

Towards a more effective and reliable salt crystallisation test for porous building materials: Experimental research on salt contamination procedures and methods for3 assessment of the salt distribution

Cristiana Nunes, Asel Maria Aguilar Sanchez, Sebastiaan Godts, Davide Gulotta, Ioannis Ioannou, Barbara Lubelli, Beatriz Menendez, Noushine Shahidzadeh, Zuzana Slížková, Magdalini Theodoridou

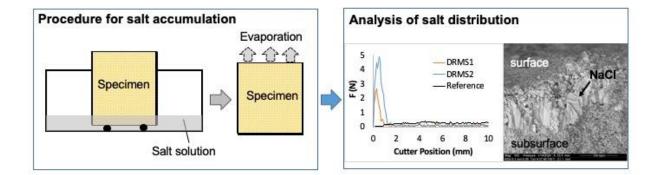
▶ To cite this version:

Cristiana Nunes, Asel Maria Aguilar Sanchez, Sebastiaan Godts, Davide Gulotta, Ioannis Ioannou, et al.. Towards a more effective and reliable salt crystallisation test for porous building materials : Experimental research on salt contamination procedures and methods for3 assessment of the salt distribution. Construction and Building Materials, 2021, 298, pp.123862. 10.1016/j.conbuildmat.2021.123862 . hal-03516171

HAL Id: hal-03516171 https://hal.science/hal-03516171

Submitted on 7 Jan2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.


1 2		
3 4	1	Towards a more effective and reliable salt crystallisation test for
5 6 7	1 2	porous building materials:
7 8 9	3	Experimental research on salt contamination procedures and methods for
10 11	4	assessment of the salt distribution
12 13	5	
14 15 16 17 18	6 7 8 9	Cristiana Nunes ^{a,*} , Asel Maria Aguilar Sanchez ^b , Sebastiaan Godts ^c , Davide Gulotta ^d , Ioannis Ioannou ^e , Barbara Lubelli ^f , Beatriz Menendez ^g , Noushine Shahidzadeh ^h , Zuzana Slížková ^a , Magdalini Theodoridou ⁱ
19 20 21	10 11	^a Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 76, 190 00 Prague, Czech Republic
22 23	12 13	 ETH Zürich, Institut für Baustoffe (IfB), Physical Chemistry of Building Materials, Stefano-Franscini- Platz 3, 8093 Zurich, Switzerland
24 25 26	14 15	^c Royal Institute for Cultural Heritage (KIK-IRPA), Jubelpark 1, 1000 Brussels, Belgium ^d Getty Conservation Institute, 1200 Getty Center Drive, Los Angeles, CA 90049, United States
27 28 29 30	16 17 18 19	 ^e University of Cyprus, 1 University Avenue, 2109 Aglantzia, Cyprus ^f Delft University of Technology, Faculty of Architecture, Julianalaan 134, 2628 BL, Delft, The Netherlands ^g CY Cergy Paris University, Geosciences and Environment Cergy, 1 rue Descartes, 95000 Neuville sur Oise, France
31 32 33 34 35	20 21 22	^h University of Amsterdam, Institute of Physics, Science Park 904-1098XH Amsterdam, The Netherlands ⁱ Newcastle University, Hub for Biotechnology in the Built Environment, Devonshire Building, NE1 7RU Newcastle upon Tyne, United Kingdom
36 37 38	23 24 25	
39 40	26	* Corresponding author.
41 42 43 44	27 28 29	<i>E-mail addresses:</i> <u>nunes@itam.cas.cz</u> (C. Nunes), <u>aselaguilars@ifb.baug.ethz.ch</u> (A.M. Aguilar Sanchez), <u>sebastiaan.godts@kikirpa.be</u> (S. Godts), <u>dgulotta@getty.edu</u> (D. Gulotta), <u>ioannis@ucy.ac.cy</u> (I. Ioannou), <u>b.lubelli@tudelft.nl</u> (B. Lubelli), <u>beatriz.menendez@cyu.fr</u> (B.
44 45 46 47	30 31 32	Menendez), <u>N.Shahidzadeh@uva.nl</u> (N. Shahidzadeh), <u>slizkova@itam.cas.cz</u> (Z. Slížková), <u>magdalini.theodoridou@newcastle.ac.uk</u> (M. Theodoridou)
48 49	33	
50 51 52	34	
53 54 55		
56 57 58		
59 60 61		
62 63 64		1

35 Abstract

The RILEM TC ASC-271 is developing a new laboratory test to assess the durability of porous building materials to salt crystallisation. The test encompasses two phases: salt accumulation and damage propagation. This paper focuses on designing a procedure for the accumulation phase; this is considered successful when salts crystallise at the material's evaporative surface (common situation observed on site) without the occurrence of damage. Two procedures were developed and tested on two limestones with different porosity: (1) capillary absorption of a salt solution followed by drying, and (2) continuous capillary absorption. Sodium chloride or sodium sulphate solutions were used. Several methods for assessing the salt distribution were employed: ultrasonic pulse velocity, drilling/scratching resistance, hygroscopic moisture content, ion chromatography, scanning electron microscopy, and micro X-ray fluorescence. The results enabled the selection of the most effective protocol for the salt accumulation phase.

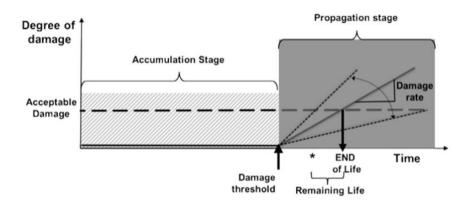
Keywords: salt crystallisation test; porous materials; salt accumulation; salt distribution

Graphical Abstract

53 1. Introduction

Salt crystallisation is one of the most recurrent damage processes affecting porous building materials worldwide. The durability of building materials with respect to salt crystallisation is often assessed by performing accelerated weathering tests. According to Alves et al. [1], salt weathering tests are the most frequent ageing tests performed in the laboratory, reflecting their worldwide importance for conservation and new construction. A recent literature review on this subject [2] reports a significant variation in the weathering procedures used by researchers. Despite the availability of a European standard [3], three RILEM recommendations [4], [5], [6], and a guideline [7], a widely accepted and reliable salt weathering test is still lacking. The use of different test procedures hinders the comparison between the results of different studies.

To tackle this problem, in 2016, the RILEM Technical Committee ASC-271 "Accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallisation" (henceforth referred to as TC ASC-271) was launched to develop an effective laboratory weathering test. The test should reliably assess the durability of porous building materials against salt crystallisation within a reasonable period, accelerating the deterioration process without significantly altering its mechanism. Since reliable accelerated test procedures for simulating sea-salt spray are already available, e.g., [8], [9], the work of TC ASC-271 focuses on developing a procedure that simulates salt damage triggered by capillary transport of salt solution towards the evaporative surface of a material.


TC ASC-271 proposes a new approach to salt crystallisation tests, which differs from existing weathering procedures in this field. In this approach, which is derived from the field of concrete durability [10], as described in Flatt et al. [11], the salt crystallisation damage process consists of two phases: (i) the induction phase, in which salts accumulate in the pores of the material (but the degree of pore filling is not high enough to initiate damage); and (ii) the propagation phase, during which dissolution/crystallisation cycles lead to (increasing) damage (Figure 1).

Starting from this approach, the new salt crystallisation test, under development by the TC ASC-271, consists of two phases: (1) salt accumulation phase and (2) damage propagation phase. By this approach, not adopted in existing salt crystallization procedures, it is possible to define the risk of decay due to dissolution/crystallization cycles, depending on the salt content (and thus the degree of pore filling) accumulated in the first stage. By separating the two phases, a better understating and forecast of the decay can be achieved.

This paper aims to design the procedure to be followed in the accumulation phase of the salt crystallisation test under development by the TC-ASC-271. The second phase of the test, i.e., the damage propagation phase, is not addressed in this paper. The accumulation phase can be considered successful if it enables the accumulation of salts at the material's evaporative surface (because this is the most common situation observed on site) without the occurrence of damage (damage should only start in the propagation phase).

For the assessment of the capability of the accumulation procedure to fulfil the requirement mentioned above, it is crucial to measure the salt distribution in the specimen at the end of the accumulation phase.
 This has been done with several methods (destructive and non-destructive), and their advantages and disadvantages are critically discussed.

- **93**

Figure 1: Schematic representation of durability of a stone, subject to salt damage, adapted from the concept proposed by Tuutti [10] to describe the durability of reinforced concrete (image from [11] provided by Robert J. Flatt (ETH Zurich).

An extensive literature review of different salt crystallization procedures done by the TC ASC-271 is given in [2]. Standardized tests and procedures proposed by researchers can be classified into two main groups [2]:

• Contamination by capillary absorption or full immersion in a salt solution, followed by drying through one or more evaporative surfaces, e.g., [3], [4], [5], [6], [13], [14], [15], [16], [17], and

• Contamination by continuous capillary absorption of a salt solution and simultaneous drying, the so-called wick action, e.g., [18], [19], [20], [21].

In the present work, total immersion of the specimen in salt solution was not tested because it was considered not representative of the salt weathering mechanism occurring in natural exposure conditions [22]. Moreover, full immersion would not be suitable for assessing materials treated with surface treatments or for a combination of materials, such as brick/stone/plaster combinations [2]. Regarding the partial immersion procedure, the contamination can be done repeatedly with salt solution [e.g., 3] or by introducing salts only in the first cycle, followed by rewetting with pure water [e.g., 23]. In the present work, the partial immersion test considered both cases. However, rewetting with pure water was done to mobilize the salts towards the evaporative surface and not to propagate damage.

Existing standards and recommendations prescribe the use of single salt solutions [3], [4], [5], [6], usually sodium sulphate or sodium chloride, though, in natural exposure conditions, mixtures of salts prevail. Some researchers choose the composition of the salt mixture based on the analysis of salts present in the 46 116 building materials on site to reproduce better a specific field condition [24], [25]. However, a standard test can hardly consider the use of salt mixtures because this would require different thermohygrometric conditions to make it effective in other materials, which would make impossible any direct comparisons. Moreover, the action of single salts can prove more aggressive than salt mixtures [26], [27]. Hence, the present work considers the use of single salt solutions, following existing standards and recommendations.

The salt solution concentration plays a crucial role in the type and severity of damage [28]. The use of solutions with a very high salt content is common in salt crystallisation tests but can lead to unrealistic damage types and severity, e.g., [29]. The KIK-IRPA database encompassing more than six thousand samples collected from buildings in Belgium records salt contents of ca. 1 to 2 wt.% with respect to the dry weight of the sample collected onsite [30]. Therefore, in the present study, a realistic amount of salt was introduced in both materials tested (1 wt.% of the dry weight of the stones).

The most common methods for the assessment of salt damage in laboratory tests consist of visual and photographic examination and mass loss determination [3], [4], [5], [6]. Mass loss is a standard method for assessing damage in durability experiments and has also been used as a parameter for evaluating salt crystallisation durability estimators by several authors, e.g., [15], [31], [32]. However, this method does not allow obtaining information on damage and salt distribution inside the specimens. To this scope, other methods and techniques can be used.

12 134 Ultrasonic pulse velocity (UPV) measurement is a simple non-destructive technique used to evaluate the physicomechanical properties and the extent of weathering of building materials. UPV can provide information about dynamic mechanical properties, porosity, and the presence of discontinuities in the material [33]. As a result of the salts filling the pores, an increase of the UPV is recorded [34], so this technique can be used to assess salt distribution non-destructively. The drilling resistance measurement 18 139 system (DRMS) and the scratch tool (ST) are micro-destructive techniques that have been used successfully to monitor the salt crystallisation front in salt weathered limestone, both in the laboratory and in situ, by recording increased cutting resistances in areas where pore clogging due to salt crystallisation occurred [21], [35]. The ST uses a diamond cutter to make a scratch (groove) on the surface of the specimen while the cutting force is recorded. The resistance of the material to cutting is related to 24 144 its physicomechanical properties; in fact, the intrinsic specific energy, which is the energy required for scratching a unit volume of material, is directly proportional to the uniaxial compressive strength of the material [36]. The DRMS operation is similar to the ST, but instead of linear cutting, the DRMS employs rotational cutting (drilling).

- Soluble salts are generally hygroscopic, i.e., they can adsorb moisture from the air when the relative humidity (RH) is higher than the RH of equilibrium of the salt. In contrast, most building materials are only ₃₂ 150 weakly hygroscopic. Therefore, by measuring the hygroscopic moisture content (HMC) of a material at 33 151 high humidity, an indication of the presence of soluble salts can be attained. In the case of single salts, the ³⁴ 152 water activity is known; thus, a fixed relation between the salt content and the HMC at equilibrium can be readily determined at a specific temperature [37], [38]. In the case of a salt mixture, several RH equilibrium values are possible, which shift depending on the ionic composition [39]. The HMC method uses powder drilled samples, so it can be combined with the DRMS method, provided that the drilling is performed at different depths within the same drilling hole.
- The determination of the salt content within building materials in practice usually consists of extracting
 the soluble salts with water and analysing the ion content of the leached solution. For a semi-quantitative
 evaluation of the salts, the HMC method can be used, whereas ion chromatography identifies the ions
 and provides an accurate quantitative analysis [38].

⁴⁶ 161 µ-Xay fluorescence mapping is an elemental technique that allows examining small specimen areas and the production of elemental maps, with a spatial resolution on the micrometre scale. It can provide the excitation of at least one measurable characteristic X-ray peak for all periodic table elements with an atomic number higher than 11. Hence, the method can be applied to detect common ions present in **165** soluble salts affecting building materials, e.g., chloride (atomic number: 17) and sulphur (atomic number: 16). The direct observation of specimens with SEM enables examining the spatial distribution, the morphological character of the salt crystals, and the size of pores in which the salt preferentially crystallizes.

- The techniques mentioned above have been used in the present study to evaluate the effectiveness of
 the designed contamination procedures in accumulating salts close to the evaporative surface. The
 effectiveness of the methods used is hereby critically discussed.

2. Experimental

б

40 198

197

202

2.1. Contamination procedures

Two types of salt contamination procedures have been selected for this study and are described in detail below. A scheme depicting the two procedures is shown in Figure 2. After the accumulation phase tests, the specimens were split into two halves for the analysis described in section 2.2., except for the specimens subjected to UPV measurements.

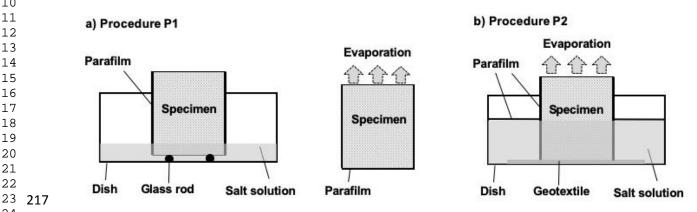
P1) Capillary absorption followed by drying

In this procedure, the specimens were first contaminated from the bottom by capillary absorption with a salt solution, followed by drying only through the top surface at 20°C and 10% RH, until 80 wt.% of the **181** solution evaporated (Figure 2.a). Two additional wetting/drying cycles with pure water (with the same **182** amount of water used in the salt contamination step) were carried out to move the salts even closer to 20 183 the evaporative surface.

22 184 For both the salt contamination and rewetting steps, the salt solution (or water) was poured into a contamination dish with glass rods. The bottom surface of the specimen was placed in contact with the solution until the top surface was completely wet. After contamination or rewetting, the bottom of the specimen was sealed with parafilm, and the specimen was left to dry only through the top surface.

The quantity of solution (or water) used was similar to the capillary moisture content, i.e., the amount of water absorbed by the specimen at satiation (i.e., to wet the top surface), following capillary rise from its 30 190 bottom. As mentioned, the concentration of the solution was calculated so that, for both stones, a content 31 191 of 1 wt. % of salt with respect to the dry weight of the specimens was reached. Hence, a salt solution ³² 192 concentration of 6.7 wt.% was used for Migné stone, and 3.8 wt.% was used for Maastricht stone.

34 193 This procedure was performed with three groups of three specimens of each stone to assess the effect of subsequent wetting/drying cycles on salt accumulation:


- 1) a group of three specimens was subjected only to one drying cycle, following salt contamination; specimens contaminated according to this test are henceforth referred to as P1-1S;
- a group of three specimens was subjected to salt contamination, followed by one rewetting step with water and subsequent drying; specimens contaminated according to this test are henceforth referred to as P1-1W; and
 - 3) a group of three specimens was subjected to salt contamination, followed by two rewetting steps with water and subsequent drying; specimens contaminated according to this test are henceforth referred to as P1-2W.

₄₇ 203 At the end of the tests, the specimens were further dried at 60°C in a ventilated oven to constant mass 48 204 before assessing the salt distribution.

205 P2) Continuous capillary absorption

In this procedure, the salt solution was poured into a contamination dish with a geotextile layer on the **207** bottom (ca. 1 mm thick), and the bottom of the specimen was placed in contact with the solution (Figure 54 208 2.b). The amount of water used in the preparation of the solution was the same as the total amount of water used in procedure P1-2W, i.e., the sum of water used during the initial salt contamination (P1-1S) plus the water used in the two following rewetting cycles to achieve the same amount of salt (1 wt.%) with respect to the dry weight of the specimens.

Drying occurred only through the top surface of the specimen at 20°C and 10% RH. Evaporation of the solution from the dish during the test was prevented by covering it with a parafilm sheet. After complete absorption of the salt solution, the bottom of the specimens was sealed, and the specimens were left to dry (20°C and 10% RH) until 80 wt.% of the water absorbed evaporated. Afterwards, the specimens were dried at 60°C to constant mass before assessing the salt distribution.

Figure 2: Experimental setup used in the contamination experiments: (a) capillary absorption followed by drying (P1), (b) continuous capillary absorption (P2).

2.2. Materials

Salt types

 Two salt types, sodium chloride (NaCl) and sodium sulphate (Na₂SO₄), have been used. This selection was based on the following criteria:

- Both salts are commonly found in buildings worldwide and are known to cause severe damage.
- These salts have different crystallisation behaviour. Na₂SO₄ has temperature-dependent solubility • and multiple polymorphs (hydrate and anhydrous forms) at ambient temperature. In contrast, NaCl solubility is almost independent of temperature, and NaCl has no hydrate forms at temperatures higher than 0°C.

Na₂SO₄ is generally more damaging than NaCl in laboratory weathering tests. Moreover, these salts are the most commonly used in crystallisation tests [2].

Stone types

Migné stone (quarried in France) and Maastricht stone (quarried in The Netherlands) were used in the tests. These limestones have been chosen because of their similar chemical composition (both stones are composed of ca. 95-99% of calcite), their homogeneous structure without macroscopically evident bedding planes, their unimodal pore size distribution, and their significantly different porosity and pore 51 236 size. Table 1 presents the main physical properties of the stones. The open porosity of Migné is ca. 30% and that of Maastricht is ca. 50%. The grain size is homogeneous: ca. 100-150 µm for Maastricht and 1-5 μm for Migné. Maastricht has a main pore size of ca. 30 μm, whereas Migné has a main pore size of ca. 1 μm. The difference in pore size is reflected in the rate of water absorption by capillarity: Maastricht's water absorption coefficient is an order of magnitude higher than that of Migné [12].

Table 1: Properties of Migné and Maastricht limestones [12].

Properties	Maastricht	Migné
------------	------------	-------

Open porosity (%)	53.1 ± 0.4	$\textbf{32.4}\pm\textbf{0.5}$
Main pore size - Hg volume (μm)	$\textbf{30.4} \pm \textbf{0.2}$	$\textbf{0.95} \pm \textbf{0.05}$
Water absorption capillary coefficient (g/cm ² /min ^{0.5})	$\textbf{2.19} \pm \textbf{0.16}$	$\textbf{0.23}\pm\textbf{0.01}$

8 9 242

10 243 Specimen preparation and testing conditions for both procedures

11 12 244 Cylindrical specimens (Ø 50 mm, height 50 mm) were cut from a large stone block in such a way that the 13 **245** bedding planes of the stone laid parallel to the top and bottom surfaces of the specimen. The specimens 14 246 were sealed along their side surface with parafilm after pre-heating them in an oven at 50°C for 10 min to 15 247 achieve better adherence. A textile tape was used to glue the end of the parafilm foil and ensure sealing 16 248 tightness during the entire test. Before contamination, the specimen mass was stabilized at 20°C and 10% 17 18 **249** RH, which were the conditions used during the contamination and drying phases. Low temperature, RH, 19 **250** and negligible air flow conditions were set to promote the accumulation of salt close to the evaporative 20 251 surface. 21

22252For each procedure, a group of three specimens of each stone was contaminated with a salt solution of23253NaCl and another group with Na2SO4; both salts were ACS reagents \geq 99.0%. The concentration of the salt24254solution used for the contamination was defined according to the desired salt content in the specimen,25255which was 1 wt.% of its dry weight. The same salt content was used in both procedures to enable direct27256comparison of the results.

A ventilated climatic chamber (Vötsch VC 4018) was used to provide constant thermo-hygrometric conditions. Throughout the tests, the specimens were placed in the climatic chamber inside plastic boxes (40×34×17cm, three specimens per box), with the opening covered with Japanese silk paper (ca. 15 g/m²) to prevent air flow. Digital thermo-hygrometers (Comet S3621) were placed inside the boxes to monitor the RH, which resulted in being $13 \pm 3\%$.

³⁵ 262

³⁷ 263 **2.3. Assessment of damage and salt distribution**

At the end of the accumulation phase, the occurrence of damage and salt efflorescence was visually and photographically recorded. During the accumulation phase, the salt introduced should remain in the specimens, i.e., not crystallise as salt efflorescence, and damage should ideally be absent or of low intensity. Hence, both the amount of salt efflorescence and mass loss were used to assess the suitability of the procedures to be used in the accumulation phase.

Several analytical methods (destructive and non-destructive) were used to assess the salt distribution: ion
 chromatography (IC), hygroscopic moisture content (HMC), micro X-ray fluorescence (μ-XRF), scanning
 electron microscopy (SEM), drilling resistance measurement system (DRMS), scratch tool (ST), and
 ultrasonic pulse velocity (UPV).

After the accumulation phase tests, the specimens were split into two halves, using a hammer and chisel,
 for analysis with the mentioned methods, except for the specimens subjected to UPV measurements.
 Figure 3 shows a scheme summarizing the number and type of specimens and respective analyses
 performed with each method of assessment of salt distribution.

- 56 57
- 58
- 59
- 60
- 61 62
- 62 63
- 64
- 65

No. of specimens	Specimen preparation	Analysis
Procedures P1 & P2:		
• 3 specimens/stone: NaCl	Each specimen split into	Same samples tested with:
• 3 specimens/stone: Na ₂ SO ₄	2 half samples:	HMC IC SEM (additional photos with a different microscope
Procedure P2 extra no. of specimens		
• 3 specimens/stone: NaCl	Entire specimen used	• UPV

Figure 3: Summary of the number and type of specimens tested with each procedure and analysis performed.

25 280 26 2.3.1. Visual observations and mass variation

The development of salt efflorescence and damage was monitored photographically. Since salt efflorescence can hide the underlying damage, photographs were taken before and after removing the efflorescence. The type and severity of damage types, when present, were described according to the ICOMOS glossary [40] and MDCS atlas [41].

The weight of the specimens was recorded before and after salt contamination; based on this, the exact amount of salt introduced in each specimen was calculated. During the drying phase of both procedures, the weight of the specimens was recorded at regular intervals until 80 wt.% of the water had evaporated.
 The damage was assessed by recording the mass loss.

At the end of the test, the salt efflorescence and stone debris, when present, were collected using a soft brush and weighed using a balance (resolution of 10^{-4} and accurate to 10^{-3} g). The salt efflorescence was separated from the stone debris by dilution in pure water, followed by filtration with filter paper. The weight of the debris was measured, and that of the salt was calculated. Salt that might have accumulated in the pores of the stone debris collected was hence registered as salt efflorescence.

45 294 **2.3.2.** Ion chromatography (IC)

For the analysis of the salt content (NaCl or Na₂SO₄), measurements were carried out on drilled powder samples. For each half-core specimen, starting from the evaporative surface, samples were collected up to the following depths (same hole): 0-5, 5-10, 10-15, 15-20, 20-30, 30-40, and 40-50 mm. Additionally, to **298** get more precise information on the salt distribution in the salt-rich outer layer, samples were collected by sanding down a half-cylinder at 1 mm intervals up to 5 mm depth per specimen.

300 The quantity of anions (C^{-} and SO_4^2) and cations (Na^+) of the vacuum filtered extract was analysed by IC (Metrohm). The results in parts per million (ppm - mg/L) were converted to wt.% (relative to the dry sample weight), and the sum of the equimolar contents of Na⁺ and Cl⁻ or SO₄²⁻ was estimated. The salt amount present in each layer was calculated as the percentage of the total salt content present in the sample. The average amount of each ion (in wt.%) in each group of three specimens contaminated with 59 305 each procedure was calculated in relation to the respective total weight of each group of samples.

306 2.3.3. Hygroscopic Moisture Content (HMC)

For the determination of the HMC, the same samples used in the IC analysis were placed in a climate chamber at 20 (±1) °C and 95% (±3) RH until constant weight (41 days). The HMC was calculated according to the equation:

$$HMC = 100 \cdot \frac{\Delta m}{m_d} \tag{1}$$

311 in which Δm represents the mass gain of the sample (g), and m_d represents the dry weight of the sample 312 (g).

The correlation between the HMC values (wt.%) and the salt content (wt.%) was determined considering a dataset of 292 drilled samples. The salt content considered was limited to equimolar contents derived from the IC analysis of samples containing Na⁺ and Cl⁻ or Na⁺ and SO₄²⁻. The correlation coefficient indicates how well the data fits the model of regression and is presented as R², calculated according to the following equation:

$$R^{2} = \left(\frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^{2} - (\Sigma x)]^{2}[n\Sigma y^{2} - (\Sigma y)^{2}]}}\right)^{2}$$
(2)

in which *x* corresponds to the value of HMC (wt.%), and *y* corresponds to the salt content (wt.%).

320 2.3.4. Micro X-ray fluorescence mapping (μ-XRF)

Chloride and sulphur μ -XRF maps were produced to check the NaCl and Na₂SO₄ distribution, respectively. The instrument used for the μ -XRF analysis was an EDAX (Mahwah, NJ, USA) ORBIS μ -XRF spectrometer. **323** The system uses a Silicon Drift Detector (SDD). It focuses the X-rays from a rhodium target anode with a **324** poly-capillary focusing optic, which allows for a beam diameter of ca. 30 μm. The acquisition system is the ORBIS Vision Software supplied by EDAX. The applied acceleration potential and current were 35 kV and 500 μA, respectively. At each point, every 100 μm (spacing), a spectrum was acquired for 100 ms (30%-40% dead time). The measurements were carried out at atmospheric conditions with a built-in 25-μm 38 328 thick aluminum filter to eliminate the rhodium La radiation, which overlaps with the chlorine Ka X-ray line **329** and increases its limit of detection.

A smooth surface is required for this analysis, so prismatic specimens were dry-cut from the half cores
 along their longitudinal axis. The selected surface of 5x5 cm to be mapped was ground with SiC paper
 (STRUERS 500) for 15 seconds, at 300 rpm, in a single direction to avoid spreading the salt.

45 333 2.3.5. Scanning Electron Microscopy (SEM)

SEM observations were carried out on the same samples analysed with μ -XRF. Polished sections were produced from 2×2 cm pieces of stone. The samples were prepared in the same way as those prepared for the μ -XRF analysis but were further embedded under vacuum in low viscosity epoxy resin (EPO-TEK). After 24 h of polymerization, the specimens were grinded with SiC paper (STRUERS) at 500, 1000, 2400, and 300 rpm for 5 min (each step), using isopropanol as coolant. The final polishing was carried out with water-free diamond polishing suspensions (9, 3, and 1 μ m). Polished surfaces were coated with a 15 nm carbon layer, then observed with an SEM FEI QUANTA 200 3D, at high vacuum, and 20 kV voltage.

Additional samples from Maastricht limestone contaminated with Na₂SO₄ according to procedure P1-1S
 (belonging to the same set analysed with IC and HMC) were studied with a Zeiss Gemini 300 SEM FE
 equipped with an Oxford X-Max detector at high vacuum and 15 kV voltage. Polished cross-sections were
 prepared by embedding the stone fragments in bi-component epoxy resin (EpoFix, Struer), grinding them

345 with SiC paper (Struers), and polished with polishing cloth up to 8000 grit. Isopropanol was used during 346 grinding and polishing to avoid salt dissolution. The salt distribution within the stone matrix was mapped 347 up to a 2.5 mm depth from the evaporative surface by combining multiple images acquired in constant 348 conditions (back-scattered mode) at 150x magnification.

349 2.3.6. Drilling resistance measurement system (DRMS) and scratch tool (ST)

350 Samples contaminated according to procedure P1, and previously mapped with μ -XRF, were scratched 13 351 and drilled to assess the position of the salt crystallisation front. Non-contaminated Migné and Maastricht 14 352 samples were also used as a reference.

15 16 353 Scratching was performed using a WOMBAT Scratch Tool supplied by Epslog Engineering. The samples 17 354 were scratched along the centre of their curved side, moving from the evaporative surface towards the 18 355 base. A sharp rectangular 10 mm wide diamond cutter with a negative back rake angle of 15°, moving at 19 356 constant velocity (10 mm/s), was used in all the scratch tests. During scratching, the normal (F_n) and 20 357 tangential (F_t) components of the total force required to form a groove on the sample were recorded 21 358 automatically. From these, the total cutting force (F) was estimated as [30]: 22

²³
₂₄ 359
$$F = \sqrt{(F_n^2 + F_t^2)}$$

25 360 For the DRMS test, the samples were drilled starting at the evaporative surface of the samples using a 26 27 361 device supplied by SINT Technology. The operating conditions during drilling were 600 rpm for the 28 **362** rotational speed and 10 mm/min for the penetration rate. A twist diamond drill bit with a flat point and 29 363 \emptyset 5 mm was used; the total penetration depth was 10 mm. During the drilling tests, the DRMS provided 30 364 a continuous reading of the force required to perforate the test specimen. 31

32 365 2.3.7. Ultrasonic pulse velocity (UPV) 33

34 366 UPV measurements were performed to assess the salt distribution non-destructively, using a portable 35 367 instrument (USG 20 Krompholz Geotron Elektronik (DE)) with pointy-ended transducers with a contact 36 section of Ø 3 mm. Only specimens contaminated according to procedure P2 were measured; for this test, 368 37 38 **369** three extra cylindrical specimens of each stone were used. Nine measurements were performed in each 39 370 specimen in planes parallel to the evaporative surface at 5 mm intervals. The measurements were 40 371 performed before and after salt contamination. 41

42 372

5

6

7

8 9

10 11

12

43 44 373 3. Results

45 46 374 3.1. Damage and salt efflorescence

47 ₄₈ 375 A summary of the visual observations, focusing on the qualification of salt efflorescence and damage on 49 376 the specimens contaminated with both procedures, is shown in Figures 4 and 5. The amount of salt 50 377 efflorescence and mass loss are given in Figures 6 and 7, respectively. In the case of procedure P1, the 51 378 debris of the specimens subjected to further rewetting steps was only collected at the end-step, so the 52 379 results shown are cumulative. 53

54 380 Samples contaminated with NaCl with both procedures developed only salt efflorescence, and no visible 55 381 damage was detected (Figure 4). The type and amount of salt efflorescence (Figure 6.a) varied according 56 ₅₇ 382 to the procedure followed and type of stone used: a lower amount of NaCl efflorescence developed in the 58 **383** less porous stone (Migne) with procedures P1-1S and P2, but the amount was still slightly higher than for 59 384 the more porous stone (Maastricht) with procedures P1-1W and P1-2W. The results of mass loss (Figure 60 385 7.a) can be considered negligible (lower than 0.05 wt.%) and confirm the visual observations. 61

- 62
- 63 64
- 65

(3)

Both types of stones contaminated with Na₂SO₄ showed damage with all procedures (Figure 5). Minor damage was observed in Migné after Na₂SO₄ contamination with procedure P1-1S, leading to ca. 1 wt.% of mass loss (Figure 7.b); the amount of salt efflorescence observed was very low and concentrated close to the evaporative surface. After one rewetting, Na₂SO₄ contaminated Migné specimens (P1-1W) suffered rapid and severe damage (within 24h of drying). For this reason, the planned second rewetting was not 10 391 performed, and these specimens were not subjected to the analysis of salt distribution.

392 In the case of the more porous stone (Maastricht), samples contaminated with Na₂SO₄ with procedure **P1-1S** developed slight granular disintegration and scaling, leading to 0.7 ± 0.4 wt.% mass loss (Figure 7.b). After one rewetting (P1-1W), the amount of salt efflorescence increased significantly; the amount of efflorescence reached almost 90 wt.% of the salt introduced, whereas mass loss was ca. 1.1 wt.%. The 2nd 17 396 rewetting step (P1-2W) induced more damage (ca. 2 wt.% of mass loss) and slightly more salt 18 397 efflorescence. In contrast with Migne, damage occurred in Maastricht samples contaminated with Na₂SO₄ with procedure **P2**.

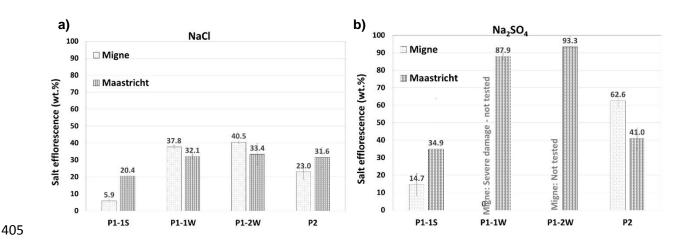

Procedu	re	Migné - NaCl	Maastricht - NaCl	
P1-1S	Photo	MISCI 4A MISCI 24 MISCI 3A	C.C.	
	Damage/alteration	Efflorescence	Efflorescence	
Salt efflorescence		Powdery	(micro) cauliflower	
	Damage severity	No damage	No damage	
	Damage extension	-	-	
	Photo	Miscij 18 Milscij 28 Mil 301/38	The American	
	Damage/alteration	Efflorescence	Efflorescence	
Salt efflorescence Damage severity		Powdery (surface) and hollow crust	Powdery No damage	
		No damage		
	Damage extension	-	-	
P2-2W	Photo	Arzeal ¹⁴ Huizea ¹⁰ Huizea ¹⁰ Huizea ¹⁰	maizerit maizerit maizerit	
	Damage/alteration	Efflorescence	Efflorescence	
	Salt efflorescence	Powdery	Powdery	
	Damage severity	No damage	No damage	
	Damage extension			

Figure 4: Summary of the macroscopic visual observations on the specimens contaminated with NaCl. Scores of severity of damage: low (+) to high (++++). Scores of extension of damage: small (+) to large (++++) surface area.

Procedure		Migné – Na2SO4		Maastricht – Na2SO4	
P1-1S	Photo	Before brushing	After brushing	May 3 sof 14 Before brushing Af	ter brushing
	Damage/alteration	Scaling with s	ubflorescence	Efflorescence, granu and scaling with	
	Salt efflorescence	Pow	vdery	Powd	
	Damage severity		++	++	
	Damage extension	-	++	++	-
P1-1W	Photo				A1350/20
	Damage/alteration	Bursting with	subflorescence	Granular disint subflore	
	Salt efflorescence	Cr	ust	Cru	st
	Damage severity	++	+++	++	-
	Damage extension	++	+++	+++	+
P2	Photo	Before brushing	After brushing	Refore brushino Ma/250/2	After brushing
	Damage/alteration	Efflore	escence	Contour scaling wit	h subflorescence
	Salt efflorescence	Cauli	flower	Powd	
	Damage severity		+	++	

Figure 5: Summary of the macroscopic visual observations on the specimens contaminated with Na₂SO₄. Scores of severity of damage: low (+) to high (++++). Scores of extension of damage: small (+) to large (++++) surface area.

б

Figure 6: Mass of salt efflorescence registered after the salt accumulation test with procedures P1 and P2 expressed as the percentage relative to the total salt amount introduced in the specimens: (a) stones contaminated with NaCl, (b) stones contaminated with Na₂SO₄.

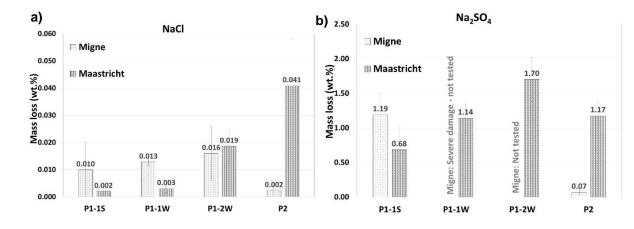


Figure 7: Mass loss of stone material registered after the salt accumulation test with procedures P1 and
 P2, expressed as the percentage relative to the dry weight of the specimens: (a) stones contaminated with
 NaCl, (b) stones contaminated with Na₂SO₄.

The period for the evaporation of 80% of the water introduced during the contamination varied according to the stone type, salt type, and procedure (Table 2). As expected, samples with higher porosity and pore size dried faster. The drying period with procedure P2 was more prolonged than with procedure P1-1S for both stones contaminated with either salt. This aspect can be attributed to the higher degree of saturation of the porous system of the stones with procedure P2, resulting from the continuous capillary absorption of a solution with two times higher amount of water than procedure P1-1S.

Table 2: Period (in days \pm 3) for evaporation of 80% of the water introduced during the contamination.

Procedure	Migné		Maastricht		
	NaCl	Na ₂ SO ₄	NaCl	Na ₂ SO ₄	
P1 -1S	37	24	10	10	
P1 -1W & 2W	21	-	8	8	
P2	40	30	12	12	
					14
					1-1

3.2. Assessment of the salt distribution

 423 3.2.1. Ion chromatography (IC) and hygroscopic moisture content (HMC)

The salt distribution assessed with IC is presented in Figures 8 and 9. Generally, salt accumulated close to the evaporative surface and the salt content decreased with depth. The salt content in the outer 5 mm layer was always above 50 wt.% of the total content, except in the case of Maastricht contaminated with Na₂SO₄ with procedure P1-1S (Figure 9.b). In this case, the amount of salt present in the outer 5 mm layer was lower than ca. 30 wt.%, but the standard deviation was large.

Different results were obtained when the samples were rewetted; the salt content up to 5 mm depth slightly increased or decreased after one rewetting (P1-1W) for Migné and Maastricht contaminated with NaCl, respectively. Subsequent rewetting of Migné stone contaminated with NaCl (P1-2W) led to an increment of efflorescence and salt in the 0-5 mm layer. In Maastricht, the amount of salt efflorescence decreased with subsequent rewetting (ca. 30 wt.%), while the salt content in the 0-5 mm layer increased. Maastricht contaminated with Na₂SO₄ with P1-1W showed an increment of the salt content in the outer layer (0-5 mm); rewetting twice (P1-2W) led to an increment of efflorescence and a decrease of the salt content in the outer layer. These results are possibly related to the removal of the damaged salt-rich layer after brushing the specimens contaminated with P1-2W. Upon rewetting (P1-1W and P1-2W), salts were transported towards the evaporative surface; consequently, the salt content in the outer 5 mm layer and/or the amount of efflorescence increased.

A more detailed analysis was carried out on the first 5 mm of a sample of **Maastricht** contaminated with Na₂SO₄ according to procedure P1-1S (Figure 10). The results indicate that 73.5 wt.% of the total salt content was located within the first millimetre of the specimen. Deeper in the stone, the concentration dropped significantly, with 16.8 wt.% between 1 and 2 mm, and 2.6 wt.% between 4 and 5 mm. Considering the open porosity, bulk/skeletal density of the stone, mass of salt in the stone, molar mass/volume of thenardite or phase III, it is possible to estimate that 10 % of the volume of the pores in the outer 1 mm were filled with salt (assuming a homogeneous distribution of salt, including a thin salt crust on the surface of the sample).

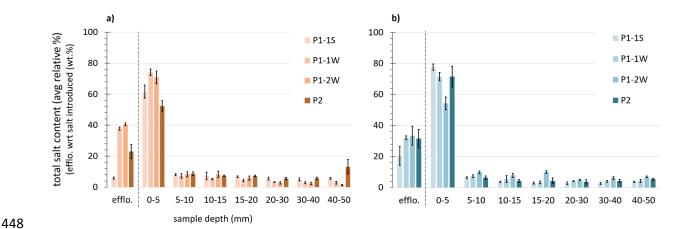
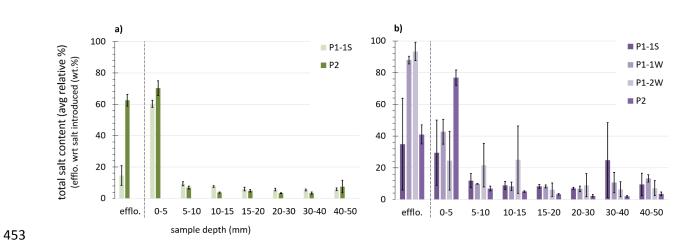



Figure 8: Mean relative percentage of NaCl distribution assessed with IC in Migné (a) and Maastricht (b)
 after contamination with procedures P1 and P2. The values are the average of 3 specimens; the graphs
 include the amount of salt efflorescence (efflo). The legend from top to bottom represents the different
 procedures, which sequentially correspond to the columns from left to right.

454 Figure 9: Mean relative percentage of Na₂SO₄ distribution assessed with IC in Migné (a) and Maastricht
(b) after contamination with procedures P1 and P2. The values are the average of 3 specimens; the graphs
include the amount of salt efflorescence (efflo). The legend from top to bottom represents the different
procedures, which sequentially correspond to the columns from left to right.

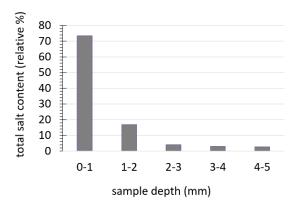


Figure 10: Relative percentage of Na₂SO₄ distribution in the first millimetres of Maastricht contaminated
 with procedure P1-1S.

The salt distribution results obtained with HMC are in line with those measured by IC. The correlation of determination between HMC and IC salt content was used in this study to check whether HMC could give reliable semi-quantitative results. Considering 168 samples with a wide range of salt contents (Figure 11.a), a good correlation was derived ($R^2 = 0.9305$). However, when considering a salt content below 1 wt.% (144 samples), the correlation dropped significantly (R² = 0.6175) (Figure 11.c). In samples with such a low salt content and weight (ca. 0.928 g), the experimental error increases. Next to the experimental error, minimal changes in RH in the climatic chamber can have a significant impact on the HMC values, especially in the case of high RH and hygroscopic salts, such as NaCl.

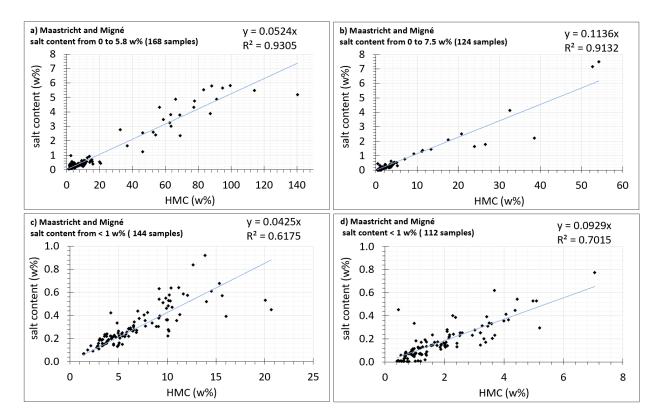


Figure 11: Correlation between HMC values and salt content (R² = coefficient of determination): Maastricht and Migné with NaCl (a) and Na₂SO₄ (b) content (full range detected between 0 and 5.8 or 7.5 wt.%) and with NaCl (c) and Na_2SO_4 (d) content below 1 wt.%.

3.2.2. Micro X-ray fluorescence mapping (μ -XRF) and scanning electron microscopy (SEM)

A summary of the observations from μ -XRF maps and SEM images is presented in Table 3. Figure 12 gives an example of the μ -XRF maps recorded in Migné and Maastricht contaminated according to procedure P1 with NaCl. Figures 13, 14, 15, and 16 show a few selected SEM microphotographs.

The results indicate that procedure **P1-1S** is the most effective in accumulating salt at the evaporative surface of both stones. In general, rewetting reduces the thickness of the salt layer and promotes the redistribution of salts deeper into the samples. The data also indicated that NaCl is more prone to be redistributed within the sample thickness of both stones upon rewetting. Procedure P2 also showed a salt layer at the evaporative surface in both stones, with either salt; NaCl further spread within the sample thickness.

SEM gives a more precise assessment of the thickness of the salt layer and salt distribution than the μ -XRF maps, although the salt distribution can be quite non-homogeneous. Therefore, a thickness interval is probably more appropriate rather than a single value. The representativeness of the sample observed with SEM can also be an issue; e.g., no salt layer was observed under SEM with Maastricht contaminated with procedure P1-1S with NaCl, but a salt layer up to 1 mm thickness was observed in the μ -XRF maps.

491	Table 3: Summary of μ-XR	F maps and SEM image obs	servations.
-----	--------------------------	--------------------------	-------------

Proce- dure	Method	Migné - NaCl	Maastricht - NaCl	Migné – Na ₂ SO ₄	Maastricht – Na ₂ SO ₄
P1-1S	μ-XRF maps	 Cl layer up to 1 mm depth (Figure 12.a) Cl dispersed throughout the sample (Figure 12.b) 	- Cl layer up to 1 mm depth	- S layer up to 1 mm depth	- S layer up to 1 mm depth
	BSE images	- Salt layer up to 200- 500 μm depth (Figure 14)	 No salt layer observed Scattered salt crystals 	- Salt layer up to 50 μm depth - Salt crystals up to 2 mm depth	 Salt layer up to 200 μm depth (Figure 13) Most of the salt up to 400-500 μm depth. Scattered salt crystals up to 2mm depth
P1-1W	μ-XRF maps	 Cl rich layer up to 1 mm depth Cl dispersed throughout the sample with a slightly higher concentration at the bottom 	 Cl rich layer up to 0.5 mm depth Cl scattered up to 10 mm depth (Figure 12.c, d) 	*	- S layer up to 1 mm depth
	BSE images	- Salt dense layer up to 200-250 μm depth	- Continuous salt layer up to 400 μm depth	*	- Salt layer up to 150 µm depth
P1-2W	μ-XRF maps	- Cl layer up to 0.5 mm depth	- Cl layer up to 0.5 mm depth	*	- S was not detected
	BSE images	- Salt dense layer up to 200-250 μm depth	- Non-continuous salt layer up to 200 μm depth	*	- No salt layer observed
P2-2W	μ-XRF maps	 Cl layer up to 1 mm depth Cl also dispersed up to 10 mm depth 	 Cl layer up to 1 mm depth Cl also dispersed up to 2.5 mm depth 	- S layer up to 1 mm depth	- S layer up to 1 mm depth

57

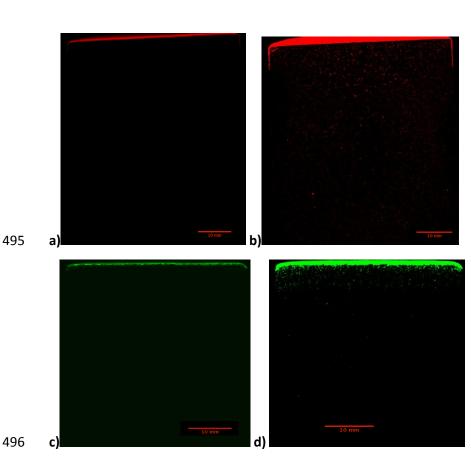


Figure 12: µ-XRF chloride maps of Migné and Maastricht contaminated according to procedure P1. Migné contaminated according to procedure P1-1S: (a) original map, (b) enhanced map by Image J software; the 34 498 **499** dense red layer on the top of the sample is an image artefact. Maastricht contaminated according to procedure P1-1W: c) original map, d) enhanced map by image J software; the dense green layer on the top of the sample is an image artefact.

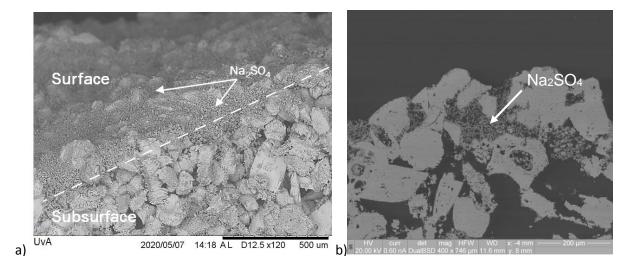
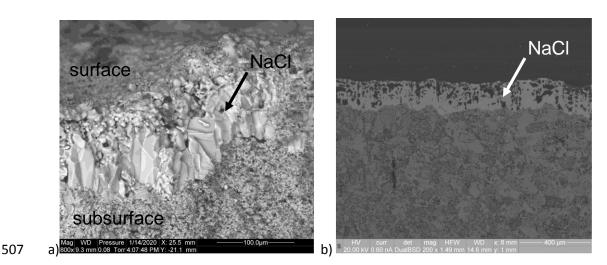



Figure 13: Maastricht contaminated with Na₂SO₄ according to procedure P1-1S: (a) SEM image of the ground surface. (b) BSE image on polished section showing a layer of Na₂SO₄ crystals filling the interparticle porosity just beneath the evaporative surface (the arrow indicates the location of salt as analysed with EDX). **506**

508 **Figure 14:** Migné contaminated with NaCl according to procedure P1-1W: (a) SEM image of the ground 509 surface, (b) BSE image of the polished section.

510 The additional SEM analysis of Maastricht contaminated with Na₂SO₄ with procedure P1-1S showed only 511 partial filling of the pore spaces and a higher concentration of the salt close to the evaporative surface. 512 Images of the fresh fracture showed that the salt crystallizes as porous clusters within the inter-particle 513 spaces (Figure 15). Such a crystallisation pattern was confirmed by the cross-section observation and 514 mapping of the salt distribution (Figure 16). The salt was mostly concentrated up to 400-500 μ m from the evaporative surface, showing a rather irregular distribution. The presence of salt was detected at least up 515 516 to 2 mm depth, as isolated clusters of salt crystals formed along the grain borders of the stone. These 517 observations are in line with the IC results on the same sample (Figure 10) in which ca. 70% of the salt was 518 detected up to 1 mm depth and ca. 20% of salt was detected between 1.5 and 2 mm depth.

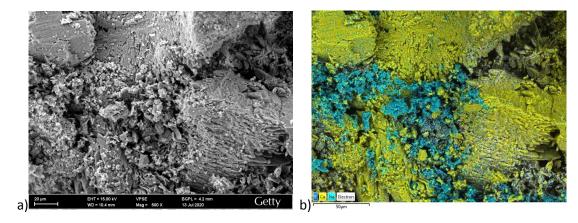


Figure 15: SEM images of the fresh fracture close to the evaporative surface of Maastricht contaminated
 with Na₂SO₄ according to procedure P1-1S: (a) BSE image, (b) False colour image after EDS analysis,
 showing the distribution of calcium (yellow), sodium and sulphur (cyan and blue respectively).

	1
	2
	2 3
	Δ
	т г
	5
	6
	7
	8
	9
1	0
1	1
1	Ť
T	2
1	3
1	4
1	5
1	6
1	7
1	, Q
1	0
1	9
2	23456789012345678901234567890123456789012345678
2	1
2	2
2	3
2	4
2	Ē
2	5
2	6
2	7
2	8
2	9
3	0
2	1
с 2	т Т
3	2
3	3
3	4
3	5
3	б
3	7
2	, Q
3	0
	0
4	
4	2
4	3
4	
1	5
4 4	S C
4	0
4	.7
4	
4	9
	0
5	
5	2
э 5	⊿ ົ
5	3
5	4
5	5
5	б
5	7
5	
	o 9
6	0
6	1
6	2

519

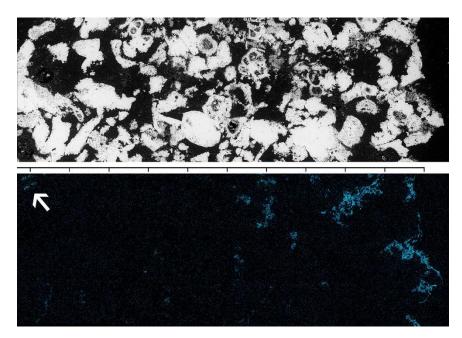


Figure 16: Maastricht contaminated with Na₂SO₄ according to procedure P1-1S. In both images, the
evaporative surface is located on the right side. Above: BSE image of the cross-section. Below (same
cross-section): EDS false-color map showing the salt distribution according to depth (sodium and sulphur
are shown in cyan and blue, respectively; contrast has been enhanced for better clarity) with the
presence of salt clusters up to 2 mm depth (arrow). Scale segments = 200 microns.

529 3.2.3. Drilling resistance measurement system (DRMS) and scratch tool (ST)

The scratching and drilling force (*F*) patterns versus the cutter position (depth of the sample) are provided in Figure 17. From these, evident changes in the microstructure of the salt contaminated samples (i.e., pore clogging resulting in increased cutting resistance areas) can be observed. In particular, in all the patterns derived after salt contamination and drying, localized peaks in material resistance to cutting were recorded very close to the evaporative surface (ca. 0 - 2 mm). These peaks, which are not observed in the reference specimens, are prominent both in the ST and the DRMS patterns and suggest pore filling by the salts.

The position of the peaks in cutting resistance is nearly identical for each sample, irrespective of the mapping technique used, indicating that both methods are detecting pore clogging due to salt crystallisation at more or less the same location. This is in line with previous applications of the ST and the DRMS [21], [29] and confirms the reliability of both techniques and their potential in detecting the position of the salt crystallisation front in limestone.

The peak cutting resistance recorded in the case of Migné contaminated with Na₂SO₄ with procedure P1-15 is much higher, compared to the corresponding sample contaminated with NaCl. This is in line with the μ -XRF and SEM results (Table 3), which suggest that Na₂SO₄ has a tendency to crystallise more locally, closer to the evaporative surface, as opposed to NaCl which shows higher dispersion. The localised crystallisation of Na₂SO₄ usually leads to more damage [16], as was indeed the case in the visual observations hereby reported (Figures 4 and 5). In the case of the much weaker and porous Maastricht stone, the peak resistance recorded for the sample contaminated once (P1-1S) with NaCl was again rather low. Upon rewetting with water (P1-1W), the peak resistance was further reduced. In contrast, the thickness of the salt-rich layer (i.e., increased cutting resistance area) appears broader, albeit not as broad

as in the optimised μ -XRF map, suggesting some redistribution of the salt content with water absorption and possibly some salt escaping the sample as efflorescence; this is in line with the amount of salt efflorescence formed, as well as the IC data (Figure 8).

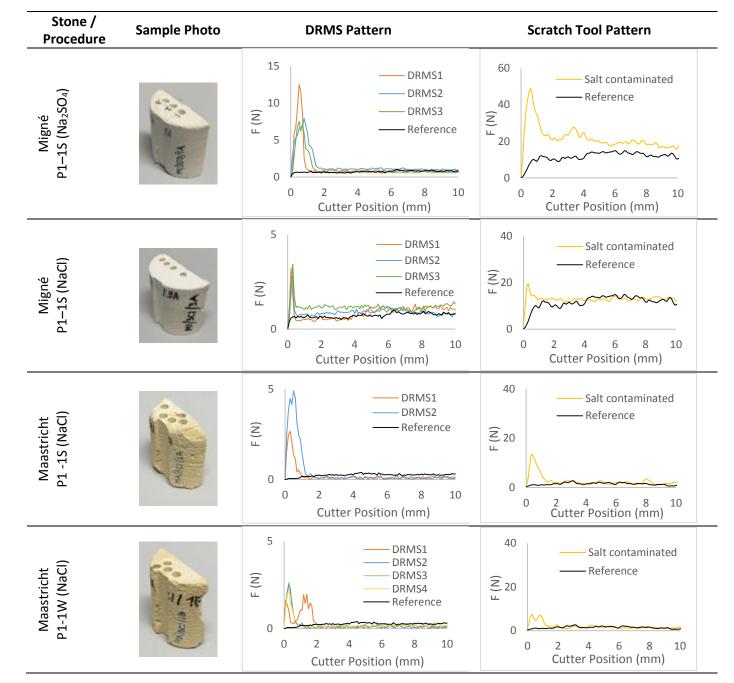


Figure 17: DRMS and average ST patterns for samples contaminated according to procedure P1 (coloured lines) and reference samples (black lines).

3.2.4. Ultrasonic pulse velocity (UPV)

572

The UPV results before and after contamination with **NaCl** with procedure **P2** are shown in Figure 18; the values given correspond to the percentage change before and after contamination. After salt contamination, a significant UPV increase is observed in Maastricht at 0-10 mm depth from the evaporative surface; UPV values at 5 mm increased by 44%, compared to the same specimen without salt. These results indicate that salt accumulated in the first 5 mm of the specimen. In contrast, a very slight difference in UPV values before and after salt contamination was detected in Migné stone contaminated with NaCl. Figure 18.b) shows only 7% UPV increase after Migné salt contamination; these results suggest that salt has evenly precipitated throughout the depth of the specimen, which is not in line with the IC and HMC results.

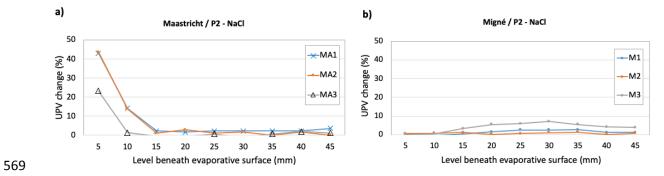


Figure 18: UPV results registered in NaCl contaminated specimens with procedure P2 before and after salt contamination: (a) UPV changes in Maastricht stone measured at 5 mm intervals from the surface, (b) UPV changes in Migné stone measured at 5 mm intervals from the surface.

4. Discussion

Comparison of procedures

A summary of the advantages and disadvantages of the procedures used for salt accumulation (1 wt.% with respect to the total weight of each stone) is presented in Table 4. Procedure P1-1S was the most effective in accumulating salts in a thin layer beneath the evaporative surface of the stones without causing too much damage. Rewetting with procedure P1 led to the damage propagation phase in specimens contaminated with Na₂SO₄ and redistribution of both salts within the specimens, along with the development of salt efflorescence. Procedure P1-1S with NaCl promoted less salt efflorescence in both stones than with Na₂SO₄, whereas procedure P2 caused a higher amount of salt efflorescence in both stones with each of the salts.

The results of the assessment of the salt distribution showed that in all procedures, most of the salt is concentrated in the first millimetres of the subsurface. Stones contaminated with NaCl according to procedure **P1-1S** showed higher salt content in the outer layer than stones contaminated with procedure P2. In the case of Na₂SO₄, P2 induced a higher salt content in the outer layer of both stones.

Mass loss was negligible (lower than 0.05 wt.%) in both materials contaminated with each procedure with NaCl. In the case of Na₂SO₄, slight damage occurred with procedures P1-S and P2. With procedure P1, rewetting caused severe damage in the case of the less porous stone Migné (P1-1W) in the form of bursting, whereas Maastricht showed increasingly higher granular disintegration upon rewetting, leading to the conclusion that rewetting triggers damage propagation. The reason for the severe damage

observed in **Migné** after rewetting (**P1-1W**) is probably attributed to a high degree of pore filling after salt contamination (P1-1S) and to the development of high stresses in the small pores of this stone after dissolution/recrystallisation of the salt introduced. In the case of Maastricht, it can be assumed that the stress developed was not as high since the pores are larger and the resulting pore filling (also with ca. 1 wt.% of salt introduced) is thus lower; consequently, the resulting damage was also less.

11 598 The salt types considered in this study follow long-term research studies and recommendations, as presented in the introductory section. The same salt content (1 wt.% of the dry weight of the specimens) was used in all procedures to facilitate comparison. The accumulation procedures were tested in two stones with very similar composition but different porous structure to enable an easier and reliable comparison of the results (e.g., exclude differences in decay which could come from other damage processes, such as chemical reactions, hygric dilation, etc.). Besides, both stones have a unimodal pore size distribution, which simplifies further the comparison. Introducing a realistic salt content into the 20 605 material and ensuring that the salt accumulates in a thin layer of the material close to the evaporative surface will lead to high salt pore filling. Hence, the damage propagation phase (entailing fast repeated wet-dry cycles) will trigger damage that reproduces onsite salt crystallisation mechanisms. The applicability of the most effective procedure (P1-1S) has been validated by D'Altri et al. [12], who reproduced the protocol by a multiphase numerical model. The numerical model confirmed the results obtained in the two limestones tested and indicated that the procedure is also valid for other types of porous building materials.

²⁹ 30 612	Table 4: Advantages and disadvantages of procedures P1 and P2 for accumulating salt in Migné and
₃₁ 613	Maastricht stones.

Procedure	Advantages	Disadvantages
P1-1S	 Accumulation of both salts in a thin layer of material (ca. 1 mm) Low amount of salt efflorescence Technically easy to perform in a reasonable time 	- Can cause slight damage with Na ₂ SO ₄
P1-1W & 2W	- Rewetting once can promote further accumulation of NaCl in the outer layer of Migné	 Can cause medium to high damage with Na₂SO₄ Can cause redistribution of salt within the specimen thickness Increases the amount of salt efflorescence It is more time-consuming than P1-1S
P2	- Higher salt enrichment in a thin layer of material (ca. 1 mm) with Na ₂ SO ₄	 Can cause medium damage with Na₂SO₄ Causes a higher amount of salt efflorescence than P1-1S Is more time consuming than P1-1S

614

Pore clogging and the change of the surface properties due to efflorescence can affect the Stage II drying 53 615 54 616 rate. The different transport properties between Migné and Maastricht, and the different salt solution concentrations used in each stone, are also likely to influence the salt distribution and the resulting pore clogging. Eloukabi et al. [42] studied the effect of NaCl on the drying of porous media. They found that a salt layer on the evaporative surface of a system with a large pore size does not significantly affect the drying rate and can even accelerate it if the pore sizes are sufficiently large. In contrast, a NaCl layer **621** formed on the evaporative surface of porous media with small pore sizes significantly limited the rate of

evaporation. The authors assigned this phenomenon to the fact that, in large pore sized media, the NaCl efflorescence can grow upward, leading to patchy cauliflower efflorescence, as in the case of Maastricht contaminated with NaCl with procedure P1-1S (Figure 4). In contrast, in the case of small pore size media, the salt crystals grow laterally rather than vertically, resulting in a salt crust that may block evaporation, as observed in Migné contaminated with NaCl with procedure P1-1S (Figure 14). This hypothesis is also consistent with the results of the amount of salt efflorescence formed (Figure 6); in general, in the case of Migné, there is lower salt efflorescence forming than in Maastricht, which indicates a higher amount of subflorescence, thus of pore clogging, hence affecting more severely the drying rate.

Comparison of methods for the analysis of the salt distribution

The salt distribution in the specimens was one of the criteria guiding the choice of the accumulation procedure. Besides, the salt distribution through the depth of the specimen can provide useful 19 633 information about the risk of damage in salt crystallisation tests: a higher salt accumulation in a thin layer 20 634 of material close to the evaporative surface implies potentially higher crystallisation pressure and thus a higher risk of damage. Therefore, a reliable measurement of the salt content and distribution is crucial in salt crystallisation tests. In this study, several methods used for assessing the salt distribution have been tested; their advantages and disadvantages, resulting from past experience and from the present research, are summarized in Table 5 and described in detail hereafter.

Table 5: Advantages and disadvantages of each method of analysis used for assessing the salt distribution in Migné and Maastricht stones.

Methods	Advantages	Disadvantages
IC	- Very high precision of ion quantity	- Expensive
НМС	- Technically simple	- Requires a climatic chamber
	- Enables the analysis of a large number	- Time-consuming
	of samples at the same time	- May require further analysis to confirm the
	- Low cost	results
μ-XRF maps	- High precision of salt distribution in the	- Expensive and time-consuming sample
	entire sample section	preparation
SEM	- Very high precision of salt distribution	- Representativeness of sample (only small
	- Enables observing the morphology of	samples can be analysed)
	the salt crystals and the region in which	- Risk of disturbance of sample condition (sal
	salt crystallizes preferentially	distribution) during preparation
DRMS* & ST	- Good precision on homogeneous	- DRMS requires performing several
	samples	measurements for obtaining reliable results
	- Technically simple and fast	- Precision may be affected by the
	- Micro-destructive	inhomogeneity of the material and the
		presence of hard minerals or vugs
UPV*	- Non-destructive	- Requires a suitable geometry of transducers
		(pointed shape)
		- Requires a large number of specimens for
		obtaining reliable results
		 Accuracy may depend on stone
		characteristic and salts

* Can be performed in situ

642 HMC is a simple and reliable method for the semi-quantitative analysis of samples contaminated with a single salt and can be used as an alternative or complementary method for more expensive chemical

analyses, like IC. However, care should be taken to monitor precisely the RH inside the climatic chamber because a difference of 1% at very high RH, such as 95% RH, can lead to significant differences in the HMC values, especially when dealing with high salt contents and very hygroscopic salts, such as NaCl. Hence, in the case of NaCl, using an RH of 80% may be advantageous.

µ-XRF maps allow for the precise distribution of the salt in a representative section of samples (in this study, the entire sample section was mapped). However, it is an expensive and time-consuming type of analysis. SEM allows the most precise observation of the salt distribution in the pores, including information about the preferential location of the salt (e.g., in coarse or finer pores), the crystallisation form (e.g., thenardite or mirabilite), and the salt crystallisation habit. The main drawbacks of using SEM lie with the sample size and its representativeness, and the disturbance of the sample during preparation.

The results of **DRMS** and **ST** measurements performed in Migné and Maastricht contaminated according 19 655 to procedure P1 were generally in line with the IC, μ -XRF, and SEM results. This confirms that these two 20 656 micro-destructive methods can be successfully used to assess the distribution of salts in stone in a reliable way. The DRMS may further be used in-situ, thus providing a useful tool for comparison of laboratory results with practice.

The UPV results were in agreement with the results obtained by other techniques in the case of Maastricht stone contaminated with NaCl. In contrast, in the case of Migné stone contaminated with NaCl, the UPV technique was not able to reveal the accumulation of salts in the outer layer, observed by the other investigation techniques. These results suggest that a higher number of specimens should be considered for the UPV test to achieve more reliable results because its accuracy may depend on the stone and salt 30 664 type; so, more tests are necessary to define the extent of the applicability of this method for detecting the salt distribution.

4. Conclusions

This study focused on the comparison of two contamination procedures for the accumulation of salts in two limestones, as well as on the comparison of different methods for the analysis of salt distribution.

40 670 Procedure P1-1S (capillary absorption of a salt solution followed by one drying cycle) proved to be the fastest and most effective in accumulating NaCl and Na₂SO₄ in a thin layer of material close to the evaporative surface, without resulting in too much salt efflorescence or damage in two types of stone with very different porous structure (Maastricht and Migné limestones). Hence, this procedure has been 44 673 selected for reproduction using a multiphase numerical model [12]. The numerical model confirmed the obtained results in the tested limestones and indicated that the procedure is also valid for other types of porous building materials. Round robin tests with different types of porous building materials are currently ongoing to experimentally validate the test and to continue with the damage propagation phase.

51 678 All methods used in this study are considered useful for analysing salt distribution. Depending on the aim of the analyses, preferences exist. When non-destructive or minimally destructive techniques are to be preferred, DRMS, ST, and, with further improvement, UPV can offer a solution for the monitoring of salt distribution. If sampling is possible, HMC is a simple technique, not requiring specialized personnel, to obtain a reliable indication of the salt content and distribution. When more precise, quantitative information on the salt content is needed, IC is the most suitable technique. SEM and μ -XRF are most useful to provide information about the distribution of salts in pores, their specific location, and crystallisation form.

- In general, a combination of screening measurements, carried out by simple and cheap techniques, such as HMC, DRMS, UPV, followed by further analysis on a selection of most relevant samples (chosen based on the results from the screening) with more sophisticated techniques, such as IC, SEM, and μ -XRF seems to be the most suitable and sustainable choice.
- The future work of the TC ASC-271 will focus on the propagation phase. Round robin tests with other **691** types of porous building materials are currently ongoing.
- **692**

14 693 **CRediT** authorship contribution statement

Cristiana Nunes: Methodology, Experimental part - accumulation test, Data curation, Writing - original draft. Asel Maria Aguilar Sanchez: Methodology, Experimental part - µ-XRF maps and SEM, Data curation. **697** Sebastiaan Godts: Methodology, Experimental part - IC and HMC, Data curation. Davide Gulotta: 20 698 Methodology, Experimental part - SEM, Data curation. Ioannis Ioannou: Methodology, Experimental part - DRMS and ST, Data curation, Review. Barbara Lubelli: Methodology, Writing - review, Project coordination. Beatriz Menendez: Methodology, Experimental part - UPV, Data curation. Noushine Shahidzadeh: Methodology, Experimental part - SEM, Review. Zuzana Slížková: Methodology, ₂₅ 702 Experimental part - UPV, Data curation. Magdalini Theodoridou: Methodology, Experimental part -DRMS, and ST. **703** 27 704

Declaration of Competing Interest

31 706 The authors declare that they have no known competing financial interests or personal relationships that 32 707 could have appeared to influence the work reported in this paper.

34 708

36 709 Acknowledgements

₃₈ 710 All authors acknowledge Kévin Beck for providing the characterisation of the stones and Véronique 39 711 Vergès-Belmin for providing the stone specimens used in this study. All authors also thank Rob Van Hees 40 712 for a thorough reading and helpful comments on the paper. The authors are also thankful to all the other RILEM TC ASC-271 members for their contribution in discussions, especially Tim De Kock and Julie Desarnaud, who have performed relevant experiments for future work.

⁴⁴ 715 Cristiana Nunes thanks Kateřina Mlsnová for helping with the specimens' preparation for the contamination procedures. Sebastiaan Godts acknowledges Mohamed Rich, Xavier Monfort, and **717** graduate interns Simone Semprini, Elien Decaesteker, and Alice Vrancken for their help with sample **718** preparation, IC, and HMC analysis. Ioannis Ioannou thanks RILEM member Loucas Kyriakou for his help 49 719 with the ST and DRMS tests. Zuzana Slížková acknowledges Marek Eisler for performing the UPV analysis.

720 Three anonymous reviewers provided valuable comments to improve the paper.

References

б [1] Alves C, Figueiredo C, Sanjurjo-Sánchez J (2020) Rock Features and Alteration of Stone Materials Used for the Built Environment: A Review of Recent Publications on Ageing Tests, Geosciences 10 (3). https://doi.org/10.3390/geosciences10030091

10 729 [2] Lubelli B, Cnudde V, Diaz-Goncalves T, Franzoni E, Van Hees RP, Ioannou I, Menendez B, Nunes c, Siedel H, Stefanidou M, Verges-Belmin V, Viles H (2018) Towards a more effective and reliable salt crystallisation test for porous building materials: state of the art. Mater Struct 51 (2). http://dx.doi.org/10.1617/s11527-018-1180-5.

[3] CEN (1999) EN 12370 Natural stone test methods. Determination of resistance to salt crystallisation.

¹⁶ 733 [4] RILEM (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods, Test V.1a-crystallisation test by total immersion (for untreated stone); Test V.1b-crystallisation test by total immersion (for treated stone); Test V.2— crystallisation test by partial immersion. Mater Struct 13(75):175–253

[5] RILEM TC 127-MS (1998) MS-A.1- determination of the resistance of wallettes against sulphates and chlorides. Mater Struct 31:2–9

[6] RILEM TC 127-MS (1998) MS-A.2— uni-directional salt crystallisation test for masonry units. Mater Struct 31:10-11

[7] WTA Merkblatt 2-9-04/D (2005) Sanierputzsysteme/ Renovation mortar systems. WTA Publications, Stuttgart

³⁰ 743 [8] CEN (2003) EN 14147 Natural stone test methods - Determination of resistance to ageing by salt mist.

[9] ASTM B117-03 (2003) Standard Practice for Operating Salt Spray (Fog) Apparatus.

35 745 [10] Tuutti K (1982) Corrosion of steel in concrete. CBI Forsk. 824. http://lup.lub.lu.se/record/3173286 36 746 (accessed May, 2020).

38 747 [11] Flatt R, et al. (2017) Predicting salt damage in practice: A theoretical insight into laboratory tests. RILEM Technical Letters (2) 108–118. http://dx.doi.org/10.21809/rilemtechlett.2017.41.

41 749 [12] D'Altri AM, de Miranda S, Beck K, De Kock T, Derluyn H (submitted to publication in the Construction and Building Materials journal) Towards a more effective and reliable salt crystallisation test for porous building materials. Part II: Predictive modelling of salt distribution

752 [13] Angeli M, Benavente D, Bigas J-P, Menendez B, Hebert R, David C (2007) Modification of the porous ⁴⁶ 753 network by salt crystallisation in experimentally weathered sedimentary stones. Mater Struct 41 (6): 1091– 1108. https://doi.org/10. 1617/s11527-007-9308-z

⁴⁹ 755 [14] Beck K, Al-Mukhtar M (2010) Evaluation of the compatibility of building limestones from salt crystallisation experiments. Geol Soc Lond Spec Publ 333 (1):111–118. https://doi.org/10.1144/sp333.11

⁵² **757** [15] Shahidzadeh-Bonn, N, Desarnaud J, Bertrand F, Château X, Bonn D (2010) Damage in Porous media due to salt crystallisation, Physical Review E 81 (6) 066110. https://doi.org/10.1103/physreve.81.066110

[16] Ioannou I, Hall C, Hoff WD, Pugsley VA, Jacques SDM (2005) Synchrotron radiation energy-dispersive X-ray diffraction analysis of salt distribution in Lépine limestone, Analyst 130, https://doi.org/10.1039/b504274g

[17] Derluyn H, Vontobel P, Mannes D, Derome D, Lehmann E, Carmeliet J (2019) Saline water evaporation and
 crystallization-induced deformations in building stone: insights from high-resolution neutron radiography,
 Transport in Porous Media, 128(3): 895-913. <u>http://dx.doi.org/10.1007/s11242-018-1151-x</u>.

764 [18] Goudie AS (1986) Laboratory simulation of "the wick effect" in salt weathering of rock. Earth Surf Proc 765 Land 11(3):275–285. <u>https://doi.org/10.1002/esp.3290110305</u>

- 766 [19] Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and
 767 crystallisation pattern, Earth Surface Processes and Landforms 24 (3). <u>https://doi.org/10.1002/(sici)1096-</u>
 768 <u>9837(199903)24:3<191::aid-esp942>3.0.co;2-g</u>
- 15769[20] Benavente D, Garcia del Cura M, Bernabeu A, Ordonez S (2001) Quantification of salt weathering in porous16770stones using an experimental continuous partial immersion method. Eng Geol 59 (3–4):313–325.18771https://doi.org/10. 1016/s0013-7952(01)00020-5
- 772 [21] Modestou S, Ioannou I (2017) Tracing the salt crystallisation front in limestone using the DRMS. In:
 21 773 Papamichos E, Papanastasiou P, Pasternak E, Dyskin A (eds.) Bifurcation and degradation of geomaterials with
 22 774 engineering applications. Springer Series in Geomechanics and Geoengineering. DOI 10.1007/978-3-319 23 775 56397-8_33
- 776 [22] Benavente D, Garcia del Cura M, Bernabeu A, Ordonez S (2001) Quantification of salt weathering in porous
 777 stones using an experimental continuous partial immersion method. Eng Geol 59 (3–4) 313–325.
 778 https://doi.org/10. 1016/s0013-7952(01)00020-594.
- 779 [23] Nogueira R, Ferreira Pinto AP, Gomes A (2020) Artificial ageing by salt crystallization: test protocol and salt
 780 distribution patterns in lime-based rendering mortars. J Cultural Heritage,
 781 <u>https://doi.org/10.1016/j.culher.2020.01.013</u>
- 782 [24] Lopez-Arce P, Tagnit-Hammou M, Menendez B, Mertz J-D, Kaci A (2016) Durability of stone-repair mortars
 783 used in historic buildings from Paris. Mater Struct 49 (12) 5097–5115. <u>https://doi.org/10.1617/s11527-016-</u>
 784 <u>0846-0</u>
- 7 785 [25] Nunes C, Skruzná O, Válek J (2018) Study of nitrate contaminated samples from a historic building with
 786 the hygroscopic moisture content method: Contribution of laboratory data to interpret results practical
 787 significance. J Cult Herit 30, 57-69. <u>https://doi.org/10.1016/j.culher.2017.09.013</u>
- ⁴¹ 788 [26] Menendez B, Petranova V (2016) Effect of mixed vs single brine composition on salt weathering in porous
 ⁴² 789 carbonate building stones for different environmental conditions. Eng Geol 210, 124–139.
 ⁴³ 790 <u>https://doi.org/10.1016/j.enggeo. 2016.06.011</u>
- 791 [27] Cardell C, Benavente D, Rodríguez-Gordillo J (2008) Weathering of limestone building material by mixed
 792 sulfate solutions. Characterization of stone microstructure, reaction products and decay forms. Materials
 793 Characterization 59 (10) 1371–1385. <u>http://dx.doi.org/10.1016/j.matchar.2007.12.003</u>.
- 794 [28] Ruiz-Agudo E, Mees F, Jacobs P, Rodriguez-Navarro C (2007) The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ Geol 52 (2) 269–281.
 796 https://doi.org/10. 1007/s00254-006-0476-x
- [29] MacWilliam K, Nunes C (2019) Towards a More Realistic and Effective Use of Sodium Sulfate in Accelerated Stone. Analysis Ageing of Natural Structural of Historical Constructions, 1949-1958. http://dx.doi.org/10.1007/978-3-319-99441-3 209.
- ⁵⁷
 ⁵⁸
 ⁸⁰⁰ [30] Godts S, Hayen R, De Clercq H (2014) Common salt mixtures database: a tool to identify research needs.
 ⁵⁹
 ⁸⁰¹ In: De Clercq (ed.) Proc. 3rd International Conference on Salt Weathering of Buildings and Stone Sculptures.
 ⁸⁰² Brussels: KIK-IRPA, 185-198.

[31] Benavente D, García del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones
from pore structure and strength. Eng Geol 74 (1-2): 113–27. <u>http://dx.doi.org/10.1016/j.enggeo.2004.03.005</u>

[32] Desarnaud J, Bertrand F, Shahidzadeh-Bonn N (2013) Impact of the kinetics of salt crystallisation on
 stone damage during rewetting/drying and humidity cycling, J Applied Mechanics 80 (2).
 https://doi.org/10.1115/1.4007924

808 [33] Benson PM, Meredith PG, Platzman ES, and White RE (2005) Pore fabric shape anisotropy in porous sandstones and its relation to elastic wave velocity and permeability anisotropy under hydrostatic pressure, Int J Rock Mech Min Sci 42: 890-899. <u>https://doi.org/10.1016/j.ijrmms.2005.05.003</u>

 ¹⁵
 811 [34] Aly N, Hamed A, Gomez-Heras M, Benavente D, and Alvarez de Buergo M (2016) The Effect of Salt Crystallisation on the Mechanical Properties of Limestone: Statistical Correlation between Non-destructive and Destructive Techniques, in Hughes JJ and Howind T (Eds.), Proc. 13th Int. Cong. on the Deterioration and Conservation of Stone, Paisley: University of the West of Scotland, 225-231

20
21 815 [35] Modestou S, Theodoridou M, Ioannou I (2015) Micro-destructive mapping of the salt crystallisation front
22 816 in limestone. Eng Geol 193:337–347. <u>https://doi.org/10.1016/j.enggeo.2015.05.008</u>

817 [36] Theodoridou M, Dagrain F, Ioannou I (2015) Micro-destructive cutting techniques for the characterization
 818 of natural limestone. International Journal of Rock Mechanics and Mining Sciences 76: 98-103.
 819 <u>http://dx.doi.org/10.1016/j.ijrmms.2015.02.012</u>

- 820 [37] Diaz Goncalves T, Delgado Rodrigues J (2006) Evaluating the salt content of salt-contaminated samples on
 821 the basis of their hygroscopic behaviour, Part I: fundamentals, scope and accuracy of the method, J. Cult. Herit.
 822 7, 79–84. <u>http://dx.doi.org/10.1016/j.culher.2006.02.009</u>
- 823 [38] Nasraoui M, Nowik W, Lubelli B (2009) A comparative study of hygroscopic moisture content, electrical conductivity and ion chromatography for salt assessment in plasters of historical buildings. Constr Build Mater 23 (5): 1731-1735. https://doi.org/10.1016/j.conbuildmat.2008.09.029
- 826 [39] Price C (Ed.) (2000) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials, European Commission Research Report No 11, (Protection and Conservation of European Cultural Heritage). London: Archetype Publications
- 40
 829 [40] ICOMOS-ISCS (2008) Illustrated glossary on stone deterioration patterns. Ateliers 30 Impression,
 41
 830 Champigny/Marne.
- ⁴³ 831 [41] Monument Diagnosis and Conservation System. <u>https://mdcs.monumentenkennis.nl/</u> (accessed May
 ⁴⁴ 832 2020)
- 46
 833 [42] Eloukabi H, Sghaier N, Ben Nasrallah S, Prat M (2013) Experimental study of the effect of sodium chloride
 834 on drying of porous media: The crusty-patchy efflorescence transition. Int J Heat and Mass Transfer 56 (1-2).
 835 <u>http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.09.045</u>