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Based on smoothing techniques, we propose two new methods to solve linear complementarity
problems (LCP) called TLCP and Soft-LCP. The idea of these two new methods takes in-
spiration from interior-point methods in optimization. The technique that we propose avoids
any parameter management while ensuring good theoretical convergence results. In our ap-
proach, we do not need any complicated strategy to update the smoothing parameter r since
we will consider it as a new variable. Our methods are validated by extensive numerical tests,
in which we compare our methods to several other classical methods.
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1. Introduction

The linear complementarity problem consists in finding a vector in a finite-dimensional
real vector space that satisfies a certain system of inequalities. Specifically, given a vector
q ∈ Rn and a matrix M ∈ Rn×n, the linear complementarity problem, abbreviated LCP,
is to find a vector x ∈ Rn such that

0 ≤ x ⊥ (Mx+ q) ≥ 0. (1)

The linear complementarity problem has many important applications in engineering
and equilibrium modeling [11, 30], and many numerical methods are developed to solve
LCPs [2, 4]. Although the effectiveness of complementarity algorithms has improved
substantially in recent years, the fact remains that increasingly more difficult problems
are being proposed that are exceeding the capabilities of these algorithms. As a result,
there is a real need to propose new methods and algorithms to address complicated and
difficult situations. To solve LCP, there are essentially three different classes of meth-
ods: equation-based methods (smoothing), merit functions, and projection-type methods.
Our goal in this paper is to present new and very simple smoothing and approximation
schemes to solve LCP and to produce efficient numerical methods.
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Many algorithms have been proposed to solve problem LCP [7, 29]. They may be based
on pivoting techniques [8, 20], which often suffer from the combinatorial aspect of the
problem, on interior point methods, which originate from an algorithm introduced by
Karmarkar in linear optimization [17], see also [19] for one of the first accounts on the use
of interior-point methods to solve LCP. Some researchers try to solve LCPs by reformu-
lating them as an unconstrained optimization [14], and on nonsmooth Newton approaches
[10], and rewrite the complementarity conditions as a system of smooth equations [21],
such as the one considered here. See [7, 32] for other iterative methods.
In this work, we propose two new algorithms called TLCP and Soft-LCP for solving the
LCP. The principle of these algorithms are as follows: first, we proposed two smoothing
techniques to regularize the complementary condition, we replace

0 ≤ x ⊥ z ≥ 0

by

θr(x) + θr(z) = 1, r ↘ 0,

and

∀ρ > 0, x = max(0, x− ρz) ≃ r log

1 + e

x− ρz

r

 , r ↘ 0,

where θr, log, and e. operate componentwise on x and z; then we give a strategy that
decreases r during iterations and ensures the nonnegatives of variables. The main dif-
ference in our approach is that we do not need any complicated strategy to update the
parameter r since we will consider it as a new variable. Finally, the two new algorithms
are solved using the standard Newton method. To enforce a global convergence behavior,
we also recommend using Armijo’s line search.
This article is structured as follows. In section 2 of this paper we gives some definitions
and properties of the smoothing functions. In section 3, we present our two approxima-
tion for the problem LCP and give the new formulation of the problem LCP. In section 4,
we propose two new methods to solve the LCP. In section 5, we propose two generic algo-
rithms to solve LCP and prove some convergence results. In section 6, we provide some
numerical results where we present a comparison on some randomly generated problems
of our two methods with other approaches that have been suggested recently in [5, 9]
and we study two concrete examples, the first one is a second-order ordinary differential
equation and the second is an obstacle problem also, we tested our algorithms on several
absolute value equations problems. Finally, we conclude our paper.

2. Preliminaries and Problem Setting

In this section, we present some necessary definitions and lemmas.
A matrix M ∈ Rn×n is said to be positive definite if ⟨x,Mx⟩ > 0 for all nonzero x ∈ Rn.
M ∈ Rn×n is called a P-matrix if all its minors are positive. As a consequence, if M is
positive definite, then M is a P-matrix.
A matrix M ∈ Rn×n is a P0−matrix if every of its principal minors is nonnegative.
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First, we state a result for the unique solution of an LCP, the following result was proved
by Cottle, Pang, and Stone [7, 31]. Next, we give the definition of θ-smoothing function
and Soft-Max function that will use to approximate the complementarity condition.

Theorem 2.1 (Theorem 3.3.7, [7]). A matrix M ∈ Rn×n is a P-matrix if and only if
the LCP (1) has a unique solution for every q ∈ Rn.

2.1 Definition of θ-smoothing function

We introduce the function θ with the following properties (these functions were used in
[15, 16]).
Let θ : R→]−∞, 1[, be a non-decreasing continuous smooth concave function such that

θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1.

One possible way to build such function is to consider non-increasing probability density
functions f : R+ → R+ and then take the corresponding cumulative distribution function

θ(t) =

∫ t

0
f(x)dx.

By definition of f we can verify that

lim
t→+∞

θ(t) =

∫ +∞

0
f(x)dx = 1,

and

θ(0) =

∫ 0

0
f(x)dx = 0.

The non-decreasing hypothesis gives the concavity of θ. We then extend this functions
for negative values in a smooth way.
Example of this family are θ1(t) = t/(t+ 1) if t ≥ 0 and θ1(t) = t if t < 0.
We introduce θr(t) := θ( tr ) for r > 0. This definition is similar to the perspective functions
in convex analysis. This functions satisfy

θr(0) = 0 ∀r > 0 and limr↘0 θ(t) = 1 ∀t > 0.

There are some examples of such functions

θ1r(t) =
t

t+ r
if t ≥ 0 and θ1r(t) =

t

r
if t < 0,

θ2r(t) = 1− e−t/r, t ∈ R.

The function θ1r will be extensively used in this paper and is illustrated in Figure. 1 for
several values of r.
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(a) Function θ1r . (b) Function θ2r .

Figure 1. Function θr for several values of r.

It can be seen on Figure 1 that the function θr behave as a step function when r
becomes small.

2.1.1 θ-smoothing of a complementarity condition

A θ-smoothing function paves the way for a smooth approximation of a complementarity
condition. Let (x, z) ∈ R2 be two scalars such that

0 ≤ x ⊥ z ≥ 0, (2)

that is,

x ≥ 0, z ≥ 0, xz = 0.

In the (x, z)-plane, the set of points obeying (2) is the union of the two semi-axes {x ≥
0, z = 0} and
{x = 0, z ≥ 0}. Visually, the nonsmoothness of (2) is manifested by the ”kink” at the
corner (x, z) = (0, 0).
We consider two possible smooth approximations of (2), depending how it is rewritten
in terms of θ-function.

Lemma 2.2 [16] Given x, z ∈ R+ and the parameter r > 0, we have the equivalence

xz = 0 ⇐⇒ lim
r↘0

(θr(x) + θr(z)) ≤ 1.

Lemma 2.3 [16] θr is sub-additive for non-negative values, i.e. given x, z ≥ 0 it holds
that

θr(x) + θr(z) ≥ θr(x+ z),

and with equality if and only if x = 0 or z = 0,

xz = 0 ⇐⇒ θr(x) + θr(z) = θr(x+ z).

4
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Now, let’s consder the following equation on the one-dimensional case. Let x, z ∈ R+

be such that

θr(x) + θr(z) = 1. (3)

For instance, let’s take θ1r . The equality (3) is then equivalent to

xz = r2.

So, when r goes to 0, we simply get xz = 0.
Our objective is to approximate the complementarity constraints by using these theta
functions then we will present the max function which will be the basic idea of our second
approximation.

2.2 Soft-Max Function

Let f be a function defined as:

f(x1, ..., xn) = max(x1, ..., xn),

obviously, the max function is non-differentiable. We approximate the max function by
a smooth function, noted Soft-Max function as introduced in [6]:

∀r > 0, fr(x1, ..., xn) = r log

(
n∑

i=1

e xi/r

)
.

Indeed: ∀r > 0 and ∀x ∈ Rn,

r log

(
n∑

i=1

e xi/r

)
≤ r log

(
nmax

i
e xi/r

)
= max

i
xi + r log n

and

max
i

xi ≤ r log

(
n∑

i=1

e xi/r

)
≤ r log

(
n∑

i=1

e xi/r

)
+ r log n.

Then

|max
i

xi − fr(x)| ≤ r log n, ∀ i = 1, ..., n.

Thus fr is a uniformly smoothing approximation function of f. Notice that the accuracy
of the Soft-Max approximation depends on scale r.

5
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Figure 2. Smoothing by Soft-Max function.

3. An approximate formulation

In this section, we present our two formulations for LCP (1), the first with the θ-function
and the second with the Soft-Max function.
Consider the linear complementarity problem LCP, which is to find a solution of the
system F (X) = 0, with

F (X) =

[
Mx+ q − z
x.z

]
, (4)

where X = (x, z) ∈ R2n
+ . Recall that the Hadamard product x.z of two vectors x and z

is the vector having its ith component equal to xizi.

3.1 Approximation of LCP using θ-function

We reformulate the problem LCP using θr function, we regularize each complementarity
constraint by considering

xizi = 0, by θr(xi) + θr(zi) = 1, ∀ i = 1, ...n, r ↘ 0.

in fact xizi = 0 should be approximated by

θr(xi) + θr(zi) ≤ 1, (both can be zeros)

but we use an implicit assumption of strict complementarity. Using this approximation
we obtain the following formulation:

(P r
θ )

 Mx+ q = z,
x ≥ 0, z ≥ 0, r ↘ 0
θr(x) + θr(z)− 1 = 0.

(5)

6
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Here, it is understood that θr operates componentwise on x and z, while 1 ∈ Rn is the
vector whose entries are all equal to 1. We consider the family {F r

θ (.), r > 0}, where

F r
θ (X) =

[
Mx+ q − z
r(θr(x) + θr(z)− 1)

]
, and X =

[
x
z

]
. (6)

is a regularized function of F defined in (4). It is highly recommended that the smoothed
complementarity equations in (6) be premultiplied by r, so as to control the magnitude
of their partial derivatives.
Indeed, for all t ≥ 0,

θ
′

r(t) =
1

r
θ

′
(
t

r

)
,

can be seen to blow up when r ↘ 0, while rθ
′

r(t) tends to the finite limit θ
′
(0).

3.2 Approximation of LCP using Soft-Max function

It is obvious that the vectors x and z satisfy complementarity condition if and only if

∀ρ > 0, x = max(0, x− ρz).

Using the Soft-Max function defined below, we approximate the max function by

r log

1 + e

x− ρz

r

 we obtain

(P r
s )


Mx+ q = z, r ↘ 0, ρ > 0

x = r log

1 + e

x− ρz

r

 ,
(7)

by the same way as for (6), log and e. operate componentwise on x and z. We consider
the family {F r

s (.), r > 0}, where

F r
s (X) =


Mx+ q − z

x− r log

1 + e

x− ρz

r


 , and X =

[
x
z

]
, (8)

is a regularized function of F defined in (4).

Lemma 3.1 Let F r
s (X) define by (8). Then, the Jacobian matrix of F r

s (X) is

∇F r
s (X) =

(
M −I

Da(X) Db(X)

)
where Da(X) = diag{a1(X), ..., an(X)} and Db(X) = diag{b1(X), ..., bn(X)} are two

7
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diagonal matrices, and

ai(X) =
1

1 + e

xi − ρzi
r

, bi(X) =
ρe

xi − ρzi
r

1 + e

xi − ρzi
r

, i = 1, ...n.

Let F r
θ (X) define by (6). Then, the Jacobian matrix of F r

θ (X) is

∇F r
s (X) =

(
M −I

Qk(X) Ql(X)

)
where Qk(X) = diag{k1(X), ..., kn(X)} and Ql(X) = diag{l1(X), ..., ln(X)} are two di-
agonal matrices, and

ki(X) =
r2

(xi + r)2
, li(X) =

r2

(zi + r)2
, i = 1, ...n.

Lemma 3.2 Let M ∈ Rn×n be a P0−matrix. Then any matrix in the following form is
nonsingular:

Ns +NtM,

where Ns ∈ Rn×n is a positive (negative) diagonal matrix, and Nt ∈ Rn×n is a nonnega-
tive (non-positive) diagonal matrix.

Proof. Let Ns = diag(s1, s2, ..., sn) and Nt = diag(t1, t2, ..., tn). If Ns is positive, and Nt

is nonnegative, then si > 0 and ti ≥ 0 for all i = 1, 2, ..., n.

Let v ∈ Rn be a vector such that (Ns +NtM)v = 0. Then, we have vi = −
ti
si
(Mv)i.

It yields v2i = − ti
si
vi(Mv)i. If ti = 0, then vi = 0, ∀i = 1, ..., n.

If vi ̸= 0, we have ti
si

> 0. Owing to v2i ≥ 0, we have vi(Mv)i ≤ 0. If vi(Mv)i = 0,
then vi = 0. Otherwise, vi(Mv)i < 0 contradicts the property of M . Based on the above
discussion, it is concluded that v = 0, then Ns +NtM is a nonsingular matrix. ■

By Lemma 3.2, we can obtain a property of F r
s and F r

θ if M is a P0-matrix.

Theorem 3.3 Let M be a P0-matrix. Then, for r > 0, the Jacobian matrix ∇F r
s (X)

(resp. ∇F r
θ (X)) is nonsingular.

Proof. For r > 0 and from Lemma 3.1, it follows that the diagonal matrix Da(X) (resp.
Qk(X)) is non-negative, and Db(X) (resp. Ql(X)) is non-negative diagonal matrix.
We have det(∇F r

s (X)) = det(Da(X) + MDb(X)) (resp. det(∇F r
θ (X)) = det(Qk(X) +

MQl(X))), since M is a P0-matrix and from Lemma 3.2, it follows that Da(X)+MDb(X)
(resp. Qk(X) +MQl(X)) is nonsingular. Hence ∇F r

s (X) (resp. ∇F r
θ (X) is nonsingular.

■
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4. Solving LCP via New Algorithm

In this section, we present the idea of our algorithms for optimization problems to solve
the LCP, but here we don’t have any objective function to minimize. Our methods take
inspiration from Interior Point Methods.
We recall that the Interior Point Methods have replaced the original nonsmooth problem
LCP by a sequence of regularized problems

Fr(X) = 0, (9)

where

X =

[
x
z

]
∈ R2n

+ , Fr(X) =

[
Mx+ q − z
x.z − r1

]
, (10)

where r ≥ 0 is the smoothing parameter. The Jacobian matrix of Fr with respect to X,
does not depend on r and can be denoted by

∇XFr(X) =

(
M −I
Z X

)
, (11)

where Z = diag(z) and X = diag(x), i.e. the diagonal matrix of z (resp. x).

4.1 When the parameter becomes a variable

In the system (9), the status of the parameter r is very distinct from that of the variable
X. While X is computed ”automatically” by a Newton iteration, r has to be updated
”manually” in an ad-hoc manner.
Our goal is to find a strategy that decreases r during iterations and ensures the nonnega-
tive of variables. However, we must adjust the strategy when the model or its parameters
are changed. To avoid this trouble, we consider r as an unknown of the system instead
of a parameter.
We feel that it would be judicious to incorporate the parameter r into the variables. Let
us therefore consider the enlarged vector of unknowns

X =

[
X
r

]
∈ R2n × R+, (12)

and then consider a system of 2n+ 1 equations

Fθ(X) = 0, (resp. Fs(X) = 0), (13)

to be on X. To this end, let us remind ourselves that our ultimate goal is to solve
F 0
θ (X) = 0 (resp. F 0

s (X) = 0), together with the inequalities x ≥ 0, z ≥ 0. Thus, it is
really natural to first consider

Fθ(X) =

 Mx+ q − z
r(θ1r(x) + θ1r(z)− 1)
r

 , (14)

9
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and

Fs(X) =


Mx+ q − z

x− r log

1 + e

x− ρz

r


r

 . (15)

This construction turns out to be to naive. Indeed, if we start from some r0 and solve
the smooth system (14) and (15) by the smooth Newton method, since the last equation
is linear, we end up with r1 = 0 at the first iteration. Once the boundary of the interior
region is reached, we are ”stuck” there.
To prevent r from rushing to zero in just one iteration, we could set

Fθ(X) =

 Mx+ q − z
r(θ1r(x) + θ1r(z)− 1)
r2

 , (16)

we restrict our choice of θ-function to θ1r(x) =
x

x+r , and

Fs(X) =


Mx+ q − z

x− r log

1 + e

x− ρz

r


r2

 , (17)

At this stage, system (16) (resp. (17)) is not yet fully adequate. Indeed, the last equation is
totally decoupled from the others. Everything happens as if r follows a prefixed sequence,
generated by the Newton iterates of the scalar equation r2 = 0, regardless of X. It is
desirable to couple r and X in a tighter way. In this respect, we advocate

Fθ(X) =

 Mx+ q − z
r(θ1r(x) + θ1r(z)− 1)
1
2∥x

−∥2 + 1
2∥z

−∥2 + r2

 , (18)

and

Fs(X) =


Mx+ q − z

x− r log

1 + e

x− ρz

r


1
2∥x

−∥2 + 1
2∥z

−∥2 + r2

 , (19)

where

∥x−∥2 =
n∑

i=1

min2(xi, 0), ∥z−∥2 =
n∑

i=1

min2(zi, 0).

This choice has the benefit of taking into account the nonnegativity condition x ≥ 0 and
z ≥ 0.

10
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Indeed, the last equation of (18) and (19) implies that, as long as r ≥ 0, we are ascertained
that x− = z− = 0. This amounts to saying that x ≥ 0 and z ≥ 0. Should a component of
x or z become negative during the iteration, this equation would contribute to “penalize”
it. Since r is now considered as a variable and the scalar function t 7→ 1

2 |min(t, 0)|2 is
differentiable and its derivative is equal to min(t, 0). From this observation, the two
Jacobian matrices of Fθ and Fs are:

∇XFθ(X) =


Mn×n −In×n 0n×1

diag

(
r2

(x+ r)2

)
diag

(
r2

(z + r)2

)
We

(x−)T (z−)T 2r

 , (20)

and

∇XFs(X) =


Mn×n −In×n 0n×1

diag

 1

1 + e

x− ρz

r

 diag

 ρe

x− ρz

r

1 + e

x− ρz

r

 V e

(x−)T (z−)T 2r

 , (21)

where x− is the vector of components x−i = min(xi, 0) and similarly for z−,

V = diag

− log(1 + e

x− ρz

r ) +

x− ρz

r
e

x− ρz

r

1 + e

x− ρz

r

 , W = diag

(
x2

(x+ r)2
+

z2

(z + r)2
− 1

)
,

and e is a n-dimensional vector whose entries are equal to 1.
If Fθ(X) = 0 (resp. Fs(X) = 0) where X ∈ R2n

+ × R+ we obtain r = 0 and x− = z− = 0.
Hence in this case, ∇XFθ(X) becomes singular (resp. ∇XFs(X) becomes singular) since
det∇XFθ(X) = 0 (resp. det∇XFs(X) = 0). To solve this issue, we add a small enough
positive parameter ε in the last equation. We get

1

2
∥x−∥2 + 1

2
∥z−∥2 + r2 + εr = 0. (22)

Hence, we define the following systems

Fθ(X) =

 Mx+ q − z
r(θ1r(x) + θ1r(z)− 1)
1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr

 , (23)

and

Fs(X) =


Mx+ q − z

x− r log

1 + e

x− ρz

r


1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr

 . (24)

11
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5. Convergence

In this section, we propose two generic algorithms to solve LCP and prove some
convergence results.
From now on, the enlarged equation (23) and (24) are selected as the reference system
in the design of our new algorithms. The idea is simply to apply the standard Newton
method to the smooth system (23) and (24). To enforce a global convergence behavior,
we also recommend using Armijo’s line search.
Now, we present our algorithms for our methods described above:

Algorithm 1 Nonparametric TLCP with Armijo line search

1. Chose X0 = (X0, r0), X0 > 0, r0 =< x0, z0 > /n, τ ∈ (1, 1/2), ϱ ∈ (0, 1). Set k = 0.
2. If Fθ(Xk) = 0, stop.
3. Find a direction dk ∈ R2n+1 such that

Fθ(Xk) +∇XFθ(Xk)dk = 0.

4. Choose ζk = ϱjk ∈ (0, 1), where jk ∈ N is the smallest integer such that

Θθ(Xk + ϱjkdk) ≤ (1− 2τϱjk) Θθ(Xk).

5. Set Xk+1 = Xk + ζkdk and k ← k + 1. Go to step 2.

Algorithm 2 Nonparametric Soft-LCP method with Armijo line search

1. Chose X0 = (X0, r0), X0 > 0, r0 =< x0, z0 > /n, τ ∈ (1, 1/2), ϱ ∈ (0, 1). Set k = 0.
2. If Fs(Xk) = 0, stop.
3. Find a direction dk ∈ R2n+1 such that

Fs(Xk) +∇XFs(Xk)dk = 0.

4. Choose ζk = ϱjk ∈ (0, 1), where jk ∈ N is the smallest integer such that

Θs(Xk + ϱjkdk) ≤ (1− 2τϱjk) Θs(Xk).

5. Set Xk+1 = Xk + ζkdk and k ← k + 1. Go to step 2.

Where the merit functions used in the line search are:

Θθ(X) =
1

2
∥Fθ(X)∥2.

and

Θs(X) =
1

2
∥Fs(X)∥2.

12
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A detailed description of Nonparametric Soft-LCP is given in Algorithm 2. A few com-
ments are in order:

• The initial point X0 = (X0, r0) must be an interior point, namely, X0 > 0 and
the initial parameter r0 =< x0, z0 > /n has the correct order of magnitude.
• If Xk > 0, then (xk)− = (zk)− = 0 and

dk =

[
dXk

drk

]
= −

[
∇F r

s (X
k) ∂rF

r
s (X

k)
0 ε+ 2rk

]−1 [
F r
s (X

k)
εrk + (rk)2

]
,

provided that the Jacobian matrix is invertible. The increment for the parameter
is then

drk = −εrk + (rk)2

ε+ 2rk
.

• There is no need to truncate the Newton direction dk to preserve positivity for
xk+1 and zk+1, since nonnegativity is ”guaranteed” at convergence. However, if we
wish all the iterates are nonnegative, then we are free to carry out an additional
damping after Step 4 (Armijo’s line search).

Proposition 5.1 Let M ∈ Rn×n be a P0−matrix. Then, step 3 in Algorithm 1 (resp.
Algorithm 2) is well-defined.

Proof. From the update rule of Algorithm 1 (resp. Algorithm 2) we know that for all
k ≥ 0, rk > 0,Xk > 0, and ε > 0,

det ∇Fs(Xk) = (ε+ 2rk) det ∇F rk

s (Xk),

and

det ∇Fθ(Xk) = (ε+ 2rk) det ∇F rk

θ (Xk).

In view of Theorem 3.3, we know that ∇F rk
s (Xk) (resp. ∇F rk

θ (Xk)) is nonsingular. Thus
Step 3 of Algorithm 1 (resp. Algorithm 2) is well-defined. ■

Now we would like to study the asymptotic behavior of the Jacobian matrix Fs (resp.
Fθ) when r goes to 0 and we need a lemma that is used to prove our main result.

Lemma 5.2 We consider the following system

Z.X = 0
Z ≥ 0, X ≥ 0,

(25)

where Z = diag(z) and X = diag(x).
Assume that Z, X are strictly complementary (i.e. ∃ α > 0 such that Z+X > α). Then
J is singular if and only if T is singular, where

J =

(
M −I
Z X

)
, and T =

(
M −I

ϕ(Z) ϕ(X)

)
,

13
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such that

ϕ(t) =

{
1 if t ̸= 0
0 if t = 0,

here ϕ operates componentwise on t, and it verifies the following system

ϕ(Z).ϕ(X) = 0
ϕ(Z) ≥ 0, ϕ(X) ≥ 0.

Proof. By the strict complementarity hypothesis, we range the rows and the columns of
J and T as follows

Jσ =

 Mσ −Iσ(
Z1 0
0 0

) (
0 0
0 X2

)  ,

where X2 > 0 and Z1 > 0, and

(T )σ =



Mσ −Iσ
1

. . .

1

0

0 0




0 0

. . .

0

1 0
. . .

0 1




.

The determinant of the two matrices Jσ and (T )σ are equal to

det(Jσ) =

∣∣∣∣∣∣
Mσ −Iσ(

Z1 0
0 0

) (
0 0
0 X2

) ∣∣∣∣∣∣ = ±
∏
i∈I1

xi
∏
i∈I2

zi det(C),

det(Tσ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Mσ −Iσ
1

. . .

1

0

0 0




0 0

. . .

0

1 0
. . .

0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣
= ±

∏
i∈I1

ϕ(xi)
∏
i∈I2

ϕ(zi) det(C),

where C is a certain matrix, I1 = {i | xi > 0} and I2 = {i | zi > 0}. Since

±
∏
i∈I1

xi
∏
i∈I2

zi and
∏
i∈I1

ϕ(xi)
∏
i∈I2

ϕ(zi),

are nonzeros, then we can conclude that J and T are invertibles and singulars at the
same time. ■

14
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Below is a result about the Jacobian matrix of Fs(X), when r goes to 0 and which will
be useful for later purposes.

Theorem 5.3 Suppose that X∗ = (x∗, z∗) is a solution of LCP which satisfies the strict
complementarity (i.e. ∃ α > 0 such that x∗i + z∗i > α, ∀i ∈ {1, ..., n}), and ∇XF0(X

∗)
define by (11) (the Jacobian matrix of the Interior-Point Method) is invertible.
Then lim

r→0
∇XFs(X

∗, r) is invertible, i.e. the two Jacobian matrices are singular or non-

sigular at the same time.

Proof. Let

Fs(X) =

 Fs, 1(X)
Fs, 2(X)
Fs, 3(X)

 =


Mx+ q − z

x− r log

1 + e

x− ρz

r


1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr

 .

The Jacobian matrix of Fs is:

∇XFs(X) =

 Mn×n −In×n 0n×1

∇xFs,2(X) ∇zFs,2(X) ∇rFs,2(X)
(x−)T (z−)T 2r + ε

 .

Let us to calculate lim
r→0
∇XFs(X

∗, r) :

(1) The derivative of Fs, 2(X, r) with respect to x is:

∇xFs,2(x
∗, z∗, r) = diag

 1

1 + e

x∗ − ρz∗

r


n×n

,

when r goes to 0 and in view of the strict complementary of X∗ = (x∗, z∗), the
only two cases to consider are:
• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i→0
z∗
i ̸=0

(∇xFs,2(x
∗, z∗, r))ii = lim

r→0

1

1 + e−
ρz∗

i
r

= 1.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then
lim
r→0
z∗
i →0
x∗
i ̸=0

(∇xFs,2(x
∗, z∗, r))ii = lim

r→0

1

1 + e
x∗
i
r

= 0.

(2) The derivative of Fs, 2(X, r) with respect to z is:

∇zFs,2(x
∗, z∗, r) = diag

 ρe

x∗ − ρz∗

r

1 + e

x∗ − ρz∗

r


n×n

,

as below, the only two cases to consider are:

15
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• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i→0
z∗
i ̸=0

(∇zFs,2(x
∗, z∗, r))ii = lim

r→0
ρ

e−
ρz∗i
r

1 + e−
ρz∗

i
r

= 0.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∇zFs,2(x
∗, z∗, r))ii = lim

r→0
ρ

e
x∗
i
r

1 + e
x∗
i
r

= ρ.

We take ρ = 2 to ensure the convergence (see Figure 5).
(3) The derivative of Fs, 2(X, r) with respect to r is:

∇rFs,2(x
∗, z∗, r) =

− log(1 + e

x∗ − ρz∗

r ) +

x∗ − ρz∗

r
e

x∗ − ρz∗

r

1 + e

x∗ − ρz∗

r


n×1

,

when r goes to 0 and in view of the strict complementary of X∗ = (x∗, z∗), the
only two cases to consider are:
• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i→0
z∗
i ̸=0

(∇rFs,2(x
∗, z∗, r))ii = lim

r→0

− log(1 + e−
ρz∗i
r )− ρz∗i

r

e−
ρz∗i
r

1 + e−
ρz∗

i
r

 = 0.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∇rFs,2(x
∗, z∗, r))ii = lim

r→0

− log(1 + e
x∗
i
r ) +

x∗i
r

e
x∗
i
r

1 + e
x∗
i
r

 = 0.

Finally, thanks to the assumption X∗ = (x∗, z∗) is a solution of LCP, we have x∗ ≥ 0
and z∗ ≥ 0, so that x− = z− = 0. Hence

lim
r→0

det (∇XFs(X
∗, r)) =

∣∣∣∣∣∣∣∣

(
Mn×n −In×n

ϕ(Z∗) ϕ(X∗)

) 0

0

0 0 ε


∣∣∣∣∣∣∣∣ = ε

∣∣∣∣( M −I
ϕ(Z∗) ϕ(X∗)

)∣∣∣∣ ,
where ϕ(.) is defined in Lemma (5.2), Z∗ = diag(z∗) and X∗ = diag(x∗).
From Lemma (5.2), we conclude that if ∇XF0(X

∗) is invertible then lim
r→0
∇XFs(X

∗, r) is

invertible. This means, that if the Interior Point Method converges our method converges.
■

Here we present the same result but for the system Fθ(X).
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Theorem 5.4 Suppose that X∗ = (x∗, z∗) is a solution of LCP which satisfies the strict
complementarity (i.e. ∃ α > 0 such that x∗i + z∗i > α, ∀i ∈ {1, ..., n}), and ∇XF0(X

∗)
define by (11) (the Jacobian matrix of the interior-point methods) is invertible.
Then lim

r→0
∇XFθ(X

∗, r) is invertible, i.e. the two Jacobian matrices are singular or non-

sigular at the same time.

Proof. Let S defined as

S = {(xi, zi, r)/ θ1r(xi) + θ1r(zi) = 1, ∀i ∈ {1, ..., n}},

by Lemma (2.3), we have

θ1r(xi) + θ1r(zi) = 1 ⇐⇒ xizi = r2, ∀i ∈ {1, ..., n}.

We can therefore define the set S in the form:

S = {(xi, zi, r)/ xizi − r2 = 0, ∀i ∈ {1, ..., n}}.

Since X∗ = (x∗, z∗) is a solution of LCP, we deduce that (x∗, z∗, r) is near to S, then

x∗z∗ − r2 = o(r) ,

i.e. x∗z∗− r2 is negligent by r. In view of the assumption of the strict complementary of
X∗ = (x∗, z∗), we only have two cases to consider. If z∗i > 0 then x∗i = o(r) and if x∗i > 0
then z∗i = o(r) . Let

Fθ(X) =

 Fθ, 1(X)
Fθ, 2(X)
Fθ, 3(X)

 =

 Mx+ q − z
rx

x+ r
+

rz

z + r
− r1

1
2∥x

−∥2 + 1
2∥z

−∥2 + r2 + εr

 .

The jacobian matrix of Fθ is:

∇XFθ(X) =

 Mn×n −In×n 0n×1

∇xFθ,2(X) ∇zFθ,2(X) ∇rFθ,2(X)
(x−)T (z−)T 2r + ε

 ,

Let us to calculate lim
r→0
∇XFθ(X

∗, r) :

(1) The derivative of Fθ, 2(X, r) with respect to x is:

∇xFθ,2(x
∗, z∗, r) = diag

((
r

x∗ + r

)2
)

n×n

,

when r goes to 0 and in view of the strict complementary of X∗ = (x∗, z∗), the
only two cases to consider are:
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• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i→0
z∗
i ̸=0

(∇xFθ,2(x
∗, z∗, r))ii = lim

r→0
x∗
i→0
z∗
i ̸=0

(
r

o(r) + r

)2

= lim
r→0

(r
r

)2
= 1.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∇xFθ,2(x
∗, z∗, r))ii = lim

r→0
z∗
i →0
x∗
i ̸=0

(
r

x∗i + r

)2

= 0.

(2) The derivative of Fθ, 2(X, r) with respect to z is:

∇zFθ,2(x
∗, z∗, r) = diag

((
r

z∗ + r

)2
)

n×n

,

as below, the only two cases to consider are:
• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i→0
z∗
i ̸=0

(∇zFθ,2(x
∗, z∗, r))ii = lim

r→0
x∗
i→0
z∗
i ̸=0

(
r

z∗i + r

)2

= 0.

• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∇zFθ,2(x
∗, z∗, r)) = lim

r→0
z∗
i →0
x∗
i ̸=0

(
r

o(r) + r

)2

= 1.

(3) The derivative of Fθ, 2(X, r) with respect to r is:

∇rFθ,2(x
∗, z∗, r) =

((
x∗

x∗ + r

)2

+

(
z∗

z∗ + r

)2

− 1

)
n×1

.

when r goes to 0 and in view of the strict complementary of X∗ = (x∗, z∗), the
only two cases to consider are:
• x∗i → 0, and z∗i > 0 ∀i ∈ {1, ..., n} then

lim
r→0
x∗
i→0
z∗
i ̸=0

(∇rFθ,2(x
∗, z∗, r))ii = lim

r→0
x∗
i→0
z∗
i ̸=0

((
o(r)

o(r) + r

)2

+

(
z∗i

z∗i + r

)2

− 1

)
= 0.
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• x∗i > 0, and z∗i → 0 ∀i ∈ {1, ..., n} then

lim
r→0
z∗
i →0
x∗
i ̸=0

(∇rFθ,2(x
∗, z∗, r))ii = lim

r→0
z∗
i →0
x∗
i ̸=0

((
x∗i

x∗i + r

)2

+

(
o(r)

o(r) + r

)2

− 1

)
= 0.

Finally, since X∗ = (x∗, z∗) is a solution of LCP, we have x∗ ≥ 0 and z∗ ≥ 0, so that
x− = z− = 0. Hence

lim
r→0

det (∇XFθ(X
∗, r)) =

∣∣∣∣∣∣∣∣

(
Mn×n −In×n

ϕ(Z∗) ϕ(X∗)

) 0

0

0 0 ε


∣∣∣∣∣∣∣∣ = ε

∣∣∣∣( M −I
ϕ(Z∗) ϕ(X∗)

)∣∣∣∣ .
From Lemma (5.2), we conclude that if ∇XF0(X

∗) is invertible then lim
r→0
∇XFθ(X

∗, r)

is invertible. Hence the two Jacobian matrices are singular or nonsingular at the same
time. This means, that if the Interior Point Method converges our method converges. ■

5.1 Global convergence analysis

Definition 1 (Regular zero). Let X̄ ∈ R2n be a zero of F, that is, F (X̄) = 0. If the
Jacobian matrix ∇F (X̄) is nonsingular, X̄ is said to be a regular zero of F.

The main interest of Algorithm 1 and Algorithm 2 lies in the prospect of global conver-
gence, as envisioned by the theory that we are developing now. This global convergence
theory, due to bonnans [3], is primarily based on the regularity of zeros [Definition 1].
We reproduce most of Bonnans’ theory here, in view of its importance to our algorithm.

Theorem 5.5 (Theorem 6.9, [3]). Let Fs : R2n+1 → R2n+1 (resp. Fθ : R2n+1 → R2n+1)
be a continuously-differentiable function.

(i) (Local analysis) Let X̄ be a regular zero of Fs (resp. Fθ). If X0 is close enough
to X̄, then ζk = 1 for all k, and Xk converge to X̄ super-linearly (and we recover
the standard Newton method).

(ii) (Limit point) Let X̃ be a limit point of sequence {Xk}. If ∇Fs(X̃) (resp.
∇Fθ(X̃) ) is invertible, then X̃ is a regular zero of F. If X̃ is a regular zero of
Fs (resp. Fθ ) , then ζk = 1 for k big enough and Xk converge to X̃ super-linearly.

(iii) (General behavior) At least one of three possibilities below holds:

a) Fs(Xk)→ 0 (resp. Fθ(Xk)→ 0).
b) ∥ d(Xk) ∥ is unbounded.
c) The sequence {Xk} converge to X̃ where ∇Fs(X̃) (resp. ∇Fθ(X̃)) is not in-

vertible.

The three items of the Theorem illustrate the conditions and the qualities of convergence
of the algorithm. Item (i) corresponds to the behavior of the algorithm near a regular
zero. Item (ii) states the rate of convergence in some particular situations.
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Item (iii) summarizes all of the possible scenarios when running the algorithm. In partic-
ular, if ∇Fs(X) (resp. ∇Fθ(X)) is invertible everywhere (or at least during the iterations
of the algorithm) and ∥ Fs(X) ∥→ ∞ as ∥ X ∥→ ∞, (resp. ∥ Fθ(X) ∥→ ∞ as ∥ X ∥→ ∞),
then only the possibility (a) of (iii) can occur; conditons of (ii) are satisfied so that if the
algorithm converges, it will converge super-linearly to regular zero.

6. Numerical Results and Applications

Through this article, we studied two methods Soft-LCP and TLCP to solve the LCP, we
present in this section some numerical experiments. First, we present a comparison on
some randomly generated problems of our two methods with other approaches that have
been suggested recently in [5, 9].
Then, we study two concrete examples, the first one is a second order ordinary differential
equation and the second is an obstacle problem that can be formulated as LCP (1).
Finally We tested our algorithms on several absolute value equations problems. Our
results are very promising and outperform standard methods.
For all the numerical tests and all the considered methods, the used codes are simple
Matlab codes. We restrict our choice of θ-function to θ1r(x) =

x
x+r .

Our aim is to validate our approach and run some preliminary comparison with other
methods, and not to optimize the performance of the algorithm.

6.1 Comparisons on standard LCP

We generate for several problem sizes, n = 32, 64, 128, 256, the data (M, q) in order to
have a solution for LCP as follows:
R=rand(n, n);
M=R

′
*R+n*eye(n);

h=rand(n) ;
z=round(h).*rand(n, 1);
t=(1-round(h)).*rand(n, 1);
q=-M*t+z;

We compare our two methods denoted Soft-LCP and TLCP with other methods:

• TLCP2 method which is the same algorithm with a different formulation for the
complementarity

θr(xi) + θr(zi)− θr(xi + zi) = 0.

It is a reformulation of the complementarity and not a relaxation (we can use a
fixed r).
• The classical interior-point method IPM [9].
• The classical Fischer-Burmeister method [5] when the complementariy xizi is
regularized by √

x2i + z2i + r2 − (xi + zi) = 0.

The main idea of all these methods is to regularize the complementarity condition
xT z = 0 and solve a system of equations using Newton’s method.
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We use an Infeasible IPM and the classical Fischer-Burmeister method referred to as
FB-Algor to compare with our methods. For TLCP2, we have fixed r to 1. We take
for all this methods the initial point (x0, z0) = 1, where 1 ∈ Rn is the vector whose
components are all equal to 1 and r0 = ⟨x0, z0⟩/n and the precision is set as 10−6.
The comparative results are given in the Table 1 to 5. We are interested in the following
aspects: the comp.err, computed as |xT z|, feas.err computed as ∥Mx+q−z∥ the number
of iterations computed as nb-iter and the time.

Table 1. Results from Soft-LCP with n=32, 64, 128, 256.
n errcomp erfeas r nb-iter time(s)
32 4.8594e-07 3.1676e-14 0.0021 9 0.0081
64 1.6217e-05 9.4826e-13 0.0072 10 0.0292
128 1.1151e-07 5.5129e-12 0.0014 14 0.0364
256 5.1985e-06 9.3893e-12 0.0020 23 0.1900

Table 2. Results from FB-Algor with n=32, 64, 128, 256.
n comp.err feas.err r nb-iter time(s)
32 4.5973e-08 1.2373e-07 1.324e-06 12 0.0218
64 9.3296e-08 2.8274e-07 9.715e-06 14 0.0305
128 5.1455e-08 1.8937e-07 4.799e-06 15 0.0372
256 2.2314e-07 5.5151e-07 4.050e-06 17 0.1294

Table 3. Results from TLCP with n=32, 64, 128, 256.
n comp.err feas.err r nb-iter time(s)
32 3.0137e-07 1.0516e-13 4.8821e-04 11 0.0083
64 1.1888e-07 7.1035e-13 4.8813e-04 11 0.0121
128 4.5973e-07 4.8634e-12 4.8793e-04 11 0.0244
256 4.4479e-07 9.9347e-12 2.4369e-04 12 0.0986

Table 4. Results from TLCP2 with n=32, 64, 128, 256.
n comp.err feas.err r nb-iter time(s)
32 7.0412e-09 8.7429e-09 1 11 0.0154
64 5.7344e-09 2.1192e-09 1 12 0.0429
128 2.3476e-07 1.02336e-08 1 11 0.1993
256 8.0873e-08 8.92116e-07 1 38 1.6799

Table 5. Results from IPM with n=32, 64, 128, 256.
n comp.err feas.err r nb-iter time(s)
32 9.4531e-07 0 0 198 0.5606
64 9.8840e-07 1.3455e-12 0 212 0.9313
128 9.1254e-07 4.1933e-10 0 248 3.6056
256 9.4437e-07 0 0 238 8.7353

In the above comparisons, we notice that our methods have much better results in
terms of iteration numbers and CPU-time than classic interior-point-method IPM and
FB-Algor. The TLCP method requires the fewest iteration numbers.
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Figure 3. Performance profiles where tp,s represents the average computation time.

The figure above shows the performance profiles of five solvers where the performance
measure is execution time. It is clear that the TLCP method captures our attention
(admits the highest probability value). In fact, in the interval [0, 1], TLCP is able to
solve 99% of the problems, while the other solvers do not reach 20% and require more
time. We also notice that IPM is the slowest compared to others. However, for t > 2, the
three algorithms TLCP, Soft-LCP and FB-Algor confirm their robustness. Figure 3 also
indicates that, with respect to the computation time, with the same initial points and
under the same stopping criterion, TLCP is the fastest solver, followed respectively by
Soft-LCP, FB-Algor, TLCP2 and IPM.

Figure 4. Performance profiles where tp,s represents the average number of iterations.

In Figure 5, we illustrate the performance profiles of five solvers considering the number
of iterations required as a performance measure. We notice that TLCP is the winner
(admits the highest probability value) followed by FB-Algor, Soft-LCP. We also note
that IPM and TLCP2 need more iterations to resolve problems. The performance of
Soft-LCP becomes interesting beyond t = 2.
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6.1.1 sensitivity of ρ

We will now study the sensitivity of the parameter ρ. We solve our problem using Soft-
LCP with different parameters ρ. We take ρ = 1, 1.1, 1.2, ..., 100. and n = 128.

(a) Sensitivity Analysis 0 < ρ ≤ 5. (b) Sensitivity Analysis 5 ≤ ρ ≤ 100.

Figure 5. Sensitivity Analysis of ρ.

We notice a loss of convergence between 0 and 2, however between 2 and 12 convergence
is assured, then from 13, there is a divergence. We conclude that we cannot choose ρ as a
random parameter. In all the cases where there is convergence, the number of iterations
is almost the same however in the event of divergence the number of iterations exceeds
the maximum number fixed in our algorithm. We have fixed ρ = 3 in our approach to
ensure the convergence.

6.2 An application for obstacle problem

Let f and g two continuous functions defined in [0, 1]. We want to solve the following
obstacle problem:
find u : [0, 1]→ R such that: −u”(x) ≥ f(x)

u(x) ≥ g(x)
(−u”(x)− f(x))(u(x)− g(x)) = 0

on ]0, 1[,

and u(0) = u(1) = 0.
The first equation means a maximum concavity of the function u. In the second equation,
we want the solution u to be above g. In the third equation, we have at least equality
in one of the two previous equations. In order to get a linear complementarity problem,
we set z = u− g and we discretize by using the finite difference. We introduce a uniform
subdivision xi = i ∗ h, i = 0, . . . N + 1 of [0, 1], where h = 1

N+1 .
We use the second-order centered finite difference to approximate the second order deriva-
tives z

′′
(x) and g

′′
(x). We then try to solve the following problem:

−zi−1+2zi−zi+1

h2 + −gi−1+2gi−gi+1

h2 − fi ≥ 0
zi ≥ 0(

−zi−1+2zi+zi+1

h2 + −gi−1+2gi−gi+1

h2 − fi

)
(zi) = 0

, for i = 1...N, u0 = uN+1 = 0.
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Where gi = g(xi), fi = f(xi), zi = z(xi) and ui = u(xi). We obtain the following
complementarity problem:

(Mz + q)T z = 0
z ≥ 0

Mz + q ≥ 0

where

M =
1

h2


2 −1

−1 . . .
. . .

. . .
. . . −1
−1 2


and q = Mg − f .
If 1 is not an eigenvalue of M is equivalent to AVE, ([25], Prop. 2),

(M − I)−1(M + I)x− |x| = (M − I)−1q.

We present in the following figures, the results of our two methods and LPM method
from [25]. The obstacle g is chosen here to be

g(x) = max(0.8− 20 ∗ (x− 0.2)2,max(1− 20(x− 0.75)2, 1.2− 30(x− 0.41)2))

f(x) = 1 and N = 50.

Figure 6. Numerical solution of the obstacle problem (6.2) with TCLP, Soft-LCP methods, and method from
[25].

We remark that the both TLCP, Soft-LCP, and LPM method [25] have 19 common
points on the curve g and none below g over 50 points. This example also confirms that
our approach, TLCP and Soft-LCP method gives consistent results.
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6.3 An application on ordinary differential equation

We consider the ordinary differential equation

x
′′
(t)− |x(t)| = −2− t, x(0) = −4, x

′
(0) = 5, t ∈ [0, 5]. (26)

First, we discretize the EDO equation by using the finite difference scheme. We use the
second-order centred finite difference to approximate the second order derivative

xi−2 − 2xi−1 + xi
h2

− |xi| = (−2− t)i. (27)

Equation (27) was derived with equispace gridpoints ti = ih, i = 1, ...N. In order to
approximate the Neumann boundary conditions we use a center difference

x1 − x−1

2h
= x

′
(0) = 1. (28)

Using the classical decomposition of the absolute value [1] we reformulate (27) as follows{
N1x

+ −N2x
− = q,

0 ≤ x+ ⊥ x− ≥ 0,
(29)

where

N1 =
1

h2


2− h2

−2 1− h2

1
. . .

. . .
. . .

. . .
. . .

1 −2 1− h2

 ,

N2 =
1

h2


2 + h2

−2 1 + h2

1
. . .

. . .
. . .

. . .
. . .

1 −2 1 + h2

 ,

and q = − 1
h2


8− 10h
−4
...
0

−


2 + h
2 + 2h

...
2 +Nh

.

N1 is invertible, then the problem (29) is reduced to a standard LCP.
We compare the obtained solution by Soft-LCP and TLCP to the predefined Runge-
Kutta ode45 function in MATLAB [26].
The domain is t ∈ [0, 5], initial conditions x(0) = −4, x′

(0) = 5 and N = 100.
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Figure 7. Numerical solution of (6.3) with ode45 and both methods.

Both methods solve the problem and gives consistent results.

6.4 Extension to Absolute Value Equation

We consider the absolute value equation AVE, defined as

Ax− |x| = b, (30)

with A ∈ Rn×n and b ∈ Rn. We studied two cases where AVE has a unique solution and
for general AVE. Using the same technique as in [1], (30) can be cast as the following
complementarity problem

A(x+ − x−)− (x+ + x−) = b, 0 ≤ x+ ⊥ x− ≥ 0., (31)

equivalent to

(A− I)x+ = (A+ I)x− + b, 0 ≤ x+ ⊥ x− ≥ 0, (32)

where x+ = max(x, 0) and x− = max(−x, 0). This decompsition guarantes that |x| =
x+ + x−. So AVE can be cast as the following LCP

x+ = Mx− + q, 0 ≤ x+ ⊥ x− ≥ 0, (33)

with M = (A− I)−1(A+ I) and q = (A− I)−1b.

6.4.1 Random uniquely solvable generated problem

We consider the special case where AVE is uniquely solvable, to guarantee the conver-
gence of the Newton method. One way to generate such (AVE) is to generate a matrix A
with singular values exceeding 1. We first chose a random A from a uniform distribution
on [−10, 10], then we chose a random x from a uniform distribution on [−1, 1]. Finally
we computed b = Ax − |x| . We ensured that the singular values of each A exceeded 1
by actually computing the minimum singular value and rescaling A by dividing it by the
minimum singular value multiplied by a random number in the interval [0, 1].
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We generate for the several values for n = 32, 64, 128, 256, 512, 1024, the
data (A, b) by the following Matlab code in order to have a solution for AVE:

n=input(’dimension of matrix A=’);
rand(’state’,0);
A=10*(rand(n,n)-rand(n,n));
x=rand(n,1)-rand(n,1);
b=A*x-abs(x);

The required precision for solving AVE is 10−6. For each n we consider 100 instances.

Now, we compare our methods Soft-LCP and TLCP to Generalized Newton method
from [24], which is denoted GN. In this method, we solve each iteration a linear system:

(A−D(xi))xi+1 = b (34)

whereD(xi) = diag(sign(xi)). Results are summarized in Table 6, which gives the number
of iterations, the time required to solve all the 100 instances. Our methods solve all 100
AVEs to an accuracy of 10−6 and validate our approach. We notice that the GN method
is the fastest because at each iteration it solves only one linear system, the TLCP method
gives the fewest iterations to solve the 100 instances.

Table 6. Comparison of Soft-LCP and TLCP with GN method, in the case with singular values of

A exceeds 1 for 100 randomly generated AVE of size n.
n it-Soft-LCP Time-Soft-LCP(s) it-TLCP Time-TLCP(s) it-GN Time-GN(s)
32 201 0.0394 104 0.0238 255 0.0071

64 201 0.1041 107 0.0646 274 0.0182
128 200 0.2844 111 0.1767 274 0.0641
256 212 1.6986 106 0.9727 290 0.2301
512 284 11.0947 110 5.0497 295 1.2925
1024 284 42.1565 111 45.3930 291 14.8541

6.4.2 Random generated problem

Now we present results for general AVE, which is the main interest of our algorithm.
The data are generated like [25] for several n and for several values of the parameteres,
in each situation we solve 100 instances of the problem. We choose a random A from
a uniform distributin on [−10, 10], then chose a random x from a uniform distribu-
tion on [−1, 1] and set b = Ax − |x|. The data (A, b) are generated by Matlab script:

n=input(’dimension of matrix A=’);
R=10*(rand(n,n)-rand(n,n));
A=R/(min(svd(R))*rand(1));
x=rand(n,1)-rand(n,1);
b=A*x-abs(x).

We will compare 4 methods valid for general AVE:

• TLCP method from Algorithm 1;
• Soft-LCP method from Algorithm 2;
• Concave minimization method CMM from [25];
• Successive linear programming method LPM from [23];

In table 7-10, ”nnztot” gives the number of violated expressions for all problems, ”nnzx”
gives the maximum violated expressions for one problem, ”nb-iter” gives the number of
iteration for all the problems. We also provide the time in seconds and the number of
problems where we did not manage to solve AVE.
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Table 7. Results from TLCP on with 100 consecutive ran-
dom AVEs.

n nnztot nnzx nb-iter time(s) nb-failure
32 3 1 1647 0.6274 3

64 5 1 1776 1.2548 5
128 5 1 2359 2.4182 7
256 8 1 2448 22.8817 8

Table 8. Results from Soft-LCP on with 100 consecutive
random AVEs.

n nnztot nnzx nb-iter time(s) nb-failure
32 1 1 960 0.4287 1

64 1 1 1032 0.8351 1
128 3 1 1478 1.6692 3
256 1 1 1996 18.3965 1

Table 9. Results from CMM on with 100 consecutive ran-
dom AVEs.

n nnztot nnzx nb-iter time(s) nb-failure
32 13 1 640 4.2832 13

64 11 1 588 7.0034 11
128 13 1 693 19.9940 13
256 15 1 753 143.6931 15

Table 10. Results from LPM on with 100 consecutive ran-
dom AVEs.

n nnztot nnzx nb-iter time(s) nb-failure
32 8 1 313 2.2422 8

64 19 4 411 6.0978 18
128 21 3 433 18.2642 20
256 29 5 606 156.4612 22

In every cases our methods manage to reduce the number of unsolved problem, which
was our principal aim. In every case it gives the smallest number of unsolved problem in
a very reasonable time.

7. Conclusion

In this paper, we propose two methods to solve the LCP. A complete analysis is provided
to validate our approach. Furthermore, a numerical study shows that our approach is
interesting. Numerical experiments on several LCP problems and a comparison with
some existing methods proves the efficiency of our study.
We have presented an application of absolute value equation AVE and two examples (an
obstacle problem and ODE) and show that our two methods are promising.
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