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GALOIS MODULE STRUCTURE OF p th POWER CLASSES OF ABELIAN EXTENSIONS OF LOCAL FIELDS

Introduction

Suppose K{k is a finite Galois extension, and let G GalpK{kq. The group JpKq K ¢ {K ¢p of p-th power residue classes in K, where p is a prime number, can be seen as an F p -vector space, and indeed as an F p G-module with the usual Galois action. Understanding JpKq as such a module can be very useful : see [START_REF] Benson | Detecting pro-p-groups that are not absolute Galois groups[END_REF] or [START_REF] Adem | Field theory and the cohomology of some Galois groups[END_REF], for instance, or consider the role played by the G-fixed points in [START_REF] Minac | Witt rings and galois groups[END_REF].

Little is known in general: in [START_REF] Mináč | Galois module structure of pth-power classes of extensions of degree p[END_REF], J. Mináč and J. Swallow study the case when G is a cyclic p-group (see the references therein for earlier work on the cyclic case); as far as we know, the literature does not contain significant results for other types of groups.

In this paper, we study numerous p-extensions, gradually strengthening the hypotheses: our last and most specific theorem -the real goal of this article-will describe JpKq when K is a p-Kummer exstension over a local field that is, an extension K{k for which G is an elementary abelian p-group, assuming that the local field k contains a primitive p-th root of unity. As we shall see later those results are in fact closely related to the structure of the maximal pro-p-quotient of the absolute Galois group of k: from now on, G k ppq denotes this quotient.

Under these assumptions, our description of JpKq is fairly complete. When studying a module for a p-group in characteristic p, the information one can hope for is the behaviour after restriction to an arbitrary π-point (or equivalently to an arbitrary cyclic shifted subgroup, when G is elementary abelian), and the cohomology groups. We address both.

We start with the computation of the cohomology groups H s pG, JpKqq. Theorem (A). Let k be a local field containing a primitive p-th root of unity, let K be a finite, Galois extension of k, and let G GalpK{kq. Assume that G is a p-group such that the cohomology ring H pG, F p q is Cohen-Macaulay; put d i pGq dim Fp Ĥi pG, F p q.

Furthermore suppose that G is none of the generalized quaternion groups. We have to distinguish two cases (1) if the inflation map inf : H 2 pGalpK{kq, F p q ÝÑ H 2 pG k ppq, F p q is zero, the following isomorphisms hold: (2) if the inflation map inf : H 2 pGalpK{kq, F p q ÝÑ H 2 pG k ppq, F p q is non-zero then

6 8 7 H 1 pG, JpKqq H 3 pG, F p q H s pG, JpKqq H s 2 pG, F p q H s¡2 pG, F p q s ¥ 2 H 0 pG, JpKqq F d 2 pGq¡1 pn¡d 1 pGqq p .
The hypothesis on the cohomology ring and on the inflation may seem a little unexpected here, if not completely out of context; yet, as restrictive as it can appear, a large class of groups, which are relevant in Galois theory, verify this hypothesis. For instance, a theorem of Duflot ([Duf81]) implies, that this hypothesis covers the case when G is a non-cyclic elementary abelian p-group G. For further investigations concerning the importance of this notion in group cohomology, see [START_REF] Benson | Commutative algebra in the cohomology of groups[END_REF]. Moreover, the hypothesis on the inflation is in fact a rephrasing of a deeper fact which we should extensively study. Now, if k contains a primitive p-th root of unity ξ p and G is an elementary abelian p-group, which is equivalent to saying that K is a p-Kummer extension, then we can state our second theorem: Theorem (B). Let k be a local field such that ξ p k and let K{k be an elementary abelian p-extension. If K{k is not cyclic, then JpKq ¦ K ¢ {K ¢p is a GalpK{kq-module of constant Jordan type. Furthermore, its stable Jordan type is r1s 2 .

See [START_REF] Benson | Representations of Elementary Abelian p-Groups and Vector Bundles[END_REF] for information about modules of constant Jordan type (we recall the basics below, of course). These are actively studied at the moment, and it is perhaps a surprise to see examples arising from field theory.

Before stating other results, we first illustrate our theorem with a concrete example.

Consider p 2 and k Q 2 : it contains clearly the primitive 2 nd root of unity (most commonly known as ¡1). Here, as is well known, the maximal p-elementary abelian extension is

K Q 2 r c Q 2 s Q 2 r c 2, c ¡1, c
5s (information of this sort is not used by our methods, and we mention this for concreteness only). Here G GalpK{kq ! C 3 2 and dim F 2 JpKq 10. We will explain in this article how to choose generators x 1 , x 2 , x 3 of G and how to construct a convenient basis of JpKq in order to describe the action.

The module structure of G on JpKq can be given by three matrices, say M 1 , M 2 and M 3

where M i is the matrix of x i ¡ id in our basis; those matrices commute and are nilpotent.

The theorem then says, in this particular case, that the matrix

aM 1 bM 2 cM 3 ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ b c a a b c b a c b a c
, where a, b, c are in an algebraic closure of F 2 (and the blanks are zero) has constant rank (namely 4), as long as pa, b, cq $ p0, 0, 0q. Of course this may be verified directly.

Among all Kummer extensions, the maximal Kummer extension has retained a lot of attention and its Galois module structure was already investigated -partially-in [START_REF] Adem | Field theory and the cohomology of some Galois groups[END_REF], when p 2. Here we will extend some of the formulae appearing in this paper to the case when p is odd, restricting attention to local fields (as opposed to the more general C-fields considered in loc. cit.). We gather a lot of explicit information about JpKq, leading in particular to the following.

Proposition (C).

Let K be the maximal p-abelian extension of a local field k, which possesses a primitive p-th root of unity. Then the GalpK{kq-module JpKq has socle length:

lpJpKqq npp ¡ 1q ¡ 1 ,
where n is the dimension of k ¢ {k ¢p as an F p vector space. Furthermore, if p is odd, the following equality holds dim Fp Soc 2 pJpKqq{ SocpJpKqq pn ¡ 2qpn 2 5n 3q 3 .

Both theorems will appear as consequences of the following key statement. To formulate it, we must recall that F p G-modules are best studied in the stable category, in which hompM, N q consists of all usual modules homomorphisms modulo those morphisms which factor through a projective module. This category is triangulated, and is thus endowed with an invertible endofunctor Ω, frequently called the Heller shift. At the heart of this paper is the next result, which we formulate in vague terms for now.

Proposition (D). Let G GalpK{kq as above, which we assume to be a p-group. For s t¡1, 2u, there exists a module ω s pF p q which is stably isomorphic to Ω s pF p q, and an exact sequence 0 / / ω ¡1 pF p q κ / / ω 2 pF p q / / JpKq / / 0 .

Strangely enough this result is valid with no further assumption on G, although our main theorems above require more. Note that the condition on the inflation in theorem A is expressed in a more natural way using κ.

The map κ seems to be the most profound object entering our discussions. As a stable map Ω ¡1 pF p q ÝÑ Ω 2 pF p q, it can be interpreted as a class in Ĥ¡3 pG, F p q H 2 pG, F p q, or as a linear map H 2 pG, F p q ÝÑ F p ; in the case when K{k is the maximal Kummer extension, we describe explicitly its values on the usual basis for H 2 pG, F p q when G is elementary abelian. This should not astonish the reader: indeed it should be compared to a theorem of U. Jannsen ([Jan89, Theorem 5.4]), where Jannsen proved that for any Galois p-extension K{k of a local field k, the GalpK{kq-module pK ¢ {K ¢p q ¦ is determined by the group of p-th roots of unity in K and a canonical class χ in the linear dual of

H 2 pGalpK{kq, µ k ppqq.
In order to establish the existence of the exact sequence, as befits Galois theory, we turn questions of field theory into questions of group theory. A bit more precisely, let G be a pro-p-group and H a closed, normal subgroup, let ΦpHq denote its Frattini subgroup, that is ΦpHq H p pH, Hq .

Thus H{ΦpHq is the largest quotient of H which is elementary abelian. After a little translation, our results will be about J H{ΦpHq, seen as an F p G-module, where G G{H. We will investigate this when G is a free pro-p-group, and then in the case when G is the largest p-quotient of Galp k{kq, which is a Demuškin group, provided the fact that k is a local field with a primitive p th root of unity.

Organization of the paper. In the first section, we recall some basic facts about modules of constant Jordan type and Kummer theory; this culminates with the statement of two "Main Theorems", more general (and more technical) than the above, covering for example the case when k does not contain enough roots of unity. Then in section 2 we construct the short exact sequence making its appearance in D, and use it to prove the Main Theorems (in fact refining them in certain cases). Section 3 completes the picture with a focus on the maximal p-elementary abelian extension, which means in group theory that H ΦpGq: we give some explicit computations which hopefully flesh out the two previous sections and take profit of them to prove the announced formulae in proposition C. Finally, in section 4, we address the case of two peculiar extensions over Q 3 pζ 3 q in order to show that both situations, distinguished in theorem A, occur.

Acknowledgements. This article is a part of our PhD thesis: it would not have been possible without the help of our advisor Pierre Guillot, and we thank him for his precious piece of advice and the numerous corrections on this paper. Furthermore, we would like to express our gratitude towards Dave Benson, who suggested some arguments which enabled us to considerably improve our results and proofs: we owe him a lot.

Background material

1.1. Modules of constant Jordan type. Here, we quickly recall some basic facts about modules of constant Jordan type. A more general approach is contained in the fundamental article of Carlson, Friedlander and Pevtosva ([CFP08]), treating the case of group schemes and a more exhaustive one about elementary abelian p-groups in Benson's book ( [START_REF] Benson | Representations of Elementary Abelian p-Groups and Vector Bundles[END_REF]).

In this section, G is a p-group and F an algebraically closed field of characteristic p. Modules of constant Jordan type were introduced in order to properly extend what was already known for FC p -modules (here C p stands for the cyclic group of order p). Indeed, in this case, a module M is completely described by the action of a given generator x 1 of C p , more precisely we have the following theorem: Theorem 1. The FC p -modules of dimension n (over F) are in bijection with the partition of n by parts of size no greater than p, up to isomorphism.

Proof. Let M be an FC p -module. By a slight but classical abuse of notation, we will write x 1 for a generator of C p , the associated element in FC p and the associated endomorphism in End F pMq. Now, remember that, since F is of characteristic p, the beginner's dream is true in FC p :

x p 1 ¡ 1 px 1 ¡ 1q p ; however x p 1 is zero in C p , so that x 1 ¡ Id is a nilpotent endomorphism; it is commonly
known that such morphisms are classified by their Jordan type. The Jordan form of x 1 ¡ Id gives a decomposition of M into cyclic FC p -modules. Remark that the Jordan type of x 1 ¡ Id does not depend upon the choice of x 1 , so that this is well defined, and we can state that two FC p -modules having the same Jordan type are isomorphic. Hence the announced classification.

Remark.The Jordan type r1s n 1 . . . rps np of the morphism x 1 is called the Jordan type of the module M .

For such a module M , n j pMq denotes the number of its blocks of length j, where j verifies the inequalities 1 ¤ j ¤ p. We can easily relate this block decomposition of a cyclic module to the dimension of the cohomology groups, by the following lemma.

Lemma 2. Let M be an FE 1 -module, then

6 9 9 8 9 9 7 dim H 0 pE 1 , M q p °j1 n j pMq , dim H 1 pE 1 , M q p¡1 °j1 n j pMq .
The proof of this innocent lemma is left to the reader; despite its simplicity it will be our key argument in the proof of theorem A, and in the treatment of one of our examples.

In order to adapt the previous method to non-cyclic groups, we will use the language of π-points. But first, we have to recall some basic facts: let A 1 and A 2 be two F-algebras and let α : A 1 ÝÑ A 2 be a morphism of F-algebras. The morphism α induces a functor from the category of right modules of finite type modpA 1 q to the category of right modules of finite type modpA 2 q. It is in fact known by all that every A 2 -module M can be turned into an A 1 -module using this external law:

x ¤ a 1 x ¤ αpa 1 q , dx M , da 1 A 1 ,
and it is easily seen that this construction is functorial. From now on, α ¦ will denote the functor induced by such a morphism α. It should be immediately remarked that this functor verifies multiple properties: it is for instance additive and exact: two small facts we shall make good use of. Keep in mind that we made the choice to study right modules and not the usual left modules: the reason for this rather unconventional choice will be put into light in Section 3.

Definition.

A π-point is a morphism of algebra α : FrT s{pT p q ÝÑ FG , which is flat, that is: α ¦ pFGq is a projective FrT s{pT p q-module.

Remarks.Two remarks have to be made. Module structure. It should be noticed that FrT s{pT p q is isomorphic to FE 1 , where E 1 is the p-elementary abelian group of rank 1. Let us choose a generator γ of E 1 and set Γ γ ¡ 1 FE 1 , so that the isomorphism between FrT s{pT p q and FE 1 is simply given by

f : Γ Þ Ñ T .
Therefore, according to our previous discussion, every π-point α enables us to give a structure of FE 1 -module to every FG-module. Flatness condition. The flatness condition shall not be neglected: indeed, thanks to it, the FE 1 -module α ¦ pPq is projective if P is a projective FG-module. This simple fact has major consequences relative to the cohomology: α ¦ induces a morphism of cohomological functors res α : ĤpG, ¡q ÝÑ ĤpE 1 , ¡q . Such map is written like a restriction, because it should be thought of as such: indeed, all expected properties of the restriction exposed in any textbook (for instance [Gui18, Part III]) remain true.

Definition. Let α, β be two π-points.Then the π-points α and β are said to be equivalent if for every module M , α ¦ pMq is projective if and only if β ¦ pMq is projective.

Example. Let us consider more closely the case where G is an elementary abelian p-group of rank r, which will be written E r .

It is well-known that given a basis x 1 , . . . , x r of E r the elements denoted X i x i ¡ 1 FE r form a basis of FE r as an F-algebra (i is obviously between 1 and r); more precisely, FE r FrX 1 , . . . , X r s{pX p i q, where pX p i q denotes the ideal generated by the various X p i . It could be shown that in this case every π-point is of the form

α : FrT s{pT p q ÝÑ FG rTs Þ ÝÑ γ RadpFE r q .
Now, according to [?, lemma 6.4], two π-points α, β on FE r are equivalent if and only if the image of α ¡ β lies in I 2 pE r q -where IpE n q is the augmentation ideal. Thus a π-point -up to equivalence-is simply a morphism

α : FrT s{pT p q ÝÑ FG rTs Þ ÝÑ r °i1 a i X i .
Now, it is time to introduce the modules of constant Jordan type.

Definition. An FG-module M is said to be of constant Jordan type ra 1 s m 1 . . . ra l s m l , if the Jordan type of α ¦ pMq is ra 1 s m 1 . . . ra l s m l for every π-point α. Its Jordan type is called the Jordan type of M . If we omit the block of length p, we speak of stable Jordan type.

Remark. If M is an F I G-module where F I is a field of characteristic p which is not algebraically closed, we say that M is of constant Jordan type if FI F I M is of constant Jordan type, where FI is of course an algebraic closure of F I .

Examples.

(1) Projective modules are a first example; indeed, FG-projective modules are just direct sums of copies of FG. Since a π-point α is flat, if P is a projective FG-module, then α ¦ pPq is a projective FE 1 -module: thus, it is a direct sum of copies of FE 1 or, in other words, of blocks of size p. Hence a projective module is of constant Jordan type rps dim P p . Note in this case if G is an elementary abelian group, the converse is true: it is the famous Dade's lemma. (see [Ben16, Lemma 1.9.5])

(2) Here is an example that foreshadows the proof of theorem B. Let IpGq ¦ be the dual of the augmentation ideal of G, and let us show directly that it is a module of constant Jordan type. Indeed, this module is defined by the short exact sequence:

0 / / F / / FG ε ¦ / / IpGq ¦ / / 0 ,
where ε is the norm map. Let α-be a π-point. Since α ¦ is an exact functor and sends projective modules to projective modules, by taking a look at the long exact sequence in cohomology, we have that dim H 1 pE 1 , α ¦ pIpGq ¦ qq 1 .

Using exactly the same trick, but one degree lower, and the well-known dimension of IpGq ¦ , we can compute the following dimension:

dim H 0 pE 1 , α ¦ pIpGq ¦ qq |G| p .
Therefore, according to the lemma 2, we get

n p pα ¦ pMqq dim H 0 pE 1 , α ¦ pIpGq ¦ qq ¡ dim H 1 pE 1 , α ¦ pIpGq ¦ qq |G| p ¡ 1 .
Furthermore, there is only one block whose size is not p. Because we have the following equality dim α ¦ pIpGq ¦ q dim IpGq ¦ |G| ¡ 1 , we deduce that the size of this block is p ¡ 1. Thus the module is of constant Jordan type rp¡1srps |G| p ¡1 . We will later state a proposition (10), which will make obvious that IpGq ¦ is of constant Jordan type.

Counter-example. Consider the FE 3 -module given by generators and relations:

M xr|r ¤ X p¡1 1 X p¡1 2 0y ;
this module is not of constant Jordan type. Indeed, consider the following two π-points:

α : Γ Þ Ñ X 1 , β : Γ Þ Ñ X 3 .
It is easy to see that α ¦ pMq has block decomposition rp ¡ 1s p rps ppp¡1q , each block of size p being generated by r ¤ X j 2 X k 3 (with j $ p ¡ 1 and 0 ¤ k ¤ p ¡ 1) and the blocks of size p ¡ 1 by the r ¤ X p¡1 2 X k 3 , whereas β ¦ pMq has block decomposition rps p 2 ¡1 , all those blocks being generated by the r ¤ X j 1 X k 2 where i, j t0, . . . , p ¡ 1u and pj, kq is different from pp ¡ 1, p ¡ 1q.

Further elementary examples of modules of constant Jordan type will be given later. The following proposition from [START_REF] Carlson | Modules of constant Jordan type[END_REF] enables us to build more modules of constant Jordan type. Proposition 3. The full subcategory ctJtpFGq of modpFGq whose objects are modules of constant Jordan type is closed under direct sums, tensor products and taking the linear dual.

Remember that if M is an FG-module, the linear dual M ¦ of M is the module which, as an F-vector space, is isomorphic to hom F pM, F p q and whose module structure is simply given by the law

f ¤ g : x Þ Ñ f px ¤ g ¡1 q , df M ¦ , dg G .
Within only a few lines, it can be proved that the direct sum of two modules of constant Jordan type is of constant Jordan type. It is less obvious that this class is stable under tensor product and taking the linear dual (for a proof, see [CFP08, Prop. 1.8, cor. 4.3]). The latest can even reserve some surprises: M is of constant Jordan type if and only if M ¦ is so, yet the Jordan type of M is not necessarily the same as the one of M ¦ ! For a counter-example, see for instance [Ben16, Example 1.13.1]. 1.2. Local fields. Now, it is time to introduce the extensions which are at the heart of this article. Let k be a local field which contains a primitive p-th root of unity and let us fix k an algebraic closure of k. We set K a Galois p-extension of finite type of k whose Galois group called G verifies that its cohomology ring (with coefficients in F p ) is Cohen-Macaulay. As recalled in the introduction, because of Duflot's theorem, if G is an elementary abelian p-group which is not cyclic, this assumption holds.

In spite of their ingenuity, such groups play a major role in field theory.

The study of JpKq K ¢ {K ¢p will lead us to the study of some other extensions, as we shall see hereafter. Let us put R tα k|α p Ku and K p2q KrRs, so that we have the following diagram of extensions. Therefore it is abundantly clear that G : GalpK{kq acts on GalpK p2q {Kq by conjugation. Furthermore, as an F p G-module GalpK p2q {Kq is related to JpKq via Kummer theory. Let us recall the basics.

Remember first that a field extension L{L 0 is an n-Kummer extension if it is simply a Galois extension such that GalpL{L 0 q is an abelian group of exponent dividing n, and if L 0 contains a primitive n-th root of unity. Like in Galois theory, there is a correspondence theorem.

Theorem 4 (Kummer theory). Let L 0 be a field containing a primitive n-th root of unity and fix an algebraic closure L0 of L 0 . The n-Kummer extensions L of L 0 contained in L0

are in 1-to-1 correspondence with the subgroups of L ¢ 0 {L ¢n 0 ; moreover the correspondence maps the subgroup H to the field L 0 rx 1 n , rxs Hs, and is thus order-preserving. Finally, if a field K and a subgroup H are in correspondence, then hompGalpL{L 0 q, Z{nZq ! H.

See [START_REF] Guillot | A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology[END_REF]Theorem 1.25]. From this theorem and the previous considerations we can deduce two key facts (with n p in both cases).

First, the group GalpK p2q {Kq is simply an elementary abelian p-groups and in particular an F p -vector space.

Secondly, the theorem applied to the base field K implies, by maximality, that K p2q is in correspondence with JpKq (note that all p-Kummer extensions of K are contained in K p2q ). It follows that hompGalpK p2q {Kq, F p q is isomorphic to JpKq, and this is really an isomorphism of F p G modules: indeed this is the refinement brought by equivariant Kummer theory (see [START_REF] Guillot | A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology[END_REF]Theorem 1.26]). A more elaborate result, which we call Tate duality (cf. [Gui18, Theorem 13.21]), states that JpKq is self-dual, as a module, as long as k contains a primitive p-th root of unity, which is fortunately the case here.

We summarize this discussion in the following lemma:

Lemma 5. There is an isomorphism of F p G-modules between GalpK p2q {Kq, JpKq and JpKq ¦ .

From now on, we set J JpKq. According to the previous lemma and the proposition 3, instead of trying to study J, we can turn our attention to its dual namely GalpK p2q {Kq and use techniques from group theory.

Let us write Lppq for the largest pro-p extension of the field L (contained in a fixed algebraic closure), and put G L ppq GalpLppq{Lq. Let H the subgroup of G kppq in Galois correspondence with K. It is not hard to see that K p2q is in correspondence with ΦpHq, using the maximality condition defining these extension and the one defining the Frattini subgroup. We can therefore state the following lemma: Lemma 6. There is an isomorphism J ¦ ! H{ΦpHq, as modules over F p G where G G k ppq{H.

1.3. The main theorems. Thanks to the previous lemma, we have completely translated the problem arising from Galois theory into a group-theoretic one; not only does this formulation enable us to solve the problem, but we can now rephrase all major results of this article in the two following theorems.

Theorem 7 (Main theorem I). Let k be a local field and let G k ppq be the Galois group of a maximal pro-p-extension. Consider a closed normal subgroup of finite index H of

G k ppq and put J hompH{ΦpHq, F p q and G G k ppq{H. Remember that d i pGq

dim Fp
Ĥi pG, F p q.

We have the following possibilities for the cohomology of G with coefficients in J.

(1) If k does not contain a primitive p th root of unity, then for all s Z: 4 Ĥs pG, Jq Ĥs 2 pG, F p q H 0 pG, Jq

F d 2 pGq n¡d 1 pGq p .
(2) Suppose that ξ p k and H pG, F p q is a Cohen-Macaulay ring, then we have to distinguish between two cases (a) if the inflation map inf : H 2 pGalpK{kq, F p q ÝÑ H 2 pG k ppq, F p q is zero, the following isomorphisms hold:

4 H s pG, JpKqq Ĥs 2 pG, JpKqq H s¡2 pG, JpKqq , s ¥ 1 H 0 pG, JpKqq F d 2 pGq pn¡d 1 pGqq p . (b) if the inflation map inf : H 2 pGalpK{kq, F p q ÝÑ H 2 pG k ppq, F p q is non-zero then 6 8 H 1 pG, JpKqq H 3 pG, F p q H s pG, JpKqq H s 2 pG, F p q H s¡2 pG, F p q , s ¥ 2 H 0 pG, JpKqq F d 2 pGq¡1 pn¡d 1 pGqq p .
Theorem 8 (Main theorem II). Under the same hypothesis over k and using the same notation, the G-module J ¦ is of constant Jordan type, and its stable Jordan type is r1s, if k does not contain a primitive p th -root of unity, is of constant Jordan type, and its stable Jordan type is r1s 2 , if k does contain a primitive p th -root of unity and G is an elementary abelian p-group.

Note that in the case where k does not contain a primitive p th -root of unity, there is no such thing as Kummer theory; therefore there is no isomorphism between K ¢ {K ¢p and H{ΦpHq, so that this formulation of the theorem is the only one available. It should be remarked that J reflects some differences between those fields and their arithmetic.

The next section of the paper is devoted to the proof of those theorems (which implies, in particular, the statements of Theorems A and B from the introduction, of course). Before we turn to this however, we need to continue with more background material. 1.4. Demuškin groups. The Galois groups of maximal p-extensions of local fields are explicitly known: indeed if L is a local field such that ξ p L, then G L ppq is a Demuškin group. A presentation by generators and relations of such groups was given by J. Labute (see [START_REF] Labute | Classification of demushkin groups[END_REF]), which we recall first for p $ 2:

D k,2s xx 1 , . . . , x 2s |x p k 1 px 1 , x 2 qpx 3 , x 4 q . . . px 2s¡1 , x 2s q 1y ,
where k is the maximal integer such that ξ p k L and 2s is the dimension of JpLq.

When p 2, the relation in the Demuškin group changes. If the number of generators is odd, it becomes

D f,n2s 1 xx 1 , . . . , x 2s 1 |x 2 1 x f 2 px 2 , x 3 qpx 4 , x 5 q . . . px 2s , x 2s 1 q 1y .
However, if the number of generators is even, the relation is either

D f,n2s xx 1 , . . . , x 2s |x 2 2 f 1 px 1 , x 2 qpx 3 , x 4 q . . . px 2s¡1 , x 2s q 1y , or D I f,n2s xx 1 , . . . , x 2s |x 2 1 px 1 , x 2 qx 2 f 3 px 3 , x 4 q . . . px 2s¡1 , x 2s q 1y . In each case f is an integer such that f ¥ 2.
We complete this review of the possible descriptions for G L ppq with the case when L does not contain a primitive p th -root of unity: in this situation G L ppq is just a free prop-p-group ([Ser94, Theorem 3, II, §5]).

1.5. The stable module category and Heller shifts. We have to introduce some new modules: our key argument is yet very simple (it is just a short exact sequence), but we have to explain some classical notation and objects. Here we just follow [CTVEZ03, §2.5 sq.], so we consider a finite group G and a field F (whose characteristic p typically divides the order of G).

Let M be an FG-module, let π : P ÝÑ M an epimorphism from a projective module onto M . Its kernel denoted ΩpM q is called the Heller shift of M ; it always exists, however it is only defined up to a projective summand. That is why we have to introduce the stable module category modpFGq whose objects are but FG-modules, and whose hom sets, written hom, are defined by hompM, N q hom FG pM, N q{P M,N , where P M,N is the subspace of morphisms which factor through a projective. Then Ω becomes a well-defined functor on the stable category.

We should immediately remark that we can iterate Ω and set without ambiguity Ω i 1 pMq ΩpΩ i pMqq and so on. Dualizing this construction (i.e. taking the cokernel of a monomorphism from M into a projective module) gives birth to Ω ¡1 pMq and then we can again iterate such a construction. We would like to emphasize the fact that ΩpM q is not well-defined in the category of modules but in the stable category; usually ωpM q will be our notation for some module whose image in modpFGq is isomorphic to ΩpM q, though we will repeat this for emphasis.

Furthermore the previous construction is natural: Ω is an endo-functor of modpFGq and an equivalence of category whose quasi inverse is, as expected, Ω ¡1 . We may hope that it adds a little bit of structure to modpFGq. In fact pmodpFGq, Ω ¡1 q is a triangulated category: given a short exact sequence in modpFGq

0 / / L α / / M β / / N / / 0 ,
it is possible to build maps pα, β, γq in the stable module category in such a way the class of α (resp.β) is α (resp. β) and γ : N ÝÑ Ω ¡1 pLq, so that the distinguished triangles are all the triangles isomorphic to one of the form:

(1)

L α / / M β / / N γ / / Ω ¡1 pLq .
We summarize in the following proposition :

Proposition 9. The additive category modpFGq, equipped with the functor Ω ¡1 and whose distinguished triangles are the ones described above, is a triangulated category.

Remarks.

(1) One of the main interests of Ω is the fact that it may give a new definition of Tate cohomology, namely

Ĥk pG, M q hompΩ s k pF p q, Ω s pMqq , ds, k Z .

(2) Let us consider the following exact sequence in modpFGq :

0 / / L α / / M β / / N / / 0 .
Since the cone of a map in a triangulated category is unique up to isomorphism, the module N is stably isomorphic to the cone of α.

We will consider in particular the stable modules Ω ¡1 pFq and Ω 2 pFq when G is a pgroup, indeed, when G k ppq is a Demuškin group, the crucial statement will be the existence of a short exact sequence of modules (*) 0

/ / ω ¡1 pF p q / / ω 2 pF p q / / J ¦ / / 0 , which will enable us to compute the cohomology groups H i pE 1 , α ¦ pJ ¦ qq for every π-point α. The precise description of those modules will be detailed hereafter (see 2.1.) Indeed it is worth noting that α ¦ : modpF p Gq ÝÑ modpF p E 1 q induces a functor of triangulated categories between modpF p Gq and modpF p E 1 q, since it is flat.

It is also noteworthy that the category of constant Jordan type modules is stable under Heller shifts: to be more precise, we can state the following theorem: Theorem 10. A module M is of constant Jordan type, if and only if any module which is stably isomorphic to ΩpM q is of constant Jordan type.

A proof can be found -as for everything dealing with modules of constant Jordan type-in [START_REF] Carlson | Modules of constant Jordan type[END_REF]. Since the trivial module F p is obviously of constant Jordan type, the modules ω 2 pF p q and ω ¡1 pF p q which appear in the previous exact sequence are also of constant Jordan type: even better, we know their Jordan type, such as stated in the following remark.

Remark. Every module which is stably isomorphic to ω 2 pF p q is of constant Jordan type and its stable Jordan type is r1s (see [START_REF] Carlson | Modules of constant Jordan type[END_REF]Theorem 5.6

]).

For what concerns the module ω ¡1 pF p q, it is already known to the reader: as it shall be proved later, it is IpGq ¦ whose stable constant Jordan type is rp ¡ 1s (see 2).

As pointed out earlier, for an object M in modpFGq, there are many modules in modpFGq whose equivalence class in the stable category is isomorphic to ΩpM q. Yet, there exists a module without any projective summand in it and which is stably isomorphic to ΩpM q. By a very slight abuse of notation, We denote such a (usual) module verifying both conditions ΩpM q: indeed asking the absence of projective summand ensures the unicity of a representative (see [START_REF] Carlson | Modules and group algebras[END_REF]p.14]). To be precise, in this article if we speak about the module (and not the stable module) Ω 1 pF p q we refer to the augmentation ideal of G written IpGq (and Ω ¡1 pF p q its dual), moreover Ω 2 pF p q will be the kernel of the application pF p Gq |G| xe g , g Gy ÝÑ IpGq e g Þ ÝÑ X g g ¡ 1 .

We will encounter this module later (see 3).

1.6. A first half of the theorem. Now we can prove half of the theorems, which is in fact a simple rephrasing of a a well-known theorem, so well-known among the specialists, that it is hard to know who should take credit for it. A reader interested by this case in the history of a theorem could refer to one article from Magnus ([Mag39]), a note on this article by Blackburn ([Bla69]), a letter in Serre's correspondence and an article of Gaschütz ([Gas54]).

Proposition 11. Let F n be the free pro-p-group of rank n and H be a closed subgroup of

F n . Let G F n { H, then H{Φp Hq is stably isomorphic as a G-module to Ω 2 pF p q.
A conceptual proof of this fact can be found in [START_REF] Michael | Introduction to modular towers: generalizing dihedral group-modular curve connections[END_REF] and a more down-to-earth using Fox derivatives is implicitly present in [START_REF] Blackburn | Note on a theorem of Magnus[END_REF]. Here, the implicitly means that the reader has just to add "pro-p" every where it makes sense and read "Frattini subgroup" instead of "derived subgroup". This proves the main theorem when G k ppq is a free pro-p-group. Indeed, by definition Ĥs pG, Ω 2 pF p qq Ĥs¡2 pG, F p q ; moreover such module is of constant Jordan type and its stable Jordan type is r1s, as pointed out in the remark above (in 1.5). Only one piece of information is missing: the dimension of the fixed points of p H{Φp Hqq ¦ under the action of G. Let us take a closer look at the five term exact sequence ([NSW08, Cor. 2.4.2]):

0 / / H 1 pG, F p q / / H 1 pF n , F p q / / H 1 pH, F p q G / / H 2 pG, F p q / / H 2 pF n , F p q . It is well known that Ĥ2 pF n , F p q 0 ([Ser94]
) and that H 1 pG, F p q. Now, let us inspect H 1 pH, F p q G , we have indeed

H 1 p H, F p q phomp H, F p qq G
pF p is a trivial moduleq homp H{Φp Hq, F p q G (by the property of the Frattini subgroup) This litany of isomorphisms will be often used in this paper. Therefore we can state the following equality dim H 0 pG, pH{ΦpHqq ¦ q d 2 pGq pn ¡ d 1 pGqq .

We then need this basic lemma: Lemma 12. Let G be a p-group, and let M be an F p G-module. Now set n dim H 0 pG, M q ¡ dim Ĥ0 pG, M q , then M M 1 pF p Gq n where M 1 is an F p G-module without any projective summand.

Proof. Let us decompose M as

M M 1 P ,
where P is a projective module and M 1 has no projective summand. In fact, we may suppose that P pF p Gq m , since projective F p G-modules are free. We would like to show that m n. To this end, let us remark Ĥ0 pG, M q Ĥ0 pG, M 1 q . Since dim Ĥ0 pG, M 1 q m dim H 0 pG, M q, it remains to prove that dim H 0 pG, M 1 q dim Ĥ0 pG, M 1 q . If this were not the case, there would be an element x M 1 such that x ¤ N $ 0 (where N is the norm) so that there would be a projective summand in M 1 (see [Gui18, Lemma 1.31], which is absurd. Now, we can properly compute H 0 pG, H{ΦpHqq. Indeed, since H{ΦpHq is stably isomorphic to Ω 2 pF p q, its dual is stably isomorphic to Ω ¡2 pF p q, hence dim H 0 pG, pH{ΦpHqq ¦ q ¡ dim Ĥ0 pG, pH{ΦpHqq ¦ q n ¡ d 1 pGq , where d i pGq dim Fp Ĥi pG, F p q . According to the previous lemma pH{ΦpHqq ¦ Ω ¡2 pF p q pF p Gq n¡d 1 pGq , where Ω ¡2 pF p q is a module without any projective summand and stably isomorphic to Ω ¡2 pF p q, hence its dual is isomorphic to Ω 2 pF p q. Since there is no projective summand dim H 0 pG, Ω ¡2 pF p q ¦ q dim Ĥ0 pG, Ω ¡2 pF p q ¦ q dim Ĥ¡2 pG, F p q d 1 pGq . Now, we can easily conclude:

dim H 0 pG, H{ΦpHqq n ¡ d 1 pGq dim H 0 pG, Ω ¡2 pF p q ¦ q
Hence we obtain the expected result: dim H 0 pG, H{ΦpHqq n .

Alternatively, we could have used [START_REF] Gasschütz | Über modulare darstellungen endlicher gruppen, die von freien gruppen induziert werden[END_REF]Satz 2].

It now remains to confront the case where G k ppq is a Demuškin group.

Proof of the main theorems

In this section, as in the previous one, p is a prime number, k is a local field and G k ppq is the Galois group of a maximal pro-p-extension of k. From now on, we assume that G k ppq is a Demuškin group. In order to simplify our proofs, we will assume below that p $ 2, unless we explicitly write otherwise. All results in this section do still remain true when p 2, with some slight changes which we will indicate along the text. Let us fix then n and k such that

G k ppq D k,n .
We treat this as an equality rather than an isomorphism, which is tantamount to choosing generators for the group once and for all.

Our objective is the proof of Theorem 7 and Theorem 8, in the case when ξ p k, so that the above group-theoretical hypotheses are in force. As previously mentioned, our key argument is a short exact sequence: we shall prove it first, and then draw the consequences from it. No mention of Galois theory will be made, since we have already translated the problem of studying JpKq K ¢ {K ¢p into a problem of group theory, for K{k a finite p-Galois extension whose Galois group is G.

2.1. The short exact sequence... As previously recalled, the Demuškin group D k,n is but a quotient of the free pro-p-group on n generators x 1 , . . . , x n , denoted here F n , by the normal subgroup generated by x p k 1 px 1 , x 2 q . . . px n¡1 , x n q. This element will be denoted δ and we set π : F n ÝÑ D k,n , the canonical projection. If p 2, then δ should be changed, and we have to distinguish multiple cases (see 1.4), however what follows remains true without any change. Now, let us construct the epimorphism in the short exact sequence appearing in proposition D, which means a map from a module ω 2 pF p q (stably isomorphic to Ω 2 pF p q) onto J ¦ . Remember that J ¦ H{ΦpHq for a closed, normal subgroup H of D k,n . So we set H π ¡1 pHq . Note immediately that ker π H, since ker π is the normal subgroup of F n generated by δ. Hence, there exists an F p -linear map from H{Φp Hq onto H{ΦpHq. Moreover, this map is a morphism of G-modules. Indeed, first, note that F n {Φp Hq is isomorphic to G: since ker π is equal to Grpδq and δ lies in H, we have that π :

F n ÝÑ D k,n induces an epimorphism from F n { H onto D k,n {H,
and by definition of H it is obviously a monomorphism, hence it is an isomorphism of groups.

Furthermore, the induced map, which is written π H , is G-equivariant, since the action on those modules is but the action by conjugation. Thus π H is an epimorphism of modules from H{Φp Hq which is stably isomorphic to Ω 2 pF p q, according to Proposition 11, onto J ¦ . Since we have fixed an extension K{k, we have fixed the subgroup H (and consequently H). Therefore from now on, when we speak of the module ω 2 pF p q we mean H{Φp Hq as an F n { H-module, unless we say explicitly so. In order to prove the short exact sequence, it remains to study the kernel of π H : it is done in the following lemma.

Lemma 13. There exists a unique cyclic F p G-module of dimension |G| ¡ 1 (up to isomorphism). It is stably isomorphic to Ω ¡1 pF p q, and in fact isomorphic to xr|r ¤ N 0y ,

where N denotes the norm N : ģG g .

Proof. Let us translate one by one the hypothesis of those lemma: suppose M is a module verifying the conditions of the lemma; since M is cyclic, there exists an epimorphism

F p G ÝÑ M .
Because of the dimension of M , its kernel is of dimension 1, it is of course F p , both as a vector space and as a module. Therefore the following sequence is exact

0 / / F p / / F p G / / M / / 0 ,

which, by definition, means

M Ω ¡1 pF p q . Now, note that the monomorphisms from F p into F p G, are just the f c : 1 Þ Ñ c N, where c F p and N is the norm. Hence the lemma.

This module, which is simply IpGq ¦ , will be denoted by ω ¡1 pF p q in the rest of the paper. Now, it is obvious that the kernel of the map from H{Φp Hq onto H{ΦpHq is monogenous:

it is indeed generated by rδs, the class of δ modulo Φp Hq. We then have to compute the dimension of J ¦ .

For every finitely generated pro-p-group U, d 1 pUq denotes the minimal number of topological generators of U, or equivalently the dimension of H 1 pU, F p q or the one of U{ΦpUq (see [START_REF] Serre | Cohomologie galoisienne[END_REF]4.2]).

According to [Koc02, Example 6.3] and to [Ser94, Exercice 6 p.41], the following formulae hold:

(2) 4 d 1 p Hq pF n : Hqpn ¡ 1q 1 d 1 pHq pD k,n : Hqpn ¡ 2q 2 Since we have that pF n : Hq |G| pD k,n : Hq, the dimension of ker π H is exactly |G| ¡ 1, therefore we can use the lemma and conclude. Thus the following proposition holds: Proposition 14. The following sequence is exact:

(3) 0 / / ω ¡1 pF p q κ / / ω 2 pF p q π H / / J ¦ / / 0 .
Remark.It should be pointed out that, in the previous exact sequence, ω 2 pF p q does not necessarily verify the minimality condition we have set, whereas ω ¡1 pF p q always does so.

From now on, we fix κ to be the map in the previous short exact sequence: it will play a major role, before disappearing at the end of this section.

2.2. ...and its consequences. Now, we are in possession of the required tools to show the main theorems. We will have to distinguish between two cases, according as the morphism κ in (3) is stably zero or not. In section 4, we shall give examples of both cases, showing they actually occur.

2.2.1. When κ is stably zero. In modpF p Gq the triangle Ω ¡1 pF p q κ / / Ω 2 pF p q / / J ¦ / / Ω ¡2 pF p q , is distinguished according to [START_REF] Holm | Triangulated categories: definitions, properties, and examples[END_REF]3.1.] If κ is stably zero, then, according to [HJ10, 4.4.], in the stable category the following isomorphism stands J ¦ Ω 2 pF p q Ω ¡2 pF p q . Thus J ¦ is of constant Jordan type and its stable Jordan type is r1s 2 , without any condition on the group G. Furthermore, since κ 0 stably, the beginning of the long exact sequence of cohomology is but 0

/ / H 0 pG, ω ¡1 pF p qq / / H 0 pG, ω 2 pF p qq / / H 0 pG, J ¦ pKqq / / H 1 pG, ω ¡1 pF p qq / / 0 , hence we get dim H 0 pG, JpKq ¦ q d 2 pGq pn ¡ d 1 pGqq .
We have therefore shown a little more that we announced:

Proposition 15. If the map κ is zero, then JpKq is isomorphic in the stable module category to

JpKq Ω 2 pF p q Ω ¡2 pF p q . Hence JpKq is of constant Jordan type r1s 2 and the cohomology groups of G with coefficients in JpKq are in fact 4 Ĥs pG, JpKqq Ĥs 2 pG, F p q Ĥs¡2 pG, F p q H 0 pG, JpKqq F d 2 pGq d 1 pGq pn¡2d 1 pGqq p So we have proved (2)(a) of Theorem 7, and a little more than the second statement of Theorem 8 under the current assumption on κ. Remark that we did not need to make further assumptions on G in order to prove this proposition: it is an improvement of both main theorems.

Let us discuss a bit more the structure of JpKq. We certainly know that in the category of (not stable) modules, we have JpKq Ω 2 pF p q Ω ¡2 pF p q P , where P is a projective module. Bear in mind that we write Ω k pF p q for a module which is stably isomorphic to Ω k pF p q and not containing any projective summand. It is possible to compute the number of copies of F p G contained in P :

Proposition 16. When κ is zero, the G-module JpKq can be decomposed in the following way

JpKq Ω 2 pF p q Ω ¡2 pF p q pF p Gq n¡2d 1 pGq .

Proof. As previously proved, we have a stable isomorphism

JpKq Ω 2 pF p q Ω ¡2 pF p q , it is therefore sufficient to compute the number of copies of the free module in JpKq. Using lemma 12, we get that this number is equal to It should be remarked that this proposition gives us a necessary -but not sufficientcondition on G in order for κ to be zero: as it is quite convenient, we promote this small remark to a corollary.

dim H 0 pG, JpKqq ¡ dim Ĥ0
Corollary. If κ is stably zero, then 2d 1 pGq ¤ n.

For example, note that if K{k is the maximal p-elementary abelian extension, then n d 1 pGq, and according to the previous corollary, it is not possible for κ to be stably zero; hence K ¢p {K ¢ is never stably isomorphic to Ω 2 pF p qΩ ¡2 pF p q, as will be clear from the study of the alternative case, to which we turn now.

2.2.2. When κ is stably non-zero. If κ does not vanish in the stable module category, we will proceed in two steps: first, we shall draw the consequences of the short exact sequence (3) in cohomology, secondly we shall prove that JpKq is of constant Jordan type. Let us suppose from now on that κ is not stably zero.

Proposition 17. We have the following equality

dim H 0 pG, JpKqq d 2 pGq pn ¡ d 1 pGqq ¡ 1 .
Proof. Note that in the long exact sequence in cohomology, the map H 1 pG, ω ¡1 pF p qq ÝÑ H 1 pG, ω 2 pF p qq is not zero. Indeed, remark that the following diagram is commutative

H 1 pG, ω ¡1 pF p qq / / H 1 pG, ω 2 pF p qq Ĥ2 pG, F p q !rκs / / Ĥ¡1 pG, F p q
However, by Tate duality [Bro94, §VI.7], the pairing given by Ĥi pG, F p q Ĥ¡i¡1 pG, F p q ÝÑ Ĥ¡1 pG,

F p q F p a b Þ ÝÑ a ! b is non-degenerate.
Therefore the previous map is non-zero, and consequently it is an epimorphism, for H 1 pG, ω 2 pF p qq F p . Thus the beginning of the long exact sequence of cohomology is just but

0 / / H 0 pG, F p q / / H 0 pG, ω 2 pF p qq / / H 0 pG, F p q / / H 2 pG, F p q / / Ĥ¡1 pG, F p q / / 0
Hence we obtain the announced equality. Now, we have to make further assumptions in order to compute the cohomology groups.

From now on, in this section G is a p-group such that H pG, F p q is a Cohen-Macaulay ring: since this hypothesis is -as far as we know-quite uncommon among the literature in Galois theory, we shall sometimes recall this hypothesis in order to lay emphasis on it.

Lemma 18. Let s, j Z such that j ¡ s ¡ 0 and let γ : ω s pF p q ÝÑ ω j pF p q a map of modules, where ω s pF p q and ω j pF p q are any modules stably isomorphic to Ω s pF p q and Ω j pF p q. Then consider the distinguished triangle in the stable module category (4) Ω s pF p q γ / / Ω j pF p q / / C γ / / Ω s¡1 pF p q . If G is such that H pG, F p q is a Cohen-Macaulay ring, then in the long exact sequence of cohomology the following maps Ĥl pG, ω s pF p qq ÝÑ Ĥl pG, ω j pF p qq, l ¥ j 1 or l ¤ s ¡ 1 are zero.

Proof. Three things shall be remembered. First, bear in mind that ω l pF p q denotes a module which is stably isomorphic to the object Ω l pF p q in the stable category.

Secondly, for every pair of integers n 1 , n 2 , there exists an isomorphism between Ĥn 1 pG, F p q and hompΩ n 1 n 2 pF p q, Ω n 2 pF p qq. If κ is an element of hompΩ n 1 n 2 pF p q, Ω n 2 pF p qq, by rκs we mean the corresponding class of cohomology in Ĥn 1 pG, F p q.

Thirdly, if a, b are two cohomology classes respectively of degree n 1 and n 2 such that a rαs and b rβs where α : Ω n 1 n 2 n 3 pF p q ÝÑ Ω n 2 n 3 pF p q and β : Ω n 2 n 3 pF p q ÝÑ Ω n 3 pF p q, then a ! b rα ¥ βs. ([CTVEZ03, §4.5]) Now, the short exact sequence (4) gives birth to a long exact sequence in the stablemodule category ([HJ10, Prop. 4.2]), which is but the long exact sequence in cohomology. Let us take a closer look to it: . . . 

However the application defined by

m γ : hompF p , Ω s¡l pF p qq ÝÑ hompF p , Ω j¡l pF p qq f Þ ÝÑ f ¥ γ is simply the cup product by rγs Ĥs¡j pG, F p q from Ĥl¡s pG, F p q to Ĥl¡j pG, F p q. Now, it is known [BC92, Thm. 3.1 and lemma 2.1], under the assumption that H pG, F p q is a Cohen-Macaulay ring, that such cup products are zero, as soon as l s ([BC92, Thm.

3.1]

) or l ¡ j ([BC92, Lemma 2.1]). Hence we get the proposition.

Remark.If p 2, in order to apply [BC92, Thm. 3.1 and lemma 2.1], we have in addition to suppose that G is different from the quaternion groups.

Corollary. Let G be as in the lemma. If M is an F p G-module verifying the following exact sequence

(5) 0

/ / ω ¡1 pF p q / / ω 2 pF p q / / M / / 0 , then the Tate cohomology groups with coefficients in M verify

Ĥs pG, M q Ĥs 2 pG, F p q Ĥs¡2 pG, F p q ds, s ¥ 2, or s ¤ ¡3 .

Proof. It is sufficient to take a look on the long exact sequence in cohomology and apply the previous lemma.

Therefore, we have already proved another big part of our theorem: the computation of the cohomology groups of degree higher than 2 (and lower than ¡4) is done and conform to what was announced in case (2)(b) of Theorem 7. Let us now address the case of the first cohomology group.

Proposition 19. The groups H 1 pG, J ¦ q and H 3 pG, F p q are isomorphic.

Proof. Let us again look at the long exact sequence in cohomology. Remember that 

H

Theorem 21. Let K{k be an elementary abelian p-extension. If K{k is not cyclic, then

JpKq ¦ K ¢ {K ¢p is a GalpK{kq-module of constant Jordan type. Furthermore, its stable Jordan type is r1s 2 . Proof. We recall that if M is an E 1 -module, n j pMq denotes the number of blocks of size j in the decomposition of M . Therefore our goal is to prove that n 1 pα ¦ pJ ¦ qq 2 and n p pα ¦ pJ ¦ qq pn ¡ 2q |G| p for every π-point α. Now, remember that in the exact sequence 0 / / ω ¡1 pF p q i / / ω 2 pF p q / / J ¦ / / 0 , the map i is in fact a cohomology class in Ĥ¡3 pE k , F p q. We have previously remarked that in the long exact sequence of cohomology the maps Ĥl pG, ω ¡1 pF p qq ÝÑ Ĥl pG, ω 2 pF p qq dl Z , is the cup product by ris Ĥ¡3 pE k , F p q.

So, let α be a π-point. Since res α prisq is zero according to the previous proposition, numerous morphisms are zero in the long exact sequence in cohomology. To be more precise, it leads to the following short exact sequence for all l Z:

0 / / Ĥl pE 1 , α ¦ pω 2 pF p qqq / / Ĥl pE 1 , α ¦ pJ ¦ qq / / Ĥl 1 pE 1 , α ¦ pω ¡1 pF p qqq / / 0 .
Since a π-point induces a morphism of triangulated category, α ¦ pΩpMqq Ωpα ¦ pMqq, so that we can compute the leftmost and rightmost groups in the previous short exact sequence. Hence we deduce this precious piece of information:

H 1 pE 1 , α ¦ pJ ¦ qq Ĥ1 pE 1 , α ¦ pJ ¦ qq F 2 p .
Thus we know, that for every π-point α, α ¦ pJ ¦ q has in its decomposition exactly two blocks whose size is not p. It remains to prove that their size is exactly 1. To this end, let us compute the dimension of H 0 pE 1 , α ¦ pJ ¦ qq.

Knowing the nullity of the map H 2 pE 1 , α ¦ pΩ ¡1 pF p qqq ÝÑ H 2 pE 1 , Ω 2 pF p qq, the long exact sequence in cohomology gives us the following exact sequence:

0 / / H 0 pE 1 , α ¦ pω ¡1 pF p qqq / / H 0 pE 1 , α ¦ pω 2 pF p qqq / / H 0 pE 1 , α ¦ pJ ¦ qq 0 H 1 pE 1 , α ¦ pω ¡1 pF p qqq a 1 o o
Since we know both the dimension of ω ¡1 pF p q and ω 2 pF p q and their stable constant Jordan type (resp. rp ¡ 1s and r1s), we deduce

6 9 8 9 7 dim H 0 pE 1 , α ¦ pω ¡1 pF p qq |G| p dim H 0 pE 1 , α ¦ pω 2 pF p qq pn ¡ 1q ¤ |G| p 1 dim H 1 pE 1 , α ¦ pω ¡1 pF p qq 1
Injecting these piece of information in the previous exact sequence we obtain

dim H 0 pE 1 , α ¦ pJ ¦ qq 1 ppn ¡ 1q |G| p 1 ¡ |G| p q 2 pn ¡ 2q |G| p ,
hence we get the following equality:

n p pα ¦ pJ ¦ qq pn ¡ 2q |G| p .
As previously remarked, we know that in the decomposition there are two blocks whose size is not p. Let 1 and 2 be their size; of course, we have dim J ¦ n p pα ¦ pJ ¦ qq ¤ p 1 2 .

Because we already know the dimension of J ¦ (see 2), this leads to 2 1 2 . We deduce that 1 2 1, hence n 1 pα ¦ pJ ¦ qq 2, as expected.

This completes the proof of Theorem 8.

Remark. A peculiar case is worth noting: if the absolute Galois group has p-rank two, the module J ¦ is of dimension 2 according to the previous computation of the dimension, and since it is of constant Jordan type r1s 2 , it is simply isomorphic as a module to F p ¢ F p ! Furthermore such case is not a pathological made-up one, indeed consider k Q pξ p q, with $ p. In this case, according to [Gui18, Theorem 4.8], k ¢ {k ¢p is of dimension 2, hence G k ppq is generated by two elements.

On the vanishing condition.

The condition regarding κ, as natural as it can be in this text, is not easy to check nor to express in few words, therefore we will try to find an equivalent condition and give criteria in order to distinguish between the two cases.

Proposition 22. The map κ : ω ¡1 pF p q ÝÑ ω 2 pF p q is zero if and only if the following inflation map inf : H 2 pGalpK{kq, F p q ÝÑ H 2 pG k ppq, F p q , is also zero.

Proof. Let us look at the five term exact sequence associated to

1 / / H / / G k ppq / / G / / 1 .
In this case we obtain 0 / / H 1 pG, F p q / / H 1 pG k ppq, F p q / / H 1 pH, F p q G / / H 2 pG, F p q / / H 2 pG k ppq, F p q . Remember here that, H 1 pG k ppqq F n p and that H 1 pH, F p q G H 0 pG, Jq. Now, let us suppose that κ 0, in this case dim H 0 pG, Jq d 2 pGq d 1 pGq pn ¡ 2d 1 pGqq (according to Proposition 15). Hence by injecting these piece of information, we have in fact that the inflation inf : H 2 pG, F p q ÝÑ H 2 pG k ppq, F p q is zero.

The converse is similar.

Remark.The previous condition echoes to the one introduced by Mináč, Swallow and Topaz in [MST14, Theorem 2].

A closer look at the maximal p-elementary abelian extension

Let us resume the notation of the previous section : k is a local field, p is a prime number, G k ppq is the Galois group of a maximal pro-p-extension of k ; the field K will now be specialized to be the maximal p-Kummer extension of k, a crucial particular case for which we can be much more precise than in general. Observe that K is in Galois correspondence with ΦpG k ppqq, the Frattini subgroup ; the Galois group G GalpK{kq is elementary abelian of rank n, and this number is also the number of generators for the Demuškin group G k ppq.

Recall that many of our arguments are related to the existence of a short exact sequence of F p G-modules 0 ÝÑ ω ¡1 pF p q κ ÝÑ ω 2 pF p q ÝÑ J ¦ ÝÑ 0 , constructed in §2.1. Moreover, as a "model" for Ω 2 pF p q we have in fact used the module M n : ΦpF n q{Φ p2q pF n q . (Note that the group H appearing in §2.1 is now ΦpF n q, with our choice of field K, as is readily seen.) We shall now describe M n in much more detail, as well as the map κ, and as an application, we shall deduce several invariants of the module J ¦ . (All of this will be conducted in the language of groups, and the field-theoretic notation will not appear.)

In more detail, we start the section by giving a presentation of M n , as an F p G-module, by generators and relations (this part is rather technical). Next, this is used to give a concrete description of the morphism κ. Finally we give a presentation of J ¦ , again by generators and relations. We close the section by applying all this material in order to extend some results of Adem, Gao, Karagueuzian and Mináč. Indeed, in [START_REF] Adem | Field theory and the cohomology of some Galois groups[END_REF], these authors study the module J ¦ under the current hypothesis on K, in the case p 2; by the bye, they point out that most of their results can be extended to the p odd case. Yet some of their examples and formulae should be slightly changed in order to remain true: our goal here is to show how to proceed. We start our exposition by assuming that p ¡ 2. The very minor modifications needed to deal with p 2 will be given afterwards (see ??).

3.1. The module M n .

Notation & conventions. If G is a finitely generated pro-p-group, ΦpGq denotes its

Frattini subgroup, which means that ΦpGq G p pG, Gq . By pG, Gq we mean of course the group generated by the commutators

pg 1 , g 2 q g ¡1 1 g ¡1 2 g 1 g 2 , dg 1 , g 2 G .
Whenever H G, the group G acts by conjugation on H, and we write h g g ¡1 hg, dh H, dg G . Thus G acts on M G ΦpGq{Φ p2q pGq by conjugation, and since the action of ΦpGq is trivial modulo Φ p2q pGq, we will study the action of G{ΦpGq ! E r for some r. As M G is an F p vector space, it is, all in all, an F p E r -right module, with the elementary abelian group E r identified as above.

On M G we shall use an additive notation, i.e. we write rαβs rαs rβs , dα, β ΦpGq , where rαs denotes the class of α modulo Φ p2q pGq . However, usually the additive notation makes it unnecessary to use brackets, and we may simply write α β for α, β ΦpGq.

As for the action, our convention is to write rαs¤x for rα x s (where α ΦpGq and x G), and more generally we write rαs ¤ λ where λ F p E r . Moreover, we extend the convention we introduced in §1.1: if we have used a letter, say x, to denote an element of G, then we shall usually use the same letter x for its image in G{ΦpGq and the capitalized letter X for x ¡ 1 F p rG{ΦpGqs.

Here is an example of computation with all our conventions at work : α ¤ X α x ¡ α x ¡1 αxα ¡1 px, α ¡1 q , for α ΦpGq and x G.

This applies in particular to G F n , the free pro-p-group on n generators. In this case we write M n : ΦpF n q{Φ p2q pF n q.

3.1.2. Some classical relations. Let G be a finitely generated pro-p-group. Let us recall some classical formulae about commutators, translated into relations about ΦpGq{Φ p2q pGq as a module with an action of G. When we specialize to G F n below, we shall see that we have in fact described all the relations, in the sense that we have a presentation. Lemma 23. Let x, y, z be three elements of G, then the following relation holds in Φ p2q pGq{ΦpGq:

(6)
py, xqZ px, zqY pz, yqX 0 , where X x ¡ 1 (similarly for y and z). Furthermore we have:

(7) y p ¤ X px, yqY p¡1 .
Proof. We recall the Hall-Witt formula (cf. [START_REF] Dixon | Analytic Pro-P Groups[END_REF] or [START_REF] Lazard | Sur les groupes nilpotents et les anneaux de lie[END_REF]). Let x, y, z be three elements of a pro-p-group G, then ppx, y ¡1 q, zq y ppy, z ¡1 q, xq z ppz, x ¡1 q, yq x 1 .

Indeed it is clear that px, y ¡1 q y y ¡1 x ¡1 yxy ¡1 y y ¡1 x ¡1 yx py, xq .

We can deduce the following well-known relation, similar to the Jacobi relation in the realm of Lie algebras: py, xqZ px, zqY pz, yqX 0 pmod Φ 2 pGqq . Indeed using the Hall-Witt relation and the previous remark, we have: 1 ppx, y ¡1 q, zq y ppy, z ¡1 q, xq z ppz, x ¡1 q, yq x ppx, y ¡1 q ¡1 px, y ¡1 q z q y ppy, z ¡1 q ¡1 py, z ¡1 q x q z ppz, x ¡1 q ¡1 pz, x ¡1 q y q x ppy, xq ¡1 py, xq z qppz, yq ¡1 pz, yq x qppx, zq ¡1 px, zq y q .

The following equalities, which could be found in [START_REF] Dixon | Analytic Pro-P Groups[END_REF], will be useful:

(8) Given that y p ¤ X py p q x ¡ y p x ¡1 y p x ¡ y p y ¡p x ¡1 y p x py p , xq , we obtain the expected relation:

y p ¤ X px, yqY p¡1 . 3.1.3.
The free group. Now we specialize to G F n , the free pro-p group on n generators, which will be called x 1 , . . . , x n . The images of these in E n F n {ΦpF n q will also be called x 1 , . . . , x n . We write

X i x i ¡ 1 F p E n .
According to the previous relations (8), the 2-commutators (i.e. the px i , x j q) and the

x p i form a generating system for M n as F p E n -module. The first thing we note is that px i , x j q ¡px j , x i q .

Simply because x i commutes with x p i , we certainly have

x p i ¤ X i 0 .
Next, from the relation (7) of the lemma, we have

x p j ¤ X i px i , x j qX p¡1 j .
And finally, from (6), we obtain :

(9) px k , x j q ¤ X i px j , x i q ¤ X k px i , x k q ¤ X j 0 .
Ultimately, we shall prove that the four types of relations just given between the generators provide a presentation for M n , ie they generate the module of relations.

The strategy is as follows. First we note that it is enough to include the 2-commutators with i j, of course, so we have n 2 ¨commutators and n elements of the form x p i . Let F n,p be the free F p E n -module on elements called e 1 , . . . , e n and e i,j for i j. There is a short exact sequence 0 ÝÝÝÑ K ÝÝÝÑ F n,p ψ ÝÝÝÑ M n ÝÝÝÑ 0 , where ψpe i q x p i and ψpe i,j q px i , x j q. We want to show that K kerpψq is generated by the elements above. For this, we shall determine the dimension of M n (which is easy), so that we will know the dimension of K over F p . The work will consist in exhibiting carefully selected elements of K, all obtained from the above using the F p E n action, which are linearly independent over F p and numerous enough for us to conclude that they span K.

3.1.4.

A basis for K. The dimension of M n is well-known.

Lemma 24. With our notation:

dim Fp M n 1 pn ¡ 1q ¤ p n .
Proof. According to [START_REF] Koch | Galois theory of p-extensions[END_REF], example 6.3, we have that the minimal number of topological generators of ΦpF n q -denoted dpΦpF n qqis equal to p n pn¡1q 1, therefore we can conclude by definition of the Frattini subgroup.

When ν pν 1 , . . . , ν n q is a multi-index, we set

X ν X ν 1 1 X ν 2 2 . . . X νn n .
Note that the family pX ν q νI , where I t0, . . . , p¡1u n is an F p basis of the group algebra F p E n . We will write E for this basis. Now we proceed to introduce distinguished elements of K.

The relations Rpi, mq and Rpi, j, mq.

For each 1 ¤ i ¤ n and m pm 1 , . . . , m n q t0, . . . , p ¡ 1u n , a multi-index such that m is different from p0, . . . , 0q , we introduce Rpi, mq 6 9 9 9 9 9 9 8 9 9 9 9 9 9 7

e i ¤ X m i i ¤ ± s$i X ms s , if m i $ 0 , e i ¤ X m j j ¤ ± s$i s j X ms s e pi,jq ¤ X p¡1 i X m j ¡1 j ± s$i,j X ms s , if i j , e i ¤ X m j j ¤ ± s$i s j X ms s ¡ e pj,iq ¤ X p¡1 i X m j ¡1 j ± s$i,j X ms s , if i ¡ j ,
where j maxts|m s $ 0u in the second and third case and clearly m i 0. By virtue of the relation (7), we deduce that Rpi, mq is in the kernel of ψ. We have therefore found exactly (10)

n ¤ pp n ¡ 1q
vectors in the kernel so far. By virtue of the same relation, we obtain that (11)

px i , x j qX p¡1 i X p¡1 j x p i X p j 0 ,
thus vectors of the form Rpi, j, mq e pi,jq X p¡1 j

X p¡1 i ¹ k i X m k k
are in the kernel, for a total amount of ( 12)

n i1 pn ¡ iq ¤ p i¡1
vectors of those form.

Relations of Jacobi type. Let x i , x j , x k be three elements of our generating system of F n with i ¤ j ¤ k. Because of (6) and the elementary properties on the commutators, we get:

(13) px i , x j qX k px i , x k qX j ¡ px j , x k qX i . Thus elements of the form e pi,jq X k ¡ e pi,kq X j e pj,kq X i , where i j k, lie in the kernel. More generally, by multiplying the previous relation by X m verifying the following conditions

(1) m k $ p ¡ 1, (2) if i ¡ k then m i 0,
we deduce that vectors of the following form lie also in the kernel:

e pi,jq ¤ X m k 1 k ¤ ¹ s k X ms s e pj,kq ¤ X m i 1 i ¤ ¹ s$i s¤k X ms s ¡ e pi,kq ¤ X m j 1 j ¤ ¹ s$j s¤k X ms s ,
where m t0, . . . , p ¡ 1u n is a multi-index such that m is different from p0, . . . , 0q . Such vectors are denoted jac 1 pi, j, k, mq; clearly m k ¤ p ¡ 2, and their number is

pp ¡ 1q ¤ n ķ0 ¢ k ¡ 1 2 ¤ p k¡1 .
By multiplying (13) by X p¡1 k , we obtain the relation ( 14)

px i , x k qX p¡1 k X j px j , x k qX p¡1 k X i
Therefore, by multiplying by X m where m verify the following conditions

(1)

m j $ p ¡ 1, (2) if i ¡ j, m i 0,
we get again vectors of the form e pi,kq

X p¡1 k X m j 1 j ¹ s j X ms s ¡ e pj,kq X p¡1 k X m i 1 i ¤ ¹ s j s$i
X ms s where i j k , which are in the kernel. Hence we have added in our kernel a total amount of

pp ¡ 1q ¤ j1 pj ¡ 1qpn ¡ jqp j¡1
vectors of this form, they are denoted by jac 2 pi, j, k, mq.

From now on, we set tRpi, mq, Rpi, j, mq, jac 1 pi, j, k, mq, jac 2 pi, j, k, mqu , with the conditions on i, j, k, m given above.

Lemma 25. The system is a basis of ker ψ.

Proof. All vectors contained in are in ker ψ by definition; we shall prove that they are linearly independent and that their number is equal to dim F n,p ¡ dim M n . Linear independence. Bear in mind that E is the basis of F n,p consisting of the e i ¤ X ν and the e pi,jq ¤X µ where ν and µ are elements of t0, . . . , p ¡1u n . Let us define an F p -linear map f : F n,p Ñ F n,p given on the vectors of E by 6 9 9 8 9 9 7

f pe i ¤ X m q Rpi, mq f pe pi,jq ¤ X m k 1 k ¤ ± s k X ms s q jac 1 pi, j, k, mq f pe pi,kq X p¡1 k X m j 1 j ± s¤i j X ms s q jac 2 pi, j, k, mq
and fixing the other vectors of E; note that among those remaining vectors are the Rpi, j, mq for instance. In order to number the vectors of the basis, we will use an order relation rather than cumbersome formulae from combinatorics.

We define a total order relation on the vectors of E by imposing the following conditions:

(1) e i ¤ ±

X νs

s ¤ e j ¤ ± X µs s if and only if i j or i j and either |ν| |µ| or if |ν| |µ| then we use the lexicographic order.

(2) e pi,jq ¤ ± X νs s ¤ e pk,lq ¤ ± X µs s if and only if one of the following condition is true (a) i k (b) if i k then one of the following must be true:

(i) j l, (ii) |ν| |µ|, (iii) ν ¨µ where ¨is the lexicographic order (3) e i ¤ ± X νs s ¤ e pj,kq ¤ ± X µs s .
The matrix associated to f in the canonical basis, thus ordered, is lower triangular with 1's on the diagonal, as is readily checked (when defining the elements of , we have always given the formulae so that the leftmost term is the lowest for the order relation).

So f is invertible, and the image of the canonical basis under f is another basis for F n,p . This proves in particular that the elements of are linearly independent.

Cardinality. By using the formula previously given, we can get: dim Fp ker ψ n 2 ¨pn ¡1.

However (15) pp ¡ 1q ¤ n¡1 °k0 ¢ k 2 p k ¢ n ¡ 1 2 p n ¡ n¡1 °k1 pk ¡ 1q ¤ p k , in the same fashion (16) pp ¡ 1q ¤ n °j1 pn ¡ jqpj ¡ 1qp j¡1 n¡1 °j1 p2j ¡ nqp j ,
by adding the previous equalities we get:

(12) (15) (16)

¢ n ¡ 1 2 p n n¡1 °k0 kp k ¡ n¡1 °k0 kp k¡1 n n¡1 °i1 p i¡1 ¡ n n¡1 °i1 p i n¡1 °k0 p k ¢ n ¡ 1 2 p n n¡1 °k0 kp k ¡ n¡2 °k0 pk 1qp k np1 ¡ pq n¡2 °k0 p k n¡1 °k0 p k ¢ n ¡ 1 2 p n np1 ¡ p n¡1 q n¡1 °k1 p k ¡ n¡2 °k0 p k ¢ n ¡ 1 2 p n n ¡ 1 .
If we add this to (10), we obtain the desired cardinality.

From this lemma we can deduce the following three corollaries.

Corollary.

The system formed by the vectors px p i q it1,...,nu and the vectors px i , x j qX ν such that ν verifies the following conditions

(1) maxts|ν s $ 0u ¤ j (2) ν i $ p ¡ 1 or ν j $ p ¡ 1 (3) if ν j p ¡ 1, then ν k 0 for k ti 1, . . . , j ¡ 1u. forms a basis of M n . Proof. Let B f pEq ,
where E is our usual basis for F n,p and f is the endomorphism defined in the proof of the lemma. Then ψpBq is a basis for M n . However, a vector of v E is in f ¡1 p q if and only if one of the following condition is true:

(1) if v e i X ν where ν $ p0, . . . , 0q.

(2) if v e pi,jq

X p¡1 i X p¡1 j ± kti,ju
X ms s .

(3) if v e pi,jq

X m k k ± s k X ms s , where m k $ 0 . (4) if v e pi,kq X p¡1 k X m j j ± s¤i j
X ms s , where m j $ 0 . Negating this conditions, and keeping in mind that f pvq v if v is not in f ¡1 p q, we obtain the announced result.

Corollary. The module M n admits the following presentation by generators and relations:

its generators are the x p i and the px i , x j q where i and j are in t1, . . . , nu and i j. The relations are given by

(1) x p i ¤ X i 0 , (2) x p i ¤ X j px j , x i qX p¡1 i if i ¡ j, (3) x p i ¤ X j ¡px i , x j qX p¡1 i if i j,
(4) px i , x j qX k px j , x k qX i ¡ px i , x k qX j 0 , where i j k. Notice that, alternatively, we could have used generators px i , x j q for i $ j (rather than just i j), add the relation px i , x j q ¡px j , x i q, and then delete relation (3) which is now redundant with (2). Also (4) can then be re-written in a more symmetrical form.

Proof. Let R n be the module defined by the presentation of the corollary. It should be remarked that there exists an obvious map of modules from R n onto M n , for the relations verified in R n are verified in M n too: therefore it is clear that

dim Fp M n ¤ dim Fp R n .
By looking closer to the proof of the previous corollary, we see that we only used the relations mentioned in the corollary in order to construct , therefore we can show exactly by re-writing the proof of the corollary that

dim Fp R n ¤ dim Fp M n .
So the dimensions are equal, and the obvious epimorphism is an isomorphism.

Remark. Thanks to this presentation, it would have been easy to prove the isomorphism ΦpF n q{Φ p2q pF n q Ω 2 pF p q , without using Proposition 11. Indeed, we could have computed a presentation by generators and relations of the kernel of the map pF p E n q n xe 1 , . . . , e n y e i Þ ÑX i ÝÝÝÝÑ IpGq , and we would have remarked that the this presentation coincides with the one we found for ΦpF n q{Φ p2q pF n q.

3.2. Link with the cohomology. As seen earlier, the map κ : Ω ¡1 pF p q ÝÑ ω 2 pF p q contains some precious piece of information we need in order to describe the module JpKq: here, knowing completely the module structure, we describe the map κ. It should be recalled that

H pE n , F p q F p rζ 1 , . . . , ζ n s Λrη 1 , . . . η n s ,
where the generators ζ i have weight 2, whereas the generators η i have weight 1. (see [START_REF] Carlson | Cohomology rings of finite groups, volume 3 of Algebra and Applications[END_REF])

Remember that the ideal of augmentation IpE n q is stably isomorphic to ΩpF p q. We aim here to make explicit the following isomorphisms 6 8 7 H 1 pE n , F p q ÝÑ hompIpE n q, F p q written x Þ Ñ x , H 1 pE n , F p q ÝÑ hompM n , IpE n qq written x Þ Ñ x , H 2 pE n , F p q ÝÑ hompM n , F p q written x Þ Ñ rxs . Now, note that we shall work not exactly with morphisms in the stable-module category, but with their lifts which are truly morphisms of modules. Furthermore a mere bijection of set is not sufficient, if we want to keep track of the ring structure: it has to be compatible with the cup product. To be clear, we would like the following equality to hold:

rη i ! η j s η i ¥ η j .
Let us set the stage by the first isomorphism. Since IpE n q is generated as a module by the elements denoted X i x i ¡ 1, it is sufficient to define a morphism on them.

η i : IpGq ÝÑ F p X j Þ ÝÑ 4 0 if i $ j 1 if i j
It is obvious that such maps extend well to morphisms of modules and that they generate hom FpEn pIpGq, F p q. Now, we consider the isomorphism H 1 pE n , F p q ÝÑ hompIpGq, F p q Spanpη 1 , . . . , η n q which maps η i to η i , extended by linearity.

We turn to the second isomorphism. Because M n is generated as a module by px p i q 1¤i¤n and ppx i , x j qq 1¤i j¤n it is sufficient to define maps on the set S of those elements. We can therefore put

η i : M n ÝÑ IpE n q x S Þ ÝÑ 6 8 7 X j if x px i , x j q ¡X j if x px j , x i q 0 otherwise .
It is less obvious that this expression extends well to a map of modules, we let the reader verify this fact by a simple computation. It remains to prove that those elements are a basis of hompM n , IpE n qq. Lemma 26. The equivalence classes of the family of maps pη i q 1¤i¤n form a basis of hompM n , IpE n qq. Proof. It is easy to see that this family is free in hompM n , IpE n qq but we have in fact to check that ψ ¸ai η i factors through a projective module if and only if pa 1 , . . . , a n q p0, . . . , 0q. So let us suppose the converse: assume there exists a non-zero linear combination and a projective module P such that the following diagram commutes.

M n °ai η i / / f IpE n q P g < <
Now it is clear that since for all x M n , x ¤ N 0, then Im f RadpP q, so that Im g ¥ f RadpIpE n qq. Since pa 1 , . . . , a n q $ p0, . . . , 0q there exists j such that a j $ 0. Let us then apply ψ to px j , x j 1 q (or if j n to px n¡1 , x n q): ψppx j , x j 1 qq ¸ai η i px j , x j 1 q a j X j ¡ a j 1 X j 1 , however a j X j ¡ a j 1 X j 1 $ 0 and is not in RadpIpE n qq, which is absurd.

It should be added that η i ¥ η i : M n ÝÑ F p is zero. Therefore the isomorphism (implicitly) given between H 1 pE n , F p q and hompM n , IpE n qq is coherent with the one given between hompIpE n q, F p q. Now, we can turn to the isomorphism between hompM n , F p q and H 2 pE n , F p q. Let us set rζ i s:

M n ÝÑ F p x S Þ ÝÑ 4 1 if x x p i 0 otherwise .
The maps in bijection with the cup products are simply given by composing the two sets of representatives we have previously given, hence:

rη i ! η j s: M n ÝÑ F p x S Þ ÝÑ 6 8 7 1 if x px i , x j q ¡1 if x px j , x i q 0 otherwise .
Note that those are again well defined morphisms of modules and a basis of hompM n , F p q which is again a basis of hompM n , F p q, since its cardinal is equal to the dimension of H 2 pE n , F p q.

Let us come back to the short exact sequence 3. In our situation, the monomorphism from Ω ¡1 pF p q xr|r ¤ N 0y into Ω 2 pF p q M n is given by

κ : r Þ Ñ 4 px 1 , x 2 q px 3 , x 4 q . . . px n¡1 , x n q if ξ p 2 k x p 1 px 1 , x 2 q px 3 , x 4 q . . . px n¡1 , x n q if ξ p 2 k ,
indeed the generator of Ω ¡1 pF p q is sent into the equivalence class of r∆s modulo Φ p2q pF n , where ∆ is the Demuškin relation: ∆ x p k 1 px 1 , x 2 qpx 3 , x 4 q . . . px n¡1 , x n q ΦpF n q . However, such map is also a (Tate)-cohomology class of degree ¡3, and, according to Tate duality, it induces a linear form on H 2 pE n , F p q, let us call it κ # .

The action of κ # will be soon described and can be linked to the Hasse invariant of k. The inflation map gives birth to an isomorphism between the groups H 1 pD k,n , F p q and H 1 pF n , F p q H 1 pE n , F p q which is obviously denoted by inf. Let m denote the map from H 1 pE n , F p q H 1 pE n , F p q to H 2 pE n , F p q induced by the cup-product and in a similar fashion, let m be the one given by the cup product of H pD k,n , F p q. It has to be remembered that H 2 pD k,n , F p q is isomorphic to the Brauer group (modulo p) of k, denoted here Br p pkq and the Hasse invariant Inv gives an isomorphism between Br p pkq and F p (see [START_REF] Guillot | A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology[END_REF]§II.3,II.4] for a complete description of these notions).

In a certain way, the map κ # describes the Hasse invariant on the decomposable part of the cohomology: Proposition 27. The action of κ # on the generators of H 2 pE n , F p q is as follows:

κ # pη i ! η j q 4 1 if i 2k 1, j i 1 pk t0, . . . t n 2 uuq 0 otherwise , κ # pζ i q 4 1 if i 1 and ξ p 2 k 0 otherwise .
Moreover, the following diagram is commutative

H 1 pE n , F p q H 1 pE n , F p q m / / inf 2 H 2 pE n , F p q κ # ( ( F p H 1 pD k,n , F p q H 1 pD k,n , F p q m / / H 2 pD k,n , F p q Br p pkq Inv 6 6 
.

Proof. To prove this statement, it is sufficient to check that stably speaking the maps rη i ! η j s ¥ κ : Ω ¡1 pF p q ÝÑ F p rζ s s ¥ κ : Ω ¡1 pF p q ÝÑ F p send the generator r of Ω ¡1 pF p q to 1 when i 2k 1 and j i 1 or when s 1 and ξ p 2 k, and otherwise vanish. According to the previous expressions, it is quite clear.

Furthermore the isomorphism between H 2 pD n,k , F p q and F p is given by the Hasse invariant. According to [Lab67, Proposition 4], which describes the cup products, the previous diagram commutes.

3.3. From M n to J ¦ . Now that we have a proper presentation by generators of M n , we can find one of J without any difficulty. In order to clarify our results we assume that ξ p 2 k if it is not the case, only small changes have to be made, which will be pointed out along the text. As pointed out in the previous subsection, the generators of M n are in bijection with a basis of H 2 pE n , F p q, in fact the relations are indexed by a basis of H 3 pE n , F p q. Let us label them in the following way

ζ i ! η i : x p i X i 0 ζ i ! η j : x p i X j px i , x j qX p¡1 i 0 i j ζ i ! η j : x p i X j ¡ px j , x i qX p¡1 i 0 i ¡ j η i ! η j ! η k : px i , x j qX k px j , x k qX i ¡ px i , x k qX j 0 1 ¤ i j k ¤ n
We can state the following lemma:

Lemma 28. The module J can be presented as:

J ! ω 2 pF p q{p∆q ! xx p i , px i , x j q | ζ i ! η j , η i 0 ! η i 1 ! η i 2 , ∆y
where 1 ¤ i j ¤ n, and 1 ¤ i 0 i 1 i 2 ¤ n; as for ∆, it stands for the relation px 1 , x 2 q px 3 , x 4 q . . . px n¡1 , x n q 0 . Proof. The Demuškin group G k ppq ! D k,n is the quotient of the free pro-p-group F n by the relation ∆ : x p k 1 px 1 , x 2 qpx 3 , x 4 q . . . px n¡1 , x n q 1 , and k ¥ 2 from our assumption that ξ p 2 k (see §1.4). It is clear that ∆ ΦpF n q.

When G is a finitely generated pro-p group, and K is a closed subgroup, one sees easily that ΦpGq maps onto ΦpG{Kq under the quotient map G ÝÑ G{K. Moreover, if K ΦpGq, then ΦpG{Kq can be identified with ΦpGq{K, clearly. If N denotes the smallest closed, normal subgroup containing ∆, we have N ΦpF n q and so there is an exact sequence 0 ÝÝÝÑ N ÝÝÝÑ ΦpF n q ÝÝÝÑ ΦpD k,n q ÝÝÝÑ 1 . Now by the same reasoning, we see that Φ p2q pF n q maps onto Φ p2q pD k,n q; it follows easily that there is another exact sequence 0 ÝÝÝÑ N {pN Φ p2q pF n qq ÝÝÝÑ ΦpF n q{Φ p2q pF n q ÝÝÝÑ ΦpD k,n q{Φ p2q pD k,n q ÝÝÝÑ 1 . This says in other notation, using our identification of M n with ω 2 pF p q, that the kernel of ω 2 pF 2 q ÝÑ J is generated, as F p E n -module, by ∆.

Remark. If k does not contain ξ p 2 , then the relation ∆ becomes

x p 1 px 1 , x 2 q px 3 , x 4 q . . . px n¡1 , x n q 0 . Furthermore if p 2 and n is odd, the relation is

x 2 1 px 2 , x 3 q px 4 , x 5 q . . . px 2s , x 2s 1 q
We can even go a little deeper into the computations: to achieve our goal of studying some invariants, we would like in fact to find a basis of J ¦ . Bear in mind that the projection from F n onto D k,n induces an epimorphism π ΦpFnq : M n ÝÑ J ¦ , hence the image of the previously found basis B of M n is a generating system of J ¦ . Nevertheless we have to get rid of some vectors in order to have a proper basis: those vectors can be found through the study of the kernel of π ΦpFnq which is generated by ∆. In order to do so, we need to introduce the two following family of maps on multi-indices

δ i : Z n ÝÑ Z n pν 1 , . . . , ν n q Þ ÝÑ pν 1 , . . . , ν i ¡ 1, . . . , ν n q and γ i : Z n ÝÑ Z n pν 1 , . . . , ν n q Þ ÝÑ pν 1 , . . . , ν i 1, . . . , ν n q
Proof. The main idea of the proof is simply get rid of a single vector for each relation ∆ ¤ X ν . The given vectors in V may be found in the formula of the previous lemma.

If i n ¡ 1, note that, since the vector px i , x j qX ν , j n ¡ 1, hence it appears in the sum of the previous lemma as the term most to the right. Now, suppose that i $ n ¡ 1 and the other conditions are of course verified. The vector we wish to eliminate appears in the relation ∆ ¤ X γnpνq : more precisely it appears in the last term of the first sum.

As long as ν $ pp ¡ 1, . . . , p ¡ 1q, ∆ ¤ X ν is not zero and formally speaking taking again our order relation, we can verify that this is truly a free family of M n ; therefore we obtain that we are allowed to get rid of those vectors. Thus the system π ΦpFnq pBzV q is still a generating system and has the expected cardinality, hence the proposition.

3.4. Computing some invariants. In their article ([AGKM01]), the authors introduced some invariants for various fields, including local fields and C-fields; as we focus only on local fields, we do not really aim to work in such a general frame as they do, but we will still show how their results, obtained for p 2, might be extended when p is an odd prime number and for a local field. Note that the following results mainly depend upon Proposition 30 which holds in every case, provided that p $ 2: therefore what follows is true if ξ p 2 k. Nevertheless we will assume that ξ p 2 k in order to make our computations less cumbersome.

Remember that if M is an R-module, the socle series of M is defined by 4 Soc 0 pMq t0u Soc n pMq{ Soc n¡1 pMq SocpM { Soc n¡1 pMqq Therefore we have Soc 0 pMq Soc 1 pMq . . . , if M of finite type, we are sure that there exists a minimal integer lpM q such that Soc lpM q M such integer is called the length of M ; we will rather study -as long as it is possiblethe radical series. Bear in mind that the length of the radical series is equal to lpM q (see [START_REF] Benson | Representations and cohomology. I[END_REF]). In [AGKM01, Theorem 5.2,5.3,5.15], a formula was proved, which related the length of ΦpG k p2qq{Φ 2 pG k p2qq to the 2-cohomological dimension cd 2 pG k p2qq of G k p2q.

Indeed, for every C-field, which is not formally real, the following equality holds:

lpΦpG k p2qq{Φ 2 pG k p2qqq cd 2 pG k p2qq n 1 .
Since it is not our purpose here to study such a general class of fields, we shall not give further details about them: the only thing that shall be known is that local fields are C-fields. Now, we can state the following proposition, which properly extends the previous formula, in our context. Proposition 31. If k is a local field, then the following identity holds lpΦpG k ppqq{Φ 2 pG k ppqqq cd p pG k ppqq pp ¡ 1qn 1 . Proof. Remember that there are only two possibilities for G k ppq: the free pro-p-group F n and a Demuškin group D k,n . Let us distinguish between those cases.

First, let us assume that G k ppq is a free pro-p-group, then cd p pG k ppqq 1 (see [Ser94, §3, Proposition 16]). Now, note that the length of M n is in fact equal to pp ¡ 1qn: indeed Rad npp¡1q pF p E n qM n t0u, because if ν pp ¡ 1, . . . , p ¡ 1q, then x p i X ν 0 and px i , x j qX ν 0, for px i , x j qX p¡1 i

X p¡1 j 0 furthermore Rad npp¡1q¡1 pF p E n qM n $ t0u, for px 1 , x n qX p¡2 n ± i n¡1
X p¡1 i is non-zero: it is a vector of the basis previously found.

Secondly, let us suppose that G k ppq is a Demuškin group. By definition cd p pG k ppqq 2, furthermore we claim that the length of J ¦ is equal to lpJ ¦ q pp ¡ 1qn ¡ 1 . Before doing our computations, let us set the map σ S n defined by σ p1, 2qp3, 4q . . . pn ¡ 1, nq , note that the permutation σ is meant to send an integer i to the integer j such that px i , x j q or px j , x i q appears in the Demuškin relation. Now, let us compute the length of J ¦ . We remark that Rad pp¡1qn¡1 pF p E n q ¤ J ¦ t0u, After a concrete computation of the dimension of E 1,1

V , the authors check it is equal to the dimension of Soc 2 pJq{ SocpJq, when p 2 ([AGKM01, Example 5.6]). In this case they obtained:

4
dim Fp Soc 2 ppΩ 2 pFq ¦ q{ Soc 1 pΩ 2 pFqq ¦ q npn 1qpn 4q 6 dim Fp Soc 2 pJq{ SocpJq npn¡2qpn 2q 3

In fact when p is even, a peculiar phenomenon occurs, as a consequence of the relation

x 2 i ¤ X j px i , x j qX 2¡11 i .
Without this fact, the formulae are slightly different from the previous one because we have to take account of terms x p i X j . Proposition 33. With our notations we have in one hand dim Fp Soc 2 pΩ 2 pFq ¦ q{ Soc 1 pΩ 2 pFq ¦ q npn ¡ 1qpn 4q 3 , and in the other hand dim Fp Soc 2 pJq{ SocpJq pn ¡ 2qpn 2 5n 3q 3 .

Proof. Rather than working with the socle series, we will study the radical series, indeed remember this small fact ([Web16, Exercise 6.7])

pSoc k pMq{ Soc k¡1 pMqq ¦ Rad k¡1 pM ¦ q{ Rad k pM ¦ q .

Since we seek to compute the dimension, we may as well compute Rad k¡1 pM ¦ q{ Rad k pM ¦ q.

We claim that, in this case a basis of Radpω 2 pF p qq{ Rad 2 pω 2 pF p q is given by the representatives of those elements (17) 6 8 7 px i , x j qX p¡1 i 1 ¤ i j ¤ n px i , x j qX p¡1 j 1 ¤ i j ¤ n px i , x j qX k 1 ¤ i j ¤ n, k ¤ j Indeed, RadpJq{ Rad 2 pJq is generated by elements of the form x ¤ X i , where x J{ RadpJq. It is clear that such elements are in fact 4 x p i ¤ X j px i , x j qX k As pointed out earlier, this is not a free system, but using the relations in the same exact manner as earlier, we can get rid of the elements which are not present in the system which we claimed to be a base. It is therefore clear that the elements of 17 are generators of RadpJq{ Rad 2 pJq; since they appear in the given basis, they are linearly independent and hence form a basis.

Let us then count each of them When G k ppq is a Demuškin group, we have to suppress few elements among those mentioned, indeed we must suppress the px n¡1 , x n qX k for k t1, . . . , nu, furthermore we must get rid of the elements px n¡1 , x n qX p¡1 n , px n¡1 , x n qX p¡1 n¡1 , thanks to the Demuškin basis. Therefore dim Soc 2 pJq{ dim SocpJq npn¡1qpn 4q 3 ¡ n ¡ 2 pn¡2qpn 2 5n 3q 3

The proof is complete.

Two examples

In 2.2, we promised to exhibit two concrete extensions K 1 {k and K 2 {k such that GalpK 1 {kq GalpK 2 {kq, but such that each one of them verifies one case we distinguished in Theorem 7, which means that JpK 1 q is stably isomorphic to Ω 2 pF p qΩ ¡2 pF p q, whereas JpK 2 q is isomorphic to F 2 p P , where P is a projective module. In order to make our computations clearer, we set p 3, but, for every prime p, other examples may be found without any difficulty. Consider k Q 3 pξ 3 q: since the extension Q 3 pξ 3 q{Q 3 is of degree 2, we have k ¢ {k ¢3 F 4 3 , according to [START_REF] Guillot | A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology[END_REF]4.10]. Hence the following isomorphisms are true:

G k p3q Galpkp3q{kq D 1,4 xx 1 , x 2 , x 3 , x 4 |x 3 1 px 1 , x 2 qpx 3 , x 4 qy .

Now, set

4 H 1 GrpΦpD 1,4 q, x 1 , x 2 q H 2 GrpΦpD 1,4 q, x 1 , x 4 q . Let us then write K i kp3q H i for i t1, 2u. Note that K i {k is an elementary abelian extension of k, since ΦpG k p3qq is a subgroup of H i . Furthermore, the following groups are isomorphic:

GalpK i {kq G k p3q{H i E 2 .
In fact, GalpK 1 {kq is generated by the classes of equivalences of x 3 and x 4 , whereas the group GalpK 2 {kq is generated by the classes of x 2 and x 3 .

Remember that, thanks to the presentation we use for a Demuškin group, there exists a canonical epimorphism π : F 4 xx 1 , x2 , x3 , x4 y ÝÑ D 1,4 sending xi to x i . Again, we set Hi π ¡1 pH i q and study rather Hi {Φp Hi q, by giving as usual a presentation.

Generators. Remark that Hi {Φp Hi q is generated, as a module, by a family of (topological) generators of Hi . Since ΦpF 4 q is generated by the elements px i , xj q ( where 1 ¤ i j ¤ 4) and x3 i (with 1 ¤ i ¤ 4), we have at our disposal a family of such generators. Now in the case of H1 we have a couple more generators, namely x1 and x2 ; therefore it is clear that x3

1 and x3

2 are redundant. Because GalpK 1 , kq xx 3 , x4 y acts on H1 {Φp H1 q,

we have for instance

px 1 , x3 q x¡1 1 x¡1 3 x1 x3 x¡1 1 xx 3 1 .
That is why, we can get rid of px 1 , x3 q, and in a similar fashion any commutator implying x1 or x2 . Note in fact that in H1 {Φp H1 q the commutator px 1 , x2 q is simply zero. Thus, we can state the following lemma:

Lemma 34. The E 2 -module H1 {Φp H1 q (resp. H2 {Φp H2 q) is generated by the following

elements: x1 , x2 , x3 3 , x3 4 , px 3 , x4 q (resp. x1 , x4 , x3 2 , x3 3 , px 2 , x3 q).
Relations It is quite clear that we are allowed to re-write the relations proven in the previous section. Therefore it appears easily that we have the following isomorphism H1 {Φp H1 q Ω 2 pF 3 q xx 1 y xx 2 y , where xx i y denotes a projective summand generated by xi . Using the previous formulae, Ω 2 pF 3 q is the module whose generator are simply x3 Using the same exact arguments we can get a similar description of H2 {Φp H2 q.

Let us now describe the map κ in each case: in order to distinguish properly the different cases, we set κ i : Hi {Φp Hi q ÝÑ H i {ΦpH i q.

Proposition 35. The map κ i : Ω ¡1 pF 3 q ÝÑ Hi {Φp Hi q is stably zero for i 2 and non-zero for i 1.

Proof. Remember that the source of the morphism κ i is simply the module Ω ¡1 pF 3 q xα|α ¤ N 0y , and its target is in fact Hi {Φp Hi q. To give full details, it is defined by κ i pαq r∆s i where r∆s i is the equivalence class of ∆ x3

1 px 1 , x2 qpx 3 , x4 q modulo Φp Hi q. However, according to the previous presentations, in one hand we have r∆s 1 px 3 , x4 q , whereas in the other hand r∆s 2 x1 X 2 x4 X 3 .

4H

  s pG, JpKqq Ĥs 2 pG, JpKqq H s¡2 pG, JpKqq s ¥ 1 H 0 pG, JpKqq F d 2 pGq pn¡d 1 pGqq p .

  According to the previous diagram we have the following exact sequence 0 / / GalpK p2q {Kq / / GalpK p2q {kq / / GalpK{kq / / 0 .

3 , x3 4 ,3

 4 px 3 , x4 q and the relations are the now-well-known:X 4 px 3 , x4 qX 2 3 x3 4 X 3 ¡px 3 , x4 qX 2 4

  pG, JpKqq d 2 pGq n ¡ d 1 pGq ¡ d 2 pGq ¡ d 1 pGq , because we have clearly set that H 0 pG, Ω 2 pF p qq Ĥ0 pG, Ω 2 pF p qq

F d 1 pGq p H 0 pG, Ω ¡2 pF p qq Ĥ0 pG, Ω ¡2 pF p qq F d 2 pGq p

Which concludes the proof.

  / / hompF p , Ω s¡l pF p qq mγ / / hompF p , Ω j¡l pF p qq / / hompF p , Ω ¡l pC γ qq

/ / / / hompF p , Ω s¡1¡l pF p qq / / hompF p , Ω j¡1¡l pF p qq / / . . .

  as stated in lemma 18 the arrow H 2 pG, ω ¡1 pF p qq ÝÑ H 2 pG, ω 2 pF p qq , is zero, hence the long exact sequence in cohomology gives us 0 / / H 1 pG, JpKqq / / H 2 pG, ω ¡1 pF p qq Let α be a π-point and G E k , where k ¥ 2. If ζ Ĥ¡l pE k , F p q with l ¡ 0, then res α pζq is zero.

	/ / 0
	which concludes the proof.
	Now the proof of Theorem 7 is finally complete, in all cases. It is time to address
	the proof of Theorem 8. Let us recall a proposition due to Benson [Ben16, Proposition
	8.12.1]
	Proposition 20. Now, we can prove the promised theorem.

1 pG, ω ¡1 pF p qq ÝÑ H 1 pG, ω 2 pF p qq is an epimorphism according to Tate duality, since we have supposed that κ is not stably zero ([Bro94, §VI.7]). Therefore we may write 0 / / H 1 pG, JpKqq / / H 2 pG, ω ¡1 pF p qq / / H 2 pG, ω 2 pF p qq / / . . . and

  yzq px, zqpx, yq z pxy, zq px, zq y py, zq py n , xq px, yq y n¡1 px, yq y n¡2 . . . px, yq ,

	6 8	px,
	7	

hence py k , xq k¡1 i0 px, yq ¤ y i px, yq ¤ k¡1 i0 y i pmod Φ 2 pGqq . Since in F p rTs the following polynomial identity holds p¡1 i0 T i pT ¡ 1q p¡1 , we get for k p the following formula: py p , xq px, yq ¤ Y p¡1 .

  indeed we have px i , x n qX p¡2Yet Rad pp¡1qn¡1 pF p E n qJ ¦ $ t0u, since for instance px 1 , x n qX p¡2

	n	± j¤n	X p¡1 j	px i , x n qX σpiq X p¡2 σpiq X p¡2 n px i , x σpiq qX p¡2 σpiq ± X p¡1 ± jtn,iu j j$f piq ¡ n 2 °s0 px 2s¡1 , x 2s qX p¡2 σpiq ± X p¡1 X p¡1 j j	pη i ! η σpiq ! η n q p∆q
				s$i	j$σpiq
				0		.
					n X p¡2 2	j1 n¡1 ±	X p¡1 j	is in the
						j$2
	basis previously given.		
	This finishes the proof.		

Another noteworthy statement of this paper which is only proved when p 2, but which could be proved mutatis mutandis, is the following proposition.

Proposition 32 ([AGKM01] 3.10). In the mod p Lyndon-Hochschild-Serre spectral sequence for the group extension

1 / / ΦpG k ppqq / / G k ppq / / E n / / 1 , we have E 1,1

V Soc 2 pJq{ SocpJq.

Now we can state a technical lemma -the reader can skip its proof, for it is a silly and tedious computation. Remark that the vectors in the second sum are all in the basis B, whereas those on the first sum are not. To address this issue, we will use in fact the Jacobi relation (the one denoted η 2k¡1 ! η 2k ! η µpνq ), hence px 2k¡1 , x 2k qX ν px 2k¡1 , x 2k qX µpνq X δ µpνq pνq px 2k¡1 , x µpνq qX 2k ¤ X δ µpνq pνq ¡ px 2s , x µpνq qX 2s¡1 ¤ X δ µpνq pνq .

Lemma 29. For any multi-index

All those vectors -when they are non zero-are in the basis B, and the proof is complete.

Having found a basis for ker π ΦpFnq , we can now find a basis for J ¦ : the following basis remains exactly the same no matter if k does or does not contain ξ p 2 . Proposition 30. Let B the basis obtained for ω 2 pF p qq. A basis B I of J ¦ is given by the image of BzV , where V is the set consisting of the vectors px i , x j qX ν verifying the following conditions:

(1) If i n ¡ 1 there is no condition.

(2) If i $ n ¡ 1, the following conditions have to be verified:

Now, note that κ 2 : Ω ¡1 pF 3 q ÝÑ H2 {Φp H2 q factors through a projective module since its image is a subset of xx 1 y xx 4 y which is a free module. Therefore JpK 2 q Ω 2 pF 3 q Ω ¡2 pF 3 q . According to the previous computation the module JpK 1 q is in fact isomorphic to pF 3 ¢ F 3 q xx 1 y xx 2 y .

The two copies of the trivial modules are generated by x 3 3 and x 3 4 : indeed, in JpK 1 q H 1 {ΦpH 1 q, we have that x 3 3 ¤X 4 0 x 3 3 ¤X 3 , since px 3 , x 4 q 0 thanks to the Demuškin relation. In a similar manner x 3 4 X 4 x 3 4 X 3 0, so that a presentation by generators and relation of JpK 1 q is just:

Thus JpK 1 q is stably isomorphic to F 3 ¢ F 3 which is not stably isomorphic to Ω 2 pF 3 q, hence κ 1 is stably non-zero.

Remark. A very peculiar phenomenon occurs here: since G E 2 , if κ is stably non-zero, then the module JpKq is but F p ¢ F p ! As previously seen, the structure of JpKq is in general far from trivial. The careful reader may have an impression of déjà-vu, indeed this remark has to be linked to the one ending the subsection 2.2.2.