Emilio Porcu 
  
Xavier Emery 
  
Nadia Mery 
  
Criteria and Characterizations for Spatially Isotropic and Temporally Symmetric Matrix-Valued Covariance Functions

Keywords: Completely monotone matrix-valued functions, Multiply monotone matrix-valued functions, Positive semidefinite matrix-valued functions, Multivariate Gneiting covariance

We consider spatial matrix-valued isotropic covariance functions in Euclidean spaces and provide a very short proof of a celebrated characterization result proposed by earlier literature. We then provide a characterization theorem to create a bridge between a class of matrix-valued functions and the class of matrix-valued positive semidefinite functions in finite-dimensional Euclidean spaces. We culminate with criteria of the Pólya type for matrix-valued isotropic covariance functions, and with a generalization of Schlather's class of multivariate spatial covariance functions.

We then challenge the problem of matrix-valued space-time covariance functions, and provide a general class that encompasses all the proposals on the Gneiting nonseparable class provided by earlier literature.

Introduction

There is a huge literature for multivariate isotropic covariance functions in the field of spatial statistics, see [START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF], [START_REF] Genton | Cross-covariance functions for multivariate geostatistics[END_REF] and the references therein for a comprehensive account. Applications cover as varied disciplines as geochemistry, natural resources assessment, geotechnics, geometallurgy, groundwater hydrology, climate, soil and environmental sciences. Multivariate covariance functions are positive semidefinite matrix-valued mappings, with the diagonal elements termed direct or auto-covariances, and the off-diagonal elements termed cross-covariances. The former quantify the spatial correlation structure of each variable under consideration, while the latter quantify the spatial correlation between each pair of variables.

While the statistical aspects regarding multivariate covariance functions have been repeatedly challenged in the past decade (see, for instance, [START_REF] Porcu | Characterization theorems for some classes of covariance functions associated to vector valued random fields[END_REF], Bevilacqua et al., 2015[START_REF] De Iaco | Choosing suitable linear coregionalization models for spatio-temporal data[END_REF], the treatment of several mathematical questions has been elusive so far. The solution of such questions would be, in turn, important to solve other pressing statistical questions. This paper focuses on some of them. Specifically: a. Continuous real-valued isotropic positive semidefinite functions have been characterized by [START_REF] Schoenberg | Metric spaces and completely monotone functions[END_REF]. The generalization to matrix-valued functions is informally suggested in [START_REF] Yaglom | Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results[END_REF] and subsequently formalized in [START_REF] Alonso-Malaver | Multivariate and multiradial Schoenberg measures with their dimension walks[END_REF]. In both works, however, proofs are lengthy and intricate. We provide this result with an elegant short proof.

b. Multiply monotone functions have been introduced by [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF], who proved a necessary and sufficient condition in terms of integral representation. We define matrix-valued multiply monotonicity, and show that the analogue of Williamson's result remains true in the matrix-valued case.

c. [START_REF] Gneiting | Criteria of Pólya type for radial positive definite functions[END_REF] provided criteria of the Pólya type for a real-valued function to be the isotropic part of a radial positive semidefinite function. We generalize those criteria to the matrix-valued case.

d. An elegant construction in [START_REF] Schlather | Some covariance models based on normal scale mixtures[END_REF] provides a class of spatial multivariate covariance functions. Inspired by Aitken's identities [START_REF] Menegatto | Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians[END_REF], and references therein), we provide a generalization of Schlather's class.

e. We finally consider matrix-valued covariance functions defined in Euclidean spaces cross time, where these functions are stationary and isotropic in space, and stationary and symmetric in time. For real-valued functions defined in such product spaces, the Gneiting class [START_REF] Gneiting | Nonseparable, stationary covariance functions for spacetime data[END_REF] has been the cornerstone in space-time modeling, and we refer the reader to [START_REF] Porcu | Nonseparable, space-time covariance functions with dynamical compact supports[END_REF] for a thorough account. There have been several attempts of generalization of this class to the matrix-valued case, such as [START_REF] Bourotte | A flexible class of non-separable cross-covariance functions for multivariate space-time data[END_REF] and very recently [START_REF] Menegatto | Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians[END_REF] and [START_REF] Dörr | Characterization theorems for pseudovariograms[END_REF]. The result proposed in this paper generalizes all the analogues of multivariate Gneiting classes proposed in earlier literature.

Most of our proofs rely on definitions of convexity and monotonicity with respect to matrix inequality, which in turn open for the definition of matrix-valued analogue classes of functions that have been celebrated, in the real-valued case, for over a century by the mathematical community.

The plan of the paper is the following. Section 2 provides the necessary mathematical background. Section 3 is split into two main subsections, where spatial (Section 3.1) and space-time (Section 3.2) problems are challenged. Concluding remarks in Section 4 close the paper.

Background

Throughout, bold letters refer to vectors and matrices, p, q and d denote positive integers, 0 and 1 denote the zero and all-ones matrices of size p × p, ι denotes the imaginary unit, and ⊤ denotes the transposition operator. Also, continuity, differentiability, integrability, composition, exponentiation and pointwise limits involving matrix-valued functions are understood as elementwise.

Monotonicity and convexity of matrix-valued functions

The following definitions are the crux to generalize well-known classes of realvalued functions to the matrix-valued case.

Definition 1. A matrix-valued function φ : [0, +∞) → R p×p is nonnegative with respect to matrix inequality if φ(x) ≥ 0 for any x ∈ [0, +∞), where ≥ refers to the partial ordering relation (Löewner order) between symmetric matrices: for two symmetric matrices A and B of size p × p, A ≥ B if A -B is positive semidefinite.

A necessary and sufficient condition for φ to be nonnegative with respect to matrix inequality is that, for any z ∈ R p , the real-valued function

φ z (x) := z ⊤ φ(x)z, x ≥ 0, (1) 
is nonnegative.

Definition 2. A matrix-valued function φ : [0, +∞) → R p×p is nonincreas- ing with respect to matrix inequality if φ(x) ≥ φ(x ′ ) when 0 ≤ x ≤ x ′ .
A nondecreasing function with respect to matrix inequality is defined analogously.

A necessary and sufficient conditions for φ to be nonincreasing is that, for any z ∈ R p , the real-valued function φ z defined at (1) is nonincreasing (Boyd and Vandenberghe, 2004, Example 3.46).

Definition 3. A matrix-valued function φ : [0, +∞) → R p×p is convex with respect to matrix inequality if ωφ(x) + (1 -ω)φ(x ′ ) ≥ φ (ωt + (1 -ω)t ′ ) for all x, x ′ ∈ [0, +∞) and all ω ∈ [0, 1].
A necessary and sufficient condition for convexity with respect to matrix inequality is that, for any z ∈ R p , the real-valued function φ z defined at (1) is convex (Boyd and Vandenberghe, 2004, Example 3.48).

Definition 4. A matrix-valued function φ : [0, +∞) → R p×p is 1-time monotone with respect to matrix inequality if it is nonnegative and nonincreasing. For µ ∈ N, a µ-times differentiable matrix-valued function φ is (µ + 2)-times monotone with respect to matrix inequality if (-1) k φ (k) is nonnegative, nonincreasing and convex for k = 0, . . . , µ, where φ (k) denotes the k-th derivative of φ.

Using the above definitions, it is seen that a necessary and sufficient for φ to be (µ + 1)-times monotone is that, for any z ∈ R p , the real-valued function φ z defined at (1) is (µ + 1)-times monotone in the sense of [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF].

Definition 5. An infinitely differentiable matrix-valued function φ : [0, +∞) → R p×p is completely monotone with respect to matrix inequality if it is multiply monotone with respect to matrix inequality for any positive integer µ.

We observe that a necessary and sufficient for φ to be completely monotone is that, for any z ∈ R p , the real-valued function φ z defined at (1) is completely monotone, i.e., φ z is infinitely often differentiable on the nonnegative real line and (-1) k φ (k) z is nonnegative on [0, +∞) for any k ∈ N. For a comprehensive account on completely monotone real-valued functions, the reader is referred to [START_REF] Schilling | Bernstein Functions[END_REF] and [START_REF] Porcu | From Schoenberg to Pick-Nevanlinna: Towards a complete picture of the variogram class[END_REF].

Isotropic covariance functions and pseudo-variograms in Euclidean spaces

Consider a second-order p-variate random field Z in R d (i.e., a random field that possesses finite first-and second-order moments) with real-valued components. Without loss of generality, we hereunder assume the first-order moment (expectation) of Z to be the zero vector.

Covariance function

The spatial correlation structure of Z is characterized by its matrix-valued covariance function (a second-order moment), that is

K(s, s ′ ) = E(Z(s) ⊤ Z(s ′ )), s, s ′ ∈ R d ,
with E denoting the expectation.

A necessary and sufficient condition for a function K : R d ×R d → R p×p to be the covariance of a second-order p-variate random field in R d is that K is positive semidefinite, i.e., the matrix of size np×np with generic entry K ij (s k , s ℓ ), where K ij denotes the (i, j)-th entry of K, is symmetric and positive semidefinite for any choice of the positive integer n and of the set of points {s

1 , • • • , s n } in R d . An alternative formulation is n k,ℓ=0 a ⊤ k K(s k , s ℓ )a ℓ ≥ 0, for all s 1 , • • • , s n ∈ R d and a 1 , • • • , a n ∈ R p .
The covariance function K is stationary and isotropic if it can be written as follows:

K(s, s ′ ) = φ(∥s -s ′ ∥), s, s ′ ∈ R d , (2) 
where the matrix-valued function φ

: [0, +∞) → R p×p is called the isotropic part of K, and ∥•∥ is the Euclidean norm, defined through ∥s-s ′ ∥ 2 = ⟨s-s ′ , s-s ′ ⟩, s, s ′ ∈ R d , with ⟨•, •⟩ the usual scalar product of the Cartesian coordinates. We call Φ p d the class of continuous matrix-valued mappings φ : [0, +∞) → R p×p such that (2) is true for a covariance function K defined in R d × R d .

Pseudo-variograms

Another second-order moment describing the spatial correlation structure of the random field Z (provided Z has square-integrable cross-increments) is its matrix-valued pseudo-variogram Γ, with generic entry:

Γ ij (s, s ′ ) = 1 2 E [Z i (s) -Z j (s ′ )] 2 , s, s ′ ∈ R d , i, j = 1, • • • , p,
with Z i standing for the i-th component of Z.

A necessary and sufficient condition for a function Γ : R d × R d → R p×p to be the pseudo-variogram of a second-order p-variate random field in R d is that Γ ii (0) = 0 for any i = 1, • • • , p and that Γ is conditionally negative semidefinite [START_REF] Dörr | Characterization theorems for pseudovariograms[END_REF]

, i.e., Γ ij (s, s ′ ) = Γ ji (s ′ , s), s, s ′ ∈ R d , i, j = 1, • • • , p, and n i,j=0 a ⊤ i Γ(s i , s j )a j ≤ 0,
for any choice of the positive integer n,

s 1 , • • • , s n ∈ R d and a 1 , • • • , a n ∈ R p such that n i=1
p ℓ=1 a iℓ = 0, with a iℓ standing for the ℓ-th component of a i . An alternative characterization [START_REF] Dörr | Characterization theorems for pseudovariograms[END_REF] is that Γ is a pseudovariogram if, and only if, exp(-aΓ) is a matrix-valued correlation function, i.e., a matrix-valued covariance function such that the diagonal entries are equal to 1 when s = s ′ , for any a > 0.

The pseudo-variogram Γ is stationary and isotropic if it can be written as follows:

Γ(s, s ′ ) = γ(∥s -s ′ ∥), s, s ′ ∈ R d , (3) 
where the matrix-valued function γ : [0, +∞) → R p×p is termed the isotropic part of Γ. Hereafter, we call Υ p d the class of continuous matrix-valued mappings

γ : [0, +∞) → R p×p such that (3) is true for a pseudo-variogram Γ defined in R d × R d .

Spatially isotropic and temporally symmetric covariance functions and pseudo-variograms in Euclidean spaces cross time

The isotropy assumption for a random field defined in the product space R d × R is normally weakened by assuming the covariance function to depend on separate metrics in space (R d ) and time (R). Specifically, consider a zero-mean secondorder stationary p-variate random field in R d × R. The random field is said to be spatially isotropic and temporally symmetric if its matrix-valued covariance function is of the form [START_REF] Porcu | Nonseparable, space-time covariance functions with dynamical compact supports[END_REF])

K (s, t), (s ′ , t ′ ) = φ(∥s -s ′ ∥, | t -t ′ |), s, s ′ ∈ R d , t, t ′ ∈ R, (4) 
for some function φ

: [0, +∞) × [0, +∞) → R p×p . We call Φ p d,1 the class of continuous mappings φ : [0, +∞)×[0, +∞) → R p×p such that (4) is true for a covariance function K defined in R d × R × R d × R.
In the same way, spatial isotropy and temporal symmetry can be defined for the pseudo-variogram, when the latter is of the form

Γ (s, t), (s ′ , t ′ ) = γ(∥s -s ′ ∥, | t -t ′ |), s, s ′ ∈ R d , t, t ′ ∈ R, (5) 
for some function γ : [0, +∞) × [0, +∞) → R p×p . Hereinafter, we call Υ p d,1 the class of continuous mappings γ :

[0, +∞) × [0, +∞) → R p×p such that (5) is true for a pseudo-variogram Γ defined in R d × R × R d × R.

Results

Isotropic spatial models and the class Φ p d

The following result is crucial for most of the proofs provided in this section.

Lemma 1. A necessary and sufficient condition for a continuous function φ : [0, +∞) → R p×p to belong to Φ p d is that, for any z ∈ R p , the function φ z defined through (1) belongs to Φ 1 d .

Proof. As the isotropic parts of continuous radial functions in R d , both φ and φ z (for any fixed z) have Fourier representations of the form

φ(x) = R d cos(2πx⟨u, e 1 ⟩)χ(du), x ∈ [0, +∞),
and

φ z (x) = R d cos(2πx⟨u, e 1 ⟩)χ z (du), x ∈ [0, +∞),
where e 1 = (1, 0, . . . , 0) is a unit vector in R d , χ is a bounded matrix-valued measure defined in R d , with each entry being real-valued and χ(-B) = χ(B) for any Borel set of R d , and χ z = z ⊤ χz is a bounded real-valued measure defined in R d . Owing to Cramér's criterion on positive semidefinite radial functions in R d [START_REF] Cramér | On the theory of stationary random processes[END_REF][START_REF] Yaglom | Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results[END_REF], the following assertions are clearly equivalent: (i) φ belongs to Φ p d , (ii) for any Borel set B ⊂ R d , χ(B) is a positive semidefinite matrix, (iii) for any z ∈ R p and any Borel set B ⊂ R d , χ z (B) is nonnegative, and (iv) for any z ∈ R p , φ z belongs to Φ 1 d . To illustrate our subsequent findings, we define the function Ω d : [0, +∞) → R through the identity

Ω d (x) = Γ d 2 2 x d 2 -1 J d 2 -1 (x), x ≥ 0,
where J ν is the Bessel function of the first kind of order ν (Olver et al., 2010, formula 10.2.2). We start with a result for which two lengthy proofs are available in [START_REF] Yaglom | Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results[END_REF] and [START_REF] Alonso-Malaver | Multivariate and multiradial Schoenberg measures with their dimension walks[END_REF]. We provide here a straightforward proof.

Theorem 1 [START_REF] Yaglom | Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results[END_REF].

Let φ : [0, +∞) → R p×p . Then φ belongs to Φ p d if and only if φ(x) = +∞ 0 Ω d (rx)dF (r), x ≥ 0, ( 6 
)
where F is a bounded matrix-valued measure that is nondecreasing with respect to matrix inequality.

Proof. We invoke Lemma 1 to claim that the function φ belongs to Φ p d if and only if φ z , defined at (1), belongs to Φ 1 d for every z ∈ R p . Hence, we invoke Schoenberg's theorem [START_REF] Schoenberg | Metric spaces and completely monotone functions[END_REF] to claim that this is equivalent to the existence of a nondecreasing and bounded measure F z , defined on the nonnegative real line, such that

φ z (x) = +∞ 0 Ω d (rx)dF z (r), x ≥ 0. Since z → φ z = z ⊤ φz is a quadratic form in z, so is z → F z . This implies that F z (•) = z ⊤ F (•)
z for some matrix-valued measure F , which proves (6). To complete the proof, we note that the real-valued measure F z is bounded and nondecreasing for any z ∈ R p if and only if the matrix-valued measure F is bounded and nondecreasing with respect to matrix inequality.

Our next results are the matrix-valued counterpart of what has been provided by [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF] to characterize the class of real-valued multiply monotone functions. In what follows, (•) + denotes the positive part function.

Theorem 2. Let µ be a positive integer and φ : [0, +∞) → R p×p . Then, φ is µ-times monotone with respect to matrix inequality if and only if

φ(x) = +∞ 0 (1 -rx) µ-1 + dF (r), x ≥ 0,
with F is a matrix-valued measure that is nondecreasing with respect to matrix inequality and nonnegative with respect to matrix inequality.

Proof. The proof comes by noting that φ is µ-times monotone with respect to matrix inequality if and only if φ z in ( 1) is µ-times monotone on the nonnegative real line for any z ∈ R p . We invoke [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF] to claim that the latter is equivalent to φ z being identically equal to

φ z (x) = +∞ 0 (1 -rx) µ-1 + dF z (r), x ≥ 0,
where F z is a nondecreasing and nonnegative real-valued measure. Arguments as in the proof of Theorem 1 allow writing F z = z ⊤ F z for some matrix-valued measure F . As F z is nondecreasing and nonnegative for any z ∈ R p , F turns out to be nondecreasing and nonnegative with respect to matrix inequality.

Theorem 2 allows generalizing the definition of multiply monotone matrixvalued functions to fractional orders, as stated next, which appears as a multivariate extension of the definition proposed by [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF] for real-valued functions.

Definition 6. For µ ∈ R, µ ≥ 1, the matrix-valued function φ : [0, +∞) → R p×p is µ-times monotone with respect to matrix inequality if and only if

φ(x) = +∞ 0 (1 -rx) µ-1 + dF (r), x ≥ 0, ( 7 
)
with F is a matrix-valued measure that is nondecreasing with respect to matrix inequality and nonnegative with respect to matrix inequality.

In particular, for 2µ ∈ N, the truncated power function 0 ≤ x → (1 -x) µ+1 + belongs to the class Φ 1 2µ+1 [START_REF] Zastavnyi | On positive definiteness of some functions[END_REF]. Hence, the integral representation in (7) in concert with Lemma 1 and with the fact that Φ 1 2µ+1 is closed under scale mixtures, provides the following direct implication.

Corollary 1. Let φ : [0, +∞) → R p×p be (µ + 2)-times monotone with respect to matrix inequality, with 2µ ∈ N. Then, φ belongs to the class Φ p 2µ+1 .

The convexity of given order derivatives of a real-valued function defined on the nonnegative real line has been used by [START_REF] Gneiting | Criteria of Pólya type for radial positive definite functions[END_REF] to provide criteria for a candidate function to belong to the class Φ 1 d . We now generalize such a criterion to the matrix-valued case.

Theorem 3 (Multivariate Gneiting criterion). Let φ : [0, +∞) → R p×p be continuous, with φ(x) = [φ ij (x)] p i,j=1 such that φ ii (0) = 1, i = 1, . . . , p and lim t→∞ φ(x) = 0. Let k, ℓ be nonnegative integers, with at least one of them being strictly positive. Let

η 1 (x) = - d du k φ √ u u=x 2 .
If there exists α ≥ 1 2 such that

η 2 (x) = - d dx k+ℓ-1 - d dx η 1 (x α )
is convex with respect to matrix inequality on [0, +∞), then φ ∈ Φ p d , for d = 1, . . . , 2ℓ + 1.

Proof. If φ satisfies the conditions of Theorem 3 for α > 1 2 , then so it does for α = 1 2 as well [START_REF] Gneiting | Criteria of Pólya type for radial positive definite functions[END_REF]. Hence, it suffices to prove the result for α = 1 2 . By assumption, η 2 is convex with respect to matrix inequality. Therefore, the real-valued function η [START_REF] Gneiting | Criteria of Pólya type for radial positive definite functions[END_REF] shows that

2,z (•) := z ⊤ η 2 (•)z is convex for every z ∈ R p . Proposition 2.1 in
η 2,z (x) = +∞ 0 ψ k+ℓ (rx) dF z (r), x ≥ 0,
where F z is a probability measure depending on z ∈ R p , and ψ k+ℓ is the k-fold application of the montée operator (Matheron, 1965, formula I.4.18) applied to the Euclid's hat [START_REF] Schaback | Creating surfaces from scattered data using radial basis functions[END_REF], which belongs to the class Φ 1 2ℓ+1 . Since this class is closed under scale mixtures, this ensures that η 2,z ∈ Φ 1 2ℓ+1 for any z ∈ R p , and that η 2 belongs to Φ p 2ℓ+1 , based on Lemma 1 and on the identity [START_REF] Alonso-Malaver | Multivariate and multiradial Schoenberg measures with their dimension walks[END_REF] completes the proof.

F z = z ⊤ F z as established in the proof of Theorem 1. The fact that Φ p 2ℓ+1 is contained in Φ p d for any d = 1, • • • , 2ℓ (Alonso
The Schlather class [START_REF] Schlather | Some covariance models based on normal scale mixtures[END_REF] of multivariate covariance functions has been recently generalized by [START_REF] Menegatto | Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians[END_REF]. We provide here a generalization of both contributions through matrix-valued mappings that are completely monotone with respect to matrix inequality.

Theorem 4. Let f : [0, +∞) → R p×p be bounded and completely monotone with respect to matrix inequality. For i, j = 1, . . . , p, let

G ij : [0, +∞) → R q×q and H ij : [0, +∞) → R q be such that (1) G ij ∈ Φ q d ; (2) v ⊤ G ij (•)v p i,j=1 ∈ Υ p d for any v ∈ R q ; (3) e ιHij (∥•∥) ⊤ v p i,j=1 is positive semidefinite in R d , for any v ∈ R q .
Then, the mapping K : [0, +∞) → R p×p defined through

K(x) := f • H ij (x) ⊤ G -1 ij (x)H ij (x) det G ij (x) p i,j=1 , x ≥ 0, (8) 
with • denoting the elementwise composition, belongs to Φ p d . Proof. A constructive proof is provided. We note that f is completely monotone with respect to matrix inequality if and only if the mapping f z = z ⊤ f z is completely monotone for any z ∈ R p , which is equivalent to [START_REF] Schilling | Bernstein Functions[END_REF] 

f z (u) = +∞ 0 e -ru dF z (r), u ≥ 0,
for a bounded, nonnegative and nondecreasing measure F z . This in turn proves that

f (u) = +∞ 0 e -ru dF (r), u ≥ 0, (9) 
where the matrix-valued measure F , defined such that F z = z ⊤ F z, is bounded, nonnegative with respect to matrix inequality and nondecreasing with respect to matrix inequality. We now invoke the generalized Aitken's formula [START_REF] Menegatto | Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians[END_REF] in concert with Fubini's theorem to rewrite (8) as

K(x) = 1 π q/2 +∞ 0 R q e -v ⊤ Gij (x)v e 2ι √ rHij (x) ⊤ v dv p i,j=1
dF (r), x ≥ 0.

Both mappings x → e -v ⊤ Gij (x)v p i,j=1 and x → e 2ι √ rHij (x) ⊤ v p i,j=1 belong to Φ p d for any v ∈ R q and r ≥ 0, owing to a characterization of pseudo-variograms (see Section 2.2.2) and to the second and third theorem's assumptions. The proof is completed, insofar as the function K appears as the scale mixture, with respect to the matrix F , of an inner integral that belongs to the class Φ p d for any nonnegative r. Some comments are in order. The formulations proposed by [START_REF] Schlather | Some covariance models based on normal scale mixtures[END_REF] and [START_REF] Menegatto | Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians[END_REF] escape from the isotropy assumption. Our proof can easily be extended to cover the anisotropic case, but this case is out of the scope of the paper. A second relevant comment is that [START_REF] Schlather | Some covariance models based on normal scale mixtures[END_REF] and [START_REF] Menegatto | Matrix valued positive definite kernels related to the generalized Aitken's integral for Gaussians[END_REF] adopt the choice φ = 1φ, for φ a completely monotone. The latter authors also consider the mapping v ⊤ G ij (•)v p i,j=1 to belong to a broader class than Υ p d , based on a less restrictive definition of conditional negative semidefiniteness, which is seemingly incorrect in view of Theorem 3.2 of [START_REF] Dörr | Characterization theorems for pseudovariograms[END_REF].

Spatially isotropic and temporally symmetric models

and the class Φ p d,1

We start with a straightforward extension of Lemma 1, the proof of which is omitted.

Lemma 2. A necessary and sufficient condition for a continuous function φ : [0, +∞)×[0, +∞) → R p×p to belong to Φ p d,1 is that, for any z ∈ R p , the function φ z defined through

φ z (x, t) := z ⊤ φ(x, t)z, x, t ≥ 0, ( 10 
) belongs to Φ 1 d,1 .
Proposition 1. Let φ : [0, +∞)×[0, +∞) → R p×p be continuous and absolutely integrable. Then, φ ∈ Φ p d,1 if and only if the mapping ϕ ξ : [0, +∞) → R p×p defined through

ϕ ξ (t) = 2πt 1-d 2 +∞ 0 x d 2 J d 2 -1 (2πξx) φ(x, t)dx, t ≥ 0,
belongs to the class Φ p 1 for almost all ξ ≥ 0.

Proof. We provide a constructive proof. In view of Lemma 2, φ belongs to the class Φ p d,1 if and only if the mapping φ z defined through (10) belongs to the class Φ 1 d,1 for any z ∈ R p . We invoke Theorem 1 in [START_REF] Gneiting | Nonseparable, stationary covariance functions for spacetime data[END_REF] to claim that this is equivalent to the mapping

ϕ z,ξ (t) = 2πt 1-d 2 +∞ 0 x d 2 J d 2 -1 (2πξx) φ z (x, t)dx = z ⊤ ϕ ξ (t)z, t ≥ 0,
to belong to Φ 1 1 for all z ∈ R p and almost all ξ ∈ [0, +∞). In turn, this is true if and only if ϕ ξ belongs to Φ p 1 for almost all ξ ∈ [0, +∞) (Lemma 1). The proof is completed. [START_REF] Gneiting | Nonseparable, stationary covariance functions for spacetime data[END_REF] proved that the mapping φ(x, t) = 1

ψ(t 2 ) d 2 f x 2 ψ(t 2 ) , x, t ≥ 0, (11) 
belongs to the class Φ 1 d,1 provided f is completely monotone and bounded on the nonnegative real line, and ψ is a strictly positive Bernstein function (a primitive of a completely monotone function). The converse of this assertion, for f being completely monotone, was provided by [START_REF] Zastavnyi | Characterization theorems for the Gneiting class of space-time covariances[END_REF], who showed that the following more general form belongs to Φ 1 d,1 :

φ(x, t) = 1 (1 + γ(t)) d 2 f x 2 1 + γ(t) , x, t ≥ 0,
where f is completely monotone and bounded on the nonnegative real line, and γ is a continuous variogram, i.e., a conditionally negative semidefinite realvalued function; the assumption of continuity of γ was subsequently lifted by [START_REF] Allard | Simulating space-time random fields with nonseparable Gneiting-type covariance functions[END_REF]. The constant 1 added to this variogram is needed to avoid a division by zero when t = 0.

Theorem 5. Let f : [0, +∞) → R p×p be bounded and completely monotone with respect to matrix inequality. Let γ : [0, +∞) × [0, +∞) → R p×p belong to Υ p d,1 . Then, the mapping φ : [0, +∞) × [0, +∞) → R p×p determined through φ(x, t) = 1

(1 + γ(x, t))

d 2 f x 2 1 + γ(x, t) , x, t ≥ 0,
where all operations are taken elementwise, belongs to the class Φ p d,1 . Proof. A constructive proof is provided. We invoke representation (9) to write φ as φ(x, t) = 1

(1 + γ(x, t))

d 2
+∞ 0 e -r x 2 1+γ(x,t) dF (r), x, t ≥ 0.

Using the fact that a Gaussian (squared exponential) function is the d-dimensional Fourier transform of another Gaussian function [START_REF] Lantuéjoul | Geostatistical Simulation: Models and Algorithms[END_REF], one obtains the equivalent expression:

φ(x, t) = 1 (2π) d 2 +∞ 0 R d cos( √ 2rx⟨u, e 1 ⟩) e -∥u∥ 2 (1+γ(x,t)) 2
du dF (r), x, t ≥ 0.

(12) As the matrix-valued measure F is nondecreasing with respect to matrix inequality, dF (r) = F (r + dr) -F (r) is positive semidefinite for any r ≥ 0. This implies that the mapping (x, t) → dF (r) cos( √ 2rx⟨u, e 1 ⟩) belongs to Φ p d,1 for any r ≥ 0 and u ∈ R d . So does the mapping (x, t) → exp(-∥u∥ 2 (1+γ(x,t))
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) (Dörr and Schlather, 2021, corollary 3.4). Accordingly, the integrand in (12) belongs to Φ p d,1 , and so does φ because Φ p d,1 is closed under scale mixtures. The proof is completed. Some comments are in order. Theorem 5 generalizes Theorem 1 in [START_REF] Bourotte | A flexible class of non-separable cross-covariance functions for multivariate space-time data[END_REF], where the authors use a specific choice of the function γ and take f = 1f , with f a completely monotone function. Theorem 5 also generalizes Theorem 4.3 in [START_REF] Dörr | Characterization theorems for pseudovariograms[END_REF], where it is assumed that the entries f ij of f are Stieltjes functions. The generalization is threefold: first, Stieltjies functions are a subset of completely monotone functions. Second, assuming f ij to be a Stieltjes function implies the corresponding measure in its integral representation (9) to be nonnegative on [0, +∞), which is not required by our definition of multivariate complete monotonicity, where the off-diagonal elements of F might be negative-valued. Third, the matrix-valued function γ controlling the temporal structure depends on both the spatial and temporal lags, which provides a highly-versatile and nonseparable covariance model allowing complex interactions between space and time.

Let us mention a few examples of parametric forms for γ:

• γ(x, t) = γ(t), with γ ∈ Υ p 1 ; • γ(x, t) = α 1 γ 1 (x) + α 2 γ 2 (t), with α 1 > 0, α 2 > 0, γ 1 ∈ Υ p d and γ 2 ∈ Υ p 1 ; • γ(x, t) = γ( √ αx 2 + t 2
), with α > 0 and γ ∈ Υ p d+1 . As for f , versatile examples can be constructed based on the Matérn function defined through

M(u; α, ν) = 2 1-ν Γ(ν) (αu) ν/2 K ν ( √ αu), u ≥ 0, α > 0, ν > 0, (13) 
where K ν is the modified Bessel function of the second kind of order ν (Olver et al., 2010, formula 10.27.4). We note that M(•; α, ν) is completely monotone for all α > 0 and ν > 0. Yet, it is not a Stieltjes function. Hence, the Matérn function cannot be used for the purpose of Theorem 4.3 in [START_REF] Dörr | Characterization theorems for pseudovariograms[END_REF], but can be used for the purpose of Theorem 5. Indeed, the function f : [0, +∞) → R p×p having elements

f ij (u) = ρ ij M(u; α ij , ν ij ), u ≥ 0,
is bounded and completely monotone with respect to matrix inequality if the matrix-valued parameters α = [α ij ] p i,j=1 , ν = [ν ij ] p i,j=1 and ρ = [ρ ij ] p i,j=1 fulfill any of the sufficient validity conditions established by [START_REF] Gneiting | Matérn cross-covariance functions for multivariate random fields[END_REF], [START_REF] Apanasovich | A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components[END_REF] or [START_REF] Emery | Flexible validity conditions for the multivariate Matérn covariance in any spatial dimension and for any number of components[END_REF], insofar as, under such conditions, f can be written as a mixture of completely monotone real-valued functions of the form (13) weighted by positive semidefinite matrices.

Concluding remarks

We provided a collection of mathematical results that were currently lacking in the literature. Let us elaborate more on the impact of these results.

Theorems 2 and 3 allow building members of the class Φ p d for a given positive integer d. This is relevant, for instance, to the construction of multivariate covariance functions that are compactly supported over balls with given radii embedded in R d . The literature on this subject is scarce, with [START_REF] Daley | Classes of compactly supported covariance functions for multivariate random fields[END_REF] being a notable exception. On another note, the mathematical techniques proposed in this paper would allow generalizing other minor criteria for positive semidefiniteness, such as the one proposed in [START_REF] Gneiting | Kuttner's problem and a Pólya type criterion for characteristic functions[END_REF].

Theorem 4 provides a flexible formulation for members of the class Φ p d that does not allow for compact supports. Such a construction, though, allows for straightforward reparameterizations of the mappings G ij and H ij to achieve anisotropies and nonstationarities in space.

Our multivariate analogue of the Gneiting class as provided in Theorem 5 allows for a substantial improvement of previous proposals, with special emphasis on the improvement of the formulation proposed by [START_REF] Dörr | Characterization theorems for pseudovariograms[END_REF].

An open problem that would be certainly relevant is to replace the function f in Theorem 5 with a member of Φ p d , for a given d, so as to achieve multivariate covariance functions of the Gneiting type that are compactly supported in space. In the real-valued case, the recent contribution by [START_REF] Porcu | Nonseparable, space-time covariance functions with dynamical compact supports[END_REF] might be a good starting point.
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