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Stealth Data Injection Attacks with Sparsity
Constraints

Xiuzhen Ye, Iñaki Esnaola, Samir M. Perlaza, and Robert F. Harrison

Abstract—Sparse stealth attack constructions that min-
imize the mutual information between the state variables
and the observations are proposed. The attack construction
is formulated as the design of a multivariate Gaussian
distribution that aims to minimize the mutual information
while limiting the Kullback-Leibler divergence between the
distribution of the observations under attack and the dis-
tribution of the observations without attack. The sparsity
constraint is incorporated as a support constraint of the
attack distribution. Two heuristic greedy algorithms for
the attack construction are proposed. The first algorithm
assumes that the attack vector consists of independent
entries, and therefore, requires no communication between
different attacked locations. The second algorithm con-
siders correlation between the attack vector entries and
achieves a better disruption to stealth tradeoff at the cost
of requiring communication between different locations.
We numerically evaluate the performance of the proposed
attack constructions on IEEE test systems and show that
it is feasible to construct stealth attacks that generate
significant disruption with a low number of compromised
sensors.

I. INTRODUCTION

Monitoring and controlling processes that are sup-
ported by supervisory control and data acquisition
(SCADA) systems facilitate an economic and reliable
operation of the power system [1]. The integration be-
tween the physical layer of the power system and the
cyber layer enables efficient, scalable, and secure oper-
ation of the system [2]. While advanced communication
systems that acquire and transmit observations to a state
estimator provide reliable and low-latency state infor-
mation [3], this cyber layer also exposes the system to
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malicious attacks. One of the main cybersecurity threats
faced by modern power systems are data injection attacks
(DIAs), which were first introduced in [4]. DIAs alter the
state estimate of the system by compromising the system
observations and altering the data without triggering the
data detection mechanisms set by the system operator. A
large body of literature studies the case in which attack
detection is performed by a residual test [5] under the
assumption that state estimation is deterministic both in
centralized and decentralized scenarios [6], [7], [8], [9].
In this setting, attack construction that requires access to
a small set of observations yields l0-norm minimization
problems, which are in general hard to solve. In [10], it
is shown that the operator can secure a small fraction of
observations to make undetectable attack constructions
significantly harder.

The unprecedented data acquisition capabilities that
are now available to cyberphysical systems promote the
efficient operation of the smart grid but also increase
the threat posed by DIAs because accurate stochastic
models of the system can be generated. This problem is
cast in a Bayesian framework in [11]. In this Bayesian
paradigm, the attack detection can be formulated as
the likelihood ratio test [12] or alternatively machine
learning methods [13] can be employed to learn the
geometry of the data generated by the system. Data
analytics are increasingly important in the operation
of modern power systems and they are central to the
advanced estimation, control, and management of the
smart grid [14]. For this reason, it is essential to study
attack constructions in fundamental terms to understand
the impact over a wide range of data analysis paradigms.

Stealth data injection attacks within Bayesian frame-
work were first introduced in [15] and then gen-
eralized in [16]. In this research, the attack con-
struction uses information theoretic measures, i.e. mu-
tual information and Kullback-Leibler (KL) divergence,
to characterize the fundamental limits of the attack.
In [11] [15] [16] [17], the state variables are assumed
to follow a Gaussian distribution. From a practical point
of view, the adoption of Gaussian random vectors as
the data injection attack vectors is validated by real
data [18] [19]. However, both the stealth attacks con-



structed in [15] and [16] require that the attacker tampers
with all the observations in the system, which is not
feasible in most scenarios. Information theoretic attack
constructions that incorporate sparsity constraints are
first proposed in [17]. However, the construction of
attack vectors that effectively exploits the correlation
between attack variables is still an open problem that
requires novel approaches. In this paper, we present
novel sparse stealth attack constructions that leverage the
coordination between different attacked observations to
attain a better attack disruption to stealth tradeoff.

The rest of the paper is organized as follows: In
Section II, we introduce a Bayesian framework with
linearized dynamics for DIAs. Stealth attacks incorpo-
rating sparsity constraints are presented in Section III.
Independent sparse stealth attacks and correlated sparse
stealth attacks are presented in Section IV and Section V,
respectively. In Section VI, we evaluate the performance
of the proposed attack constructions for both independent
and correlated scenarios on IEEE test systems. The paper
closes with conclusions in Section VII.

Notation: We denote the number of state variables
on a given IEEE test system by n and the number of
the observations by m. The set of positive semidef-
inite matrices of size n × n is denoted by Sn+. The
n-dimensional identity matrix is denoted as In. The
elementary vector ei ∈ Rn is a vector of zeros with
a one in the i-th entry. Random variables are denoted by
capital letters and their realizations by the corresponding
lower case, e.g. x is a realization of the random variable
X . Vectors of n random variables are denoted by a
superscript, e.g. Xn = (X1, . . . , Xn)T with correspond-
ing realizations denoted by x. Given an n-dimensional
vector µ ∈ Rn and a matrix Σ ∈ Sn+, we denote
by N (µ,Σ) the multivariate Gaussian distribution of
dimension n with mean µ and covariance matrix Σ. The
mutual information between random variables X and Y
is denoted by I(X;Y ) and the Kullback-Leibler (KL)
divergence between the distributions P and Q is denoted
by D(P‖Q).

II. SYSTEM MODEL

A. Observation Model and Attack Setting

The operation state of a power system is described
by a vector x ∈ Rn containing the voltages and phases
at all the generation and load buses. The state vector x
is observed through the acquisition function F : Rn →
Rm. When a linearized observation model is considered
for state estimation, it yields an observation model of
the form

Y m = Hx + Zm, (1)

where H ∈ Rm×n is the Jacobian of the function F at
a given operating point and is determined by the system
components and the topology of the network. The vector
Y m containing the observations is corrupted by additive
white Gaussian noise introduced by the sensors, c.f., [2]
and [3]. Such noise is modelled by the vector Zm in (1),
which follows a multivariate Gaussian distribution. That
is,

Zm ∼ N (0, σ2Im), (2)

where σ2 is the noise variance.
In a Bayesian estimation framework, the state vari-

ables are described by a random vector Xn with a given
distribution. In this study, the random vector Xn is
assumed to follow a multivariate Gaussian distribution
with a null mean vector and covariance matrix

ΣXX ∈ Sn+. (3)

Hence, the vector of observations Y m in (1) follows a
multivariate Gaussian distribution with null mean vector
and a covariance matrix ΣYY satisfying that

ΣYY , HΣXXHT + σ2Im. (4)

The resulting observations are corrupted by a malicious
attack vector Am ∼ PAm , where PAm is the distribution
of the random vector Am. In the following, PAm is
assumed to be a multivariate Gaussian distribution that
satisfies

Am ∼ N (0,ΣAA), (5)

where 0 = (0, 0, . . . , 0) and ΣAA ∈ Sm+ are the mean
vector and the covariance matrix of the random vector
Am.

The choice in (5) is justified by the fact that a
multivariate Gaussian distribution minimizes the mutual
information between the state variables and the com-
promised observations under the assumption that the
covariance matrix ΣYY is fixed [20]. Consequently, the
compromised observations denoted by Y mA are given by

Y mA = HXn + Zm +Am, (6)

where Y mA follows a multivariate Gaussian distribution
given by

Y mA ∼ N (0,ΣYAYA
) (7)

with ΣYAYA
= HΣXXHT + σ2Im + ΣAA.

B. Attack Detection

As a part of a security strategy, the operator imple-
ments an attack detection procedure prior to performing
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state estimation. Detection is cast as a hypothesis testing
problem given by

H0 : There is no attack, (8a)
H1 : Observations are compromised. (8b)

At time step i ∈ N, the system operator acquires a vector
of observations Ȳ mi and decides whether the vector
of observations Ȳ mi is produced following a no attack
scenario as described in (1) or is the result of the attack
as described in (6). In our setting, the hypothesis test can
be recast in terms of the probability density functions
induced by the state variables, the system noise, and the
attack onto the observations Ȳ m. Hence, the hypotheses
in (8) become

H0 : Ȳ m ∼ PYm , (9a)
H1 : Ȳ m ∼ PYm

A
. (9b)

A test to determine what distribution generates the
observation data is a deterministic test T : Rm → {0, 1}.
Given an observation vector ȳ, let T (ȳ) = 0 denote the
case in which the test decides H0 upon the observation
of ȳ; and T (ȳ) = 1 the case in which the test decides
H1. The performance of the test is assessed in terms
of the Type-I error, denoted by α

∆
= P

[
T
(
Ȳ m
)

= 1
]
,

with Ȳ m ∼ PYm ; and the Type-II error, denoted by
β

∆
= P

[
T
(
Ȳ m
)

= 0
]
, with Ȳ m ∼ PYm

A
. Given the

requirement that the Type-I error satisfies α ≤ α′, with
α′ ∈ [0, 1], the likelihood ratio test (LRT) is optimal in
the sense that it induces the smallest Type-II error β [21].
In this setting, the LRT is given by

T (ȳ) = 1{L(ȳ)>τ}, (10)

with L(ȳ) the likelihood ratio, i.e.,

L(ȳ) =
fYm

A
(ȳ)

fYm(ȳ)
, (11)

where the functions fYm
A

and fYm are respectively the
probability density function (pdf) of Y mA in (6) and the
pdf of Y m in (1); and τ ∈ R+ in (10) is the decision
threshold. Note that changing the value of τ is equivalent
to changing the tradeoff between Type-I and Type-II
errors.

III. SPARSE STEALTH ATTACKS

A. Information Theoretic Metric

The aim of the attacker is twofold. First, it aims to
inflict a data integrity attack that disrupts all processes
that use the observations of the system; and second, to
guarantee a stealthy attack. Hence, instead of assuming
a particular state estimation procedure, we adopt the

methodology in [16] to construct stealth attacks that
minimize the amount of information acquired by the
observations about the state variables. In doing so, the
attacker targets a universal utility metric consisting in a
weighted sum of two terms: (a) the mutual information
between the state variables and the observations; and (b)
the KL divergence between the probability distribution
functions of the observations with and without attack.
By minimizing this metric, the attacker guarantees a
stealthy attack that impinges upon any procedure using
the observations.

The KL divergence term guarantees a stealthy attack
in the sense that its minimization leads to minimizing the
absolute difference between Type-I and Type-II probabil-
ity of errors, i.e., |α−β|, for a given mutual information
target [21].

Within this framework, stealth attacks are constructed
as random vectors whose probability distribution func-
tions are the solution to the following optimization
problem:

min
PAm

I(Xn;Y mA ) + λD(PYm
A
‖PYm), (12)

where the optimization domain is the set of all possible
m-dimensional Gaussian probability distributions; and
λ ≥ 1 is a weighting parameter that determines the
tradeoff between the attack disruption and probability
of attack detection.

The solution to the optimization in (12) is a multi-
variate Gaussian distribution for the attack vector. It is
shown in [16] that the optimal Gaussian attack is given
by P̄Am ∼ N (0, Σ̄) where

Σ̄ = λ−1/2HΣXXHT. (13)

Note that (13) yields a stealth attack vector that
is not sparse, indeed all the components of the at-
tack realizations are nonzero with probability one, i.e.
P [|supp(Am)| = m] = 1, where we define the support
of the attack vector Am as

supp(Am)
∆
= {i : P [Ai = 0] = 0} . (14)

B. Sparse Stealth Attack Formulation

The attack implementation requires access to the sens-
ing infrastructure of the industrial control system (ICS)
operating the power system. Data injection attacks usu-
ally exploit the vulnerabilities existing in the field zone
by comprising remote terminal units or local secondary
level control systems, or alternatively, by getting access
to the SCADA system coordinating the control zone of
the ICS. For that reason, attack constructions that are
required to intrude the least amount of monitoring and

3



data acquisition infrastructure are particularly interest-
ing. In view of this, we study sparse attacks that require
access to a limited number of sensors, i.e. we pose the
attack construction problem with sparsity constraints by
setting the domain as the set of distributions over the
attack vector that put non-zero mass on at most k ≤ m
attack vector components.

In our formulation, this is reflected by an additional
optimization constraint of the form |supp(Am)| = k,
for some given k 6 m. Hence, the attacker chooses
the distribution over the set of multivariate Gaussian
distributions given by

Pk
∆
=
{
PAm ∼ N (0, Σ̄) : |supp(Am)| = k

}
. (15)

The resulting k-sparse stealth attack construction is
therefore posed as the optimization problem:

min
PAm∈Pk

I(Xn;Y mA ) + λD(PYm
A
‖PYm). (16)

The optimization domain including the sparcity con-
straint in (15) implies an additional difficulty in the
construction of stealth attacks with respect to the con-
struction proposed in [16]. This additional difficulty lies
on the combinatorial problem arising from the selection
of at most k out of m dimensions of the vector attack to
form the support of Am. To tackle this difficulty, we
exploit the structure that the Gaussian attack embeds
into the sparse attack problem formulation to propose
novel attack construction algorithms with verifiable per-
formance guarantees.

C. Gaussian Sparse Stealth Attack Construction

The probability distribution function of a random vec-
tor is determined by two parameters, i.e., the mean vector
and the covariance matrix. Hence, writing the objective
function of the optimization problems in (12) and (16)
in terms of the mean vector and covariance matrix of
the attack random vector Am leads to observing that it
is equal to the following expression, up to a constant
additive term,

J(ΣAA)
∆
=(1− λ) log |ΣYY + ΣAA|
− log |σ2Im + ΣAA|+ λtr(Σ−1

YY ΣAA),
(17)

where λ ≥ 1 is introduced in (12); and the matrix ΣYY

is defined by (4).
Hence, the optimization problem in (12) is equivalent

to the following optimization problem:

min
ΣAA∈Sm

+

J(ΣAA). (18)

In order to write the optimization domain of the problem
in (16) in terms of the mean vector and covariance matrix

of the attack random vector, it suffices to observe that
the sparsity constraint in (15) translates into a constraint
on the number of nonzero entries in the diagonal of the
covariance matrix of the attack vector. More specifically,
the optimization domain becomes:

Sk
∆
=
{
S ∈ Sm+ : ‖diag(S)‖0 = k

}
, (19)

where diag(S) denotes the vector formed by the diagonal
entries of S. Solving (18) within the optimization domain
specified by (19) re-casts the equivalent k-sparse stealth
attack construction problem in (16) as:

min
ΣAA∈Sk

J(ΣAA). (20)

IV. INDEPENDENT SPARSE STEALTH ATTACKS

We first tackle the case in which the attack vector
entries are independent. More specifically, the focus is
on product probability measures of the form

PAm =

m∏
i=1

PAi
, (21)

where, for all i ∈ {1, 2, . . . ,m}, the probability density
function of the measure PAi

is Gaussian with zero
measure and variance σ2

i .
The assumption of independence relaxes the correla-

tion requirements between the components of the attack
vector. As a result, the set of covariance matrices given
by (19), with k 6 m, that arises from considering
Gaussian attacks is the set

S̃k
∆
=
⋃
K

{
S∈Sm+ : S=

∑
i∈K

vieie
T
i with vi∈R+

}
, (22)

where the union is over all subsets K ⊆ {1, 2, . . . ,m}
with |K| = k ≤ m. Note that it holds that S̃k ⊆ Sk.

Under the independence assumption adopted in this
section, the optimization problem in (18) boils down to
the following problem:

min
ΣAA∈S̃k

J(ΣAA), (23)

which is hard to solve due to the combinatorial character
of identifying the support of the sparse random attack
vector. To circumvent this problem, we propose a greedy
construction that sequentially updates the set supp(Am)
in (14) and determines the corresponding entry in the
diagonal of the matrix ΣAA in (5).
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A. Greedy Independent Attack Construction

The proposed construction hinges on the idea that
approaching the sensor selection problem in a sequential
fashion resembles the single sensor selection problem
discussed in [17]. This enables us to leverage the single
sensor selection construction to analytically characterize
the cost difference induced by the addition of a new
element to the set supp(Am) in (14).

More specifically, given the sparsity constraint in (19),
for some k 6 m, the construction can be divided into
k epochs. At each epoch a new element is added to
supp(Am). At epoch i, let Σi ∈ Sm+ be the covariance
matrix of the vector attack under construction. Let the
set Ai be the set of indices corresponding to the entries
of the vector diag(Σi) that are different from zero. That
is,

Ai = {j ∈ {1, 2, . . . ,m} : eT
j Σiej > 0}. (24)

For all i ∈ {1, 2, . . . , k}, it is imposed that Ai ⊆
{1, 2, . . . ,m} and |Ai| = i. This implies that A1 ⊂
A2 ⊂ . . . ⊂ Ak ⊂ {1, 2, . . . ,m}. Hence,

Σi = Σi−1 + veje
T
j , (25)

where Σ0 is a matrix of zeros; the integer j ∈
{1, 2, . . . ,m} \ Ai−1 is the index of the new entry at
epoch i; and v > 0 is the value of such entry. For ease
of presentation we denote the set of indices available to
the attacker to choose at epoch i, i.e. the entries of the
vector diag(Σi−1) that are zero, as

Ac
i−1

∆
= {1, 2, . . . ,m} \ Ai−1. (26)

Our proposition to choose both j ∈ Ac
i−1 and θ > 0 at

epoch i as described in (25) is based on the following
optimization problem

min
(j,v)∈Ac

i−1×R+

J(Σi−1 + veje
T
j ). (27)

The following lemma sheds light on the solution to the
problem (27).

Lemma 1. Let Σ1 ∈ Sm+ and Σ2 ∈ Sm+ be two matrices
that satisfy Σ2 = Σ1 + ∆, with ∆ ∈ Rm×m. Then, the
cost function J in (17) satisfies that

J(Σ2) = J(Σ1) + f(Σ1,∆), (28)

where the function f : Rm×m → R is such that

f(Σ1,∆)=(1− λ) log
∣∣∣Im + (ΣYY + Σ1)

−1
∆
∣∣∣

− log
∣∣∣Im +

(
σ2Im + Σ1

)−1
∆
∣∣∣

+λtr
(
Σ−1
YY ∆

)
, (29)

the λ ≥ 1 is introduced in (12); and the matrix ΣYY is
defined by (4).

Proof. The proof consists in showing that the difference
between J(Σ2) and J(Σ1) yields

J(Σ2)− J(Σ1)=(1− λ) log
∣∣∣Im + (ΣYY + Σ1)

−1
∆
∣∣∣

− log
∣∣∣Im +

(
σ2Im + Σ1

)−1
∆
∣∣∣

+λtr
(
Σ−1
YY ∆

)
, (30)

which completes the proof.

The relevance of Lemma 1 is that it enables the
selection of both j ∈ Ac

i−1 and v > 0 at epoch i based on
a simpler optimization problem than that in (27). Indeed,
the selection problem results in

min
(j,v)∈Ac

i−1×R+

f(Σi−1, veje
T
j ), (31)

where the function f is defined in (29). Theorem 2
provides the solution to the optimization problem in (31).

Theorem 2. Let k satisfy 0 < k 6 m, and for all
i ∈ {1, 2, . . . , k}, denote by (j?, v?) ∈ Ac

i−1 × R+ the
solution to the optimization problem in (27). Then, the
following holds

j?=arg min
j∈Ac

i−1

J(Σi−1 + vjeje
T
j ) and (32)

v?=vj? , (33)

where, for all j ∈ Ac
i−1

vj∗ =

(
βj − αj + βjαjσ

2

2βjαj

)

·


√√√√√

1−
4βjαj

(
βjσ

2 − αjσ2 − αjσ
2 + 1

λ

)
(βj − αj + βjαjσ2)

2 −1

(34)

with

αj
∆
=tr
(

(ΣYY + Σi−1)
−1

ej∗eT
j∗

)
, (35)

βj
∆
=tr
(
Σ−1
YY ej∗eT

j∗
)
, (36)

and the real σ > 0 in (34) is introduced in (2).

Proof. It follows from Lemma 1 that the optimization
problem in (31) is equivalent to

min
(j,v)∈Ac

i−1×R+

(1− λ) log
∣∣∣Im + (ΣYY + Σi−1)

−1
veje

T
j

∣∣∣
− log

∣∣∣Im +
(
σ2Im + Σi−1

)−1
veje

T
j

∣∣∣
+ λtr

(
Σ−1
YY veje

T
j

)
.

(37)
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After some algebraic manipulation it follows that

min
(j,v)∈Ac

i−1×R+

(1−λ) log(1 + αjv)−log(1+
v

σ2
)+λβjv,

(38)
which is convex for λ ≥ 1. The only solution of the
minimization problem in (38) is obtained by letting the
derivative to zero, which yields

βjαjv
2+(βj−αj+βjαjσ2)v+βjσ

2−αjσ2−αjσ
2 + 1

λ
=0

(39)
Note that (39) is quadratic with two solutions. The result
follows by choosing the solution such that v ∈ R+. This
completes the proof.

The proposed greedy construction is described in
Algorithm 1.

Algorithm 1 k-sparse independent attack construction

Input: H in (1);
σ2 in (2);
ΣXX in (3);
λ in (17); and
k in (24).

Output: ΣAA in (5).
1: Set A0 = {∅}
2: Set Σ0 = 0
3: for j = 1 to k do
4: for ` ∈ Ac

i−1 do
5: Compute v` in (34)
6: end for
7: Compute j? in (32)
8: Compute v? in (33)
9: Set Aj = Aj−1 ∪ {j?}

10: Set Σj =
∑
i∈Aj

vieie
T
i

11: end for
12: ΣAA =

∑
i∈Ak

vieie
T
i

V. CORRELATED SPARSE STEALTH ATTACKS

A. Correlation Structure

In this section, the assumption of independence in
(21) is dropped. This case boils down to the attack
construction given in (20), i.e. the optimization is carried
over the set of covariance matrices with non-zero off-
diagonal entries that account for the correlation between
different attack entries. In this case the addition of a new
index to the set of k attacked observations introduces
off-diagonal entries in the difference between covariance
matrices described in Lemma 1. More precisely, the

difference introduced by selecting the index i is given
by ∆i ∈ Di with

Di =
⋃

s∈Rm

{
D ∈ Rm×m : D = sT⊗ ei + s⊗ eT

i

}
.

(40)
Note that the vector s determines the second order
moments describing the covariance between attacked ob-
servations. As in the independent case, characterizing the
difference enables to formulate the optimization problem
that yields the minimum cost increase introduced by a
new index in the attack support. Let Ak−1 denote set of
indices of attacked observations and Σi−1 ∈ Si−1 the
covariance matrix of the attack vector over those i − 1
observations. Then the sensor selection problem at step
i is given by the optimization problem:

min
j,∆

J (Σi−1 + ∆)

s.t. j ∈ Ac
i−1,

∆ ∈ Dj ,
Σi−1 + ∆ ∈ Sm+ .

(41)

In the following we show that when the choice of the
next index selected for attacks is fixed, the optimization
in (41) is convex in the matrix difference.

Theorem 3. Let Σi−1 ∈ Si−1 and j ∈ Ac
i−1, then the

optimization problem given by

min
∆

J (Σi−1 + ∆)

s.t. ∆ ∈ Dj ,
Σi−1 + ∆ ∈ Sm+ ,

(42)

is a convex optimization problem.

Proof. It follows from Lemma 1 and some algebraic
manipulation that the optimization problem in (42) is
equivalent to

min
∆

(1− λ) log |ΣYY + Σi−1 + ∆|

− log
∣∣σ2Im + Σi−1 + ∆

∣∣+ λtr
(
Σ−1
YY ∆i

)
s.t. ∆ ∈ Dj ,

Σi−1 + ∆ ∈ Sm+ .

(43)

Noting that the sets Dj are convex for all j ∈ Ac
i−1,

that the logarithm terms are convex [22] for λ ≥ 1, and
that the trace term is linear, yields that the optimization
problem in (42) is convex in ∆. This completes the
proof.

The proposed greedy construction for independent
attack case is described in Algorithm 2. Note that the
matrix obtained in the optimization problem in Theorem
3 is constrained by projecting the sum of the update and
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the previous covariance matrix in the positive semidef-
inite cone to guarantee that the resulting covariance
matrix is indeed positive semidefinite. This is reflected in
the last step of Algorithm 2 where the resulting matrix
construction is projected by minimizing the Frobenius
distance to the positive semidefinite cone.

Algorithm 2 k-sparse correlated attack construction

Input: H in (1);
σ2 in (2);
ΣXX in (3);
λ in (17); and
k in (24).

Output: ΣAA in (5).
1: Set A0 = {∅}
2: Set Σ0 = 0
3: for j = 1 to k do
4: for ` ∈ Ac

j−1 do
5: Compute ∆` = arg min∆∈D`

J(Σj−1 +∆)
6: end for
7: Compute j? = arg min`∈Ac

j−1
J(Σj−1 + ∆`)

8: Set Aj = Aj−1 ∪ {j?}
9: Set Σj = Σj−1 + ∆j?

10: end for
11: Compute ΣAA = arg minS∈Sm

+
‖Σk − S‖F

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the perfor-
mance of the proposed attack construction algorithms
on a direct current (DC) state estimation setting for
the IEEE 9-Bus, IEEE 14-Bus and IEEE 30-Bus test
systems [23]. The voltage magnitudes are set to 1.0 per
unit, which implies that the state estimation is based on
the observations of active power flow injections to all
the buses and the active power flow between physically
connected buses. The Jacobian matrix H is determined
by the reactance of the branches and the topology of
the corresponding systems. We use MATPOWER [24]
to generate H for each test system. The statistical
dependence between the state variables is captured by
a Toeplitz model for the covariance matrix ΣXX ∈ Sn+
that arises in a wide range of practical settings, such
as autoregressive stationary processes [12], [16], [25].
Specifically, we model the correlation between state
variables Xi and Xj with the exponential decay param-
eter ρ ∈ R+ that defines the entries of the covariance
matrix of the state variables as (ΣXX)ij = ρ|i−j| with
(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n}.

In this setting, the performance of the proposed sparse
stealth attack is not only a function of the attack con-
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Fig. 1: Performance of independent attack constructions
on different IEEE test systems with ρ = 0.9 and λ = 8.
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Fig. 2: Performance of correlated attack constructions on
different IEEE test systems with ρ = 0.9 and λ = 8.

structions but also the correlation parameter ρ, the noise
variance σ2, and the topology of the system described
by H. In the simulations, we set the observation model
noise regime in terms of the signal to noise ratio (SNR)
defined as

SNR ∆
= 10 log10

(
tr(HΣXXHT)

mσ2

)
. (44)

A. Performance in terms of information theoretic cost

Let Σk
i be the output of the k-sparse attack construc-

tion of Algorithm i. We evaluate the attack performance
in terms of the sparsity penalty defined as

η
∆
=
J(Σk

i )− J(Σm
i )

J(Σm
i )

, (45)
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Fig. 3: Performance of independent sparse attack con-
struction in terms of mutual information and KL diver-
gence for different values of λ on the IEEE 9-bus system
with SNR = 30 dB and ρ = 0.9.
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Fig. 4: Performance of independent sparse attack con-
struction in terms of mutual information and KL di-
vergence for different values of λ on the IEEE 14-bus
system with SNR = 30 dB and ρ = 0.9.

where J(·) is the cost defined in (17). Note that J(Σm
i )

denotes the cost induced by the construction when all the
sensors are attacked. In that sense, this metric captures
the performance loss of the attack when only k sensors
are attacked. Fig. 1 depicts the performance of the
independent sparse stealth attack construction obtained
with Algorithm 1 in different IEEE test systems as a
function of the proportion of compromised sensors, i.e.
k/m, for correlation parameter ρ = 0.9 and λ = 8. Sim-
ilarly, Fig. 2 depicts the performance of the correlated
sparse stealth attack construction from Algorithm 2 in
the same setting as in Fig. 1. As expected, in both cases
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Fig. 5: Performance of correlated sparse attack construc-
tion in terms of mutual information and KL divergence
for different values of λ on the IEEE 9-bus system with
SNR = 30 dB and ρ = 0.9.
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Fig. 6: Performance of correlated sparse attack construc-
tion in terms of mutual information and KL divergence
for different values of λ on the IEEE 14-bus system with
SNR = 30 dB and ρ = 0.9.

the sparsity penalty decreases monotonically with the
proportion of compromised sensors. In the independent
sparse attack case, the sparsity penalty does not change
significantly in terms of the proportion of compromised
sensors while in the Algorithm 2 construction case the
sparsity penalty decreases exponentially in the number of
compromised sensors. Note that the exponential decrease
slope is approximately constant, which indicates that
the advantage of adding more sensors to the attack
construction decreases exponentially at an approximately
constant rate. Remarkably, this exponential decrease is
observed for all system sizes and SNR regimes.
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It is worth noting that for most systems, operating with
larger SNR yields a lower mutual information for the
same KL divergence. However, in Fig. 2 for the IEEE
30-bus test system the 10 dB and 30 dB performance
curves cross, which indicates that the lower SNR regime
benefits the attacker when the number of comprised
sensors grows. Interestingly, the size of the network
does not determine the performance the attack. For the
Algorithm 1 construction, the IEEE 14-bus system is
the most vulnerable to attacks, while for the Algorithm
2 construction the statement only holds for high SNR
regime. This suggests that the topology of the network
fundamentally changes the performance of the attack but
the specific mechanisms are left for future study.

B. Performance in terms of the tradeoff between mutual
information and KL divergence

Fig. 3 and Fig. 4 depict the multiobjective perfor-
mance of the Algorithm 1 attack construction in terms
of the tradeoff between mutual information and KL
divergence for different values of the proportion of
compromised sensors when SNR = 30 dB and ρ = 0.9.
Similarly, Fig. 5 and Fig. 6 depict the same setting for
the Algorithm 2 attack construction. As expected, larger
values of the parameter λ yield smaller values of KL
divergence, i.e. the probability of detection is prioritized
in the construction over the mutual information decrease
for all the scenarios. Moreover, smaller values of k yield
smaller reductions of the mutual information, which
indicates that remaining stealthy in a sparse setting
necessarily implies reducing the amount of disruption
of the attack. On the other hand, larger values of k
enable the attacker to more effectively tradeoff disruption
for stealth. This effect is particularly marked in the
correlated attack construction case, which reinforces the
previous observation regarding the value of coordination
between attack variables to achieve stealth.

VII. CONCLUSION

We have proposed novel stealth attack construction
with sparsity constraints. The insight obtained from the
problem of incorporating an additional sensor to the
attack has been distilled to construct heuristic greedy
constructions for both the independent and the correlated
attack cases. We show that for both cases, the greedy
step results in a convex optimization problem which can
be solved efficiently and yields a low complexity attack
update rule. We have numerically evaluated the attack
performance in several IEEE test systems and shown that
it is feasible to implement disruptive attacks that have
access to small number of observations. Furthermore,

we have observed that the topology and the SNR regime
govern the performance of the attack and numerically
characterized the dependence.
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