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AbstractThis paper analyzes the stability of a direct current microgrid with a decentralized
switched control using differential-algebraic equations and Lyapunov functions. The decentral-
ized controllers regulate the voltage, achieve the power-sharing condition, and guaranty the
non-Zeno condition. They also fulfill the droop-control condition for optimal power dispatch.
The event of either connecting or disconnecting a converter is analyzed as a switched event. It is
shown that the system is asymptotically stable under this class of switching events after either
connecting or disconnecting a distributed generator.
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1. INTRODUCTION

Distributed energy resources (DERs) have increasingly
become attractive alternatives for energy generation, espe-
cially renewable sources. A direct current (DC) microgrid
(MG) interconnects DERs that operate in DC through
a common bus, each of them might have different power
capacity and dynamical response Justo et al. (2013). Some
of the main objectives of an isolated MG are voltage regu-
lation, power-sharing or the condition that each converter
shares power according to its maximum capacity, and the
plug-and-play capacity which is the capacity of connect-
ing or disconnecting a converter at an arbitrary time.
Approaches for MG control can be classified as central-
ized, decentralized, and distributed Guerrero et al. (2011).
Centralized controllers need a robust communication sys-
tem and the changes in their structure require recalculate
control parameters such as gains. A distributed controller
allows flexibility; however, an appropriate communication
network is also necessary. In a decentralized approach, sev-
eral changes can be performed over the system parameters
and the plug-and-play capacity is better compared with
the other approaches because a complete communication
system is not essential Meng et al. (2017).

The connection or disconnection of a DER implies abrupt
changes in the MG’s power, and voltages can generate
jumps and impulse variations, endangering the compo-
nents and loads and degrading the power quality Kumar
et al. (2017). Switched events can be represented as a
set of differential-algebraic equations (DAEs) to determine
if there are impulses and jumps in the states. Examples
for power systems are presented in Trenn (2009), Ñañez
et al. (2017), Domı́nguez-Garćıa and Trenn (2010). In
Trenn (2012), conditions for stability and solvability un-

der switching are shown. In Domı́nguez-Garćıa and Trenn
(2010), an analytical framework for jumps and impulse de-
tection in switched systems with applications to power sys-
tems is presented. Passivity conditions to analyze switched
systems are presented by Ñañez et al. (2017) including an
example of an electrical system. A DAE model with the
Lyapunov approach to control alternate current MGs is
presented by De Persis et al. (2016), where algebraic con-
ditions correspond to an equilibrium between demanded
power and power set point. This approach does not con-
sider switched events. Gross et al. (2018) consider failures
or variations in the network’s topology as switched events
applied to electrical systems made of rotatory machines.
Mojica-Nava et al. (2019) present a complete decentralized
switched controller for a DC MG whose stability is proved
using a passivity approach, the switched control commutes
between two subsystems depending on the error of the
generated voltage compared to a reference. At this article
we extend the last approach to a switched event created
when a converter is connected or disconnected to the
MG. Also, an analysis of the Zeno behavior is performed
because this fast transitions between subsystems endanger
the components of the converter and degrade the power
quality. Conditions for the existence of Zeno behavior are
presented in Ames et al. (2005) for a class of system
known as diagonal first quadrant (DFQ) hybrid systems.
In Heymann et al. (2002) are presented the conditions for
the existence of the Zeno set and Zeno executions.

The principal contribution of this paper is the analysis of
a DC MG when DERs are connected or disconnected from
a DAE’s perspective, considering the space constraint,
jump-free, and impulse-free conditions. Also, the stabil-
ity of the controller is shown using Lyapunov functions.
Jumps, impulses, and Zeno behavior are studied using
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et al. (2017), Domı́nguez-Garćıa and Trenn (2010). In
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systems are presented by Ñañez et al. (2017) including an
example of an electrical system. A DAE model with the
Lyapunov approach to control alternate current MGs is
presented by De Persis et al. (2016), where algebraic con-
ditions correspond to an equilibrium between demanded
power and power set point. This approach does not con-
sider switched events. Gross et al. (2018) consider failures
or variations in the network’s topology as switched events
applied to electrical systems made of rotatory machines.
Mojica-Nava et al. (2019) present a complete decentralized
switched controller for a DC MG whose stability is proved
using a passivity approach, the switched control commutes
between two subsystems depending on the error of the
generated voltage compared to a reference. At this article
we extend the last approach to a switched event created
when a converter is connected or disconnected to the
MG. Also, an analysis of the Zeno behavior is performed
because this fast transitions between subsystems endanger
the components of the converter and degrade the power
quality. Conditions for the existence of Zeno behavior are
presented in Ames et al. (2005) for a class of system
known as diagonal first quadrant (DFQ) hybrid systems.
In Heymann et al. (2002) are presented the conditions for
the existence of the Zeno set and Zeno executions.

The principal contribution of this paper is the analysis of
a DC MG when DERs are connected or disconnected from
a DAE’s perspective, considering the space constraint,
jump-free, and impulse-free conditions. Also, the stabil-
ity of the controller is shown using Lyapunov functions.
Jumps, impulses, and Zeno behavior are studied using



222 Vladimir Toro  et al. / IFAC PapersOnLine 54-14 (2021) 221–226

the proposed switched control. Finally, the conditions for
power-sharing and optimal power dispatch are presented.

The rest of this paper is organized as follows. Section
2 presents the electrical model for the microgrid with
decentralized control and related Lyapunov functions. In
Section 3, the connection of a converter to the MG is
studied using tools for DAEs, stability is analyzed based
on consistency space and projectors, and conditions for
optimal dispatch are considered too. Simulation results are
presented in Section 4. Finally, conclusions are presented
in Section 5.

2. DC MICROGRID MODEL AND SWITCH
CONTROL

For modeling the microgrid the next DC converter model
based on current is presented

Figure 1. Two DC sources connected through a transmis-
sion line

Two converters are connected in parallel through a trans-
mission line Rij as shown in Figure 1. Isi is the current
source, usually controlled by PWM (Pulse Width Modu-
lation), RNi is the internal resistance of the source (which
will be omitted assuming a very high value), and RLi is the
load for converter i. This model is extended to n parallel
converters as follows

Ci
dVi

dt
= Isi −

Vi

RLi
+

n∑
j∈Ni

1

Rij
(Vj − Vi) + ui (1)

Iij =

n∑
j∈Ni

1

Rij
(Vj − Vi)

where Ci is the parallel capacitance for filtering, Vi is the
voltage for DGi, Ni represents the set of neighbors of node
i, Iij is the current between converter i and j, and ui is
the control term.

The next state-depending switching law is proposed by
Mojica-Nava et al. (2019)

ui =




PDGi

Vi
∆Vi ≥ 0

PDGi − k∆V 2
i

Vi
∆Vi < 0

(2)

where ∆Vi = Vref − Vi is the difference between the
voltage reference Vref and the voltage at the i-th converter.
PDGi

= ViIsi is the power at the ith converter, and k is
a constant value for setting the effect of voltage variation,
usually 0 < k ≤ 1.

Microgrid model assumptions: The voltage in the ca-
pacitors is strictly positive Vi > 0, and current sources
are assumed to be stable and with a large enough internal
resistance capable of supplying any load RNi −→ ∞.

The output of the system yi is the voltage at each converter
Vi, so expression (2) is a state-dependent switching control
law with yi = Vi. The feedback control law determines
the current supplied by each source (Mojica-Nava et al.
(2019))

ui = −yi (3)

To simplify (1) , we work with the admittance values given
by Yij = 1

Rij
. Connections are represented by a weighted

Laplacian matrix Lw whose elements are defined by

Lij =

n∑
j∈Nij

Yij if i = j Lij = −Yij if i �= j

with Yij �= 0 and YNi = 1
RNi

�= 0. The load terms

YLi =
1

RLi
= are included in the Lw matrix.

Lw =




n∑
j∈Nij

Yij −Y12 · · · −Y1n

−Y21

n∑
j∈Nij

Yij · · · −Y2n

...
...

. . .
...

−Yn1 −Yn2 · · ·
n∑

j∈Nij

Yij




Defining the set of inputs Isi as the column vector given

by Is = [Is1 Is2 · · · Isn]
�
. The system (1) without

control input can be written in a matrix form as

CV̇ = Is − LwV
ILn = −LwV

(4)

where C ∈ Rn×n is a diagonal matrix whose elements are
the capacitance values Ci, and ILn is the line current Iij .

Mojica-Nava et al. (2019) demonstrated the stability for
system (4) based on a passivity approach. System (4) is
asymptotically stable for closed-loop under switched con-
trol law (2) with Lyapunov function Hp(v) = Hq(v) where
v denotes the vector of voltages V , p and q denote the
function before and after the switching event, respectively.
Defining the Lyapunov function Hp(v) = Hq(v) =

1
2v

2 for
the close-loop system in both cases:

∆V ≥ 0, replacing the value of Ḣ(v) = v dv
dt

Ḣ = V

(
Is
C

− LwV

C

)
≤ 0

Ḣ = V

(
−PDG

V C
− LwV

C

)
≤ 0

Ḣ =
−PDG

C
− LwV

2

C
≤ 0

−PDG − LwV
2 ≤ 0

∆V < 0

Ḣ = V

(
−PDG − k∆V 2

V C
− LwV

C

)
≤ 0

Ḣ = −PDG

C
− ∆V 2

C
− LwV

2

C
≤ 0

−PDG −∆V 2 − LwV
2 ≤ 0

In both cases, Lw represents the values of the positive-
definite Laplacian matrix Lw, PDGi are the positive power
values of a diagonal matrix PDG which is positive definite,
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the proposed switched control. Finally, the conditions for
power-sharing and optimal power dispatch are presented.

The rest of this paper is organized as follows. Section
2 presents the electrical model for the microgrid with
decentralized control and related Lyapunov functions. In
Section 3, the connection of a converter to the MG is
studied using tools for DAEs, stability is analyzed based
on consistency space and projectors, and conditions for
optimal dispatch are considered too. Simulation results are
presented in Section 4. Finally, conclusions are presented
in Section 5.

2. DC MICROGRID MODEL AND SWITCH
CONTROL

For modeling the microgrid the next DC converter model
based on current is presented

Figure 1. Two DC sources connected through a transmis-
sion line

Two converters are connected in parallel through a trans-
mission line Rij as shown in Figure 1. Isi is the current
source, usually controlled by PWM (Pulse Width Modu-
lation), RNi is the internal resistance of the source (which
will be omitted assuming a very high value), and RLi is the
load for converter i. This model is extended to n parallel
converters as follows

Ci
dVi

dt
= Isi −

Vi

RLi
+

n∑
j∈Ni

1

Rij
(Vj − Vi) + ui (1)

Iij =

n∑
j∈Ni

1

Rij
(Vj − Vi)

where Ci is the parallel capacitance for filtering, Vi is the
voltage for DGi, Ni represents the set of neighbors of node
i, Iij is the current between converter i and j, and ui is
the control term.

The next state-depending switching law is proposed by
Mojica-Nava et al. (2019)

ui =




PDGi

Vi
∆Vi ≥ 0

PDGi − k∆V 2
i

Vi
∆Vi < 0

(2)

where ∆Vi = Vref − Vi is the difference between the
voltage reference Vref and the voltage at the i-th converter.
PDGi

= ViIsi is the power at the ith converter, and k is
a constant value for setting the effect of voltage variation,
usually 0 < k ≤ 1.

Microgrid model assumptions: The voltage in the ca-
pacitors is strictly positive Vi > 0, and current sources
are assumed to be stable and with a large enough internal
resistance capable of supplying any load RNi −→ ∞.

The output of the system yi is the voltage at each converter
Vi, so expression (2) is a state-dependent switching control
law with yi = Vi. The feedback control law determines
the current supplied by each source (Mojica-Nava et al.
(2019))

ui = −yi (3)

To simplify (1) , we work with the admittance values given
by Yij = 1

Rij
. Connections are represented by a weighted

Laplacian matrix Lw whose elements are defined by

Lij =

n∑
j∈Nij

Yij if i = j Lij = −Yij if i �= j

with Yij �= 0 and YNi = 1
RNi

�= 0. The load terms

YLi =
1

RLi
= are included in the Lw matrix.

Lw =




n∑
j∈Nij

Yij −Y12 · · · −Y1n

−Y21

n∑
j∈Nij

Yij · · · −Y2n

...
...

. . .
...

−Yn1 −Yn2 · · ·
n∑

j∈Nij

Yij




Defining the set of inputs Isi as the column vector given

by Is = [Is1 Is2 · · · Isn]
�
. The system (1) without

control input can be written in a matrix form as

CV̇ = Is − LwV
ILn = −LwV

(4)

where C ∈ Rn×n is a diagonal matrix whose elements are
the capacitance values Ci, and ILn is the line current Iij .

Mojica-Nava et al. (2019) demonstrated the stability for
system (4) based on a passivity approach. System (4) is
asymptotically stable for closed-loop under switched con-
trol law (2) with Lyapunov function Hp(v) = Hq(v) where
v denotes the vector of voltages V , p and q denote the
function before and after the switching event, respectively.
Defining the Lyapunov function Hp(v) = Hq(v) =

1
2v

2 for
the close-loop system in both cases:

∆V ≥ 0, replacing the value of Ḣ(v) = v dv
dt

Ḣ = V

(
Is
C

− LwV

C

)
≤ 0

Ḣ = V

(
−PDG

V C
− LwV

C

)
≤ 0

Ḣ =
−PDG

C
− LwV

2

C
≤ 0

−PDG − LwV
2 ≤ 0

∆V < 0

Ḣ = V

(
−PDG − k∆V 2

V C
− LwV

C

)
≤ 0

Ḣ = −PDG

C
− ∆V 2

C
− LwV

2

C
≤ 0

−PDG −∆V 2 − LwV
2 ≤ 0

In both cases, Lw represents the values of the positive-
definite Laplacian matrix Lw, PDGi are the positive power
values of a diagonal matrix PDG which is positive definite,

and ki is a positive value. Then, Ḣ remains negative along
the trajectories, Hp(x) = Hq(x) are Lyapunov functions
for the system, and the system is asymptotically stable.

Switched systems might present some behaviors exclusive
for these systems. Transitions among subsystems depend
on the states’ conditions,the number of transitions is
limited in a real model. However, when modeling it might
occur an infinite number of transitions in a finite time, this
is known as Zeno behavior or Zenoness (Heymann et al.
(2005)).

Figure 2. Converter switched control diagram

Definition 1. The existence of a nonempty Zeno set indi-
cates the existence of a possible Zeno equilibrium (Zheng
(2006)).

The Zeno set corresponds to the intersection of the do-
mains of each subsystem. The sets are given by

S1 : Vi ≥ Vref S2 : Vi < Vref

The Zeno set is given by

Zc = S1 ∩ S2 = {∅}
Then, the set Zc is empty so there are not Zeno points in
system (1) under switched control law (2).

3. DC MICROGRID UNDER SWITCH EVENT

Suppose a microgrid with n converters, then the switch Si

with i = {1, 2, · · · , n} is closed at t = 0s connecting the
nth converter to the MG through a transmission line Yij

as shown in Figure 3. The weight values for converter n
change depending on if it is connected or not. At t < 0s
values Yn,n are set as zero, so all values for column n and
row n are zero.

Figure 3. General diagram of a DCMG. The fifth converter
is connected when the switch s5 is closed

After the switch event, each converter updates its state
variables according to Kirchhoff laws. The system is rep-
resented as a differential-algebraic system in the canonical
form

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t),

where σ = {1, 2, · · · , p} is the variable that represents the
switch state, Ep, and Ap ∈ Rn×n, Bp ∈ Rn×m, x ∈ Rn is
the state vector, and u ∈ Rm is the input vector (Trenn
(2012)).

Definition 2. Admittance matrix The connection among
converters at t < 0s is defined by the admittance matrix
Lw1, at t = 0s an additional converter is (dis)connected
with admittance matrix defined by Lw2.

Assumption 1: We assume the total number of convert-
ers is previously known, so n − 1 converters are intercon-
nected at t < 0s with ILn = 0, then at t = 0s converter n
is connected.

The initial associated weight value changes from zero
to a new value for that converter. System equations
are presented before and after the switching event in a
matrix form. The DAEs equations with pairs (E1, A1) and
(E2, A2) are written in matrix form.
t < 0[

C 0
0 0

] [
V̇

İLs

]
=

[
−Lw1 0
Lw1 Is

] [
V
ILs

]
+

[
1
0

]
U1 (5)

t ≥ 0[
C 0
0 0

] [
V̇

İLs

]
=

[
−Lw2 0
Lw2 Is

] [
V
ILs

]
+

[
1
0

]
U2 (6)

where U1 is the vector of inputs U1 = [u1 u2 · · · un−1],
and U2 = [u1 u2 · · · un].

The DAEs description already represents jumps and im-
pulses. These are allowed in the system’s solution by
selecting an appropriate distributional framework Trenn
(2012). Next, some important definitions for the switched
system are given.

Definition 3. Regularity (Trenn (2012)). Matrix pairs (E1,
A1), (E2, A2), · · · , (En, An) are regular if the pencil
(sEσ−A) is regular, it means if det(sE−A) is a polynomial
different from zero. This condition guarantees that the
switched system always has a solution, no matter the
initial value.

This condition is fulfilled by systems (5) and (6) whose
determinants are given by ∆1 = −sC − Lw1 and ∆2 =
−sC − Lw2.

Definition 4. Consistency space and projectors (Liberzon
and Trenn (2012)). Solutions for the switched system are
given inside a space known as the consistency space. Ma-
trices pairs (Ei, Ai) are regular if they can be represented
in the quasi-Weierstrass form.

The Wong sequences give an algorithmic way to determine
the quasi-Weierstrass form. The consistency projectors
Π(E,A), the differential projectors Π

diff
(E,A), and the impulse

projectors Πimp
(E,A) are defined by Trenn (2012). Those are

calculated for systems (5) and (6) as follows

Π(E1,A1) = I2n×2n Π(E2,A2) = I2n×2n

Then, the space is consistent.

Definition 5. Impulse-free (Trenn (2012)). A switched sys-
tem defined by a set of DAEs, with regular matrix pairs
(Ep, Ap) cannot produce an impulse for all solutions if the
following impulse-free condition holds:
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Eq(I −Πq)Πp = 0

Definition 6. Sufficient condition for jump free (Trenn
(2009)):

(I −Πq)Πp = 0.

Definition 7. Condition for inputs Ñañez et al. (2017). For
each σ ∈ Σ,

Πimp
σ Bσ = 0

Definition 8. Stability condition for switched systems
Trenn (2012). For a switched DAE with regular pairs
(Ep, Ap) ∈ {1, · · · , p̄}, and consistency projectors ΠEp,AP

,
the system is asymptotically stable for all switching signals
if
1) Epẋ = Apx is asymptotically stable with Lyapunov
function Hp,
2) Fulfills the impulse-free condition Eq(I−Πq)Πp = 0 for
all q ∈ (1, ..., p), and
3) Hq(Πqx) ≤ Hp(x) for all x ∈ H∗

p=imΠp.

Theorem 9. Consider the switched system represented by
DAEs (5) and (6) with decentralized control (2) with
regular matrix pairs (E1, A1), (E2, A2), and Lyapunov
functions Hp and Hq. If the system satisfies the conditions
of definition (8), then the system is asymptotically stable.

Proof. The impulse-free condition is satisfied for both
subsystems

q = 1 q = 2
p = 1 Eq(I −Πp)Πp = 0 Eq(I −Πp)Πp = 0
p = 2 Eq(I −Πp)Πp = 0 Eq(I −Πp)Πp = 0

And the jump condition (8) Hq(Πqx) ≤ Hp(x) is fulfilled
for the Lyapunov function, with 1/2(Πqx)

2 < Hp(x). Then
the system is asymptotically stable.

3.1 Optimal Control Criteria and Power Sharing

Different resistance values at each transmission line cause
that voltages differ from the load side compared with the
output side at each converter. That results in poor voltage
regulation and insufficient power-sharing which is fulfilled
achieving the next condition

Pi

Pmax,i
= · · · = Pj

Pmax,j
. (7)

If the reference voltage is achieved as t → ∞, the last

expression can be rewritten as Ii
Imax,i

= · · · = Ij
Imax,j

, which

is an equilibrium among each source. Defining value ri =
1

Imax,i
, power sharing condition is equal to riIi = · · · = rjIj

or riPi = · · · = rjPj .

Optimal control for MGs solves the problem of dispatching
DERs based on its marginal cost and availability. It is not
always desirable that a source supplies power according
to its maximum capacity. Sometimes a converter can
have major priority over others to reduce the cost of
power generation. This requirement corresponds to a cost
minimization problem with restrictions.

Theorem 10. Assume that system defined by (1) is asymp-
totically stable with control law (2), where each source has
a dispatch factor ri. Then, the power-sharing condition is
also the optimal power dispatch condition for the system,
this means the optimal power to be delivered for each

converter to supply the demand according the maximum
power capacity at each converter.

Proof. In steady-state, the equilibrium equation is given
by

U − LwV = 0, (8)

Assuming a quadratic cost function given by uc =∑
i∈N

1
2riu

2
i , subject to (8). Applying the Lagrange mul-

tipliers method, we have the next equation

L(u, v, λ) =
∑
i∈N

riu
2
i + λ(u− LwV ), (9)

with ∇Lu =
∑

i∈N riui + λ = 0, ∇Lv = −λ(−Lw) = 0,
and ∇Lλ = u− V (−Lw) = 0. Matrix −Lw can be written
as an admittance matrix that includes the values of the
local loads. Then, the solution of ∇Lλ = u− V (−Lw) = 0
are the set of values λ = c1n, with c ∈ R. Then, the
condition for the optimal control input is given by

ui = − c

ri
, (10)

Then, the optimal input value for the ith converter is
given as a function of constant c over the cost value

ri. Where c
∑

i∈N

1

ri
=

∑
i∈N Isi +

∑
i∈N IL (Zhao and

Dörfler (2015)). As control (2) acts as a droop control in
two states, being the same as ∆V = 0, optimal condition
(10) is fulfilled, and the theorem is demonstrated.

4. SIMULATION RESULTS

A five converter DC microgrid is simulated in Simulink
considering two cases as follows

4.1 Case 1

The DC MG is simulated using the model of Figure 3,
four interconnected converters share power, a linear load
is connected at t = 0.2s, then a fifth converter (n = 5) is
connected at t = 0.4s. The MG parameters are shown in
Table 1.

Table 1. MG parameters

Converter 1 2 3 4 5

Maximum Active
Power (W)

360 330 300 270 240

Line Resistor Ri (Ω) 0.64 0.50 0.90 0.70 0.82
Output Capacitor 2.2mF
Vref 80V
k 10Ω−1

Local load 5.0 Ω

The Weighted Laplacian matrix is given by Lw

Lw =




−13.77 3.56 2.67 2.99 2.78 1.76
3.56 −15.52 3.11 3.42 3.21 2.20
2.67 3.11 −11.96 2.53 2.33 1.31
2.99 3.42 2.53 −13.23 2.64 1.62
2.78 3.21 2.33 2.64 −12.39 1.41
1.76 2.20 1.31 1.62 1.41 −8.32




Figure 4 shows the voltage at each converter. A load is
connected at t = 0.2s, and converter five is connected at
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Eq(I −Πq)Πp = 0

Definition 6. Sufficient condition for jump free (Trenn
(2009)):

(I −Πq)Πp = 0.

Definition 7. Condition for inputs Ñañez et al. (2017). For
each σ ∈ Σ,

Πimp
σ Bσ = 0

Definition 8. Stability condition for switched systems
Trenn (2012). For a switched DAE with regular pairs
(Ep, Ap) ∈ {1, · · · , p̄}, and consistency projectors ΠEp,AP

,
the system is asymptotically stable for all switching signals
if
1) Epẋ = Apx is asymptotically stable with Lyapunov
function Hp,
2) Fulfills the impulse-free condition Eq(I−Πq)Πp = 0 for
all q ∈ (1, ..., p), and
3) Hq(Πqx) ≤ Hp(x) for all x ∈ H∗

p=imΠp.

Theorem 9. Consider the switched system represented by
DAEs (5) and (6) with decentralized control (2) with
regular matrix pairs (E1, A1), (E2, A2), and Lyapunov
functions Hp and Hq. If the system satisfies the conditions
of definition (8), then the system is asymptotically stable.

Proof. The impulse-free condition is satisfied for both
subsystems

q = 1 q = 2
p = 1 Eq(I −Πp)Πp = 0 Eq(I −Πp)Πp = 0
p = 2 Eq(I −Πp)Πp = 0 Eq(I −Πp)Πp = 0

And the jump condition (8) Hq(Πqx) ≤ Hp(x) is fulfilled
for the Lyapunov function, with 1/2(Πqx)

2 < Hp(x). Then
the system is asymptotically stable.

3.1 Optimal Control Criteria and Power Sharing

Different resistance values at each transmission line cause
that voltages differ from the load side compared with the
output side at each converter. That results in poor voltage
regulation and insufficient power-sharing which is fulfilled
achieving the next condition

Pi

Pmax,i
= · · · = Pj

Pmax,j
. (7)

If the reference voltage is achieved as t → ∞, the last

expression can be rewritten as Ii
Imax,i

= · · · = Ij
Imax,j

, which

is an equilibrium among each source. Defining value ri =
1

Imax,i
, power sharing condition is equal to riIi = · · · = rjIj

or riPi = · · · = rjPj .

Optimal control for MGs solves the problem of dispatching
DERs based on its marginal cost and availability. It is not
always desirable that a source supplies power according
to its maximum capacity. Sometimes a converter can
have major priority over others to reduce the cost of
power generation. This requirement corresponds to a cost
minimization problem with restrictions.

Theorem 10. Assume that system defined by (1) is asymp-
totically stable with control law (2), where each source has
a dispatch factor ri. Then, the power-sharing condition is
also the optimal power dispatch condition for the system,
this means the optimal power to be delivered for each

converter to supply the demand according the maximum
power capacity at each converter.

Proof. In steady-state, the equilibrium equation is given
by

U − LwV = 0, (8)

Assuming a quadratic cost function given by uc =∑
i∈N

1
2riu

2
i , subject to (8). Applying the Lagrange mul-

tipliers method, we have the next equation

L(u, v, λ) =
∑
i∈N

riu
2
i + λ(u− LwV ), (9)

with ∇Lu =
∑

i∈N riui + λ = 0, ∇Lv = −λ(−Lw) = 0,
and ∇Lλ = u− V (−Lw) = 0. Matrix −Lw can be written
as an admittance matrix that includes the values of the
local loads. Then, the solution of ∇Lλ = u− V (−Lw) = 0
are the set of values λ = c1n, with c ∈ R. Then, the
condition for the optimal control input is given by

ui = − c

ri
, (10)

Then, the optimal input value for the ith converter is
given as a function of constant c over the cost value

ri. Where c
∑

i∈N

1

ri
=

∑
i∈N Isi +

∑
i∈N IL (Zhao and

Dörfler (2015)). As control (2) acts as a droop control in
two states, being the same as ∆V = 0, optimal condition
(10) is fulfilled, and the theorem is demonstrated.

4. SIMULATION RESULTS

A five converter DC microgrid is simulated in Simulink
considering two cases as follows

4.1 Case 1

The DC MG is simulated using the model of Figure 3,
four interconnected converters share power, a linear load
is connected at t = 0.2s, then a fifth converter (n = 5) is
connected at t = 0.4s. The MG parameters are shown in
Table 1.

Table 1. MG parameters

Converter 1 2 3 4 5

Maximum Active
Power (W)

360 330 300 270 240

Line Resistor Ri (Ω) 0.64 0.50 0.90 0.70 0.82
Output Capacitor 2.2mF
Vref 80V
k 10Ω−1

Local load 5.0 Ω

The Weighted Laplacian matrix is given by Lw

Lw =




−13.77 3.56 2.67 2.99 2.78 1.76
3.56 −15.52 3.11 3.42 3.21 2.20
2.67 3.11 −11.96 2.53 2.33 1.31
2.99 3.42 2.53 −13.23 2.64 1.62
2.78 3.21 2.33 2.64 −12.39 1.41
1.76 2.20 1.31 1.62 1.41 −8.32




Figure 4 shows the voltage at each converter. A load is
connected at t = 0.2s, and converter five is connected at

Figure 4. Voltage output at each converter for Case 1

Figure 5. Current measured at each converter for Case 1

Figure 6. Power Sharing Among Converters for Case 1

t = 0.4s. Notice the difference in the voltage regulation
before and after connecting the load. Also, voltage reg-
ulation improves when the fifth converter is connected.
The generated voltage does not present peaks or jumps.
Figure 5 and Figure 6 show the current and power at each
converter, respectively. The current and power-sharing
condition is achieved. There are current peaks because
of the load connections, but mostly because of the fifth
converter’s connection.

4.2 Case 2

Figure 7. Second case MG model

Here, the MG has the configuration presented in Figure 7.
A linear load is connected to the second converter at

t = 0s. The interrupter is closed at t = 0.3s connecting
the fourth and fifth converters. The parameters of the
MG are shown in Table 2, and the physical connections
are represented by matrices Lw1 and Lw2 for the instants
before and after closing sn, respectively.

Table 2. MG parameters

Converter 1 2 3 4 5

Maximum Active
Power (W)

360 330 300 270 240

Line Resistor Ri (Ω) 0.64 0.50 0.90 0.70 0.82
Output Capacitor 2.2mF
Vref 80V
k 10Ω−1

Local load 5.0 Ω
R12 = R23 = R34 = 0.1 Ω
R45 = R15

Lw1 =




−1.8333 0.8333 0 0 1.0000
0.8333 −1.2878 0.4545 0 0

0 0.4545 −1.7045 1.2500 0
0 0 1.2500 −2.5833 1.3333

1.0000 0 0 1.3333 −2.3333




Lw2 =




−3.8333 0.8333 0 2.0000 1.0000
0.8333 −1.2878 0.4545 0 0

0 0.4545 −1.7045 1.2500 0
2.0000 0 1.2500 −.5833 1.3333
1.0000 0 0 1.3333 −2.3333




Figure 8. Voltage output at each converter for Case 2

Figure 9. Current output at each converter for Case 2

Figure 10. Power measured at each converter for Case 2

The voltage at each converter is shown in Figure 8. The
load is connected at t = 0s, and the fifth converter is
connected at t = 0.3s. After the system starts, voltage
outputs stabilize in t < 0.1s, as expected voltage regulation
improves when the fifth converter is connected. Voltage
output presents neither peaks nor oscillations. The power-
sharing condition is kept, as shown in Figure 9 and
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Figure 11. Control signal applied at the first converter for
Case 2

Figure 10. However, as in the first case, voltage regulation
is not as good as expected. There is a trade between power
sharing and voltage regulation as shown in Mojica-Nava
et al. (2019), and depends directly on selecting the factor
k. Figure 11 shows the control signal at the first converter
it changes at t = 0.3s when the additional converter
is connected and presents a small ripple because of the
switching.

5. CONCLUSION

A DC MG with a decentralized controller was modeled
as a DAEs problem when an additional converter was
connected or disconnected. Stability, impulse-free, and
jump-free conditions were demonstrated. Stability for the
controller was proved using a Lyapunov functions ap-
proach, and also non-Zeno behavior was verified. It was
checked that variations over the network’s topology when
converters are connected could also be analyzed using the
DAEs approach. It was demonstrated that the decentral-
ized control fulfills the power-sharing condition. Also, the
conditions for optimal power dispatch were presented.
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