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Transition in the Flow of Power-Law Fluids through Isotropic Porous Media
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2Total, CSTJF, Avenue Larribau, 64018 Pau, France

We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic
porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure
rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition
between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the
viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be
condensed into an effective length scale, which defines both the non-Newtonian transition and the
Newtonian permeability.
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The creeping flow of complex fluids through porous
media embraces a wide variety of applications such as blood
flow in vascular networks [1] or enhanced oil recovery [2–4].
Understanding and modeling such systems has proven a
considerable challenge, as they intricately couple the non-
linear effects of non-Newtonian fluids with the multiscale
nature of porous media. Linear transport phenomena in
porous materials can often be described using homogenized
equations encapsulating the large deviations induced by
the multiscale heterogeneities—one of the hallmarks of
transport in porous media—in a limited number of effective
parameters. When the large deviations induced by the porous
structure are further coupled with the rich nonlinear behav-
iors displayed by the flow of complex fluids—shear thick-
ening and thinning, yield and cutoff effects, time-dependent
mechanisms, confinement and sorption effects—it becomes
unclear whether or not such average descriptions can
accurately describe momentum transport. For a shear-
thinning fluid, a strong nonlinear response could yield
preferential flow paths whereby the fluid might primarily
flow at large velocity in regions where it would exhibit a
relatively small viscosity, while leaving almost at rest other
regions where it exhibits a higher viscosity (see similar
effects in computations for Bingham fluids in Ref. [5]).
One would expect that such nonlinear mechanisms

would make Darcy’s law obsolete. In many instances,
however, surprisingly simple generalizations of Darcy’s
law have been shown to adequately describe the flow of
non-Newtonian fluids in porous media. For pure power-
law fluids, a modified version where hUin ∝ ∥∇hPiFL∥,
with hUi the velocity norm [6], hPiFL the hydrodynamic
pressure, and n a power-law coefficient, has been validated
experimentally [7–10], computationally [11–13], and theo-
retically [14–19]. When the fluids further display yield or
cutoff effects, there are also examples of simple macro-
scopic laws describing the flow. For instance, Chevalier and
co-workers in Refs. [9,10] show that, even though channels

may develop in a transition regime, a generalized Darcy law
can be used for Bingham fluids with the yield stress
described as a critical pressure gradient at the macroscale.
A similar approach is used for the flow of polymer
solutions behaving as power-law fluids with cutoff
(PLCO), i.e., displaying a Newtonian regime below a
critical value of the shear rate _γc. At the macroscale, these
are often modeled using Newtonian and non-Newtonian
regimes with a transition characterized empirically by a set
of parameters, an equivalent shear rate, and an effective
length scale based on the square root of the Newtonian
permeability [20–25].
These studies suggest that the porous medium may not

systematically amplify nonlinear effects and induce large
perturbations in the flow pattern. Recent studies in
Refs. [10,13], combining experimental measurements of
the flow with theoretical analyses and computations on
model systems, suggest that the primary mechanism con-
trolling the flow pattern is the geometrical constriction of
the flow, which dominates nonlinear effects. These studies
also demonstrate that there is a significant lack of under-
standing in the fundamental physics of non-Newtonian
flow through porous media, particularly concerning the link
between the microscale physics and the apparent macro-
scale behavior. In this Letter, we use computational fluid
dynamics to study (1) nonlinear effects in the rheology of
PLCO fluids and their attenuation in the porous medium,
(2) the validity of Darcy’s law, and (3) the transition from a
Newtonian to a non-Newtonian regime.
To this end, we explore numerically the flow of PLCO

fluids in a broad variety of porous geometries including
complex realistic structures obtained using x-ray micro-
tomography. We use the following generalized steady-state
Stokes equation to describe the flow:

∇ ·
h
μð_γÞ

�
∇Uþ ð∇UÞT

�i
−∇P ¼ 0; ð1Þ
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where U is the velocity field, which further satisfies
∇ · U ¼ 0, and P is the pressure field. The viscosity is a
power lawwith a simple cutoff in the limit of low shear rates:

μð_γÞ ¼
(
μ0 if _γ < _γc

μ0
�

_γ
_γc

�
n−1

otherwise;
ð2Þ

where μ0 is the viscosity in the Newtonian limit,

_γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð∇Uþ ð∇UÞTÞ∶ð∇Uþ ð∇UÞTÞ

q
, and _γc is the cut-

off value of the shear rate above which non-Newtonian
effects occur. The parameter n characterizes the response of
the fluid to the shear rate with n < 1 corresponding to shear
thinning and n > 1 to shear thickening. This expression of
the viscosity is known to properly describe the flow of a
number of polymer solutions such as xanthan or dextran
[7,8,26] and the two parameters n and _γc can be measured
via standard rheological methods. For convenience, we
further define the following averaging operators,
h•iFL ¼ ð1=jΩFLjÞ

R
ΩFL

•dV, h•i ¼ ð1=jΩjÞ RΩFL
•dV, where

ΩFL is the fluid domain andΩ the whole domain (including
the solid phase). These operators are simply connected via
the relation h•i ¼ ϕFLh•iFL, with ϕFL ¼ jΩFLj=jΩj the vol-
ume fraction of the fluid domain.
The Stokes equation is solved using the finite-volume

toolbox OpenFOAM [27] via a SIMPLE algorithm [28] with
second-order discretization in space. We use boundary
conditions similar to permeameters, whereby a macroscale
pressure gradient is obtained by imposing a uniform
pressure on the inlet and outlet faces and no-slip conditions
on other faces. A no-slip condition is also used at the

liquid-solid interface, therefore not accounting for slip
effects observed with polymer solutions [29]. For each
medium, an unstructured polyhedral mesh (hex dominant)
was generated and convergence was carefully studied. To
achieve grid convergence while maintaining the number of
elements tractable, we performed local refinements within
the pore throats; see Figs. 1(j) and 1(e). For each three-
dimensional structure, we used approximately 108 mesh
cells, and the entire work required about 105cores × h on
the supercomputer EOS-CALMIP.
Eight porous media (see Fig. 1) are investigated, six of

which are three-dimensional (1 mm3)—two Bentheimer
sandstones, B1 and B2; two Clashach sandstones, C1 and
C2; and 3D packings of beads P1 and cuboids P2—and the
other two are two-dimensional (1 mm2) arrays of cylinders
A1 and squares A2. The three-dimensional structures were
all obtained using x-ray computed microtomography, along
with standard reconstruction, filtering, and segmentation
techniques [30–32]. We do not detail these here, as x-ray
tomography data were merely used as a way to generate
complex digital structures exhibiting realistic geometrical
and topological features.
We characterize each structure using the porosity ϕFL, in

the range 0.1–0.7, along with the length scales lmin, lmax,
and lcorrðχÞ, which were calculated from chord lengths
distributions and spatial autocorrelation of the fluid indi-
cator function χ (see Refs. [33,34]) on samples of identical
sizes. The arrays A1 and A2 are ordered (largest correlation
length lcorrðχÞ) with the lowest ratio lmax=lmin. The pack-
ings P1 and P2 are moderately disordered (intermediate
correlation length) with slightly larger differences between

FIG. 1. Geometries of the porous structures. (a)–(d), (f)–(i) Two-dimensional slices of the porous media investigated. A1 and A2 are
two-dimensional arrays of cylinders and squares. P1 and P2 are three-dimensional packings of beads and cuboids. C1 and C2 are
subvolumes of a Clashach sandstone sample. B1 and B2 are subvolumes of a Bentheimer sandstone sample. Media P, C, and B were
obtained using x-ray microtomography. (e),(j) Illustration of the mesh used for the flow calculation in the pore throats. (k) Three-
dimensional representation of the porous medium with the geometry of B1 in the lower half and the corresponding streamlines colored
by shear rate in the upper half, illustrating the strong localization of viscous dissipation.



the largest and smallest pores. The sandstones B and C are
highly disordered (smallest correlation length) and display
a broad distribution of pore sizes with the largest ratio
lmax=lmin. Further details are given in the Table 1 of the
Supplemental Material [35].
Our calculations in the Newtonian regime exhibit some

of the statistical properties typical of porous media, as can be
measured experimentally (see, e.g., Refs. [38]). The flow is not
completely random, but rather is correlated with a structure
that depends on the pore scale geometry (see Fig. 1 in
Ref. [35]). The structure of the correlation function is similar
for the packings and arrays with a decay over a length scale
that is about the object’s size. For the sandstones B and C,
however, we find a length scale that is smaller, suggesting a
larger amount of randomness in the velocity fields.
The probability density functions (PDFs) of the velocity

fields, Fig. 2, are markedly different between the porous
media. The PDFs of the two-dimensional arrays are
distinctly the narrowest, displaying only cocurrent flow
and relatively small variations in velocity in comparison
with three-dimensional media. For all three-dimensional
structures, the cocurrent component of the longitudinal
velocity exhibits first a near exponential decay, but with a
much steeper slope for the packings (see also Refs. [38–40]
for media similar to P1). The sandstones are characterized
by a broader range of countercurrent flow and a distribution
of the largest velocities that deviates from an exponential
decay, a result that may have important implications for
mass dispersion models [39,40]. Consistent with Ref. [38],
we also find that the distributions of transverse velocities
for all media are not Gaussian, but are roughly symmetric
(isotropy) with near exponential decay.
The PDFs of the normalized velocity fields (Fig. 2) and

the correlation functions (Fig. 1 in Ref. [35]) are nearly
invariant with respect to the flow regime, highlighting that
the statistics for non-Newtonian flow are only slightly
perturbed from the Newtonian case. This is in sharp

contrast with the large above-described differences in the
flow statistics between porous structures [see also PDFs
for shear rates in Fig. 3(a)], suggesting that the flow pattern
is controlled by the porous structure which dominates
nonlinear effects. This type of negative feedback between
the porous medium and the nonlinear rheology was already
observed for Bingham fluids in Refs. [10,13,41].

For each medium, we study the flow as the pressure
gradient, and therefore the average velocity, is increased
[see PDFs of the shear rate for P1 in Fig. 3(b)]. In the limit
of small pressure gradients, the maximum value of the
shear rate remains below _γc. As the average velocity
increases, the distributions of the shear rate progressively
translate towards larger values of _γ until the pore throats
and regions close to surfaces where the shear rate is
maximum reach _γc and become non-Newtonian. As we
further increase the pressure gradient, the domain that is
affected progressively extends towards the centers of the
pores [see Fig. 3(c) and Ref. [35]). Eventually, for large
average velocities, the whole fluid domain becomes

FIG. 3. PDFs of the shear rate for (a) an average velocity
1 μm · s−1 for all eight media and (b) medium P1 at different flow
regimes. (c) Normalized viscosity field for P1 and the three
average velocities in (b). Rheology: _γc ¼ 1 s−1 and n ¼ 0.75.
Lines are a guide to the eyes.

FIG. 2. PDFs of the dimensionless longitudinal U�
z ¼ Uz=hUi

and transverse U�
y ¼ Uy=hUi components of the velocity fields

for four porous media under Newtonian (n ¼ 1.00) and non-
Newtonian (n ¼ 0.75 and more than 80% of the fluid being non-
Newtonian) flow conditions. Insets correspond to a magnification
of the PDFs for A2. Lines are a guide to the eyes.



non-Newtonian. The transition for the different porous
structures is similar, the primary difference being the
value of hUiFL at which the fluid starts to exhibit a non-
Newtonian behavior, which is correlated with the geomet-
rical properties of the medium (see Ref. [35]).
We now focus on the macroscale behavior of PLCO

fluids and consider the validity of Darcy’s law, hUi ¼
−μ−10 k∇hPiFL. We study an apparent dimensionless per-
meability k� ¼ k=k0, where k0 is the Newtonian permeabil-
ity, which is determined numerically by calculating the
velocity hUi corresponding to an imposed pressure gradient
∇hPiFL. Results in Fig. 4(a) show two different regimes for
all porous media. In the limit of small average velocity, the
fluid is Newtonian and can be described via Darcy’s law
with a constant permeability. In the limit of large average
velocity, the shear rate exceeds the critical value for every
point in the fluid and we obtain a modified Darcy’s law with
hUin ∝ ∥∇hPiFL∥. Between these two limits, we observe a
relatively short transition joining smoothly Darcy’s law to
the regime hUin ∝ ∥∇hPiFL∥. The transition can be further
characterized by a critical velocity hUciFL defined as in
Fig. 4(a). This critical velocity is the signature of a multiscale
effect where the cutoff in the rheology of the bulk fluid
combines with the structure of the porous medium to yield a
transition characterized by the average velocity.
Interestingly, the macroscale non-Newtonian regime is

attained before every fluid point has become non-Newtonian
at the microscale. We therefore hypothesize that the macro-
scale transition corresponds to the change in the rheology of
only a subdomain of ΩFL, ΩPT, that controls the flow. Once
ΩPT is non-Newtonian, the macroscale behavior rapidly
becomes fully non-Newtonian, with hUin ∝ ∥∇hPiFL∥,
even though the microscale rheology remains a complex
mixture of Newtonian and non-Newtonian fluids [as illus-
trated in Figs. 3(b) and 3(c) herein and in Fig. 2 in Ref. [35]].
This phenomenon can be further explored to develop an
analytical expression of hUciFL in terms of k0, using the idea
that ΩPT also controls the global viscous dissipation (a

detailed derivation is given in Ref. [35]). A dimensional
analysis for the critical velocity first yields hUciFL ¼ _γcleff ,
where leff is an effective length scale that can be estimated
as leff ¼ lPT=β using a characteristic pore throat length lPT,
an acceleration parameter β ¼ ðhUiPT=hUiFLÞ > 1 and a
pore-throat averaging operator defined as h•iPT ¼
ð1=jΩPTjÞ

R
ΩPT

•dV. Using energetic considerations, we
express the permeability in terms of the global viscous
dissipation as

k0 ¼
μ0hUi2
hEi ; ð3Þ

where E is the local rate of dissipated energy by viscous
forces per unit volume. Assuming that E is strongly localized
in ΩPT (see Ref. [35]), we finally obtain

leff ≃
ffiffiffiffiffi
k0

p
: ð4Þ

Figure 4(b) confirms this theory numerically, showing that
the dimensionless velocity U� ¼ hUiFL=ð_γc

ffiffiffiffiffi
k0

p Þ predicts
the transition with relatively good accuracy, without any
fitting parameter.
In this Letter, we used computational fluid dynamics to

study nonlinear effects in the flow of PLCO fluids through
isotropic homogeneous porous media—the impact of anisot-
ropies and heterogeneities being an important extension of
this work. Our first result is that the nonlinear effects only
weakly impact the flow statistics (PDFs, correlation lengths)
and that the primary mechanism controlling the flow pattern
is the geometrical constriction of the flow, not the non-
Newtonian rheology. Secondly, we find that a relatively
small subdomain ΩPT, not the whole fluid, determines the
transition to a macroscopic non-Newtonian regime where
hUin ∝ ∥∇hPiFL∥. The third result of this Letter is a theory
providing an analytical formulation for the critical velocity at
which we obtain macroscale transition. This theory uses the
idea that ΩPT controls both the viscous dissipation and the
non-Newtonian transition to show that the effective length
scale, leff ≃ ffiffiffiffiffi

k0
p

, accurately approximates the transition
velocity. Interestingly, we remark that

ffiffiffiffiffi
k0

p
is already used to

characterize other nonlinear effects in porous media, such as
the transition from a linear (Darcy) to a quadratic drag
(Darcy-Forchheimer) [42]. This study substantiates the role
of the length scale

ffiffiffiffiffi
k0

p
in porous media sciences and

suggests a certain degree of universality in the mechanisms
governing nonlinear flows through porous media.
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This document contains supplementary materials to our paper Transition in the Flow of Power-Law Fluids
through Isotropic Porous Media. We provide additional details about the porous structures, the representation
in terms of probability density functions, the flow statistics, the transition mechanism and the corresponding
theory.

I. POROUS MEDIA STATISTICS

The eight porous media investigated in this study exhibit
very different geometrical structures, as characterized in Ta-
ble I. In addition to the porosity �FL, we analyze the geom-
etry of each porous medium using several standard metrics.
A chord distribution is calculated according to the method of
Jongerius [1] with lmin defined as the first peak in the distribu-
tion [2] andlmax the longest chord. Auto-correlation functions
(see [3, 4]) are also calculated for the fluid indicator function� ,
which value is 1 in the liquid phase and 0 in the solid phase, and
the velocity fields, U. The characteristic length scale lcorr(�),
defined as the integral of the auto-correlation function, is spe-
cific to the spatial structure [4], while lcorr(U) characterizes the
velocity fields. Table I also contains the values of the Newto-
nian permeability, k0, for each medium and the critial veloc-
ity at which the macroscale transition occurs (calculated for
̇c = 1 s−1).

Medium A1 A2 P 1 P 2 B1 B2 C1 C2
lmin 400 500 22 20 11 12 10 9
lmax∕lmin 2.5 2 4.2 4.5 5.4 5.3 6.2 6.3
lcorr(�) 150.4 159.4 32.6 53.8 26.5 27.2 29.8 29.3
lcorr(U) 210 222 104 55.8 34.5 35.1 32.5 33.2
√

k0 105 115 5.76 6.63 1.39 0.91 0.53 0.70
k0 11005 13121 33.2 44 1.92 0.82 0.27 0.48
⟨Uc⟩FL 88.7 92.8 5.88 6.15 1.21 0.633 0.272 0.387
�FL 0.72 0.75 0.38 0.44 0.18 0.17 0.13 0.14
�PT 0.175 0.252 0.085 0.10 0.025 0.022 0.010 0.014
�FL∕√�PT 1.72 1.49 1.20 1.39 1.13 1.20 1.30 1.18

TABLE I Characteristic properties of the eight porous media
(lengths in �m, k0 in �m2, ⟨Uc⟩FL in �m.s−1), illustrating the
variety of the porous structures. lmin, lmax and lcorr are char-
acteristic lengths. �FL and �PT are the volume fractions of,
respectively, the fluid domain and the pore throats. k0 is the
Newtonian permeability. ⟨Uc⟩FL is the critical velocity for the

non-Newtonian transition.

II. PROBABILITY DENSITY FUNCTIONS

In our study, the three-dimensional velocity and shear
rate fields are presented using probability density functions
(PDFs). These are obtained directly from the discrete repre-
sentation of the finite-volume calculations. For a field f , we
construct the PDF, p (f ), as follows. We first calculate the
minimum and maximum values of the field f , min (f ) and
max(f ), and discretize f in a finite number of intervals be-
tween min (f ) and max(f ). For each point in the PDF, p

(

fi
)

is obtained by calculating the volume of the mesh elements for
which fi−1 ≤ f < fi, with the first point of the PDF, p

(

f1
)

,
describing min (f ) ≤ f < f1. Finally, these values are nor-
malized as p∗

(

fi
)

= p(fi)
∑

i p(fi)�fi
, with �fi = fi − fi−1, so that

the area under the PDF equals one,
∑

i p
∗ (fi

)

�fi = 1.

III. CORRELATION FUNCTIONS

We calculate the correlation function, CUU, of the velocity
deviation �U = U − ⟨U⟩FL, with ⟨∙⟩FL =

1
|ΩFL|

∫ΩFL
∙dV , as

(see also [5])

CUU (‖h‖) =
{

∑

j �U
(

rj
)

⋅ �U
(

rj + h
)

∑

j �U
(

rj
)

⋅ �U
(

rj
)

}

. (1)

The brackets {∙} represent an average over all xyz directions
(calculated numerically using 6 points at +∕−‖h‖ in each di-
rection) and the summation over the index j corresponds to
all cell points of an associated Cartesian grid obtained by lin-
ear interpolation. For comparison with experimental results
in [5], we also calculated CUU for two-dimensional planes xz
through P1.
The correlation functions, which provide a metric for dis-

order [4], are presented in Fig. 1 and values of lcorr(U) are
summarized in Table I. We observe sharp exponential de-
cays, especially for B and C , characterized by a short length
scale lcorr(U). For P1, the two-dimensional correlation de-
cays similarly to the three-dimensional one, but with much
stronger fluctuations on a length scale about the diameter of
the beads. The comparison between Newtonian and non-
Newtonian curves further highlights the weak impact of the
nonlinearity on the flow pattern.
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FIG. 1 Plots of the correlation functions CUU as functions of
the distance ‖h‖ for the different classes of porous media in
the Newtonian and non-Newtonian regimes. Lines are a guide

to the eyes.

IV. EVOLUTION OF THE VISCOSITY WITH THE
PRESSURE GRADIENT

In this Section, we provide supplementary material to the
Fig. 3 in the main article by presenting data for additional
porous structures. Fig. 2 shows dimensionless representations
of the viscosity fields for array A2, packing P2 and the sand-
stones B2 and C2. The first column corresponds to a value of
the average velocity that is below the critical value for the non-
Newtonian transition (U∗ < 1). We see that the viscosity field
is uniform, which corresponds to a Newtonian situation. The
center column corresponds to the critical value of the average
velocity (U∗ = O (1)) and shows that only a small subdomain
of the fluid has transitioned to a non-Newtonian behavior with
� ≠ �0. The initial transition occurs primarily in the pore
throats for B and C . For P and A, we observe a larger subdo-
main also including the vicinity of the pore walls. The third
column corresponds to a velocity that is larger than the critical
transition velocity (U∗ > 1). We observe an expansion of the
non-Newtonian domain to the bulk of the pore that is much
faster in the case A and P than B and C .

V. DIMENSIONAL ANALYSIS AND TRANSITION
THEORY

In this Section, we detail the theoretical derivation of the
critical velocity, which leads to the result

⟨Uc⟩FL ≃ ̇c
√

k0, (2)

with k0 the Newtonian permeability and ̇c the critical shear
rate for non-Newtonian transition. The key to this formulation

A2 at U∗ = 0.01, U∗ = 1, U∗ = 20.

P2 at U∗ = 0.08, U∗ = 1.31, U∗ = 26.

B2 at U∗ = 0.04, U∗ = 5.54, U∗ = 144.

C2 at U∗ = 0.05, U∗ = 6, U∗ = 148.

�∕�0

FIG. 2 Dimensionless viscosity fields for media A2, P 2, B2
and C2 at different flow regimes. Rheology: n = 0.75 & ̇c =

1s−1.

is the subdomain ΩPT of the fluid that controls both the transi-
tion to the non-Newtonian regime and the viscous dissipation
as illustrated in Fig. 3.
The first step of the demonstration is a dimensional analysis

of the critical velocity, which leads to

⟨Uc⟩FL ≃ ̇cleff, (3)

where leff is an effective length scale. In this model, the rheol-
ogy is characterized only by ̇c while the geometrical proper-
ties of the porous medium are embedded in leff. This formu-
lation is compatible with our computations showing a linear
relationship between ⟨Uc⟩FL and ̇c and quasi-independence
from n (see Fig. 4). Consistent with previous studies ([6–8])
that neglect the influence of the parameter n on the transition,
Fig. 4 shows that the critical velocity, ⟨Uc⟩FL, primarily de-
pends on the critical shear rate ̇c . The parameter n, in the
range 0.6 to 1.2, which is reasonable for most polymer solu-
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FIG. 3 Comparison of the dimensionless viscosity fields for
P1 at U∗ = 1 (left-hand side) and the local rate of viscous dis-
sipative energy per unit volume normalized by its maximum

(right-hand side).
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FIG. 4 Critical velocity ⟨Uc⟩FL (�m.s−1) as a function of ̇c
(s−1) for medium C1 and different values of n. Lines are a

guide to the eyes.

tions, induces deviations of ⟨Uc⟩FL which are small compared
to the impact of ̇c . Given that our dimensional analysis is
based on order of magnitudes estimations, we can assume that
⟨Uc⟩FL is independent from n at first order.

To further estimate leff, we remark that the transition occurs
when the flow in the pore throats becomes non-Newtonian (see
Figs. 2 and 3), that is when

⟨U⟩PT = ̇clPT. (4)

Using an acceleration parameter � = ⟨U⟩PT
⟨U⟩FL

> 1, this can be
written as

⟨Uc⟩FL = ̇c
lPT
�
, (5)

so that

leff =
lPT
�
. (6)

We then express the permeability for a Newtonian fluid us-
ing energetic considerations (see e.g. [9]) as

k0 =
�0⟨U⟩2

⟨E⟩
=

⟨U⟩2

⟨̇2⟩
, (7)

where E is the local rate of dissipated energy by viscous forces
per unit volume. As most of the dissipation occurs inΩPT (see
Fig. 3), we can further approximate ⟨̇2⟩ ≃ �PT⟨̇2⟩PT with
�PT the volume fraction ofΩPT. A dimensional analysis using
a characteristic length lPT leads to

⟨̇2⟩ ≃ �PT
⟨U⟩2PT
l2PT

, (8)

and with the acceleration parameter � = ⟨U⟩PT
⟨U⟩FL

, we have

√

k0 ≃
�FL
√

�PT

lPT
�
. (9)

Finally, we define precisely the domain ΩPT as the domain
that is non-Newtonian when the average velocity reaches its
critical value ⟨Uc⟩FL, so that we can estimate

√

�PT numeri-
cally. Results in Table I show that �FL

√

�PT
≃ 1 for all the differ-

ent media, so that
√

k0 ≃
lPT
� < lPT, and finally

leff ≃
√

k0. (10)
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