:

Ż(t) = H(Z(t), θ(t)), θ̇(t) = 0, (27)

Z(0) = z, θ(0) = θ, (28)
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We consider X =

(
Z
θ

)
∈ Rp+m, the concatenation of the two variables Z ∈ Rp and

θ ∈ Rm. We set, for all such X,

F (X) =

(
H(Z, θ)

0

)
∈ Rp+m.

With these notations, (27) is equivalently rewritten as follows, for all t ∈ [0, T ]

Ẋ(t) := F (X(t)),

In this case, (27) is in the same form than the one given in (1), and the parameter θ is
now seen as an initial condition. Setting

JF (z, θ) : (z, θ) ⇒

(
JH(z, θ)

0

)
,

we have that JF is a conservative Jacobian for F since JH is a conservative Jacobian for
H. The variational inclusion (2) for (24) can be written as follows, for a.e. t ∈ [0, T ]

Ṁ =

(
Ṁ1 Ṁ2

Ṁ3 Ṁ4

)
∈
(
JH(ψ(z, θ, t), θ)M

0

)
(29)

where M1(0) = Ip ∈ Rp×p, M2(0) = 0pm ∈ Rp×m, M3(0) = 0mp ∈ Rm×p and M4(0) =
Im ∈ Rm×m. From this equation, M3 and M4 remain constant. From [7, Lemma 4] and
Theorem 1, the concatenation

(
M1 M2

)
for all solutions to (29) forms a conservative

Jacobian for (z, θ) 7→ ψ(z, θ, T ). Let us express this equation in a simpler form.

For any t ∈ [0, T ], and any J ∈ JH(ψ(z, θ, t), θ), writing J =
(
Jz Jθ

)
where Jz ∈ Rp×p

and Jθ ∈ Rp×m, with M3 = 0mp ∈ Rm×p and M4 = Im ∈ Rm×m, we have

JM =
(
Jz Jθ

)(M1 M2

M3 M4

)
=
(
JzM1 JzM2 + Jθ

)
.

Equation (29) is equivalently rewritten, for a.e. t ∈ [0, T ]

Ṁ1(t) = Jz(t)M1(t) (30)

Ṁ2(t) = Jz(t)M2(t) + Jθ(t)(
Jz(t) Jθ(t)

)
∈ JH(ψ(z, θ, t), θ),

with M1(0) = Ip ∈ Rp×p and M2(0) = 0pm ∈ Rp×m.

Using Theorem 1, we have proved that concatenations of the form
(
M1(T ) M2(T )

)
where

M1 and M2 are solutions of (30) form a conservative Jacobian for (z, θ) 7→ ψ(z, θ, T ).
Focusing on the dependency in θ for fixed z, and invoking Lemma 11, component M2

form a conservative field for θ 7→ ψ(z, θ, T ). This proves the corollary. �

Remark 8 Using the latter argument, one can also include a dependency of the initial
condition in θ, that is Z(0) = z0(θ). It suffices to notice that this is a composition of the
function (z, θ)→ ψ(z, θ, T ) for which we have a conservative Jacobian from (30) and the
function θ → (z0(θ), θ) for which we have a conservative Jacobian as long as we know a
conservative Jacobian for θ → z0(θ). We may then apply the composition rule [7, Lemma
5]. It is also possible to include further dependency in θ for ` and `T with similar lifting
techniques.
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6.3 Differentiation of integral costs and adjoint method

The following corollary is a reformulation of Theorem 2 in the context of (24), based on
Corollary 4.

Corollary 5 Let ψ be defined as in equation (24) with H : Rp+m → Rp a Lipschitz path-
differentiable function and JH : Rp+m ⇒ Rp a bounded conservative Jacobian. Let ` : Rp →
R be a locally Lipschitz, path differentiable functions with conservative gradients D` with
convex values. For any z ∈ Rp, consider the function LI : θ ∈ Rm →

∫ T
0
`(ψ(z, θ, t)dt and

the set valued field:

DI : (z, θ) ⇒

{∫ t=T

t=0

M(t)>w(t)dt, M ∈ U(z, θ), w ∈ W(z, θ)

}
where U(z, θ) is the set of solutions to (26) and W(z, θ) is the set of measurable functions
w : [0, T ] → Rp such that w(t) ∈ D`(ψ(z, θ, t)) for all t ∈ [0, T ]. For any z ∈ Rp,
θ ⇒ DI(z, θ) is a conservative gradient for L.

Proof : Using Theorem 2 and the expressions given in (29), one knows that the set valued
map:

(z, θ) ⇒

{∫ t=T

t=0

(
M>

1 (t) 0
M>

2 (t) Ip

)(
w(t)

0

)
dt,M1 and M2 solutions to (30), w ∈ D`(ψ(z, θ, t))

}
is a conservative field for the function (z, θ) 7→

∫ T
0
`(ψ(z, θ, t))dt. Using Lemma 11, one

can deduce that, for every z ∈ Rp, the set valued field θ ⇒ DI(z, θ) is a conservative
gradient for LI , which concludes the proof. �

We have the following adaptation of the adjoint of Corollary 3.

Corollary 6 Let ψ be defined as in equation (24) with H : Rp+m → Rp a Lipschitz path-
differentiable function and JH : Rp+m ⇒ Rp a bounded conservative Jacobian. Let ` : Rp →
R and `T : Rp → R be locally Lipschitz, path differentiable functions from Rp to R with
respective conservative gradients D` and DT .

For any z ∈ Rp, θ ∈ Rm, any w : [0, T ] → Rp measurable such that w(t) ∈ D`(ψ(z, θ, t))
for all t ∈ [0, T ], any Jz : [0, T ] → Rp×p and Jθ : [0, T ] → Rp×m, measurable such that(
Jz(t) Jθ(t)

)
∈ JH(ψ(z, θ, t), θ) for all t ∈ [0, T ] and any u ∈ DT (ψ(z, θ, T )), the unique

absolutely continuous solution λ : [0, T ]→ Rp to the system

λ̇(t) = −w(t)− Jz(t)>λ(t),

λ(T ) = u (31)

satisfies
∫ T

0
Jθ(t)

>λ(t)dt ∈ DI(z, θ) + DT (z, θ) which is an element of a conservative
gradient for the loss function L in (25).

Proof : Fix z ∈ Rp and θ ∈ Rm. Fix w and Jz as in the statement of the theorem. This
defines a unique M ∈ U(z, θ) by solving (31) Ṁ(t) = Jz(t)M(t) + Jθ(t) [24, Theorem 2,
§1, Chapter 1].
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For any absolutely continuous function λ : [0, T ]→ Rp, we have∫ t=T

t=0

M(t)>w(t)dt =∫ t=T

t=0

M(t)>w(t) + (Jz(t)M(t) + Jθ(t)− Jz(t)M(t)− Jθ(t))> λ(t)dt

Using Lemma 9, we have∫ t=T

t=0

(Jz(t)M(t) + Jθ(t))
>λ(t)dt =

∫ t=T

t=0

Ṁ(t)>λ(t)dt =−M(0)>λ(0) +M(T )>λ(T )

−
∫ >

0

M(t)>λ̇(t)dt.

Hence, since M(0) = 0, we have, for any u ∈ DT (ψ(z, θ, T )),

M(T )>u+

∫ t=T

t=0

M(t)>w(t)dt

=

∫ t=T

t=0

M(t)>
(
w(t) + Jz(t)

>λ(t) + λ̇(t)
)
dt+

∫ t=T

t=0

Jθ(t)
>λ(t)dt+M(T )>(u− λ(T ))

The latter holds for any absolutely continuous function λ, and in particular, using [24,
Theorem 2, §1, Chapter 1], one can choose λ as the unique absolutely continuous solution
to

λ̇(t) = −w(t)− Jz(t)>λ(t), (32)

λ(T ) = u. (33)

One has finally

M(T )>u+

∫ t=T

t=0

M(t)>w(t)dt =

∫ t=T

t=0

Jθ(t)
>λ(t)dt.

The term
∫ t=T
t=0

Jθ(t)
>λ(t)dt being defined as the sum of two specific elements inDL andDT

(see Corollary 2 and Lemma 2), this means that
∫ t=T
t=0

Jθ(t)
>λ(t)dt ∈ DL(z, θ) +DT (z, θ),

which concludes the proof. �

6.4 Small step method for optimization

Recall that we are interested in the following problem, for a fixed z ∈ Rp and T > 0

inf
θ∈Rm

∫ T

0

`(ψ(z, θ, t))dt+ `T (ψ(z, θ, T )),

where the integral cost is LI and the terminal cost is LT and their sum is denoted by
L. Given θ ∈ Rm, Corollary 6 allows to obtain an element of DL(θ) = DI(θ) + DT (θ).
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This constitutes relevant first order information. Indeed, for example the results borrowed
from [7, Theorem 1, Corollary 1] ensure the following properties

∂cL(θ) ⊂ conv{DL(θ)}, for all θ ∈ Rm,

DL(θ) = {∇L(θ)}, for Lebesgue almost all θ ∈ Rm,

where ∂c denotes the Clarke subgradient [18, Chapter 2]. As detailed in [7, Section
6], elements of DL can be used in place of gradients in an optimization context. Given a
sequence of positive step sizes (αk)k∈N and θ0 ∈ Rm, one can iterate the following recursion

θk+1 = θk − αkgk (34)

gk ∈ DL(θk). (35)

We insist on the fact that gk can be obtained for example using Corollary 6. Recall that
the set of accumulation points of the sequence (θk)k∈N is the set of θ̄ such that, for all
r > 0, the set {i ∈ N , ‖θi − θ̄‖ < r} is infinite. The following result is a consequence
of [9, Theorem 6] about bounded sequences of the form (34). This uses a weaker notion
of accumulation point to characterize the fact that the sequence is essentially attracted
by critical points, that is points which comply with the necessary optimality condition
0 ∈ conv{DL(θ)}.

Corollary 7 Assume that αk → 0 and
∑k

i=0 αi → +∞ as k → +∞. Assume furthermore
that the sequence (θk)k∈N given by (34) remains bounded. Then the set

Ω =

{
θ̄ ∈ Rm, ∀r > 0, lim sup

N→∞

∑
0≤i≤N, ‖θi−θ̄‖<r αi∑

0≤i≤N αi
> 0

}

is non empty and satisfies Ω ⊂ critL, where critL is the set of θ ∈ Rm complying with the
optimality condition 0 ∈ conv{DL(θ)}.

In the latter corollary, Ω is termed the “essential accumulation set” of the sequence [9].
This is a subset of the set of usual accumulation points of the sequence, corresponding
to those accumulation points for which the sequence spends a significant amount of time,
as measured with respect to the sum of neighboring step sizes. This result illustrates
the minimizing behavior of the sequence (34). The result is quite weak, but provides
a solid ground regarding the use of the proposed conservative adjoint method for finite
dimensional optimization under ODE constraints. At this level of generality, stronger
assumptions, such as Sard type conditions related to the loss L, would be required to
obtain stronger statements [33]. This will be a topic of future research.

7 Conclusion

In this article, we have proved that flows of ODEs expressed with vector fields that are
path differentiable are also path differentiable. The proof of this results stands on the
fact that the set valued mapping obtained from the variational inclusion is a conservative
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Jacobian. This allows to develop a conservative calculus for integral costs, similar as one
would have in the smooth case. This culminates with a conservative version of the adjoint
method to propagate derivatives backward and obtain gradients of integral costs, with a
considerable reduction of the size of the differential inclusion to be solved. A consequence
of these results is the fact small step methods of gradient type for minimizing integral
costs are attracted by solutions of a certain optimality condition for such problems with
path differentiable data.

The developments provided in this work could be extended to parametric partial differen-
tial equations (PDEs), this was actually one of the original motivations for the proposed
developments. The question of path differentiability of PDEs could be considered under
regularity assumption by exhibiting a conservative Jacobian in a way similar to what is
proposed for ODE flows. One should probably start with specific sub-classes of PDEs,
for instance hyperbolic ones [20].
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A Technical results

This appendix is devoted to the statement and the proof of some crucial results for our
analysis.

The following result is about the Borel measurability of partial derivatives. Its proof is
inspired by [23, Theorem 3.2].

Lemma 3 (Measurability of partial derivatives) Consider a function G : (x, y) ∈
Rn × R → G(x, y) ∈ Rm. Suppose that, for all x ∈ Rn, y 7→ G(x, y) is absolutely
continuous, and for all y, x 7→ G(x, y) is Borel measurable. Then, the function (x, y) 7→
∂
∂y
G(x, y) defined on a set of full Lebesgue measure and is measurable. Futhermore, for

all x, the function y 7→ ∂
∂y
G(x, y) exists for almost all t.

Proof :

As a Carathéodory function, G is jointly Borel measurable [2, Lemma 4.51] and therefore
it is Lebesgue measurable. Consider the functions:

Gu
y(x, y) := lim

h→0
sup

G(x, y + h)−G(x, y)

h
(36)

25



and

Gl
y(x, y) := lim

h→0
inf

G(x, y + h)−G(x, y)

h
, (37)

with h ∈ R.

Using the continuity of G in its second argument, one has the equivalent definition (36)
by

Gu
y(x, y) = lim

k→+∞
sup

0<|h|< 1
k
, h∈Q

G(x, y + h)−G(x, y)

h
, (38)

For all k ≥ 1, the set {h ∈ Q | 0 < |h| < 1
k
} is countable and therefore, using Lemma [34,

Corollary 7, Section 18.1], the supremum in (38) is Lebesgue measurable as the countable
supremum of measurable functions. This implies that the sequence{

sup
0<|h|< 1

k

G(x, y + h)−G(x, y)

h

}
k∈N

is a bounded, decreasing sequence of measurable functions and it has therefore a pointwise
limit everywhere. Using [34, Chapter 18, Corollary 7], the pointwise limit of measurable
functions is a measurable function. This implies that Gu

y defined in (38) or equivalently
in (36) is Lebesgue measurable. By a similar argument, one can show that (37) is also
measurable.

It remains to prove that the function (x, y) 7→ ∂
∂y
G(x, y) exists Lebesgue almost every-

where. To do so, consider the Lebesgue measurable set

A :=
{

(x, y) ∈ Rn+1, Gu
y(x, y) = Gl

y(x, y), Gl
y(x, y) 6= ±∞

}
Its complement Ac is the subset of Rn+1 where Gu

y(x, y) 6= Gl
y(x, y) or Gl

y(x, y) = ±∞.
By Fubini’s theorem [34, Theorem 16 Section 20.2],∫

(x,y)

IA(x, y)dxdy =

∫
x

(∫
y

IA(x, y)dy

)
dx = 0.

where IA is the function such that IA(x, y) = 1 if (x, y) ∈ A and 0 otherwise. By Lebesgue
integration theorem [34, Theorem 10, Section 6.5], the inner integral is zero because of
the absolute continuity in y for fixed x. This shows that the function (x, y) 7→ ∂

∂y
G(x, y)

exists for Lebesgue almost all (x, y) ∈ Rn+1. Furthermore, up to an arbitrary measurable
choice outside of its domain of definition, it is a Lebesgue measurable function. This
concludes the proof of Lemma 3. �

We also state a useful result which states that every lower semicontinuous functions are
Borel measurable.

Lemma 4 Given X a metric space, let f : X → R be a lower semicontinuous real
function. Then, it is Borel measurable.

Proof : The function f being lower semicontinuous, the set {(x, c) ∈ X × R | c ≥ f(x)}
is closed. It is in particular a Borel set, which implies that f is Borel measurable. This
concludes the proof. �
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The following result concerns derivatives of integrals. More precisely, it states and proves
that the operators derivatives and integrals can be permutated. This result is closely
related to the well-known Leibniz rule, but it concerns in our case absolutely continuous
functions. It can be seen then as a general Leibniz rule.

Lemma 5 (General Leibniz rule) Consider a Lipschitz function F : Rp × X → Rp

where X is a bounded interval of R. Consider furthermore an absolutely continuous
function γ : [0, 1] → Rp. Then, r 7→

∫
X
F (γ(r), s)ds is absolutely continuous and for a.e

r ∈ [0, 1] :
d

dr

∫
X

F (γ(r), s)ds =

∫
X

∂

∂r
F (γ(r), s)ds. (39)

Proof : Since F is Lipchitz continuous and γ is absolutely continuous, then, for all s ∈ X,
the function r 7→ F (γ(r), s) is absolutely continuous as the composition of a Lipschitz
function with an absolutely continuous function. In particular, it is differentiable for a.e.
r ∈ [0, 1].

Furthermore, since the function (r, s) 7→ F (γ(r), s) is continuous, one can prove that, due
to Lemma 3, the function:

(r, s) 7→ ∂

∂r
F (γ(r), s) (40)

is well defined for all s ∈ X and for a.e. r ∈ [0, 1]. It is also jointly measurable in (r, s)
(up to arbitrary values outside of its full measure domain of definition). Denoting by L a
Lipschitz constant of F , we have we have for all s and almost all r∥∥∥∥ ∂∂rF (γ(r), s)

∥∥∥∥ ≤ L‖γ̇(r)‖ (41)

by definition of the derivative.

Then, using again the fact that, for all s ∈ X, r 7→ F (γ(r), s) is absolutely continuous,
then one has, for all s ∈ X and r ∈ [0, 1],

F (γ(r), s)− F (γ(0), s) =

∫ r

0

∂

∂q
F (γ(q), s)dq. (42)

Integrating the previous equation over the domain X leads to∫
X

[F (γ(r), s)− F (γ(0), s)]ds =

∫
X

∫ r

0

∂

∂q
F (γ(q), s)dqds.

Since the function given by (40) is jointly measurable, Fubini’s theorem [2, Theorem 11.27]
applies and one has for all r ∈ [0, 1]∫

X

[F (γ(r), s)− F (γ(0), s)]ds =

∫ r

0

∫
X

∂

∂q
F (γ(q), s)dsdq.

This proves the desired result because (39) is a consequence of Lebesgue differentiation
theorem [34, Section 6.5], for all q,∥∥∥∥∫

X

∂

∂q
F (γ(q), s)ds

∥∥∥∥ ≤ L‖γ̇(q)‖ ×
∫
X

ds
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where right hand side is integrable because X is a bounded interval and γ is absolutely
continuous (its derivative is integrable). This concludes the proof. �

Next, we provide a generalization of the Grönwall’s inequality for absolutely continuous
functions. The proof is inspired by the proof of [24, Theorem 2].

Lemma 6 (Grönwall’s Lemma for absolutely continuous functions) Let K be a
constant and f : R+ → R+ be absolutely continuous on [0, T ] such that, for a.e. t ∈ [0, T ]:

d

dt
f(t) ≤ Kf(t). (43)

Then, f(t) ≤ exp(Kt)f(0) for all t ∈ [0, T ].

Proof : From the inequality, one has, for a.e. t ∈ [0, T ],(
d

dt
f(t)−Kf(t)

)
exp(−Kt) =

d

dt
(f(t) exp(−Kt)) ≤ 0.

The function t 7→ f(t) exp(−Kt) is absolutely continuous as a product of absolutely
continuous functions with bounded domain. One deduces therefore that, for all t ∈ [0, T ],
f(t) exp(−Kt)f(t) − f(0) ≤ 0. Then, for all t ∈ [0, T ], f(t) ≤ f(0) exp(Kt), which
concludes the proof of the lemma. �

Associated to this inequality, one may deduce a Grönwall inequality for integrable func-
tions, as stated in the following lemma.

Lemma 7 (Grönwall’s inequality for integrable functions) Let K be a positive con-
stant and f : R+ → R+ be integrable on [0, T ], such that for all t ∈ [0, T ]

f(t) ≤ K

∫ t

0

f(s)ds.

Then f(t) = 0 for all t ∈ [0, T ].

Proof : Let G : t 7→
∫ t

0
f(s)ds. This function is absolutely continuous, nonnegative (since

f is nonnegative), and for almost all t ∈ [0, T ], one has d
dt
G(t) ≤ KG(t). Then, one

can apply Lemma 6 and deduce that, for all t ∈ [0, T ], G(t) ≤ exp(Kt)G(0). Therefore,
since G(0) = 0 one has G(t) = 0 for all t ≥ 0, which implies that f(t) = 0 since
0 ≤ f(t) ≤ KG(t). This concludes the proof of the lemma. �

Finally, we provide a density result showing that for a set valued map D to be conservative
for a given function f , it is sufficient to prove a conservativity relation for each element
of a Castaing representation of D.

Lemma 8 (Measurable selections and density) Consider a set-valued map D : x ∈
Rp ⇒ D(x) ∈ Rp that is locally bounded and has non empty values and a closed graph.
Consider a sequence of measurable selections in D, denoted by {Mi}i∈N, such that, for all
x

D(x) = {Mi(x)}i∈N.
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Then, for a given function f ; Rp → R, if, for all i ∈ N and for all absolutely continuous
path γ : [0, 1]→ Rp, one has, for all t ∈ [0, 1]

f(γ(t))− f(γ(0)) =

∫ t

0

Mi(γ(s))γ̇(s)ds, (44)

then D is a conservative Jacobian for f .

Proof : Fix an absolutely continuous path γ. By assumption, since D is locally bounded,
we have that f is locally Lipschitz and therefore f ◦ γ is absolutely continous.

For each i ∈ N, by Lebesgue integration theorem,

d

dt
f(γ(t)) = Mi(γ(t))γ̇(t), for a.e. t ∈ [0, 1]. (45)

For i ∈ N, consider the set defined by

Ei := {t ∈ [0, 1] such that (45) holds} ⊂ [0, 1].

The set Ei has full measure for each i ∈ N. Then, we define E := ∩i∈NEi. Since E is
a countable intersection of full measure sets, its complement Ec has a Lebesgue measure
zero.

Therefore, for all t ∈ E, (45) holds for any i ∈ N. Since {Mi(γ(t))}i∈N = D(γ(t)), we
have

d

dt
f(γ(t)) = Wγ(t), ∀W ∈ D(γ(t)), (46)

for all t ∈ E. Since E has full measure and γ is an arbitrary absolutely continuous path,
this shows that D is a conservative Jacobian for f and then concludes the proof of the
Lemma. �

Another important result is the integration by parts formula for absolutely continuous
functions, that is stated as follows.

Lemma 9 (Integration by parts) Consider two absolutely continuous functions f, g : [0, T ]→
Rp. Then, the following integration by parts formula holds∫ T

0

f(t)ġ(t)dt = f(T )g(T )− f(0)g(0)−
∫ T

0

ḟ(t)g(t)dt. (47)

Proof : Since f and g are absolutely continuous with bounded domains, then the product
fg is absolutely continuous. By definition of absolutely continuous functions, one has∫ T

0

d

dt
(fg)(t)dt = f(T )g(T )− f(0)g(0).

Noticing that, for a.e. t ∈ [0, T ], d
dt

(fg)(t) = ḟ(t)g(t) + f(t)ġ(t), one obtains the desired
result. �

We also state and prove a result stating that the space of Lipschitz functions whose domain
is a given bounded interval is σ-compact.
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Lemma 10 The space L of L Lipschitz functions from [0, T ] to Rq, equipped with the
suppremum norm ‖ · ‖∞, is σ-compact and Hausdorff.

Proof : For any ū ∈ L and v̄ ∈ L, with ū 6= v̄ we have ‖ū − v̄‖∞ > 0 and therefore
U = {u ∈ L, ‖u − ū‖∞ < ‖ū − v̄‖∞/4} and V = {v ∈ L, ‖v − v̄‖∞ < ‖ū − v̄‖∞/4}
form two disjoint neighborhoods of ū and v̄ and we have Hausdorff separation condition.
Furthermore, denoting by B∞(s) the ball centered at 0 of radius s > 0 in L, we have
L = ∪i∈NL∩B∞(i). Since all the functions of this set are L-Lipschitz and bounded, each
element of the union is sequentially compact using Arzelà-Ascoli Theorem [6, Theorem
4.25]. Thus L is a countable union of compact subspaces, meaning that the space L is
σ-compact. �

We now state and prove a result dealing with the projection of conservative Jacobians.

Lemma 11 Let G(x, y) : Rp+m → Rn be a path-differentiable function whose conservative
Jacobian is denoted by JG : Rp+m ⇒ Rn×(p+m). Consider

ΠyJG(x, y) := {M2 ∈ Rn×m,∃M1 ∈ Rn×p, (M1,M2) ∈ JG(x, y)}.

Then, for all x ∈ Rp, ΠyJG(x, y) is conservative for the function y 7→ F (x, y).

Proof : Consider an absolute continuous function γ : [0, 1]→ Rm. Then, the function

γ̃ : [0, 1]→ Rp+m

t 7→
(

0
γ(t)

)
is also an absolute continuous function. Then, for every x ∈ Rp, it is clear that

JF (γ̃(t)) ˙̃γ(t) = ΠyJF (x, γ(t))γ̇(t).

From this identity, and by definition of the conservativity, one can show that, for every
x ∈ Rp, ΠyJF (x, γ(t)) is conservative for y 7→ G(x, y), which concludes the proof. �
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