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Convergence of a Piggyback-style method for the differentiation of solutions of
standard saddle-point problems

Lea Bogensperger∗ , Antonin Chambolle† , and Thomas Pock∗

Abstract. We analyse a “piggyback”-style method for computing the derivative of a loss which depends on the
solution of a convex-concave saddle point problems, with respect to the bilinear term. We attempt
to derive guarantees for the algorithm under minimal regularity assumption on the functions. Our
final convergence results include possibly nonsmooth objectives. We illustrate the versatility of the
proposed piggyback algorithm by learning optimized shearlet transforms, which are a class of popu-
lar sparsifying transforms in the field of imaging.

Key words. First-order methods, saddle-point problems, differentiation, adjoint methods, piggyback algorithm,
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1. Introduction. In [11], the authors considered the problem of “learning” consistent
discretizations of the total variation (TV), for improving the solution of image recovery tasks
such as denoising or inpainting. In order to achieve this goal, it was needed to compute
the gradient of an error (loss) function depending on the minimizer of a convex, and non-
smooth, optimization problem. This problem is of course just a particular instance of a more
general class of optimization problems frequently arising in machine learning, optimal control
or bilevel optimization [18].

In [11], the gradient was computed by means of an iterative algorithm which is known in
the automatic differentiation literature [26] as “piggyback” [25]. This method, which is both
memory and computationally efficient, aims at finding simultaneously the solution of a linear
or non-linear equation (corresponding either to a differential equation such as the optimality
condition of an optimization problem) and the (solution dependent) adjoint state which allows
to compute the gradient of a loss depending on the solution, by running in parallel a fixed-
point iteration and an appropriate combination of its derivative with the derivative of the loss
term. Historically, the piggyback algorithm is inspired by the study of error propagation in
the reverse mode of automatic differentiation, for example in [39, Eq. (9)] in the context of
multidisciplinary design procedures and in [13] (see pp. 6-7). See also [47] for a comparative
study.

The issue of differentiating with respect to parameters solutions of optimization algorithms
or fixed-point iterations is essential in imaging and machine learning and has been studied
by many authors in this context, in the recent years. For imaging applications, the starting
point seems to be the work by Samuel and Tappen [45] in the context of learning the pa-
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rameters for (maximum a-posterior) MAP estimation in continuous valued Markov random
field (MRF) models for image restoration. They adopted implicit differentiation to derive a
formula for computing the gradient of the loss function with respect to the parameters of
a (local) minimizer of the non-convex MRF model. Note that their formula [45, Eq. (6)]
corresponds to eq. (2.2) in the present work. In the subsequent work [42], Peyré and Fadili
derived formula (2.2) (see [42, Eq. (5)]) in a particular setting, the context of analysis based
dictionary learning. As in our work, one interesting feature is that these authors are able to
address problems with relatively low smoothness and growth conditions.

In a similar flavor, the paper [31], focused on image reconstruction methods, derives an
adjoint problem from the discrete equation, which is then solved by semi-smooth Newton algo-
rithms. For such applications, a quite different school chose to work rather in the continuous
setting, starting from [16], where a bi-level parameter identification scheme was proposed for
a total-variation reconstruction problem with varying weight [20]. These authors proposed,
as in many subsequent works (see the review [7] and the references therein), a detailed study
of the (smoothed) total variation minimization and its sensitivity analysis in the continuous
setting, with a derivation of an adjoint problem and its discretization. A similar point of view
is adopted in [28, 29], see also the review [27].

In the context of more general nonsmooth optimization, such as for the Least absolute
shrinkage and thresholding operator (LASSO) problem, and applications to machine learning,
the literature is of course also very important. (See for instance [17] where the authors adapt
their approach to a whole family of standard non-smooth iterative solvers.)

In practice, one usually distinguishes Forward and Reverse approaches. The latter, which
come from classical automatic differentiation (see for instance [26]), consist in “unrolling” the
iterations of an optimization algorithm and differentiate a function of the output by classical
backpropagation. In imaging, early paper based on this approach are [48, 24, 19], or the more
recent works [46, 12, 21]. In order to deal with non-smooth models, the work [40] unrolls
and differentiates non-linear proximal algorithms that ensure differentiability of the iterates.
In very recent work [36] the convergence rate of gradients is investigated by unrolling and
differentiating accelerated proximal algorithms.

On the other hand, a forward approach will compute, in parallel to the optimization
algorithm, the Jacobian of the solution with respect to some parameters. One issue with
this latter approach is that such a variable is often huge, and one needs techniques to reduce
the size of the computation. For instance, the recent contribution [6], for a LASSO problem,
leverages the sparsity of the solutions in order to reduce the size of the Jacobians. Before this,
many authors have been addressing general techniques for forward differentiation of fixed-
point iterations. In the context of TV reconstruction, one notable reference is [17] where
the regularity of the iterative scheme is discussed and the technique is developed for most
common non-smooth optimization algorithms, while in the former reference [49], a projection
technique to reduce the size of the Jacobian is proposed. A detailed comparison of Forward
and Reverse derivation in learning is found in [23]. In these approaches, it is not easy to rely
on adjoint states to reduce the size of the problems.

An adjoint discrete approach is found, for instance, in [41, 35], which is based on the
computation of an “inverse-Hessian-vector” product (quite similar to the seminal approach
in [45], and corresponding to [11, eqs. (A3)-(A4)] in our analysis, that is, to the explicit
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evaluation of an adjoint state). In particular, the approach in [41], based on inexact non-
smooth algorithms, shares some similarities with the nonsmooth piggyback method. (See
also [43] for a variant.)

In this paper, we analyse further the piggyback method used in [11] and where, as proposed
in [25], the variables and the adjoint variables are computed iteratively in a parallel forward
way. One advantage, clearly, is that the size of the adjoint variable is the same as the main
variable. Our analysis shows that while we still need the algorithm to be contractive like in
most of the literature, the method can work with little smoothness. Our typical problem is a
min-max convex-concave saddle-point of the form

min
x

max
y
〈Kx, y〉+ g(x)− f∗(y),

for convex functions f, g with convex conjugates f∗, g∗, which we tackle by first order primal-
dual algorithms [8, 9, 10], and we restrict our attention to derivating with respect to the
operator K (the same method will work for derivating with respect to parameters in g or f∗,
but then we believe that more regularity is needed). Assuming only that f∗ and g are strongly
convex (that is, f and g∗ are C1,1), we prove that the method makes sense: a fixed point of
the algorithm allows to define a derivative. We also show convergence of the piggyback under
slightly stronger assumptions (for f, g∗ C2,α). In particular, this allows to consider problems
of the primal form minx f(Kx) + g(x) with, possibly, g non-smooth, or f with linear growth,
slightly extending the framework of [42].

The paper is organized as follows: in the next section we introduce the problem and the
algorithm used in [11], and state the main results (of consistency, Thm 2.1, and convergence,
Thms 2.2-2.3). The section which follows is a remark of the consequences of the analysis for the
primal form of the problem. Section 4 gathers various preliminary results on convex functions
and their regularization, and the main proofs are in Section 6. We illustrate this approach in
Section 7 where it is applied to design optimal shearlets for denoising (see also [11]).

2. Derivatives of saddle-points. We consider a standard problem in optimization

(P) min
x∈X

f(Kx) + g(x)

where X = Rn, K ∈ Rm×n, m,n ≥ 0, and here f and g are proper, convex lower semicontin-
uous functions, in addition we assume that f, g are such that a solution of (P) exists, as well
as of the dual problem defined as

(D) sup
y∈Y
−f∗(y)− g∗(−K∗y)

with Y = Rm, and where K∗ is the adjoint operator of K (hence defined by the transpose
n×m matrix KT ). In that case, a solution xK to (P) and a solution yK to (D) are also such
that (xK , yK) is a saddle point of the min-max optimization problem:

(S) min
x∈X

max
y∈Y
〈Kx, y〉+ g(x)− f∗(y)
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which can be solved by a standard modified Arrow-Hurwicz type iteration as analysed in [8, 10].
It is a solution of the system:

(2.1)

{
KxK − ∂f∗(yK) 3 0

K∗yK + ∂g(xK) 3 0

In this paper, we will additionally assume that the solution (xK , yK), given an operator
K, is unique. This is ensured if g and f∗ are strictly convex, and we make this stronger
assumption. As a result, g∗ and f are C1,1 functions, respectively defined on the full domains
X and Y. This uniqueness is crucial, as we want to define a “loss function” depending on K
through the solution (xK , yK). (An interesting extension would be to analyse a loss depending
only on xK , and drop the uniqueness assumption on y, but this remains difficult.)

Given a smooth (generally convex, for instance quadratic) function ` : X × Y → R+, we
define for any K ∈ Rm×n the “loss” L(K) := `(xK , yK). Our goal is too understand how to
estimate the gradient of L with respect to K.

In [11, Appendix] was proposed, in case g, f∗ are smooth, C2,α and strongly convex, an
iterative algorithm to compute ∇L(K). It is shown that

(2.2) ∇L(K) = YK ⊗ xK + yK ⊗XK .

where the adjoint variables (XK , YK) ∈ X × Y solve the the saddle-point problem:

(2.3) min
X∈X

sup
Y ∈Y
〈KX,Y 〉+ 1

2

〈
D2g(xK)X,X

〉
− 1

2

〈
D2f∗(yK)Y , Y

〉
+

〈
∇`(xK , yK),

(
X
Y

)〉
.

The adjoint states were found by the following piggyback algorithm [25].

Piggyback algorithm:. Choose (x0, y0), (X0, Y 0) ∈ X × Y. For each k ≥ 0,
1. compute x̃ = xk − τK∗yk and X̃ = Xk − τ(K∗Y k +∇x`(xk, yk));
2. compute using automatic differentiation xk+1 = proxτg(x̃) and Xk+1 = ∇ proxτg(x̃) ·
X̃;

3. compute x̄k+1 := xk+1 + θ(xk+1 − xk), X̄k+1 := Xk+1 + θ(Xk+1 − Xk), and ỹ =
yk + σKx̄k+1, Ỹ = Y k + σ(KX̄k+1 +∇y`(xk, yk));

4. compute using a.d. again yk+1 = proxσf∗(ỹ), Y k+1 = ∇ proxσf∗(ỹ) · Ỹ ;
5. return to 1.

It was shown in [11], with additional regularity assumptions on f∗ and g, that the iterates
converge linearly to (xK , yK , XK , YK) as k →∞ for appropriate choices of σ, τ , and θ ∈]0, 1].

With this method, the limiting (XK , YK) are a fixed point of:

(2.4)

X = ∇ proxτg(xK − τK∗yK) ·
[
X − τ(K∗Y +∇x`(xK , yK))

]
Y = ∇ proxσf∗(yK + σKxK) ·

[
Y + σ(KX +∇y`(xK , yK))

]
In practice, an advantage of this approach is that the algorithm can be run easily on

far less smooth problems, since for any convex function ϕ, proxϕ is a one-Lipschitz (more
precisely, firmly non-expansive) operator and in particular its classical gradient exists almost
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everywhere. (Of course, it is far from clear that the solutions xK − τK∗yK or the iterates x̃ in
point (1) of the Algorithm avoid the exceptional set where ∇ proxτg fails to exists, for a.e. K,
and this issue is extremely hard to address.)

Under the assumption (weaker than in [11]) that f∗ and g are strongly convex, we study
here whether, assuming proxτg and proxσf∗ are differentiable at, respectively, xK−τK∗yK and
yK+σKxK , a fixed point (XK , YK) of (2.4) allows to compute the gradient of L through (2.2).
Then, assuming slightly more regularity on f and g∗, we show the convergence of the piggyback
method in this context. We stress that f∗, g are not assumed to be regular, more than what
is implied by the regularity of f and g∗, in particular they could be non-differentiable. We
now state our main three results. The proof of the first is given in Section 5, while the two
other are proved in Section 6.

Theorem 2.1. Assume that g and f∗ are strongly convex (with respective moduli γ, δ > 0).
Assume that (XK , YK) is a fixed point of (2.4) and in particular that proxτg and proxσf∗ are
differentiable at, respectively, xK − τK∗yK and yK + σKxK , and symmetric1. Then, L is
differentiable at K with derivative given by (2.2).

Remark 1. The statement is local, and should remain valid, at least for τ, σ small enough,
when f∗, g are strongly convex in a neighborhood of y, x, respectively, or equivalently if f, g∗

are C1,1 in a neighborhood of the respective closed sets {z : ∇f(z) = ∇f(Kx)} and {z :
∇g∗(z) = ∇g∗(−K∗y)}.

Theorem 2.2. Assume that g and f∗ are strongly convex (with respective moduli γ, δ > 0),
and that in addition, g∗ and f are locally C2,α. Then for τ, σ chosen as in [8, Alg. 3] and
θ chosen slightly larger, the iterates (xk, yk), (Xk, Y k) of the piggyback algorithm converge
linearly to (xK , yK) and (XK , YK) which satisfy (2.4), and ∇L(K) is given by (2.2).

The choice of the parameters in [8] is as follows: one picks µ ≤ 2
√
γδ/‖K‖, τ = µ/(2γ),

σ = µ/(2δ) and 1/(1 +µ) < θ ≤ 1. In the proof, we will show the result for θ = 2/(2 +µ), yet
it could be adapted, following the steps in [8, pp. 130-131], to the range 1/(1 + µ) < θ ≤ 1.
The limiting case θ = 1/(1 + µ) does not allow to absorb, in the iterations for Xk, the errors
due to the inexactness of the value of (x, y). The proof of Theorem 2.2 is given in Section 6.2.

Remark 2. The proof of Theorem 2.2 shows that a similar result still holds if (xk, yk) is
replaced, in the algorithm, with any sequence linearly converging to the saddle-point (xK , yK).

Alternatively to the piggyback algorithm described above, one can also estimate ∇L(K)
as follows: one first runs an algorithm (such as [8, Alg. 3], see also [10, Alg. 5]) which provides
an approximation (x, y) of (xK , yK). Then, one performs, for (Xk, Y k) the same iterations as
in the piggyback above, replacing however (xk, yk) with the fixed values (x, y). The analysis
in Section 6.1 shows the following result.

Theorem 2.3. Assume that g and f∗ are strongly convex (with respective moduli γ, δ > 0),
and that in addition, g∗ and f are locally C2,α. Then for τ, σ, θ chosen as in [8, Alg. 3], the
iterates (Xk, Y k) obtained with this variant of the algorithm satisfy

‖y ⊗Xk + Y k ⊗ x−∇L(K)‖ ≤ C((‖x− xK‖+ ‖y − yK‖)α + ωk/2).

1We will see later on that these Lipschitz operators have symmetric derivative almost everywhere.
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for some constant C (depending on the all the data) and some rate ω ≤ θ.

Precisely, the rate which can be achieved here is ω = (1+θ)/(2+µ) < 1 for the choices already
mentioned above: µ ≤ 2

√
γδ/‖K‖, τ = µ/(2γ), σ = µ/(2δ) and θ ∈ [1/(1 + µ), 1], see [8].

Remark 3 (Parameter dependent functions f or g). An easy formal analysis shows that
for instance, in case g(x) = g(x, r) depends on a parameter r ∈ Rnr , then a loss defined
through L(r) := `(x, y) should satisfy ∇L(r) =

∑
i(XK)i∇r∂ig(xK , r), for the same adjoint

states (XK , YK). However, it seems that the analysis requires much stronger regularity of the
function g (at least C1,1 and strongly convex, locally uniformly with respect to the parameter
r).

3. (Accelerated) forward-backward splitting. In the setting which we consider in The-
orems 2.1–2.3, since by assumption f(K·) has Lipschitz gradient (with constant at most
‖K‖2/δ), it is also possible to find (xK , yK) = (xK ,∇f(KxK)) by an accelerated forward-
backward method (such as FISTA [5], or in the strongly convex case rather [38, (2.2.19)], see
also [9], Theorem B.1 and Remark B.2): given x0, x−1 = x0, one lets for each k ≥ 1:

(3.1)

{
x̄k = xk + βk(x

k − xk−1) ,
xk+1 = proxτg(x̄

k − τK∗∇f(Kx̄k)).

Then, for an appropriate choice of βk, and τ = δ/‖K‖2, letting also yk = ∇f(Kxk), one has
linear convergence of (xk, yk) to (xK , yK), so that in particular this scheme can be used to
define the sequence in Theorem 2.2. The choice βk = (1−√q)/(1 +

√
q), for q = τγ/(1 + τγ),

yields a linear rate with almost optimal contraction factor (1−√q), cf [38, 9] (a varying step
is also possible and slightly improves the convergence).

A natural question is whether it is also possible, at this point, to replace the piggyback
primal-dual algorithm by a descent algorithm. Observe that formally taking the sup in (2.3)
yields the minimization problem:

(3.2) min
X∈X

1

2

〈
D2f(KxK)(KX +∇y`(xK , yK)),KX +∇y`(xK , yK))

〉
+

1

2

〈
D2g(xK)X,X

〉
+ 〈∇x`(xK , yK), X〉 ,

so that one should expect to be able to find XK (and YK = D2f(KxK)(KX +∇y`(xK , yK)))
by iterating:

(3.3)


X̄k = Xk + βk(X

k −Xk−1) ,

Xk+1 = ∇ proxτg(x̄
k − τK∗∇f(Kx̄k)) ·

[
X̄k

−τK∗D2f(Kxk)(KX̄k +∇y`(xk, yk))− τ∇x`(xk, yk)
]
.

A few remarks are in order:
1. If one chooses βk = 0, then this corresponds to an inexact forward-backward de-

scent [14], with iterates which will converge linearly to XK , yet with a much worse
contraction rate, that is, of order 1− q.
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2. On the other hand, if, as in Theorem (2.3), one freezes the points xk, x̄k in (3.3) to some
fixed approximation x, then using as before βk = (1−√q)/(1−√q) will yield a result
similar to Theorem 2.3 (one needs to estimate the distance between the minimizer of a
perturbed problem, defined by replacing xK with x in (3.2), and the solution of (3.2),
see for instance Section 6.1 for possible ways to do so.

3. An acceleration in (3.3) is possible but has to be carefully analysed, following the
analysis for inexact accelerated forward-backward schemes such as in [2, 3], and one
has to expect a rate in between the optimal rate and the one obtained with βk ≡ 0.

4. Convex functions, prox operator. We gather here some more or less standard results
on convex function, conjugates, Moreau-Yosida regularization and proximity operators.

4.1. Moreau’s proximity operator. Let g convex, proper, lower semicontinous in Rd, with
values in ] −∞,+∞], we let dom g := {g < +∞}. We recall that the subgradient is defined
as ∂g(x) = {p ∈ Rd : g(y) ≥ g(x) +p · (y−x)∀y ∈ Rd}, it is nonempty for any x in the interior
of dom g. We define for τ > 0:

proxτg(x) = arg min
y∈Rd

g(y) +
‖y − x‖2

2τ
= (I + τ∂g)−1(x).

It is standard that it coincides with the resolvent of the maximal-monotone operator τ∂g, in
particular it is one-Lipschitz, and firmly non-expansive, see for instance [4] for details.

Defining, for τ > 0, the Yosida approximation:

gτ (x) = min
y∈Rd

g(y) +
‖y − x‖2

2τ

it is also well known (and easy to show) that gτ is convex and C1 with full domain and with
(1/τ)-Lipschitz gradient, in addition,

(4.1) ∇gτ (x) =
x− proxτg(x)

τ
∈ ∂g(proxτg(x)).

In particular, one sees that ∇gτ is differentiable at the same points as proxτg.

Note that with our assumptions on g one has, for p ∈ Rd,

(gτ )∗(p) = g∗(p) +
τ

2
‖p‖2

and the celebrated identity (of Moreau):

(4.2) x = proxτg(x) + τ prox 1
τ
g∗
(
x
τ

)
.

We deduce from (4.1), (4.2) that:

(4.3) ∇gτ (x) = prox 1
τ
g∗
(
x
τ

)
, ∇(g∗) 1

τ

(
x
τ

)
= proxτg(x).
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4.2. Regularity of the Moreau-Yosida regularization. For our convergence proofs, we
will need to use that the regularized function gτ preserves some of the regularity properties
of g, and in particular one has:

Lemma 4.1. Let g : Rd → R be convex and locally C2,α. Let τ > 0. Then gτ is locally C2,α

(and as a consequence proxτg, prox 1
τ
g∗ are locally C1,α).

Proof. Let R > 0. A first remark is that proxτg(B(0, R)) is a compact set in Rd, so that
by assumption, one has, for all x, y ∈ B(0, R):

‖D2g(proxτg(x))−D2g(proxτg(y))‖ ≤ ω(‖proxτg(x)− proxτg(y)‖) ≤ ω(‖x− y‖)

for some modulus of continuity ω(t) (with our assumption, of the form ctα); in addition,

C := max
x∈B(0,R)

‖D2g(proxτg(x)‖ < +∞.

For x ∈ B(0, R), ∇gτ (x) = ∇g(proxτg(x)), cf. (4.1). Let y = proxτg(x) so that x = y +
τ∇g(y) = y + τ∇gτ (x). Considering xs = x + sξ, s > 0 and ys = y + sηs = proxτg(xs)
one has that ηs ≤ |ξ| so that ∇gτ (xs) = ∇g(ys) = ∇g(y) + sD2g(y) · ηs + o(s). In addition,
ys+τ∇g(ys) = xs and in particular ηs+τD

2g(y)·ηs+o(1) = ξ, that is, ηs = (I+τD2g(y))−1(ξ+
o(1)). Hence lims→0 ηs = (I + τD2g(y))−1ξ, and it follows that:

lim
s→0

∇gτ (x+ sξ)−∇gτ (x)

s
= D2g(y) · η = D2g(y)(I + τD2g(y))−1ξ.

We deduce: D2gτ (x) = D2g(y)(I + τD2g(y))−1. Let now x, x′ ∈ B(0, R) and y = proxτg(x),
y′ = proxτg(x

′). One has

‖D2gτ (x)−D2gτ (x′)‖
≤ ‖D2g(y)−D2g(y′)‖‖(I + τD2g(y))−1‖+ ‖D2g(y′)‖‖(I + τD2g(y))−1 − (I + τD2g(y′))−1‖

≤ ω(‖y − y′‖) + C‖(I + τD2g(y))−1− (I + τD2g(y′))−1‖ ≤ (1 + C)ω(‖x− x′‖)

where we have used that for A,B positive semi-definite matrices, one has:

‖(I +A)−1 − (I +B)−1‖ = ‖(I +A)−1(I +B − (I +A))(I +B)−1‖ ≤ ‖B −A‖.

Remark 4. Observe that the conclusion still holds, in case g is not defined everywhere,
provided that for x ∈ ∂ dom g, either g is C2,α up to x, or limx′→x ‖∇g(x′)‖ = +∞. The proof
shows, also, that if g is merely of class C2 (locally), then also gτ is.

5. Proof of Theorem 2.1. We start with a collection of more or less standard results on
the differentiability of convex functions. First, recall that if g : Rd → R is strictly convex then
in particular ∂g is injective, ∇g(Rd) = dom ∂g∗ has nonempty interior (otherwise g would be
“flat” in the orthogonal direction), and g∗ is C1 in the interior of dom g∗, with ∇g∗(p) = x for
all p ∈ ∂g(x) and all x ∈ Rd. If g is in addition (γ-)strongly convex (g(x)− γ|x|2/2 is convex
for some γ > 0), then ∂g is (strongly monotone and) surjective and ∇g∗ is (1/γ)-Lipschitz
with full domain.
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According to Alexandrov’s theorem [22, §6.4], a convex function g : Rn → R ∪ {+∞} is
twice differentiable Ln-almost everywhere (in the interior of its domain), in the sense that it
admits a second order Taylor expansion near almost every point. More refined proofs (see
in particular [37, §1.2], and the following papers [15, 30]) show that the subgradient ∂g is
differentiable almost everywhere, with a symmetric gradient. We say that D2g(x) exists if x
is a point of differentiability of ∂g (in which case, ∂g(x) is single-valued so that also ∇g(x)
exists) and is symmetric; the version of Alexandrov’s theorem in [30] shows that it is the case
almost everywhere in the domain of g.

Lemma 5.1. Let g : Rd → R be strongly convex. Then
1. D2g(x) = ∇(∇g)(x) exists and is nonsingular (detD2g(x) 6= 0) a.e. in dom g;
2. If D2g exists and is nonsingular at x, then D2g∗(∇g(x)) exists and is D2g(x)−1.
3. If D2g∗(p) exists and is nonsingular, x = ∇g∗(p), then p = ∇g(x), and D2g(x) exists (and is

nonsingular).

Proof. The first statement is, as said, a version of Alexandrov’s theorem The gradient
itself, ∇g, is defined also almost everywhere, yet in the statement one can also use the sub-
gradient and the definition of ∇(∂g) provided in [37]. The fact that D2g(x) is nonsingular
a.e. follows from the strong convexity, as if g is γ-convex then clearly D2g ≥ γI (using for
instance that g(·)− γ‖ · ‖2/2 is convex).

One has that D2g(x) exists if and only if there is a symmetric matrix (obviously denoted
D2g(x)) such that for almost all y near x, ∇g(y) = ∇g(x) + D2g(x) · (y − x) + o(‖y − x‖),
or following [37, Def. 2.1], ∂g(y) ⊂ B(∇g(x) +D2g(x) · (y − x), o(‖y − x‖)). Hence for η > 0
small,

∇g(x) + η ⊂ ∂g(∇g∗(∇g(x) + η))

= ∇g(x) +D2g(x) · (∇g∗(∇g(x) + η)− x) + o(‖∇g∗(∇g(x) + η)− x‖).

Since ∇g∗ is Lipschitz, ‖∇g∗(∇g(x) + η)− x‖ = O(‖η‖), so that:

η = D2g(x) · (∇g∗(∇g(x) + η)− x) + o(‖η‖)

and it follows, since D2g(x) is nonsingular, that

∇g∗(∇g(x) + η) = x+ (D2g(x))−1η + o(‖η‖) = ∇g∗(∇g(x)) + (D2g(x))−1η + o(‖η‖)

which shows the thesis.
The last statement is proved similarly. Let x = ∇g∗(p) so that p ∈ ∂g(x). The version of

the local inversion theorem in [30, Thm. 4.1] applied to the continuous function ∇g∗ shows
that since D2g∗(p) is non-singular, there is a neighborhood Bx of x and a neighborhood Bp
of p such that for each y ∈ Bx, there exists q ∈ Bp with ∇g∗(q) = y, so that q ∈ ∂g(y);
in addition C−1‖q − p‖ ≤ ‖y − x‖ ≤ C‖q − p‖ for some constant C, depending only on the
eigenvalues of D2g∗(p).

In particular, ∂g(y) → p as y → x, and one deduces that ∂g(x) is single-valued, in other
words, p = ∇g(x). We then write, for q ∈ ∂g(y):

y = ∇g∗(q) = ∇g∗(∇g(x)) +D2g∗(∇g(x)) · (q −∇g(x)) + o(‖q −∇g(x)‖)
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and thanks to the inversion theorem above, observe that o(‖q − ∇g(x)‖) = o(‖y − x‖). We
deduce that q = ∇g(x)+D2g∗(∇g(x))−1 ·(y−x)+o(‖y−x‖), so that D2g(x) = D2g∗(∇g(x))−1

exists.

Lemma 5.2. Let g be convex with Lipschitz gradient, τ > 0. Then: ∇ proxτg(x) exists and
is symmetric, if and only if D2g(proxτ g(x)) exists. One has in addition:

∇ proxτg(x) = 1
τ

[
1
τ I +D2g(proxτg(x))

]−1
.

The proof can be deduced from [15, Appendix]. We sketch it for convenience.

Proof. D2g(proxτg(x)) exists if and only if D2g(proxτg(x))+ 1
τ I = D2(g+ ‖·‖

2

2τ )(proxτg(x))

exists. Then Lemma 5.1 implies that D2(g∗) 1
τ
(∇g(proxτg(x)) + 1

τ proxτg(x)) = D2(g∗) 1
τ
(xτ )

(cf. (4.1)) exists, and is (D2g(proxτg(x)) + 1
τ )−1. The converse also is true, using that ∇g is

Lipschitz, so that (g∗)1/τ is strongly convex, and Lemma 5.1 again. The conclusion follows
from (4.3).

Lemma 5.3. Let g be strongly convex, and let p ∈ ∂g(x). Then D2g∗(p) exists if and only
if ∇ proxτg(x+ τp) exists (and is symmetric). Precisely, one has

∇ proxτg(x+ τp) = I −
[
I + 1

τD
2g∗(p)

]−1
.

Proof. Observe that x+ τp ∈ x+ τ∂g(x) hence x = proxτg(x+ τp). By Moreau’s identity,
∇ proxτg(x + τp) exists if and only if ∇ prox 1

τ
g∗(

x
τ + p) does. By the previous lemma this is

true if and only if D2g∗(prox 1
τ
g∗(

x
τ + p)) exists. Using (4.2), prox 1

τ
g∗(

x
τ + p) = 1

τ (x + τp −
proxτg(x+ τp)) = p. The first part of the thesis follows. One has also, using again (4.2) and
the previous Lemma,

∇ proxτg(x+ τp) = I −∇ prox 1
τ
g∗(x+ τp)

= I − τ
[
τI +D2g∗

(
prox 1

τ
g∗
(
x
τ + p

))]−1
= I −

[
I + 1

τD
2g∗(p)

]−1
.

Proof of Theorem 2.1. The first fixed point equation (2.4) reads

X = ∇ proxτg(xK − τK∗yK) ·
[
X − τ(K∗Y +∇x`(xK , yK))

]
.

We have −K∗yK ∈ ∂g(xK) by optimality of (xK , yK). Hence if we assume that g is strongly
convex, and that the equation is well defined, that is, ∇ proxτg(xK − τK∗yK) exists and in
addition is symmetric, then thanks to Lemma 5.3 this equation is equivalent to:

X = X − τ(K∗Y +∇x`(xK , yK))−
[
I + 1

τD
2g∗(−K∗yK)

]−1
(X − τ(K∗Y +∇x`(xK , yK))) ,

that is,

(5.1) X = −D2g∗(−K∗yK) (K∗Y +∇x`(xK , yK)) .
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Equivalently, one finds that if the second equation in (2.4) makes sense and is true, then f
has a second derivative at Kx and it holds:

(5.2) Y = D2f(KxK)(KX +∇y`(xK , yK)).

Now let L ∈ Rm×n and assume (xs, ys) is the solution of the saddle-point problem (S)
for K replaced with K + sL, for s > 0 small. One has therefore (K + sL)∗ys + ∂g(xs) 3 0,
−(K + sL)xs + ∂f∗(yx) 3 0. Denote ps := −(K + sL)∗ys ∈ ∂g(xs), p = −K∗yK ∈ ∂g(xK),
qs := (K + sL)xs ∈ ∂f∗(ys), q = KxK ∈ ∂f∗(yK), and denote also ξs = (xs − xK)/s,
ηs = (ys − yK)/s. One has

(5.3) K∗ηs + L∗ys +
ps − p
s

= 0, −(Kξs + Lxs) +
qs − q
s

= 0

Hence (multiplying the first equation by ξs, the second by ηs, using the strong convexity of g
and f∗ and summing we get:

γ‖ξs‖2 + δ‖ηs‖2 ≤ −ξs · (K∗ηs + L∗ys) + ηs · (Kξs + Lxs) = (Lxs) · ηs − (L∗ys) · ξs
and it follows that ξs, ηs are uniformly bounded as s → 0. As a consequence, along some
subsequence (si)i≥0, si → 0, one has ξsi → ξ, ηsi → s and

lim
i→∞

psi − p
si

= −(K∗η + L∗yK), lim
i→∞

qsi − q
si

= Kξ + LxK .

In addition, we remark that since ∇g∗ is differentiable at p (Lemma 5.3),

xs = ∇g∗(ps) = ∇g∗(p) + sD2g∗(p)
ps − p
s

+ o(s) = x+ sD2g∗(p)
ps − p
s

+ o(s)

so that in the limit i→∞, one finds

(5.4) ξ = −D2g∗(−K∗yK)(K∗η + L∗yK), η = D2f(KxK)(Kξ + LxK).

We have

(5.5) lim
i→∞

L(K + siL)− L(K)

si
= ξ · ∇x`(xK , yK) + η · ∇y`(xK , yK) =: ∆.

We compute, using (5.4) and (5.1)

ξ · ∇x`(xK , yK) = −D2g∗(−K∗yk)(K∗η + L∗yK) · (K∗Y +∇x`(xK , yK))− ξ · (K∗Y )

= (K∗η + L∗yK) ·X − ξ · (K∗Y )

and, using (5.2),

η · ∇Y `(xK , yK) = D2f(KxK)(Kξ + LxK) · (KX +∇y`(xK , yK))− η · (KX)

= (Kξ + LxK) · Y − η · (KX).

Summing, we deduce

∆ = (K∗η + L∗yK) ·X − ξ · (K∗Y ) + (Kξ + LxK) · Y − η · (KX) = yK · (LX) + Y · (LxK).

In particular, the limit in (5.5) is independent on the sequence (si) and we deduce that L
is differentiable at K, with ∇L(K) = yK ⊗X + Y ⊗ xK . This proves Theorem 2.1.
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6. Error analysis and convergence. In this section we prove first Theorem 2.3, and then
Theorem 2.2, which relies on a similar but slightly more complicated analysis. With respect
to the previous result, we have to assume in addition that f and g∗ are locally C2,α for some
parameter α > 0. (We point out that a variant of Theorem 2.3 would still remain valid with
a less precise modulus of continuity for the Hessians of f and g∗, as is clear from the proof.)

6.1. Proof of Theorem 2.3. We assume (x, y) and (x′, y′) are approximations of (xK , yK),
with max{‖x−xK‖, ‖x′−xK‖, ‖y−yK‖, ‖y′−yK‖} ≤ ε for some ε > 0. The iterates defining
(Xk, Y k) can be written, using (4.1) and (4.2):

Xk+1 = 1
τD

2(g∗) 1
τ
(xτ −K∗y) ·

(
Xk − τ(K∗Y k +∇x`(x, y))

)
Y k+1 = 1

σD
2f 1

σ
(y
′

σ +Kx̄′) ·
(
Y k + σ(KX̄k+1 +∇y`(x′, y′))

)
.

with X̄k+1 = Xk+1 + θ(Xk+1 −Xk). Let us introduce (X,Y ) the fixed point of the problem:

X = 1
τD

2(g∗) 1
τ
(xτ −K∗y) · (X − τ(K∗Y +∇x`(x, y)))

Y = 1
σD

2f 1
σ

(y
′

σ +Kx′) ·
(
Y + σ(KX +∇y`(x′, y′))

)
.

Then, the iterates are solving a standard primal-dual algorithm optimizing a strongly convex
/ strongly concave saddle-point problem with solution this fixed point (X,Y ). We know
from [8, 10] that for a good choice of the parameters, such as µ = 2

√
γδ/‖K‖, θ ∈ [1/(1+µ), 1]

τ = µ/(2γ) and σ = µ/(2δ) we obtain, letting ω = (1 + θ)/(2 + µ) ≤ θ, that

(6.1) γ‖Xk −X‖2 + (1− ω)δ‖Y k − Y ‖2 ≤ Cωk.

The next step is to estimate ‖X −XK‖ and ‖Y − YK‖. Recall that (XK , YK) satisfy

XK = 1
τD

2(g∗) 1
τ
(xKτ −K∗yK) · (XK − τ(K∗YK +∇x`(xK , yK)))

YK = 1
σD

2f 1
σ

(yKσ +KxK) · (YK + σ(KXK +∇y`(xK , yK))) .

Substracting the equations for XK from the equation for Xk+1, we get:

(6.2) X −XK =
1
τD

2(g∗) 1
τ
(xτ −K∗y) · (X −XK − τK∗(Y − YK)− τ(∇x`(x, y))−∇x`(xK , yK)))

+ 1
τ

[
D2(g∗) 1

τ
(xτ −K∗y)−D2(g∗) 1

τ
(xKτ −K∗yK)

]
· (XK − τ(K∗YK +∇x`(xK , yK))) .

One has by assumption that ‖∇x`(x, y)−∇x`(xK , yK)‖ ≤ Cε, for some constant C depending
on ` (near (xK , yK), as we assumed ` is C1), and thanks to Lemma 4.1,∥∥∥D2(g∗) 1

τ
(xτ −K∗y)−D2(g∗) 1

τ
(xKτ −K∗yK)

∥∥∥ ≤ Cεα.
Hence, (6.2) can be rewritten as

X −XK = 1
τD

2(g∗) 1
τ
(xτ −K∗y) · (X −XK − τ(K∗(Y − YK) + uX)) + vX ,
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where the error terms satisfy ‖uX‖ ≤ Cε and ‖vX‖ ≤ Cεα. Similarly,

Y − YK = 1
σD

2f 1
σ

(y
′

σ −K∗x′) · (Y − YK + σ(K(X −XK) + uY )) + vY ,

with obvious notation and the same control on the error terms. Letting then X̃ = X − vX
and Ỹ = Y − vY , this is the same as:

(6.3) X̃ −XK = 1
τD

2(g∗) 1
τ
(xτ −K∗y) ·

(
X̃ −XK − τ(K∗(Ỹ − YK) + eX)

)
,

with eX = uX +K∗vY − vX/τ , and

(6.4) Ỹ − YK = 1
σD

2f 1
σ

(y
′

σ −K∗x′) ·
(
Y − YK + σ(K(X̃ −XK) + eY )

)
with eY = uY +KvX + vY /σ.

We then recall that if A is a semidefinite positive matrix in Rd and η = Aξ, then ξ · η ≥
‖η‖2/‖A‖, and we get:

(1 + τγ)‖X̃ −XK‖2 ≤
(
X̃ −XK − τ(K∗(Ỹ − YK) + eX)

)
· (X̃ −XK)

(1 + σδ)‖Ỹ − YK‖2 ≤
(
Ỹ − YK + σ(K(X̃ −XK) + eY )

)
· (Ỹ − YK).

Summing and rearranging, we deduce

γ‖X̃ −XK‖2 + δ‖Ỹ − YK‖2 ≤ −eX · (X̃ −XK)) + eY · (Ỹ − YK) ≤ ‖eX‖
2

γ
+
‖eY ‖2
δ
≤ Cε2α.

By definition of (X̃, Ỹ ), we see that a similar error control holds for (X,Y ). Theorem 2.3 is
obtained by combining this estimate together with (6.1).

6.2. Convergence of the Piggyback algorithm. The proof of the piggyback algorithm
is almost the same, only slightly more complicated as it corresponds to solving directly the
saddle-point problem defining (XK , YK), but with an inexact primal-dual method, such as
studied in [44]. Again, an obvious observation is that, thanks to [8, Thm. 3], choosing µ =
2
√
γδ/‖K‖, θ ∈ [1/(1 + µ), 1], τ = µ/(2γ) and σ = µ/(2δ) we have, for ω = (1 + θ)/(2 + µ),

γ‖xk − xK‖2 + (1− ω)δ‖yk − yK‖2 ≤ Cωk
(
γ‖x0 − xK‖2 + (1− ω)δ‖y0 − yK‖2

)
,

so that we have the linear convergence ‖xk − xK‖+ ‖yk − yK‖ ≤ Cωk/2.
Substituting as before the iterations for Xk+1 and and the fixed-point equation for XK ,

we obtain now:

(6.5) Xk+1 −XK =

1
τD

2(g∗) 1
τ
(x

k

τ −K∗yk) ·
(
Xk −XK − τK∗(Y k − YK)− τ(∇x`(xk, yk))−∇x`(xK , yK))

)
+ 1

τ

[
D2(g∗) 1

τ
(x

k

τ −K∗yk)−D2(g∗) 1
τ
(xKτ −K∗yK)

]
· (XK − τ(K∗YK +∇x`(xK , yK))) .
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One has ‖∇x`(xk, yk) − ∇x`(xK , yK)‖ ≤ Cωk/2 for some constant C depending on ` (near
(xK , yK)), and thanks to Lemma 4.1,∥∥∥D2(g∗) 1

τ
(x

k

τ −K∗yk)−D2(g∗) 1
τ
(xKτ −K∗yK)

∥∥∥ ≤ Cωkα/2.
Hence, (6.5) can be rewritten as

Xk+1 −XK = 1
τD

2(g∗) 1
τ
(x

k

τ −K∗yk) ·
(
Xk −XK − τK∗(Y k − YK) + ukX

)
+ vkX ,

where the error terms satisfy global bounds ‖ukX‖ ≤ Cωk/2 and ‖vkX‖ ≤ Cωkα/2. Similarly,

Y k+1 − YK = 1
σD

2f 1
σ

(y
k

σ −K∗x̄k) ·
(
Y k − YK + σK(X̄k+1 −XK) + ukY

)
+ vkY ,

with obvious notation and the same control on the error terms.
One finds as previously, after taking the scalar product of (6.2) with Xk+1 −Xk − vk,

(1 + τγ)‖Xk+1 −XK − vkX‖2 ≤
(
Xk −XK − τ(K∗(Y k − YK) + ukX)

)
·
(
Xk+1 −XK − vkX

)
.

We let, for all k ≥ 1, ekX := ukX−vk−1X /τ+K∗vk−1Y and denote X̃k = Xk−vk−1X , Ỹ k = Y k−vk−1Y ,
and we fall back in the situation of the smoother case which was considered in [11, Appendix]:

(1 + τγ)‖X̃k+1 −XK‖2 ≤
(
X̃k −XK − τK∗(Ỹ k − YK) + τekX

)
·
(
X̃k+1 −XK

)
= 1

2‖X̃k −XK‖2 + 1
2‖X̃k+1 −XK‖2 − 1

2‖X̃k+1 − X̃k‖2

− τ(Ỹ k − YK) ·K(X̃k+1 −XK) + τekX · (X̃k+1 −XK).

We deduce:

(6.6) 1+µ
2τ ‖X̃k+1 −XK‖2 + 1

2τ ‖X̃k+1 − X̃k‖2

≤ 1
2τ ‖X̃k −XK‖2 − (Ỹ k − YK) ·K(X̃k+1 −XK) + ekX · (X̃k+1 −XK).

In the same way, denoting ekY := ukY + vk−1Y /σ +K∗(vkX + θ(vkX − vk−1X )), we have:

(6.7) 1+µ
2σ ‖Ỹ k+1 − YK‖2 + 1

2σ‖Ỹ k+1 − Ỹ k‖2

≤ 1
2σ‖Ỹ k − YK‖2 + (Ỹ k+1 − YK) ·K( ¯̃Xk+1 −XK) + ekY · (Ỹ k+1 − YK),

with obviously ¯̃Xk+1 = X̃k+1 + θ(Xk+1 −Xk).
Now, we follow [44], where the techniques of [8, 10] are adapted to an inexact setting,

with a control of the errors. The algorithm in [8] is presented a bit differently, actually,
the over-relaxation step is performed before the two updates. In this form, the analysis of
the linearly converging version is much easier. We therefore combine the inequalities (6.6)
and (6.7) at respectively the steps k and k − 1. We start by letting for all k ≥ 1, ∆k :=
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‖X̃k − XK‖2/(2τ) + ‖Ỹ k−1 − YK‖2/(2σ), then we sum the estimates (at rank k for X and
k − 1 for Y ) to obtain:

(1 + µ)∆k+1 + 1
2τ ‖X̃k+1 − X̃k‖2 + 1

2σ‖Ỹ k − Ỹ k−1‖2

≤ ∆k − (Ỹ k − YK) ·K(X̃k+1 − ¯̃Xk).+ ekX · (X̃k+1 −XK) + ek−1Y · (Ỹ k − YK),

and thus:

(1 + µ)∆k+1 + (Ỹ k − YK) ·K(X̃k+1 − X̃k) + 1
2τ ‖X̃k+1 − X̃k‖2

≤ ∆k + θ(Ỹ k−1 − YK) ·K(X̃k − X̃k−1) + θ
2τ ‖X̃k − X̃k−1‖2

+ ekX · (X̃k+1 −XK) + ek−1Y · (Ỹ k − YK).

To control the error terms, we observe that:

(6.8) ekX · (X̃k+1 −XK) + ek−1Y · (Ỹ k − YK)

≤ µ

4τ
‖X̃k+1 −XK‖2 +

τ

µ
‖ekX‖2 +

µ

4σ
‖Ỹ k − YK‖2 +

σ

µ
‖ek−1Y ‖2 ≤ µ

2
∆k+1 + Cωkα,

obtaining eventually:

(1 + µ
2 )∆k+1 + (Ỹ k − YK) ·K(X̃k+1 − X̃k) + 1

2τ ‖X̃k+1 − X̃k‖2

≤ ∆k + θ(Ỹ k−1 − YK) ·K(X̃k − X̃k−1) + θ
2τ ‖X̃k − X̃k−1‖2 + Cωkα

To simplify, we choose θ = 1/(1 + µ/2) = 2/(2 + µ). We remark that the left-hand side term
in the previous expression is always non-negative (using

√
τσ‖K‖ ≤ 1): hence the inequality

remains valid if it is multiplied by a factor less than one. Introducing ρ = max{θ, ωα/2} < 1,
one therefore has:

ρ−1
(

∆k+1 + θ(Ỹ k − YK) ·K(X̃k+1 − X̃k) + θ
2τ ‖X̃k+1 − X̃k‖2

)
≤ ∆k + θ(Ỹ k−1 − YK) ·K(X̃k − X̃k−1) + θ

2τ ‖X̃k − X̃k−1‖2 + Cωkα

Summing again from k = 1 to n− 1 after multiplication with ρ−k, we get:

ρ−n
(

∆n + θ(Ỹ n−1 − YK) ·K(X̃n − X̃n) + θ
2τ ‖X̃n − X̃n−1‖2

)
≤ ∆1 + θ(Ỹ 0 − YK) ·K(X̃1 − X̃0) + θ

2τ ‖X̃1 − X̃0‖2 + C
n−1∑
k=1

ρ−kωkα

Our choice of ρ guarantees that the last sum is finite, bounded by C/(1− ωα/2). We deduce
that

∆n + θ(Ỹ n−1 − YK) ·K(X̃n − X̃n) + θ
2τ ‖X̃n − X̃n−1‖2 ≤ Cρn

for some constant C > 0, and in particular, using again that
√
τσ‖K‖ ≤ 1 we deduce that

1
2τ ‖X̃n −XK‖2 + 1−θ

2σ ‖Ỹ n−1 − YK‖2 ≤ Cρn

showing that (X̃n, Ỹ n), and hence also (Xn, Y n), converges linearly to (XK , YK).
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7. Application to Shearlets. We close this paper by applying the proposed piggyback
algorithm to the problem of learning an optimized shearlet transform, which is a wavelet-like
transform but somewhat optimized for the task of recovering piecewise smooth images with
smooth boundaries.

The application of shearlets in image processing was motivated by the shortcomings of
wavelets, which despite being a very powerful tool in signal processing are not well suited
for images due to their anisotropic nature. Rotations can capture the anisotropy of images,
but they are hard to digitize on a discrete grid, whereas shearing operations used in shearlets
can be faithfully discretized [32]. Using a piggyback algorithm, the parameters of a shearlet
system can be learned for solving a convex minimization problem.

7.1. Digital Shearlet Transform. To setup a shearlet system the frequency domain is
divided into a cone-like partition, which avoids an extensive elongation of shearlets at higher
shearing levels. We use a non-separable shearlet generator to obtain a wedge-like support in the
frequency domain, which was first proposed by Lim [34] and discussed in detail by Kutyniok
et al. [33]. To construct a digital shearlet system, scaling j > 0, translations m ∈ Z2, and
shearing |k| ≤ d2j/2e have to be set, where j/2 ∈ Z is assumed, else bj/2c is taken. A 1D
low-pass filter h1 and a 2D directional filter P are the basic building blocks. The 1D filters
hJ−j/2 and gJ−j are derived from h1 in a wavelet multiresolution analysis which are tensorized
to yield Wj = gJ−j ⊗ hJ−j/2, and pj are the Fourier coefficients of P . The digital shearlet

ψdj,k ∈ CM×N for a scale j and shearing k is then computed by

ψdj,k =
[(
Sk
(
(pj ∗Wj)↑2j/2 ∗1 hj/2

))
∗1 h̄j/2

]
↓2j/2

,

where up-sampling and down-sampling operations ensure that the shearing operator Sk/2j/2
is well defined on the discrete grid, since shearlets are generated by ψj,k(·) = ψj,0(Sk/2j/2 ·).
The flipped filter h̄(n) = h(−n) indicates the reversal of the convolution. Finally, the digital
shearlet transform applied to an image u ∈ RM×N is given by

DSTj,k(u) = ψdj,k ∗ u.
7.2. Saddle-Point Formulation. We consider an imaging problem as in (P) with a shear-

let operator S : X → Y, u, z ∈ X ' RM×N , and p ∈ Y ' Rn×M×N . The shearlet regularized
minimization problem is defined as

(7.1) min
u
g(u, z) +

n∑
i=1

MN∑
j=1

√
(λiSiu)2j + ε2,

which can be interpreted as a smooth approximation of a sparsity inducing `1 penalization of
the shearlet coefficients. Observe that the formulation recovers the standard `1 penalization
for ε→ 0. The function g(u, z) can be any convex function promoting data fidelity for a given
input z. We use the standard choice g(u, z) = µ

2‖u− z‖2 for denoising Gaussian noise.
Transforming (7.1) into a saddle-point problem yields

(7.2) min
u

max
p
g(u, z) +

n∑
i=1

(
〈λiSiu, pi〉 − f∗(pi)

)
,
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with f∗(pi) = −ε∑MN
j=1

√
1− p2ij + δ|·|≤1(pij), which can be solved by a standard primal-dual

algorithm [8] as long as the proximal maps with respect to the nonlinear functions are easy
to compute. While the proximal map of g is easy by construction, the proximal map of f∗,
which is the dual of the smoothed `1 norm, is more involved. It is solved with a projected
Newton method which consists of finding the correct root of the pointwise quartic equation

p4ij − 2p̃ijp
3
ij + (p̃2ij − 1 + σ2ε2)p2ij + 2p̃ijpij − p̃2ij = 0,

and re-projecting onto to the constraint δ|·|≤1. Although a closed form solution for the quartic
equations is clearly available, we use Newton’s algorithm which (when properly initialized)
recovers the correct root within a few (5-10) iterations.

7.3. Learning the Shearlet Parameters. The regularization weights λi, the scaling func-
tion h1, and the 2D fan filter P can be optimized with the piggyback algorithm. These
parameters θ = {λi, h1, P} are learned with a set of input images {z1, ..., zL} and correspond-
ing targets {t1, ..., tL} by minimizing

(7.3) min
θ={λi,h1,P}

L(θ) +R(θ) :=
1

MNL

L∑
l=1

`(u∗l (θ), tl) +R(θ).

A quadratic loss function is chosen and the regularization on the learned parameters R(θ)
ensures that

∑
n h1(n) = 1, λi ∈ R+, and

∑
i |Pi| = 1. The solution to the saddle-point

problem defined in (7.2) is u∗l (θ), which amounts to the lower level solution in the bilevel
optimization problem. For the piggyback primal-dual algorithm, we compute the saddle-
point uK , pK and its adjoint states UK , PK using Algorithm 1, which are the solutions to the
biquadratic saddle-point problem as stated in (2.3).

Algorithm 1: Piggyback primal-dual algorithm for solving (7.2) and its adjoint.
• Initialization: u0, U0 ∈ X , p0, P 0 ∈ Y.
• Step sizes: Choose the step sizes τ, σ such that στL2 ≤ 1.
• Iterations: For each k = 0, . . . ,K − 1 let

(7.4)



ũk+1 = uk − τSTλpk, Ũk+1 = Uk − τ(STλpk +∇u`(uk, t))
uk+1 = proxτg(ũ

k+1), Uk+1 = ∇ proxτg(ũ
k+1) · Ũk+1

ūk+1 = 2uk+1 − uk, Ūk+1 = 2Uk+1 − Uk
p̃k+1 = pk + σλSūk+1, P̃ k+1 = P k + σλSŪk+1

pk+1 = proxσf∗(p̃
k+1), pk+1 = ∇ proxσf∗(p̃

k+1) · P̃ k+1.

• Output: Approximate saddle-point (uK , pK) and corresponding adjoint state
(UK , PK).

After K iterations of the piggyback primal-dual algorithm (Algorithm 1), the derivatives of
`(u∗, t) with respect to the parameters θ are given by

〈∇θ`(u∗, t), θ〉 = 〈uK , STPK〉+ 〈PK , SuK〉,
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which are computed with automatic differentiation provided by PyTorch. The parameters are
then updated using an accelerated proximal gradient descent scheme described in Algorithm 2,
where the projection for each parameter depends on the specified constraint.

Algorithm 2: Accelerated proximal gradient method for solving (7.3)
• Initialization: θ0 = {λ0i , h01, P 0}.
• Step sizes: Choose ηs > 0, βs ∈ [0, 1).
• Iterations: For s = 0, . . . , S − 1 let

(7.5)

{
θ̄s = θs + βs(θs − θs−1)
θs+1 = proj(θ̄s − ηs∇L(θ̄s)).

• Output: Learned parameters θS = {λSi , hS1 , PS}.
7.4. Results. In this section we show results for learned parameters θ = {λi, h1, P} of a

shearlet system used as a regularizer in natural image denoising, a convex imaging application
described in Section 7.2. We generate training and test datasets each comprised of 32 images
of size 256×256, which are randomly sampled from the BSDS500 dataset [1]. The images are
corrupted with i.i.d. zero-mean Gaussian noise with a standard deviation of σ = 0.05.
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Figure 7.1. Initial (top) and learned (bottom) parameters of a shearlet system with 2 scales. The learnable
parameters consist of the regularization parameter λi that allows to individually balance different scales and
shear levels and the filters h1 and P that govern the construction of shearlets ψj,k.

For the piggyback algorithm (Algorithm 1) K = 50 iterations are computed and a warm-
starting initialization scheme is used for both u and p and their adjoint variables to get more
accurate results. The primal and dual step sizes were set to their theoretically optimal values,
based on the settings of µ, ε. For the learning setting S = 1000 gradient update steps of
Algorithm 2 are performed to ensure a sufficient number of iterations for the loss function to
stabilize. The inertial parameter is set to βs = 0.7 and the step size is set to ηs = 10−2.
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(a) ground truth sample test images tl. (b) noisy sample images zl.

(c) sample denoised images ul with initial shearlet
system parameters and global λ = 1.33.

(d) sample denoised images ul with learned shearlet
system parameters shown in Figure 7.1.

Figure 7.2. Sample denoised images from the test set with accompanying PSNR values comparing initial
and learned shearlet parameters. The corrupted test images were denoised using shearlet regularization based
on initial shearlet parameters with a global λ = 1.33 (mean PSNR 30.09 dB) and learned shearlet parameters
with the piggyback primal-dual algorithm (mean PSNR 31.2 dB).

The initial and learned parameters for a shearlet system with 2 scales used to solve the
denoising problem in Equation 7.2 with ε = 10−4 are shown in Figure 7.1. The regularization
parameter λi allows to individually balance the shearlets ψj,k ordered by scale j = {0, 1} and
shearing k = {−2, ..., 2}, i.e. {ψ0,−2, ..., ψ0,2, ψ1,−2, ..., ψ1,2} for the first frequency cone and
analogously for the second. The learned λi are similar among both frequency cones, which is
manifested in the repeating pattern and shearlets at the higher scale are given more weight
to emphasize high frequency details in images. The optimized low-pass filter h1 exhibits only
minor numerical changes where the overall filter structure remains the same. The learned
2D directional filter P shows noticeable deviations from its initialization, which significantly
impacts the resulting shearlets. Further enhancing the directional selectivity benefits the task
of shearlet regularized image denoising while preserving the wedge shaped frequency support
of the generated shearlets.

Samples of denoised test images are shown in Figure 7.2, where input images were denoised
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using shearlet regularization with ε = 10−4 for two different parameter settings. First, initial
parameters for h1 and P and a global, hand-tuned λ = 1.33 were used while the second
setting is based on the learned parameters shown in Figure 7.1. Corresponding quantitative
peak signal-to-noise ratio (PSNR) values are shown for each sample image which emphasize
the qualitative visual improvement. Using shearlet regularization with initial parameters and
a global λ delivers results with a mean PSNR of 30.09 dB compared to 26.02 dB in the
noisy input images, provided that a suitable regularization parameter λ is chosen. However,
optimizing shearlet parameters and individually weighting the shearlets with λi increases the
mean PSNR to 31.2 dB which is supported in the enhanced visual quality of the denoised
images. This can be further observed in the enlarged sections in Figure 7.2, where higher
frequent structures in (c) associated with remaining noise or minor artifacts from shearlet
regularization are removed in (d) when using the learned shearlet parameters.

Furthermore, different settings for ε governing the smoothness of the regularizing function
were compared. As ε is decreased, the regularizing function approximates an `1 penalization,
while still fulfilling the assumption that g∗ and f in (S) are C2,α functions. 500 iterations of a
primal-dual algorithm are performed to denoise the test dataset by solving Equation 7.2 using
the learned shearlet parameters for the corresponding cases of ε. Quantitative results for mean
squared error (MSE) and mean PSNR for both the initial and optimized shearlet transforms
are summarized in Table 7.1, showing improved results with decreasing ε. For the sake of
completeness, the case ε = 0 penalizing the shearlet coefficients with the `1 norm is included,
indicating that a penalizing function with ε = 10−4 is already a very good approximation in
terms of quantitative error scores. Moreover, it shows robustness of the piggyback algorithm
which works even in the case of less regular functions.

Table 7.1
Comparison between the performance of the initial shearlet transform (hand tuned) and the optimized

shearlet transform for various setting of the smoothing parameter ε. Note that the learned transform clearly
outperforms the initial shearlet transform and that smaller settings of ε lead to better results.

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 0
MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR

Initial 0.002143 26.7 0.001344 28.77 0.001076 29.93 0.001051 30.09 0.00105 30.1

Optimized 0.001173 29.46 0.000985 30.27 0.000846 30.99 0.000814 31.2 0.000813 31.2
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[47] Ala Taftaf, Valérie Pascual, and Laurent Hascoët. Adjoints of fixed-point iterations. In 11th World
Congress on Computational Mechanics (WCCM XI), 2014.

[48] Marshall F. Tappen. Utilizing variational optimization to learn markov random fields. In 2007 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[49] Cédric Vonesch, Sathish Ramani, and Michael Unser. Recursive risk estimation for non-linear image
deconvolution with a wavelet-domain sparsity constraint. In 2008 15th IEEE International Conference
on Image Processing, pages 665–668. IEEE, 2008.


	Introduction
	Derivatives of saddle-points
	(Accelerated) forward-backward splitting
	Convex functions, prox operator
	Moreau's proximity operator
	Regularity of the Moreau-Yosida regularization

	Proof of Theorem 2.1
	Error analysis and convergence
	Proof of Theorem 2.3
	Convergence of the Piggyback algorithm

	Application to Shearlets
	Digital Shearlet Transform
	Saddle-Point Formulation
	Learning the Shearlet Parameters
	Results


