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. Introduction 

More than 15 years ago, in 2004, leading researchers in the field 

f computer aided surgery (CAS) organized the workshop “OR2020: 

perating Room of the Future”. Around 100 invited experts includ- 

ng physicians, engineers, and operating room (OR) personnel at- 

ended the workshop ( Cleary et al., 2004 ) to define the OR of the

uture, with 2020 serving as target time frame. Interestingly, many 

f the problems and challenges identified back in 2004 do not dif- 

er substantially from those we are facing today. Already then, re- 

earchers articulated the need for “integration of technologies and 

 common set of standards”, “improvements in electronic medical 

ecords and access to information in the operating room”, as well 

s “interoperability of equipment”. In the context of data-driven 

pproaches, they criticized the lack of an “ontology or standard”

or “high-quality surgical informatics systems” and underlined the 

eed for “clear understanding of surgical workflow and modeling 

ools”. Broadly speaking, the field has not made progress as quickly 

s researchers had hoped for at the time. 

More recently, the renaissance of data science techniques in 

eneral and deep learning (DL) in particular has given new mo- 

entum to the field of CAS. In response to the general artificial 

ntelligence (AI) hype, a consortium of international experts joined 

orces to discuss the role of data-driven methods for the OR of 

he future. Based on a workshop held in 2016 in Heidelberg, Ger- 

any, the consortium defined Surgical Data Science (SDS) as a sci- 

ntific discipline with the objective of improving “the quality of 

nterventional healthcare and its value through capture, organiza- 

ion, analysis, and modelling of data” ( Maier-Hein et al., 2017 ). In 

his context, “data may pertain to any part of the patient care pro- 

ess (from initial presentation to long-term outcomes), may con- 
2 
ol, Boston, Massachusetts, USA 

ciences, KU Leuven, Leuven, Belgium 
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Kingdom 
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cience in general and machine learning in particular have transformed

uture of surgery. Surgical Data Science (SDS) is a new research field that

interventional healthcare through the capture, organization, analysis and

reasing number of data-driven approaches and clinical applications have

diological and clinical data science, translational success stories are still

ication, we shed light on the underlying reasons and provide a roadmap

. Based on an international workshop involving leading researchers in the

 practice, key achievements and initiatives as well as available standards

ics relevant to the field, namely (1) infrastructure for data acquisition,

ce of regulatory constraints, (2) data annotation and sharing and (3) data

nt this technical perspective with (4) a review of currently available SDS

progress from academia and (5) a roadmap for faster clinical translation

ntial of SDS, based on an international multi-round Delphi process. 

© 2022 The Authors. Published by Elsevier B.V. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

ern the patient, caregivers, and/or technology used to deliver care, 

nd are analyzed in the context of generic domain-specific knowl- 

dge derived from existing evidence, clinical guidelines, current 

ractice patterns, caregiver experience, and patient preferences”. 

mportantly, SDS involves the physical “manipulation of a target 

natomical structure to achieve a specified clinical objective dur- 

ng patient care” ( Maier-Hein et al., 2018a ). In contrast to general 

iomedical data science, it also includes procedural data as de- 

icted in Fig. 1 . 

Three years later, in 2019, an international poll revealed that 

o commonly recognized surgical data science success stories exist 

o date, while success stories in other fields have been dominat- 

ng media reports for years, as detailed in Section 2 . The purpose 

f this paper was therefore to go beyond the broad discussion of 

he potential of SDS by providing an extensive review of the field 

nd identifying concrete measures to pave the way for clinical suc- 

ess stories. The paper is based on an international workshop that 

ook place in June 2019 in Rennes, France, and structured accord- 

ng to core topics discussed at the workshop. In Section 2 , we will

eview the questionnaire that served as the basis for the work- 

hop as well as an international 4-round Delphi process ( Hsu and 

andford, 2007 ) we conducted with 50 clinical and technical stake- 

olders from 51 institutions to present concrete goals for the fu- 

ure. In the ensuing sections, we will present the current practice, 

ey initiatives and achievements, standards, platforms and tools as 

ell as current challenges and next steps for the main building 

locks of SDS, namely technical infrastructure for data acquisition, 

torage and access ( Section 3 ), methods for data annotation and 

haring ( Section 4 ) as well as data analytics ( Section 5 ). A section

bout achievements, pitfalls and current challenges related to clin- 

cal translation of SDS ( Section 6 ) and a discussion of our find-

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Building blocks of a surgical data science (SDS) system. Perception : Relevant data is perceived by the system ( Section 3 ). In this context, effectors include humans 

and/or devices that manipulate the patient including surgeons, operating room (OR) team, anesthesia team, nurses and robots. Sensors are devices for perceiving patient- 

and procedure-related data such as images, vital signals and motion data from effectors. Data about the patient includes preoperative images and laboratory data, for 

example. Domain knowledge serves as the basis for data interpretation ( Section 4 ). It comprises factual knowledge , such as previous findings from studies, clinical guidelines 

or hospital-specific standards related to the clinical workflow as well as practical knowledge from previous procedures. Interpretation : The perceived data is interpreted in a 

context-aware manner ( Section 5 ) to provide real-time assistance ( Section 6 ). Applications of SDS are manifold, ranging from surgical education to various clinical tasks, such 

as early detection, diagnosis, and therapy assistance. 
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ngs ( Section 7 ) will close the manuscript. While, by definition, 

DS encompasses multiple interventional disciplines, such as inter- 

entional radiology and gastroenterology, the present paper puts a 

trong focus on surgery. 

. Lack of success stories in surgical data science 

Machine learning (ML) has begun to revolutionize almost all 

reas of healthcare. Success stories cover a wide variety of ap- 

lication fields ranging from radiology and dermatology to gas- 

roenterology and mental health applications ( Miotto et al., 2018; 

opol, 2019 ). Strikingly, such success stories appear to be lacking 

n surgery. 

The international Surgical Data Science Initiative ( Maier- 

ein et al., 2017 ) was founded in 2015 with the mission to pave

he way for AI success stories in surgery. Key result of the first 

orkshop, which was inspired by current open space and think 

ank formats, was a common definition of SDS ( Maier-Hein et al., 

017 ) and a thorough description of the challenges in applying 

I in interventional healthcare. The second edition of the work- 

hop in 2019 focused on a comprehensive overview of the field 

ncluding key research initiatives, industrial perspectives and first 

uccess stories. Prior to the workshop, the registered participants 

ere asked to fill out a questionnaire, covering various aspects re- 

ated to SDS. 43% of the 77 participants were professors/academic 

roup leaders (clinical or engineering), while the remaining were 

ostly either from industry (14%) or PhD students / Postdocs 

36%). The majority of participants (61%) agreed that the most im- 

ortant developments since the last workshop in 2016 were related 

o advances in AI. Notably, however, when participants were asked 

bout the most impressive SDS paper, only a single paper ( Maier- 

ein et al., 2017 ) (the position paper from the first workshop) was 

entioned more than twice (primarily by non-co-authors). The 

ajority of participants agreed that the lack of representative an- 
3 
otated data is the main obstacle in the field and the main rea- 

on for the failure of previous SDS projects. Also, when referring 

o their personal experience, 33% associated the main reason of 

ailure of an SDS project with lack of data, followed by underesti- 

ation of the problem complexity (29%). EndoVis (28%), Cholec80 

 Twinanda et al., 2017 ) (21%) and JIGSAWS ( Gao et al., 2014 ) (17%)

ere mentioned as the most useful publicly available data sets but 

he small size/limited representativeness of the data set was iden- 

ified as a core issue (45%). 

Based on the replies to the questionnaire and the subsequent 

orkshop discussions, we identified four areas that are essential 

or moving the field forward: (1) Technical infrastructure for data 

cquisition, storage and access, (2) data annotation and sharing, (3) 

ata analytics, and (4) aspects related to clinical translation. These 

re reflected in the four main sections of this paper. We then con- 

ucted a Delphi process involving a consortium of 50 medical and 

echnical experts from 51 institutions (see list of co-authors) to for- 

ulate a mission statement along with a set of goals that are nec- 

ssary to accomplish the respective mission (see Table 2 , 3 , 4 

nd 7 ) for each of the four areas. More specifically, the coordi- 

ating team of the Delphi process (eight members from five insti- 

utions; non-voting) put forth an initial mission statement and an 

nitial set of goals for each of the four missions based on the work- 

hop discussions. In a 4-round Delphi process, the remaining con- 

ortium members then iteratively refined the phrasing of the mis- 

ions statements and goals and added further proposals for goals. 

his process yielded a set of 6–9 goals per mission that received 

upport by at least two thirds of the voting members. Finally, the 

onsortium collaboratively compiled a list of relevant stakeholders 

 Table 1 ) and then rated their importance for the four missions 

 Appendix F ). To avoid redundancy, the consortium further agreed 

n the following: 

Context statement: Unless otherwise specified, in all of the follow- 

ng text, a) surgical data science (SDS) represents the general context 
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Table 1 

List of relevant SDS stakeholders. Table 2 

Mission statement corresponding to technical infrastructure ( Sec. 3 ) along with cor- 

responding goals. The distribution of priorities (from left to right: not a priority, 

low priority, medium priority, high priority, essential priority) as rated by the par- 

ticipants of the Delphi process is depicted for each goal. 

4 
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Table 3 

Mission statement corresponding to data annotation and sharing ( Sec. 4 ) along with 

corresponding goals. The distribution of priorities (from left to right: not a priority, 

low priority, medium priority, high priority, essential priority) as rated by the par- 

ticipants of the Delphi process is depicted for each goal. 

o

t

c

d

w

d

I  

u

Table 4 

Mission statement corresponding to data analytics ( Sec. 5 ) along with correspond- 

ing goals. The distribution of priorities (from left to right: not a priority, low prior- 

ity, medium priority, high priority, essential priority) as rated by the participants of 

the Delphi process is depicted for each goal. 

t

c

a

t

i

s

3

a

m

f the suggested phrases and b) “data” may pertain to any part of 

he patient care process (from initial presentation to long-term out- 

omes), may concern the patient, caregivers and/or technology used to 

eliver care and must be acquired, stored, and shared in accordance 

ith both local and international regulatory constraints. In general, c) 

ata handling should comply with the FAIR ( F indability, A ccessibility, 

 nteroperability, and R euse) principles ( Wilkinson et al., 2016 ) and d)

ser-friendliness should be a guiding principle in all processes related 
5 
o data handling. Finally, e) the term SDS stakeholders refers to clini- 

al, research, industrial, regulatory, public and private stakeholders. 

Based on the international questionnaire, the on-site workshop 

nd the subsequent Delphi process, the following sections present 

he perspective of the members of the international data science 

nitiative on the identified key aspects for generating SDS success 

tories. 

. Technical infrastructure for data acquisition, storage and 

ccess 

To date, the application of data science in interventional 

edicine (e.g. surgery, interventional radiology, endoscopy, radia- 
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ion therapy) has found comparatively limited attention in the lit- 

rature. This can partly be attributed to the fact that only a frac- 

ion of patient-related data and information is being digitized and 

tored in a structured manner ( Hager et al., 2020 ) and that do-

ng so is often an infeasible challenge in modern ORs. This section 

ocuses on current hurdles in creating an environment that can 

ecord and structure highly heterogeneous surgical data for long- 

erm usage. 

.1. Current practice 

Different types of data pose different types of challenges: 

Not all data can currently be acquired: The OR is a highly dy- 

amic environment where a team of health workers with varying 

pecializations (e.g. surgeons, anesthesia team) continuously makes 

ecisions based on device data, observation of the patient, and the 

utcome of previous actions. However, a lot of information that 

he healthcare workers perceive by interacting with the patient 

nd each other is currently not at all acquired although it crucially 

ffects decision making. This information relates to different hu- 

an senses including vision, touch (e.g. palpation and tactile feed- 

ack from tissue) and hearing (e.g. acoustic signals resulting from 

nstrument-tissue interaction ( Ostler et al., 2020 ), communication 

n the OR). First initiatives have begun addressing these issues (see 

ection 3.2 ) but the infrastructure is not yet widely available. 

Not all data that can be acquired is recorded and perma- 

ently stored: Surgical data in minimally invasive surgery (MIS) 

outinely involves live image data of high resolution and frame 

ate. Modern stereoscopic endoscopes create two Full High Defi- 

ition (HD) video streams at 60 Hz. If this data is to be stored

ncompressed, it can quickly exceed 50 GB per video, with much 

arger file sizes possible depending on the situation and additional 

ensory input, and even larger again considering 4K resolutions. 

ealthcare information technology (HIT) is currently not designed 

o prospectively record and store such large data files. 

Not all acquired data is digitized and stored in a structured 

anner: A large proportion of documentation in the hospital is 

till unstructured. Reports, doctors’ letters, transcripts from ex- 

minations, treatment strategy plans and many more need to be 

ocumented in their original form for legal reasons ( Kilian et al., 

015 ). When creating such documents, it is not uncommon to 

se printouts or Portable Document Format (PDF) documents that 

hen form the basis of discussions between healthcare personnel 

r with patients. Resulting decisions are subsequently entered into 

he most relevant information systems as scans, unstructured, or 

emi-structured documents. As a result, all processes are docu- 

ented in a manner satisfactory for legal aspects, but largely in- 

ccessible to computation. This is especially true for information 

elated to the surgical procedure, where the decision process lead- 

ng up to the final operation strategy may not be stored at all (in

imple cases) or only in the form of handwritten plans (in com- 

lex cases). Additionally, the exact parameters recorded for a spe- 

ific intervention may differ between hospitals, leading to missing 

alues if such data sets are merged. A host of information is poten- 

ially available from the actual surgery, including the exact steps 

aken, instruments used, information exchanged between person- 

el, haptic feedback, distractions, adaptations of the strategy plan, 

tc., many of which are not documented at all in OR reports, or 

ocumented incompletely. Evidence of this are e.g. similarly sized 

eports of the same procedures while the corresponding surg- 

ries have radically different lengths. Additionally, problems dur- 

ng surgery may systematically be underreported ( Hamilton et al., 

018 ). 

Not all data that is stored can be exchanged between sys- 

ems: Perioperative data is distributed over varying information 

ystems. For example, Picture Archiving and Communication Sys- 
6 
ems (PACS) contain image data and videos, Radiology Information 

ystems (RIS) contain reports, findings and radiotherapy plans, and 

aboratory Information Systems (LIS) contain laboratory data. In- 

ormation systems that focus on a single aspect, e.g. laboratory 

ata, can implement efficient storage, manipulation and retrieval 

ethods specific to the given data types. At the same time, user in- 

eraction can be kept as simple as possible, with a large degree of 

orkflow optimization for relevant personnel interfacing with the 

nformation systems. Linking data from several systems effectively 

omplicates these models. The more data types are incorporated in 

 model, the more special cases need to be considered, making the 

odel less accessible and harder to query. However, a strict se- 

antic annotation is a prerequisite for guaranteeing retrievability 

nd interoperability ( Lehne et al., 2019 ). As a result, data exchange 

etween information systems is rare. A positive example has been 

et in radiology, where the Digital Imaging and Communications in 

edicine (DICOM) standard has enabled the structured exchange 

f imaging data. OR data recording systems have also started to 

ffer connection to other hospital infrastructure systems like elec- 

ronic medical records (EMR), e.g. NUCLeUS TM (Sony Corporation, 

okyo, Japan). At present, however, this connectivity is typically not 

tilized widely or effectively. Also, stored OR data is generally not 

abeled and hence has limited utilization for SDS projects without 

ignificant efforts to restructure it. 

Regulatory constraints make data acquisition, storage and 

ccess challenging: SDS data collection, management and use 

ust comply with standards in security and fidelity which typ- 

cally vary depending on the data type and level of patient- 

pecific information. Data governance in healthcare and specifi- 

ally in surgery is still challenging and less mature compared to 

ther domains ( Tse et al., 2018 ). In the European Union (EU), the 

eneral Data Protection Regulation (GDPR) covers issues pertaining 

o personal data both within the EU and its entry to or exit out 

f the EU since 2018 ( European Parliament and Council of Euro- 

ean Union, 2016 ). Similarly, in the United States of America (USA) 

he healthcare-specific Health Insurance Portability and Accountabil- 

ty Act of 1996 (HIPAA) protects the confidentiality and integrity of 

atient data. In the United Kingdom (UK), the Data Protection Act 

2018) was put in place for the National Health Service (NHS). In 

ther countries, equivalents for data protection exist and are re- 

ated to the legal frameworks of the respective healthcare system. 

From an ethico-legal perspective, it is worth noting that compa- 

ies commonly obtain surgical data either through contracts with 

ndividual consulting surgeons, licensing agreements with hospitals 

r in exchange for discounted pricing of their products. This cur- 

ent practice raises important issues regarding power imbalances 

nd the democratization of data access ( August et al., 2021 ). 

.2. Key initiatives and achievements 

This section presents prominent SDS initiatives with a specific 

ocus on data acquisition, access and exchange. 

Data acquisition: Several industrial and academic initiatives 

ave been proposed to overcome the bottleneck of prospective sur- 

ical data acquisition. 

The DataLogger (KARL STORZ SE & Co. KG, Tuttlingen, Germany) 

s a technical platform for synchronously capturing endoscopic 

ideo and device data from surgical devices, such as the endo- 

copic camera, light source, and insufflator ( Wagner et al., 2017 ). 

he DataLogger has served as a basis for the development of a 

mart Data Platform as part of the InnOPlan project ( Roedder et al., 

016 ) and has been continuously expanded to support an in- 

reasing number of medical devices and clinical information sys- 

ems. It has also been used to collect data for Endoscopic Vision 

hallenges (e.g. EndoVis-Workflow; EndoVis-Workflow and Skill; 

ndoVis-ROBUST-MIS ). 
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The OR Black Box® ( Goldenberg et al., 2017 ) is a platform that 

llows healthcare professionals to identify, understand, and miti- 

ate risks that impact patient safety. It combines input from video 

ameras, microphones, and other sensors with human and auto- 

ated processing to produce insights that lead to improved effi- 

iency and reduced adverse events. The OR Black Box has been in 

peration in Canada since 2014, in Europe since 2017 and in the 

SA since 2019. An early analysis of the OR Black Box use in la- 

aroscopic procedures of over 100 patients has demonstrated that 

rrors and distractions as annotated by experts viewing the proce- 

ures took place in every case, and often went unnoticed or were 

t least not recalled by the surgeon at the time ( Jung et al., 2020 ). 

In Strasbourg, France, the Nouvel Hôpital Civil (NHC), the Insti- 

ut de Recherche contre les Cancers de l’Appareil Digéstif (IRCAD) 

nd the Institut hospitalo-universitaire (IHU) record surgery videos 

or education purposes and research. These are curated and used 

ainly for IRCAD’s WebSurg ( Mutter et al., 2011 ), a free online ref-

rence for video-based surgery training with over 370,0 0 0 mem- 

ers. 

The Surgical Metrics Project began in October 2019 at the An- 

ual Clinical Congress meeting of the American College of Sur- 

eons (ACS). Over 200 board certified surgeons were equipped 

ith wearable technology while they performed a simulated open 

owel repair on porcine intestines. Multi-modal data, including 

lectroencephalography (EEG), audio and video data were ac- 

uired to quantify efficient and successful operative approaches 

 Pugh et al., 2020 ). 

The CDEGenerator is an online platform that addresses the need 

o create and share definitions of joint Core Data Elements (CDE) 

 Varghese et al., 2018 ). These definitions combine a list of recorded 

arameters together with an exact semantic description. By agree- 

ng on a common CDE, two hospitals can guarantee that the col- 

ected data is compatible to the degree of the described acquisition 

rocesses. 

Data access and exchange: In the perioperative environment, 

he nonprofit organization Integrating the Healthcare Enterprise 

IHE, Oak Brook, Illinois, USA) has been a driving force in form- 

ng a set of standards that facilitate data exchange ( Grimes, 2005 ). 

t identifies clinical use cases, their requirements and relevant 

tandards, and publishes guidelines (called “profiles”) on how 

o fulfill such use cases. IHE does not publish standards by it- 

elf, but rather identifies sets of standards (e.g. DICOM for im- 

ge exchange and Logical Observation Identifiers Names and Codes 

LOINC) ( Forrey et al., 1996 ) for nomenclature) that are best suited 

o solve specific aspects of healthcare interoperability. Addition- 

lly, IHE regularly hosts “Connectathons”, where vendors present 

ervices with IHE profile implementations and test their systems 

gainst those of other vendors, verifying correct data exchange. 

Inside the OR, effort s f or transmitting and centralizing data 

ave been explored for some time, particularly with integrated OR 

olutions provided by endoscopic device manufacturers and med- 

cal technology providers (KARL STORZ: OR1 TM ; Olympus Medi- 

al Systems (Tokyo, Japan): ENDOALPHA; Stryker (Michigan, USA): 

Suite; Getinge AB (Getinge, Sweden): Tegris®; Richard Wolf GmbH 

Knittlingen, Germany): core nova; STERIS plc (Derby, UK): Har- 

ony iQ®; Brainlab AG (Munich, Germany): Digital O.R.; caresyn- 

ax GmbH (Berlin, Germany): PRIME365; Medtronic plc (Dublin, 

reland): Touch Surgery TM Enterprise; Sony: NUCLeUS TM ; Gen- 

ral Electric Company (Boston, USA): Edison 

TM ; EIZO Corporation 

Hakusan, Japan): CuratOR®). The wide availability of such systems 

hould be an enabling technology for SDS efforts, not only allow- 

ng capturing of data from the OR but also setting a precedent on 

ata management, security, storage and transmission. 

Frequently, integrated ORs only provide technical interoperabil- 

ty for connecting image sources with displays (sinks) by using 

ideo and broadcasting standards such as Video Graphics Array 
7 
VGA), Digital Visual Interface (DVI), High-Definition Multimedia 

nterface (HDMI) or DisplayPort (DP). Higher levels of interoper- 

bility are easier to achieve with Internet Protocol (IP)-based data 

xchange standards (see Section 3.3 ). 

Additionally to video routing and capturing, the integration of 

ata from further devices in the OR is relevant. The German Fed- 

ral Ministry of Education and Research (BMBF) lighthouse project 

R.NET ( Rockstroh et al., 2017 ), now continued as a nonprofit orga- 

ization OR.NET e.V., worked on cross-manufacturer concepts and 

tandards for the dynamic and secure networking of medical de- 

ices and information technology (IT) systems in the OR and clin- 

cs ( Kricka, 2019; Miladinovic and Schefer-Wenzl, 2018 ). Initial re- 

ults laid important foundations in the shape of a service-oriented 

ommunication protocol for the dynamic cross-vendor network- 

ng of medical devices and resulted in the International Orga- 

ization for Standardization (ISO)/Institute of Electrical and Elec- 

ronics Engineers (IEEE) 11073 Service-oriented Device Connectiv- 

ty (SDC) series of standards (see Section 3.3 ). The projects InnO- 

lan ( Roedder et al., 2016 ) (see paragraph ”Data acquisition”) and 

P 4.1 also used SDC as the basis for device communication. InnO- 

lan’s Smart Data platform enables real-time provision and anal- 

sis of medical device data to enable data-driven services in the 

perating room. The project OP 4.1 aimed at developing a platform 

or the OR - in analogy to an operating system for smartphones - 

hat allows for integration of new technical solutions via apps. 

The project Connected Optimized Network & Data in Operating 

ooms (CONDOR) is another collaborative endeavor that aims to 

uild a video-driven Surgical Control Tower ( Padoy, 2019; Mascagni 

nd Padoy, 2021 ) within the new surgical facilities of the IRCAD 

nd IHU Strasbourg hospital by developing a novel video standard 

nd new surgical data analytics tools. A similar initiative is The 

perating Room of the Future (ORF) that researches device inte- 

ration in the OR, workflow process improvement, as well as de- 

ision support by combining patient data and OR devices for MIS 

 Stahl et al., 2005 ). 

.3. Standards, platforms and tools 

Standards, platforms and tools have focused on the topics of in- 

eroperability as well as data storage and exchange. 

.3.1. Interoperability 

Interoperability is defined by IEEE as “the ability of two or more 

ystems or components to exchange information and to use the 

nformation that has been exchanged” ( IEEE, 1991 ) or by the As- 

ociation for the Advancement of Medical Instrumentation (AAMI) 

s “the ability of medical devices, clinical systems, or their com- 

onents to communicate in order to safely fulfill an intended pur- 

ose” ( AAMI, 2012 ). 

Numerous standards have been introduced to provide interop- 

rability including Health Level 7 (HL7), IEEE 11073, American Soci- 

ty for Testing and Materials (ASTM) F2761 (Integrated Clinical En- 

ironment (ICE)), DICOM, ISO TC215, European Committee for Stan- 

ardization (CEN) TC251 and International Electrotechnical Com- 

ission (IEC) 62A. Different levels of interoperability can be dis- 

inguished, for example through the 7 Level Conceptual Interoper- 

bility Model (LCIM) from Tolk et al. (2007) , which is defined as 

ollows ( Wang et al., 2009 ): 

• Level 0 – No interoperability: Two systems cannot interoperate. 
• Level 1 – Technical interoperability: Two systems have the 

means to communicate, but neither has a shared understand- 

ing of the structure nor meaning of the data communicated. The 

systems have common physical and transport layers. 
• Level 2 – Syntactic interoperability: Two systems communicate 

using an agreed-upon protocol with structure but without any 

meaning. The systems exchange data using a common format. 
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• Level 3 – Semantic interoperability: Two systems communi- 

cate with structure and have agreed on the meaning of the ex- 

changed terms. The meaning of only the exchanged data is under- 

stood. 
• Level 4 – Pragmatic interoperability: Two systems communicate 

with a shared understanding of data, the relationships between 

elements of the data, and the context of the data but these 

systems do not support changing relationships or context over 

time. The meaning of the exchanged data and the relationships 

between pieces of information is understood. 
• Level 5 – Dynamic interoperability: Two systems are able to 

adapt their information models based on changing meaning 

and context of data over time. Evolving semantics are under- 

stood. 
• Level 6 – Conceptual interoperability: Includes the understand- 

ing and exchange of complex concepts. Systems are aware of 

each other’s underlying assumptions, models and processes. 

The number of interoperability levels varies from model to 

odel and depends on the goal of the intended classification. For 

xample, Lehne et al. (2019) use only four levels, the first two be- 

ng identical to those listed above; the third, also called “semantic 

nteroperability” addresses the complexities mentioned in levels 3 

o 5 here, and the fourth puts forth the concept of “Organisational 

nteroperability”, which includes aspects of level 5 and 6. The fol- 

owing paragraphs use the LCIM to classify the standards of inter- 

st to this paper. 

(1) Technical interoperability: Modern hospitals typically have 

ophisticated networks, which makes technical interoperability the 

ost achievable level ( Lehne et al., 2019 ). The main challenge in- 

ide the OR, where real-time capability is often critical, is the avail- 

ble bandwidth. An uncompressed Full HD video stream at 60 fps 

n a color depth of 24 bit requires a bandwidth of 2.98 Gigabit per

econd (Gbps, not to be confused with Gigabyte per second (GBps), 

hich is eight times larger). Available Ethernet ports typically have 

 data transfer rate of 1 Gbps. While more modern installations 

ay reach Ethernet data transfer rates of 10 Gbps, this technol- 

gy is still expensive and typically reserved for networks in data 

enters. Wireless networks are even slower: Modern devices often 

upport theoretical speeds between 0.45 Gbps and 1.3 Gbps, which 

esults in an effective bandwidth of around 50% of the theoreti- 

al limit. The newest Wi-Fi (Wireless Fidelity) 6 standard, released 

ate 2019, increases this theoretical limit to over 10 Gbps under 

aboratory conditions, but the effective speeds and adoption rate 

emain to be seen. In general, Wi-Fi suffers from a higher rate of 

ssociated uncertainties as well as latency, depending on a num- 

er of environment factors. Critically, Wi-Fi packets may get lost if 

nterference between networks is too high, causing latency spikes 

f potentially several hundreds of milliseconds, which may nega- 

ively affect real-time applications. The new 5G standard for wire- 

ess communication can potentially ease some of these problems 

y reaching theoretical speeds of 20 Gbps and avoiding conflicts 

ith other networks since the relevant frequencies are licensed 

or specific areas. Additionally, 5G as a method of Internet access 

ould enable the transfer of large amounts of data to and from the 

ospital in relatively short time, something which previously re- 

uired not readily available fast physical connections like glass fi- 

re. While limitations of available bandwidth can be mitigated by 

sing data compression, importantly, “losses imperceptible to hu- 

ans” can still impede algorithm performance. 

It is worth noting that, especially inside the OR, devices still 

xist that are entirely unable to connect to networks (from ba- 

ic technical infrastructure like doors or lights to routine medi- 

al equipment like certain anesthesia systems) or are not in the 

etwork due to missing capacities (e.g. Ethernet sockets) or soft- 
8 
are add-ons (e.g. a proprietary application programming interface 

API)). 

(2) Syntactic interoperability: At this level, the structure of 

xchanged data is defined with basic semantic information. This 

evel is arguably where most of today’s effort s in medical data in- 

eroperability take place, and where a number of standards com- 

ete. A major player in the standardization is HL7 ( Kalra et al., 

005 ), which has developed standards for the exchange of patient 

ata since 1987. The eponymous HL7 standard has been continu- 

usly updated and most notably includes the Version 3 Messag- 

ng Standard, which specifies interoperability for health and med- 

cal transactions. HL7 has been criticized for the complexity of 

ts implementation ( Goldenberg et al., 2017 ), resulting in the pro- 

osal of HL7 Fast Healthcare Interoperability Resources (FHIR). HL7 

HIR simplifies implementation through the use of widely applied 

eb technologies. Another important standard is provided by the 

penEHR foundation. In contrast to HL7, openEHR is not only a 

tandard for medical data exchange, but an architecture for a data 

latform that provides tools for data storage and exchange. With 

his, however, come added complexity and challenges. 

HL7 and openEHR provide the broadest scope of medical data 

xchange, but both build on standards that solve specific subtasks. 

hile a complete listing is out of scope for this article, one no- 

able exception is DICOM, which today is the undisputed standard 

or the management of medical imaging information. In 2019, DI- 

OM was extended to include real-time video (DICOM Real-Time 

ideo (DICOM-RTV)). This extension is an IP-based DICOM service 

or transmitting and broadcasting real-time video, with synchro- 

ized metadata, to subscribers (e.g. a monitor or SDS application 

erver) with a quality comparable to standard OR video cables. 

The previously mentioned standards focus on enabling the ex- 

hange of patient-individual data between Hospital Information 

ystems (HIS). Inside the OR, requirements differ, since a host 

f devices create a real-time data stream that focuses on sen- 

oric input instead of direct patient information (diagnosis, habits, 

orbidity). Accordingly, data exchange standards inside the OR 

re geared toward these data types. OpenIGTLink ( Tokuda et al., 

009 ), for example, started as a communication protocol for Image 

uided Therapy (IGT) applications. Today, OpenIGTLink has been 

xpanded to exchange arbitrary types of data by providing a gen- 

ral framework for data communication. However, it does not de- 

ne broad standards for the data format, instead relying on users 

o implement details according to their needs. Through this model, 

penIGTLink enabled data exchange inside the OR long before 

road standards were feasible. Similarly, for the field of robotics, 

he Robot Operating System (ROS) ( Koubaa, 2016 ) has been pro- 

osed. 

More recent efforts by the OR.NET initiative (see Section 3.2 ) 

roduced the IEEE 11073 SDC ISO standard which provides a means 

or general data and command exchange for devices and enables 

sers to control devices in the OR. Standards less specific to the 

ealthcare environment are also available. Similar to OpenIGTLink, 

he Internet of Things (IoT), for example, defines a standard for 

evice communication without defining standards for the commu- 

icated data. While it has been used for data exchange between 

nformation systems ( Xie et al., 2018 ), and between devices in the 

R ( Miladinovic and Schefer-Wenzl, 2018 ), it has elicited mixed re- 

ctions. 

(3) Semantic interoperability: This is the domain of clinical 

omenclatures, terminologies and ontologies. While modern stan- 

ards like HL7 FHIR and openEHR already define basic seman- 

ics in data exchange, extending these annotations to more pow- 

rful nomenclatures like SNOMED CT (Systematized Nomenclature 

f Medicine - Clinical Terms) ( Cornet and de Keizer, 2008 ) (see 

ection 4 ) enables systems to not only share data, but also their 

xact meaning and scope (i.e. what kind of data exactly falls un- 
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er the given definition). To illustrate the difference between this 

evel and the previous: HL7 FHIR defines less than 200 healthcare 

oncepts (i.e. terms with a well-defined meaning) ( Bender and Sar- 

ipi, 2013 ), while SNOMED CT defines more than 340,0 0 0 concepts 

 Miñarro-Giménez et al., 2019 ). Today, semantic interoperability is 

argely defined by terminologies (systematic lists of vocabulary), 

ntologies (definitions of concepts and categories along with their 

elationships) and taxonomies (classifications of entities, especially 

rganisms) - the borders between which are often fluid. Standard 

anguages such as the Resource Description Framework (RDF), Re- 

ource Description Framework Schema (RDFS) and the Web Ontol- 

gy Language (OWL) ( Bechhofer, 2009 ) have been defined by the 

orld Wide Web Consortium (W3C), guaranteeing interoperability 

etween ontology resources and data sets based on these ontolo- 

ies. The aforementioned SNOMED CT is arguably the most com- 

lete terminology, spanning the whole field of clinical terms with a 

ide set of available translations. However, specialized alternatives 

ay perform better on their respective field. Additionally, a host of 

edical ontologies are available. Most notable is the family of on- 

ologies gathered under the OpenBiological and Biomedical Ontolo- 

ies (OBO) Foundry ( Smith et al., 2007 ), which cover a wide array

f topics from the biomedical domain and share the Basic Formal 

ntology (BFO) ( Grenon and Smith, 2004 ) as a common top-level 

ntology. Intraoperatively, the OntoSPM ( Gibaud et al., 2018 ) pro- 

ides terminology for the annotation of intraoperative processes, 

nd has spawned effort s f or the annot ation of binary dat a ( Kati ́c

t al., 2017 ). Common to all these effort s is that they serve best in

ombination with a standard addressing syntactic interoperability, 

here they can add semantic information to the data exchange. 

emantic interoperability goes hand in hand with data annotation, 

nd is expanded upon in Section 4 . 

It is important to note that semantic interoperability does not 

uarantee the availability of data. If two hospitals have agreed on 

 detailed semantic model but record different parameters for a 

pecific procedures, then the two resulting data sets will contain 

ell-defined but empty fields. Two avoid this, it is necessary to 

gree on lists of recorded parameters, e.g. in the form of CDE. 

(4) Pragmatic interoperability: In order to define context, ad- 

itional modeling is required to capture data context and involved 

rocesses. This can in part be achieved by extending modeling 

ffort s from the semantic interoperability level to include these 

oncepts. Furthermore, efforts to formalize the exchange processes 

hemselves are required. In IEEE 11073 descriptions for architecture 

nd protocol (IEEE 11073-20701) and in HL7 the IHE Patient Care 

evice (PCD) implementation guide and the conformance model 

re provided. 

For the remaining two levels, developments are more recent 

nd less formalized. For Level (5) Dynamic interoperability , it is 

equired to model how the meaning of data changes over time. 

his can range from simple state changes (planned operations be- 

oming realized, proposed changes becoming effective) to new 

ata types being introduced and old data types changing meaning 

r being deprecated. In IEEE 11073 the participant key purposes 

nd in HL7 the workflow descriptions are created for supporting 

hese aspects. Finally, Level (6) Conceptual interoperability allows 

or exchanging and understanding complex concepts. This requires 

 means to share the conceptual model of the system, its pro- 

esses, state, architecture and use cases. This level can be achieved 

hrough defining use cases and profiles (e.g. IHE Services-oriented 

evice Point-of-care Interoperability (SDPi) Profiles) and/or provi- 

ioning reference architecture and frameworks. 

.3.2. Data storage and distribution 

While current standards have focused on data exchange, they 

ypically do not address data distribution and storage. Typically, 

ata is exchanged between two defined endpoints (e.g. a track- 
9 
ng device and an IGT application, or a computed tomography (CT) 

canner and a PACS). To achieve a system that can be dynamically 

xpanded with regard to its communication capabilities, it is nec- 

ssary to implement messaging technology. Such tools allow arbi- 

rary devices to take part in communication by registering via a 

essage broker, where messages can typically be filtered by their 

rigin, type, destination, for instance. Examples include Apache 

afka ( Kim et al., 2017; Spangenberg et al., 2018 ) or RabbitMQ®

 Ongenae et al., 2016; Trink ̄unas et al., 2018 ). Such systems en- 

ble developers to create flexible data exchange architectures using 

echnologies that are mature and usually well documented thanks 

o their wide application outside the field of healthcare. However, 

hey also create a level of indirection which introduces additional 

elay (which may be negligible with only a few milliseconds in lo- 

al networks, or significant with several tens or even hundreds of 

illiseconds over the Internet or wireless networks). 

Finally, recording of the exchanged data requires distinct so- 

utions as well. High-performance, high-reliability databases form 

n essential requirement for many modern businesses. Thanks to 

his demand, a large body of established techniques exists, from 

hich users can select the right tool for their specific needs. Bi- 

ary medical data (images, videos, etc.) can be stored on premise 

n modern PACSs, which provide extensive support for data anno- 

ation, storage and exchange. For clinical metadata, the selection 

f technology typically depends on the level of standardization of 

he recorded data. Highly standardized data can possibly be stored 

irectly through interfaces of e.g. the IHE family of standards. If 

he target data are not standardized, but homogeneous, then a 

atabase model for classical database languages (e.g. Structured 

uery Language (SQL)) may be suitable. Use cases where a wide 

rray of highly heterogeneous data is recorded may choose mod- 

rn NoSQL databases. These databases do not (or not exclusively) 

ely on classical tabular data models, but instead allow the storage 

nd querying of tree-like structures. The JavaScript Object Notation 

JSON) Format is a popular choice for NoSQL databases for its wide 

upport in toolkits and the immediate applicability with regard to 

epresentational State Transfer (REST)-APIs. While initially appli- 

ations of these databases were geared toward data lakes because 

f the relative ease of application, NoSQL databases have recently 

een widespread application in big data and ML ( Dasgupta, 2018 ). 

 notable example is Elasticsearch (Elastic NV, Amsterdam, the 

etherlands), which has achieved widespread distribution and is 

anked among the most used search servers ( DB-Engines, 2020 ). 

Through the rising relevance of web technology, storing data 

n the cloud is increasingly becoming a viable option. A vast ar- 

ay of services are available and have been applied in the medical 

omain (e.g. Amazon Web Services (AWS) ( Holmgren and Adler- 

ilstein, 2017 ), Microsoft Azure ( Hussain et al., 2013 ), and others). 

toring data in the cloud has the potential to save money on HIT 

y eliminating the need to reduce the locally required storage ca- 

acity and maintenance personnel, but brings with it privacy con- 

erns and slower local access to data than from local networks, 

hich may be noticeable especially for large binary data like medi- 

al images and video streams. While data privacy options are avail- 

ble for all major services, the implementing personnel have to 

nderstand these options and align with them the privacy needs 

f the institution and the respective data. Since answering these 

uestions is complex, the privacy requirements strict, and the con- 

equences for failing to comply with the law severe, the created 

olutions are often conservative in nature with regard to privacy. 

dditionally, downloading large data sets may be costly, as in gen- 

ral, cloud storage providers incentivize performing computations 

n the cloud. 

Finally, solutions to facilitate local storage have been proposed. 

ommercially available systems such as SCENARA®.STORE (KARL 

TORZ) compress surgical images and video data over time to de- 
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rease storage needs. Alternatively, SDS tools can be used to se- 

ectively store critical video sequences instead of entire procedural 

ideos, as recently proposed ( Mascagni et al., 2021b ). 

.4. Current challenges and next steps 

The infrastructure-related mission as well as the corresponding 

oals generated by the consortium as part of the Delphi process 

re provided in Table 2 . This section elaborates on some of the 

ost fundamental aspects: 

How to enable prospective capturing and storing of relevant 

erioperative data? (goals 1.1/1.2): A major challenge we face is 

o capture all relevant perioperative data. While several initiatives 

nd standards are already dedicated to this problem, a particular 

ocus should be put on the recording and integration of patient 

utcome measures, including measures that need to be captured 

ong after the patient has left the hospital (e.g. 5-year-survival). 

he field of SDS stands in contrast to the field of radiology, where 

he DICOM standard now covers the exchange of medical images 

nd related data. This standard can be seen as a direct result 

f market pressure: Early medical imaging devices did not prior- 

tize communication standards, instead relying on manufacturer- 

upplied software specific to the hardware purchased. This be- 

aviour did not change until PACSs became widespread, providing 

pecialized software that offered a benefit to clinical workflows, 

nd the ability to transmit images to them became a driving re- 

uirement for the purchase of new imaging hardware. However, 

he previously mentioned domain complexity also affects stan- 

ard development. For example, the DICOM specification document 

lone consists of 6,864 pages 2 , indicating the effort to develop and 

aintain such a standard. Evolving standards for the exchange of 

edical data like IEEE 11073 SDC and HL7 FHIR are a step in the 

ight direction, but in order to create a driving force, incentivizing 

he industry to enable widespread interconnection appears useful. 

Storing acquired data is, in theory, largely possible with mod- 

rn technologies. Missing, however, are standards for storage for- 

at, duration and data quality. These should be developed with 

he involvement of industrial stakeholders and the respective clin- 

cal/technical societies and should specifically include recommen- 

ations with respect to minimum standards for storage and anno- 

ation. The international Society of American Gastrointestinal and 

ndoscopic Surgeons (SAGES), for example, created an AI task force 

ith the mission to propose and establish best practices for struc- 

ured video data acquisition and storage, including recommenda- 

ions for resolution and compression ( Feldman et al., 2020 ). Gener- 

lly speaking, a clear distribution of roles between different stake- 

olders, particularly regarding who takes the initiative, as well as 

 clear definition of the subject matter to be standardized are now 

eeded. 

How to link data from different sources and sites? (goal 1.3) 

he need for exchanging data between different sources and sites 

alls for semantic operability ( Section 3.3 ): Simply storing all data 

n a data lake without sufficient metadata management poses the 

isk of creating a data swamp that makes data extraction hard to 

mpossible ( Hai et al., 2016 ). Data distribution among several sys- 

ems is a healthy approach since it reduces load on a single system 

nd enables engineers to choose the system best suited for the 

pecific types of data stored within. As long as metadata models 

 Gibaud et al., 2018; März et al., 2015; Soualmia and Charlet, 2016 )

xist that are able to sufficiently describe the data and where to 

nd them, retrieval will be possible through querying the model. 

ccordingly, effort s should focus on enhancing current clinical in- 

ormation infrastructures from the level of syntactic operability to 
2 http://dicom.nema.org/medical/dicom/current/ (accessed 2020-07-30) 

e

s

a

10 
emantic interoperability. Metadata also becomes essential for data 

haring. An increasingly popular approach to data sharing is fed- 

rated learning ( Kone ̌cný et al., 2016; Rieke et al., 2020 ). Instead 

f sharing data between institutions, the training of algorithms 

s distributed among participants. While this presumably reduces 

he ethical and legal complications associated with large-scale data 

haring, it is still necessary to achieve semantic interoperability, 

nd the regulatory issues regarding the exchange of models that 

ontain encoded patient data are not fully understood yet. 

How to perceive relevant tissue properties dynamically? (goal 

.4) Surgical imaging modalities should provide discrimination of 

ocal tissue with a high contrast-to-noise-ratio, should be quanti- 

ative and digital, ideally be radiation- and contrast agent-free, en- 

ble fast image acquisition and be easy to integrate into the clin- 

cal workflow. The approach of registering 3D medical image data 

ets to the current patient anatomy for augmented reality visual- 

zation of subsurface anatomical details has proven ill-suited for 

andling tissue dynamics such as perfusion or oxygenation (e.g. 

or ischemia detection). The emerging field of biophotonics refers 

o techniques that take advantage of the fact that different tissue 

omponents feature unique optical properties for each wavelength. 

pecifically, spectral imaging uses multiple bands across the elec- 

romagnetic spectrum ( Clancy et al., 2020 ) to extract relevant in- 

ormation on tissue morphology, function and pathology (see e.g. 

irkert et al. (2016) ; Moccia et al. (2018) ; Ayala et al. (2021) ).

enefiting from a lack of ionizing radiation, low hardware com- 

lexity and easy integrability into the surgical workflow, spectral 

maging could be leveraged to inform surgical operators directly 

r be used for the generation of relevant input for SDS algorithms 

 Mascagni et al., 2018 ). Open research questions are, among others, 

elated to reproducibility of measurements, possible confounders 

n the data ( Dietrich et al., 2021 ), inter-patient variability and the 

obust quantification of tissue parameters in clinical settings. 

How to enable real-time inference in interventional settings? 

goal 1.5) While processing times of several seconds or even min- 

tes may be acceptable in some scenarios, other SDS applications, 

uch as autonomous robotics, require real-time inference. Real- 

ime inference requires a number of complex prerequisites to be 

ulfilled. Relevant data needs to be streamed to a common end- 

oint where it can be processed; data streams need to be suffi- 

iently formalized to enable fully automatic decoding; the hard- 

are and networks receiving these streams must be sufficiently 

ast to decode the streams with minimal latency and high re- 

ilience, and the algorithms that provide inference need to be im- 

lemented efficiently and run on sufficiently fast hardware to en- 

ble real-time execution. If additional data (e.g. preoperative imag- 

ng, patient-specific data) is required, the algorithms need to be 

ble to access this data, and inferred information needs to be re- 

ayed to the OR team in an adequate manner. These problems can 

otentially be addressed in a variety of ways, however, it seems 

rudent to integrate the necessary infrastructure (acquisition, com- 

utation, display) directly on site in or near the OR. In a first step, 

est environments such as experimental operating rooms can serve 

s platforms where technical concepts for real-time interference 

an be developed, validated and evaluated in a realistic setting. 

How to overcome regulatory and political hurdles? (goal 1.6) 

imelines and associated costs of data privacy management (dis- 

ussed further in Section 4.4 ) and regulatory processes need to be 

upported in both academic and commercial projects: Academic 

ork requires funding and appropriate provision for delays in the 

roject timeline. Notably, the COVID-19 pandemic may have stim- 

lated rapid response from both academic and regulatory bodies 

n response to urgent needs, and perhaps some of this expedi- 

nce will remain (examples in Continuous Positive Airway Pres- 

ure (CPAP) devices such as UCL-Ventura ). Industry also needs to 

llocate costs, adhere and maintain standards, cover liability and 

http://dicom.nema.org/medical/dicom/current/
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ave clear expectations on the required resources. While these pro- 

esses are well developed and supported in large organizations, 

maller companies, in particular startups, have less capacities for 

hem at their disposal. A variety of additional standards would also 

eed to be met since a prospective SDS system approaches a med- 

cal device as defined by The U.S. Food and Drug Administration 

FDA) (USA) or the Medical Device Regulation (MDR) (EU). These 

ay be ISO-certified or require audits and approval from regula- 

ory agencies and notified bodies, compliance with data protec- 

ion regulations (e.g. GDPR), more stringent (cyber-)security fea- 

ures and testing adherence. As the field of AI and its regulation 

s increasingly discussed in public venues, political visibility is ris- 

ng. By clearly identifying the limiting effects of insufficient infras- 

ructure on the one hand, and potential benefits of improving it 

n the other, it should become possible to convince political and 

linical stakeholders that an investment in HIT as well as dedi- 

ated data management and processing personnel is key to ex- 

loiting the potential of AI for interventional healthcare. Further- 

ore, industrial engagement in creating the necessary infrastruc- 

ure needs to be fostered within the boundaries of global stan- 

ardization while considering the specific market needs. Health- 

are institutions thus need to engage globally with industry to put 

orth common standards and processes enabling SDS applications 

ompatible with strategic business needs. Of note, existing infras- 

ructures can be leveraged and enhanced in this process. The SDS 

ommunity should be aware of the complexity of the topic and 

he messages that are publicized (i.e. premature success stories) 

nd create constructive proposals with realistic outlooks on poten- 

ial benefits, focusing on long-term investments with the potential 

o drive change. Specifically, market studies could identify for each 

ndividual stakeholder the benefits of SDS solutions compared to 

heir expected costs. Consider for instance a ”number needed to 

reat” type of example, where for every X number of patients for 

hich data insights are applied, one complication costing USD Y 

ay be avoided. By providing estimated returns on investment for 

mprovements to clinical delivery based on reducing person-hours, 

omplications, or duplicative work, such studies would in turn pro- 

ide key arguments for future investments. 

Overall, local and international collaborations and partnerships 

nvolving clinical, patient, academic, industry and political stake- 

olders are needed (see Table 1 ). Policies and procedures regard- 

ng data governance within an institution have to be defined that 

nvolve all stakeholders within the SDS data lifecycle. Already ex- 

sting multinational political entities or governing bodies, as exem- 

lified by the EU, can be leveraged in a first step toward interna- 

ional collaboration and standardization. When implementing the 

oals put forth in Table 2 , internationally agreed standards should 

e respected. These include, but are not limited to, ethical guide- 

ines. In fact, the World Health Organization (WHO) recently put 

orth a guidance document on Ethics & Governance of Artificial In- 

elligence for Health ( WHO, 2021 ), which was compiled by a multi- 

isciplinary team of experts from the fields of ethics, digital tech- 

ology, law and human rights, as well as experts from Ministries 

f Health. The report identifies the ethical challenges and risks as- 

ociated with the use of AI in healthcare and puts forth several in- 

ernationally agreed on best practices for both the public and the 

rivate sector. 

. Data annotation and sharing 

The access to annotated data is one of the most important pre- 

equisites for SDS. There are different requirements that impact the 

uality of the annotated data sets. Ideally, they should include mul- 

iple centers to capture possible variations using defined protocols 

egarding acquisition and annotation, preferably linked to patient 

utcome. In addition, the data set has to be representative for the 
11 
ask to be solved and combined with well-defined criteria for val- 

dation and replication of results. Broadly, the key considerations 

hen generating an annotated data set include reliability, accuracy, 

fficiency, scalability, cost, representativeness and correct specifica- 

ion. 

.1. Current practice 

A comprehensive list of available curated data sets that are rel- 

vant to the field of SDS is provided in Appendix A . In general,

hey serve as a good starting point, but are still relatively small, 

ften tied to a single institution, and extremely diverse in struc- 

ure, nomenclature, and target procedure. 

Surgical data such as video involves diverse annotations with 

ifferent granularity depending on the clinical use case to be 

olved. It can be distinguished between spatial, temporal or spatio- 

emporal annotations. Examples for spatial annotations include 

mage-level classification (e.g. what tissue/tools/events are visible 

n an image), semantic segmentation (e.g. which pixels belong to 

hich tissue/tools/events in an image) and numerical regression 

e.g. what is the tissue oxygenation at a certain location). Tempo- 

al annotations involve the surgical workflow and can have differ- 

nt levels of granularity, e.g. surgical phases at the highest level, 

hich consist of several steps, which are in turn composed of ac- 

ivities such as suturing or knot-tying ( Lalys and Jannin, 2014 ). 

n addition, specific events such as complications, performance or 

uality assessment of specific tasks complement temporal annota- 

ions. Spatio-temporal annotations involve both spatial and tem- 

oral information. While simple annotation tasks such as labeling 

urgical instruments may be accomplished by non-experts ( Maier- 

ein et al., 2014 ), more complex tasks such as tissue labeling or 

uality assessment of anastomoses most likely require domain ex- 

erts. 

The major bottleneck for data annotation in surgical applica- 

ions is access to expert knowledge. Reducing the annotation ef- 

ort is therefore of utmost importance, and various methods have 

een proposed. Crowdsourcing ( Maier-Hein et al., 2014 ) has proven 

o be a successful method, but designing the task such that non- 

xperts are able to provide meaningful annotations is still one of 

he biggest challenges. Recently, active learning approaches that 

etermine which unlabeled data points would provide the most 

nformation and thus reduce the annotation effort to these sam- 

les have been proposed ( Bodenstedt et al., 2019a ). Similarly, error 

etection methods reduce the annotation effort to erroneous sam- 

les only ( Lecuyer et al., 2020 ). Data can also be annotated directly 

uring acquisition ( Padoy et al., 2012; Sigma Surgical Corporation ). 

.2. Key initiatives and achievements 

One of the most successful initiatives fostering access to open 

ata sets is Grand Challenge which provides infrastructure and 

ools for organizing challenges in the context of biomedical im- 

ge analysis. The platform hosts several challenges including data 

ets and also serves as a framework for end-to-end development 

f ML solutions. Notably, the Endoscopic Vision Challenge EndoVis , 

n initiative that takes place at the international conference hosted 

y the Medical Image Computing and Computer Assisted Inter- 

ention (MICCAI) Society, is the largest source of SDS data col- 

ections ( Bernal et al., 2017; EndoVis’15 Instrument Subchallenge 

ataset, 0 0 0 0; EndoVis-GIANA, 0 0 0 0; Allan et al., 2019; Hattab

t al., 2020; ALHAJJ et al., 2021; Allan et al., 2020; Maier-Hein 

t al., 2021; Allan et al., 2021; EndoVis-Workflow and Skill, 0 0 0 0; 

oß et al., 2021b; Zia et al., 2021; Huaulmé et al., 2021; HeiSurf, 

 0 0 0; GIANA21, 0 0 0 0; CholecTriplet21, 0 0 0 0; FetReg, 0 0 0 0; PE-

RAW, 0 0 0 0; SimSurgSkill ). It consists of several sub-challenges ev- 

ry year which support the availability of new public data sets for 



L. Maier-Hein, M. Eisenmann, D. Sarikaya et al. Medical Image Analysis 76 (2022) 102306 

d

e

s

t

d

t

2

t

p

r

l

(  

p

c

(

P

T

w

c

e

a

i

s

s

e

b

v

f

r

t

(

4

s

t

w

b

s

t

a

e

n

t

i

n

N

w

d

n

w

S  

V

t

a

w

A

r

t

t

s

b

h

S

t

t

o

m

T

t  

c

t

c

s

m

c

B

i

p

d

p

i

i

i

d

4

g

s

e

b

s

v

n

w

a

i

e

i

o

i

d

s

c

p

m

O

u

c

t

l

t

fi

a

s

t

n

t

p

v

m

r

eveloping and benchmarking methods. Generally speaking, how- 

ver, quality control in biomedical challenges and data sharing is 

till an issue ( Maier-Hein et al., 2018b; 2020 ). 

The importance of public data sets in general is illustrated 

hrough new journals dedicated to only publishing high quality 

ata sets, such as Nature Scientific Data . An important contribu- 

ion in this context are the FAIR data principles ( Wilkinson et al., 

016 ), already introduced in the context statement above. Recently, 

he Journal of the American Medical Association (JAMA) Surgery 

artnered with the Surgical Outcomes Club and launched a se- 

ies consisting of statistical methodology articles and a check- 

ist that aims to elevate the science of surgical database research 

 Haider et al., 2018 ). It also includes an overview of the most

rominent surgical registries and databases, e.g. the National Can- 

er Database ( Merkow et al., 2018 ), the National Trauma Data Bank 

 Hashmi et al., 2018 ) or the National Surgical Quality Improvement 

rogram ( Raval and Pawlik, 2018 ). 

Annotation of data sets requires consistent ontologies for SDS. 

he OntoSPM project ( Gibaud et al., 2014 ) is the first initiative 

hose goal is to focus on the modeling of the entities of surgi- 

al process models, as well as the derivation LapOntoSPM ( Kati ́c 

t al., 2016a ) for laparoscopic surgery. OntoSPM is now organized 

s a collaborative action associating a dozen research institutions 

n Europe, with the primary goal of specifying a core ontology of 

urgical processes, thus gathering the basic vocabulary to describe 

urgical actions, instruments, actors, and their roles. An important 

ndeavor that builds upon current initiatives was recently initiated 

y SAGES, which hosted an international consensus conference on 

ideo annotation for surgical AI. The goal was to define standards 

or surgical video annotation based on different working groups 

egarding temporal models, actions and tasks, tissue characteris- 

ics and general anatomy as well as software and data structure 

 Meireles et al., 2021 ). 

.3. Standards, platforms and tools 

In SDS, images or video are typically the main data sources 

ince they are ubiquitous and can be used to capture informa- 

ion at different granularities ranging from cameras observing the 

hole interventional room or suite to cameras inserted into the 

ody endoscopically or observing specific sites through a micro- 

cope ( Chadebecq et al., 2020 ). Different image/video annotation 

ools regarding spatial, temporal and spatio-temporal annotations 

lready exist ( Table C.1 ), but to date no gold standard framework 

nabling different annotation types combined with AI-assisted an- 

otation methods exists in the field of SDS. 

Consistent annotation requires well-defined standards and pro- 

ocols taking different clinical applications into account. Current 

nitiatives are working on the topic of standardized annotation, but 

o widely accepted standards have resulted from the effort s yet. 

otable exceptions can be seen in the fields of skill assessment, 

here annotations have been required for a long time to rate stu- 

ents and can serve as an example for different kinds of SDS an- 

otation protocols ( Vedula et al., 2017 ), and in cholecystectomy, 

here methods for consistent assessment of photos ( Sanford and 

trasberg, 2014 ) and videos ( Mascagni et al., 2020a ) of the Critical

iew of Safety (CVS) were developed to favour documentation of 

his important safety step. 

Data annotation also requires a consistent vocabulary, prefer- 

ble modeled as ontology ( Section 3 ). Several relevant ontologies 

ith potential use in surgery such as the Foundational Model of 

natomy (FMA), SNOMED CT or RadLex ( Langlotz, 2006 ) are al- 

eady available. Existing initiatives like the OBO Foundry project 

hat focuses on biology and biomedicine provide further evidence 

hat building and sharing interoperable ontologies stimulate data 

haring within a domain. In biomedical imaging, ontologies have 
12 
een successfully used to promote interoperability and sharing of 

eterogeneous data through consistent tagging ( Gibaud et al., 2011; 

mith et al., 2015 ). 

The challenges and needs for gathering large-scale, representa- 

ive and high-quality annotated data sets are certainly not limited 

o SDS. In response, a new industry branch has emerged offering 

nline data set annotation services through large organized hu- 

an workforces. A listing of the major companies is provided in 

able C.2 . Interestingly, the market was estimated to grow to more 

han USD 1 billion by 2023 in 2019 ( Cognilytica, 2019 ), but the

onsecutive annual report estimates the market to grow to more 

han USD 4.1 billion by 2024 in 2020 ( Cognilytica, 2020 ). Most 

ompanies recruit non-specialists who can perform conceptually 

imple tasks on image and video data, such as urban scene seg- 

entation and pedestrian detection for autonomous driving. Re- 

ently, several companies such as Telus International (Vancouver, 

C, CA) and Edgecase AI LLC (Hingham, MA, US) have started offer- 

ng medical annotation services performed by networks of medical 

rofessionals. However, it is unclear to what extent medical image 

ata annotation can be effectively outsourced to such companies, 

articularly in the case of surgical data, where important context 

nformation may be lost. Furthermore, the associated costs of med- 

cal professionals as annotators and annotation reviewers for qual- 

ty assurance may render these services out of reach for many aca- 

emic institutes and small companies. 

.4. Current challenges and next steps 

The data annotation-related mission as well as corresponding 

oals generated by the consortium are provided in Table 3 . This 

ection elaborates on some of the most fundamental aspects: 

How to develop standardized ontologies for surgical data sci- 

nce? (goal 2.1) As current practices and standards differ greatly 

etween different countries, clinical sites, and healthcare profes- 

ionals, publicly available surgical data sets generally display vast 

ariation in terms of their annotations. The field, however, is in 

eed of standardized annotations based on a common vocabulary 

hich can be achieved by shared ontologies. For example, evalu- 

ting the efficacy of a particular procedure requires a standard- 

zed definition and nomenclature for the different hierarchy lev- 

ls, e.g. the phases, steps/tasks and activities/actions. A standard- 

zed nomenclature along with specifics such as beginning and end 

f temporal events does not exist yet. Studies can help standard- 

ze these definitions and reach a consensus. This is for instance 

emonstrated by Kaijser et al. (2018) who conducted a Delphi con- 

ensus study to standardize the definitions of crucial steps in the 

ommon procedures of gastric bypass and sleeve gastrectomy. Such 

rocesses could be adopted for other domains, with the Delphi 

ethods being a particularly useful tool to agree on terminology. 

nce available and broadly adopted, a shared ontology would stim- 

late the community as well as boost data and knowledge ex- 

hange in the entire domain of SDS. Less formal options such as 

erminologies are also an alternative but may risk to reach some 

imits in the long term. 

How to account for biases? (goal 2.2) Various sources and 

ypes of bias with potential relevance to SDS have been identi- 

ed in the past ( Ho and Beyan, 2020 ). Among the most critical 

re selection bias and confounding bias . Selection bias, also called 

ample bias , refers to a selection of contributing data in a way 

hat does not allow for proper randomization or representative- 

ess to be achieved. Crucially, in the context of SDS, representa- 

iveness refers to numerous factors including variances related to 

atients (e.g. age, gender, origin), the surgical procedure (e.g. ad- 

erse events), input data (e.g. device type, protocol; preprocessing 

ethods), and surgeons (e.g. level of expertise). Creating a fully 

epresentative data set is thus highly challenging and only possi- 



L. Maier-Hein, M. Eisenmann, D. Sarikaya et al. Medical Image Analysis 76 (2022) 102306 

b

h

c

a

c

f

o

i

t

t

c

a

(  

s

d

r

b

a

p

p

t

b

f

m

2

i

w

t

O

t

c

a

l

c

n

t

c

A

s

c

e

i

a

t

2

e

c

g

d

p

S

g

b

s

v

n

e

C

s

a

a

a

l

a

r

i

t

b

l

c

d

l

l

W

l

c

t

u

c

n

o

e

v

n  

a

t

c

e

n

t

J

p

a

n

a

c

(

s

O

w

t

t

s

l

s

i

i

s

A

t

s

a

b

s

s

u

d

s

i

e

(

v

n

d

i

w

w

o

t

le in a multi-center setting. Unrepresentative data, on the other 

and, leads to biased algorithms. A recent study published in the 

ontext of radiological data science ( Larrazabal et al., 2020 ), for ex- 

mple, showed that the performance of AI algorithms for a spe- 

ific sex (e.g. female) crucially depends on the ratio of samples 

rom the respective sex in the training data set. Another source 

f overestimation regarding algorithm performance is confound- 

ng bias. Confounding “arises when variables that are not media- 

ors of the effect under study, and that can explain part or all of 

he observed association between the study exposure and the out- 

ome, are not measured and controlled for during study design or 

nalysis” ( Arah, 2017 ). Recent work in biomedical image analysis 

 Badgeley et al., 2019; Roberts et al., 2021; Dietrich et al., 2021 )

howed that knowledge of confounding variables is crucial to the 

evelopment of successful predictive models. Conversely, a striking 

ecent example of a confounder rendering results meaningless can 

e seen in the many papers using a particular pneumonia data set 

s a control group in the development of COVID-19 detection and 

rognostication models. Since this data set solely consists of young 

aediatric patients, any model using adult COVID-19 patients and 

hese patients as a control group would likely overperform merely 

y detecting children ( Roberts et al., 2021 ). Other examples of con- 

ounders (also called hidden variables ) are chest drains and skin 

arkings in the context of pneumothorax ( Oakden-Rayner et al., 

020 ) and melanoma diagnosis ( Winkler et al., 2019 ). Recogniz- 

ng and minimizing potential biases in SDS by enhancing data sets 

ith, for example, relevant metadata is thus of eminent impor- 

ance. 

How to make data annotation more efficient? (goal 2.3) 

vercoming the lack of experienced observers might be possible 

hrough embedding clinical data annotation in the education and 

urricula of medical students. In fact, early evidence suggests that 

nnotating surgical skills during video-based training improves the 

earning experience ( De La Garza et al., 2019 ). The annotation pro- 

ess could also involve several stages, starting with annotations by 

on-experts that are reviewed by experts. In a similar fashion, ac- 

ive learning methods reduce the annotation effort to the most un- 

ertain samples ( Bodenstedt et al., 2019a; Maier-Hein et al., 2016 ). 

n alternative approach to overcome the lack of annotated data 

ets is to generate realistic synthetic data based on simulations. A 

hallenge in this context is to bridge the domain gap, so that mod- 

ls trained on synthetic data generalize well to real data. Promis- 

ng approaches already studied in the context of SDS are for ex- 

mple generative adversarial networks (GANs) for image-to-image 

ranslation of laparoscopic images ( Pfeiffer et al., 2019; Rivoir et al., 

021 ) or transfer learning-based methods for physiological param- 

ter estimation ( Wirkert et al., 2017 ). In the context of photoa- 

oustic imaging, recent work has further explored the GAN-based 

eneration of plausible tissue geometries from available imaging 

ata ( Schellenberg et al., 2021 ). 

How to establish common standards, protocols and best 

ractices for quality-assured data annotation? (goals 2.3-2.6/2.9) 

tandardized open-source protocols that include well-defined 

uidelines for data annotation are needed to provide accurate la- 

els. Ideally, the annotations should be generated by multiple ob- 

ervers and the protocol should be defined to reduce inter-observer 

ariability and bias. A recent study in the context of CT image an- 

otation concluded that more than three annotators might be nec- 

ssary to establish a reference standard ( Joskowicz et al., 2019 ). 

omprehensive labeling guides and extensive training are neces- 

ary to ensure consistent annotation. Shankar et al. (2020) , for ex- 

mple, proposed a 400-page labeling guide in the context of Im- 

geNet annotations to reduce common human failure modes such 

s fine-grained distinction of classes. In SDS, a protocol with check- 

ists and examples on how to consistently segment hepatocystic 

natomy and assess the CVS in laparoscopic cholecystectomy was 
13 
ecently published to favour reproducibility and trust in the clin- 

cal relevance of annotations ( Mascagni et al., 2021a ). Such de- 

ailed annotation protocols and extensive user training supported 

y adequate training material are now required. However, estab- 

ishing annotation guides for surgical video data is a particularly 

hallenging task since it involves complex actions that require un- 

erstanding of the surgical intent based on visual cues. In particu- 

ar, temporal annotations such as phase transitions are often chal- 

enging as the start and end of a specific phase is hard to define. 

ard et al. (2021) provide a comprehensive list regarding chal- 

enges associated with surgical video annotation. Taking into ac- 

ount the variety of surgical techniques this may lead to annota- 

ion inconsistencies even amongst experts, but these could also be 

sed as a hint to estimate the difficulty associated with a surgi- 

al situation ( Ward et al., 2021 ). In this context, research on the 

eeds with respect to data and annotation quality in the context 

f the clinical goals is also required. As data sets and annotations 

volve over time, another aspect to be taken into account involves 

ersioning of data sets and annotations, similar to code, which is a 

on-trivial task ( Marzahl et al., 2021 ). For all tasks related to data

nnotation, it will be prudent to establish and enforce best prac- 

ices, e.g. in the form of standardized annotation protocols, that 

an easily be integrated into the surgical workflow. Once these are 

stablished, adherence to best practices could be increased by jour- 

al editors explicitly requesting annotation protocols to be submit- 

ed along with a respective paper that is based on annotated data. 

ournals could also allow for the explicit publication of annotation 

rotocols in analogy to study protocols. Finally, platforms that en- 

ble spatial as well as temporal annotation in a collaborative man- 

er and share common annotation standards and protocols as well 

s ML-based methods to facilitate automatic annotations are cru- 

ial. One means is to adapt already existing annotation platforms 

see Table C.1 ) to fit the specific needs of SDS. Funding agencies 

hould explicitly support effort s to make progress in this regard. 

verall, a particularly promising approach to generating progress 

ith respect to annotation standards is to start from the respec- 

ive societies, such as SAGES. Alternatively or additionally, interna- 

ional working groups, similar to the one developing the DICOM 

tandard, should be established. Such working groups should col- 

aborate with existing initiatives, such as DICOM or HL7. In the end, 

tandards will only be successful if enough resources are invested 

nto the actual data annotation. In this case various non-monetary 

ncentives should be considered, including gamification and the is- 

uing of certificates (e.g. for Certified Professional for Medical Data 

nnotation in analogy to Certified Professional for Medical Software ). 

How to incentivize and facilitate data sharing across insti- 

utions? (goals 2.7-2.9) Data anonymization is a key enabler for 

haring medical data and advancing the SDS field. By definition, 

nonymized data cannot be traced back to the individual and in 

oth the USA and EU, anonymized data are not considered per- 

onal data, rendering them out of the scope of privacy regulation 

uch as the GDPR. However, achieving truly anonymized data is 

sually difficult, especially when multiple data sources from an in- 

ividual are linked in one data set. Removing identifiable metadata 

uch as sensitive DICOM fields linking the patient to the medical 

mage is necessary but not always sufficient for anonymization. For 

xample, removing DICOM fields in a magnetic resonance imaging 

MRI) scan of a patient’s head is not sufficient because the indi- 

idual may be identified from the image data through facial recog- 

ition ( Schwarz et al., 2019 ). Full anonymization also exhibits the 

rawback of it being difficult to identify potential existing biases 

n data sets. Pseudonymization is a weaker form of anonymization 

here data cannot be attributed to an individual unless it is linked 

ith other data held separately ( European Parliament and Council 

f European Union, 2016 ). This is often easier to achieve compared 

o true anonymization, however, pseudonymized data are still de- 
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ned as personal data, and as such remain within the scope of 

he GDPR. The public data sets used in SDS research such as en- 

oscopic videos recorded within the patient’s body are generally 

ssumed to be anonymized but clear definitions and regulatory 

uidance are needed. Recent advances in federated learning could 

educe security and privacy concerns since they rely on sharing 

achine learning models rather than the data itself ( Kaissis et al., 

020 ) (see Section 3 ). A complementary strategy for bypassing cur- 

ent hurdles related to data sharing is data donation. Medical Data 

onors e.V. , for example, is a registered German non-profit organi- 

ation, designed to build a large annotated image database which 

ill serve as a basis for medical research. It can be supported 

y the public via donation of medical imaging data or by shop- 

ing at Amazon Smile. In the broader context of data donation, 

he SDS initiative discussed the concept of a data donor card in 

nalogy to the existing organ donor card . With such a card, pa- 

ients could explicitly state which kind of data they are willing to 

hare with whom and under which circumstances. Overall, mak- 

ng progress on large public databases will require establishing an 

nterlocking set of standards, technical methods, and data analysis 

ools tied to metrics to support reproducible SDS ( Nichols et al., 

017 ) and provide value for the community. Clinical registries pro- 

ide a good example of such a mechanism. In a registry, a specific 

rea of practice agrees on data to be shared, outcome measures to 

e assessed, and standardized formats as well as quality measures 

or the data ( Arts et al., 2002 ). Identifying areas of SDS where the

alue proposition exists to drive the use of registries would pro- 

ide much-needed impetus to create data archives. So would cre- 

ting more monetary and non-monetary incentives for institutions, 

linical staff and patients to share and annotate data, although par- 

icularly the issue of incentivizing patients to share data presents 

n ethical gray area. 

. Data analytics 

Data analytics (addressing the interpretation task in Fig. 1 ) is 

ften regarded as the core of any SDS system. The perioperative 

ata is processed to derive information addressing a specific clini- 

al need, where applications may range from prevention and train- 

ng to interventional diagnosis, treatment assistance and follow-up 

 Maier-Hein et al., 2017 ). 

.1. Current practice 

Surgical practice has traditionally been based on observational 

earning, and decision making before, during and after surgical 

rocedures highly depends on the domain knowledge and past ex- 

eriences of the surgical team ( Maier-Hein et al., 2017 ). SDS has 

he potential to initiate a paradigm shift with a data-driven ap- 

roach ( Hager et al., 2020; Vercauteren et al., 2020 ). Bishop and 

thers classify data analytics tools as descriptive, diagnostic, pre- 

ictive, and prescriptive ( Bishop, 2006; Tukey, 1977 ): 

Descriptive analytics tools - what happened? Descriptive ana- 

ytics primarily provide a global, comprehensive summary of data 

ade available through data communication such as simple re- 

orting features. Syus ’ Periop Insight (Syus, Inc., Nashville, TN, 

SA) is an example of how descriptive analytics are used to ac- 

ess data, view key performance metrics, and support operational 

ecisions through documentation and easy interpretation of his- 

orical data on supply costs, delays, idle time etc., relating over- 

ll operating room efficiency and utilization. Business Intelligence 

BI) ( Chen et al., 2012 ) tools are a typical form of descriptive anal-

sis tools which comprise an integrated set of IT tools to trans- 

orm data into information and then into knowledge, and have 

een used in healthcare settings ( Ward et al., 2014 ) (e.g. Sisense TM 
14 
Sisense Ltd., New York City, NY, USA), Domo TM (Domo, Inc., Amer- 

can Fork, UT, USA), MicroStrategy TM (MicroStrategy Inc., Tysons 

orner, VA, USA), Looker TM (Looker Data Sciences Inc., Santa Cruz, 

A, USA), Microsoft Power BI TM (Microsoft Corporation, Redmond, 

A, USA) and Tableau 

TM (Tableau Software Inc., Seattle, WA, USA)). 

hese tools often incorporate features such as interactive dash- 

oards ( Upton, 2019 ) that provide customized graphical displays of 

ey metrics, historical trends, and reference benchmarks and can 

e used to assist in tasks such as surgical planning, personalized 

reatment, and postoperative data analysis. 

Diagnostic analytics tools - why did it happen? Diagnostic an- 

lytics tools, on the other hand, explore the data, address the cor- 

elations and dependencies between variables, and focus on inter- 

reting the factors that contributed to a certain outcome through 

ata discovery and data mining. These tools can facilitate the un- 

erstanding of complex processes and reveal relationships between 

ariables, or find root causes. For example, clinicians can use data 

n postoperative care to assess the effectiveness of a treatment 

 Bowyer and Royse, 2016; Kehlet and Wilmore, 2008 ). 

Predictive and prescriptive analytics tools - What will hap- 

en? How can we make it happen? Predictive analytics uses his- 

orical data, performs an in-depth analysis of historical key trends 

nderlying patterns and correlations, and uses the insights gained 

o make predictions about what will likely happen next ( What 

ill happen? ). Prescriptive analytics complement predictive analyt- 

cs by offering insights into what actions can be taken to achieve 

arget outcomes ( How can we make it happen? ). ML can meet 

hese needs, but the challenges specific to surgery are manifold, 

s detailed in Maier-Hein et al. (2017) . Importantly, the preop- 

rative, intraoperative and postoperative data processed are po- 

entially highly heterogeneous, consisting of 2D/3D/4D imaging 

ata (e.g. diagnostic imaging data), video data (e.g. from medi- 

al devices or room cameras), time series data (e.g. from med- 

cal devices or microphones), and more (e.g. laboratory results, 

atient history, genome information). Furthermore, while the di- 

gnostic process follows a rather regular flow of data acquisi- 

ion, the surgical process varies significantly and is highly specific 

o patient and procedure. Finally, team dynamics play a crucial 

ole. In fact, several studies have demonstrated a correlation be- 

ween nontechnical skills, such as team communication, and tech- 

ical errors during surgery ( Hull et al., 2012 ). While first steps 

ave been taken to apply ML in open research problems with 

pplications ranging from decision support (e.g. determining sur- 

ical resectability ( Marcus et al., 2020 )) to data fusion for en- 

anced surgical vision (e.g. Akladios et al. (2020) ), and OR lo- 

istics (e.g. Twinanda et al. (2019) ; Bodenstedt et al. (2019b) ; 

ager et al. (2020) ), the vast majority of research has not yet made

t to clinical trial stages. Section 5.4 highlights several challenges 

hat need to be addressed in order to effectively adopt ML as an 

ntegral part of surgical routine. 

.2. Key initiatives and achievements 

This section reviews some key initiatives and achievements 

rom both an industrial and an academic perspective. 

Industry initiatives: Commercial platforms and projects have 

onventionally focused on analysing multidimensional patient data 

or clinical decision-making - primarily outside the field of surgery. 

he most widely discussed initiative so far is probably IBM®

atson 

TM Health® (International Business Machines Corporation 

IBM), Armonk, NY, USA), which initiated several projects such 

s Watson Medical Sieve, Watson For Oncology or Watson Clini- 

al Matching that apply the Watson cognitive computing technol- 

gy to different challenges in healthcare ( Chen et al., 2016 ). The 

oal of Watson Medical Sieve , for example, is to filter relevant in- 

ormation from patient records consisting of multimodal data to 
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ssist clinical decision making in radiology and cardiology. Wat- 

on Clinical Matching finds clinical studies that match the condi- 

ions of individual patients. With its vast capability to reach pa- 

ient records and medical literature, Watson was believed to be 

he future of medicine. However, after it was put to use in the 

eal world, it quickly became clear that the powerful technology 

as its limitations, as reported by Strickland: It performed poorly 

n India for breast cancer, where only 73% of the treatment recom- 

endations were in concordance with the experts. Another criti- 

al example is the Watson-powered Oncology Expert Advisor which 

ad only around 65% accuracy in extracting time-dependent in- 

ormation like therapy timelines from text documents in medical 

ecords ( Strickland, 2019 ). Despite its limitations, Watson Health 

as shown to be efficient in certain, narrow and controlled appli- 

ations. For example, Watson for Genomics is used by genetics labs 

hat generate reports for practicing oncologists. Given the informa- 

ion on a patient’s genetic mutations, it can generate a report that 

escribes all relevant drugs and clinical trials ( Strickland, 2019 ). 

ther companies, societies and initiatives, such as Google (Moun- 

ain View, CA, USA) DeepMind Health ( Graves et al., 2016; Tomašev 

t al., 2019 ), Intel (Santa Clara, CA, USA) ( Healthcare IT News, 2012 )

nd the American Society of Clinical Oncology (ASCO) CancerLinQ®

 Sledge et al., 2013 ) have also been focusing on clinical data, and

ndustrial success stories in surgery at scale are still lacking, as de- 

ailed in Section 6 . 

Academic initiatives: In academia, interdisciplinary collabora- 

ive large-scale research projects have developed data analytics 

ools to address different aspects of SDS. The Transregional Col- 

aborative Research Center “Cognition Guided Surgery” focused on 

he development of a technical-cognitive assistance system for sur- 

eons that explores new methods for knowledge-based decision 

upport for surgery ( März et al., 2015 ) as well as intraoperative 

ssistance ( Kati ́c et al., 2016b ). First steps toward the operating 

oom of the future have recently been taken, focusing on differ- 

nt aspects like advanced imaging and robotics, multidimensional 

ata modelling, acquisition and interpretation, as well as novel 

uman-machine interfaces for a wide range of surgical and inter- 

entional applications (e.g. Brigham and Women’s Hospital (BWH) , 

omputer-Integrated Surgical Systems and Technology (CISST) En- 

ineering Research Center, Hamlyn Centre , University College Lon- 

on (UCL) , Innovation Center Computer Assisted Surgery (IC- 

AS) , IHU Strasbourg , National Center for Tumor Diseases Dres- 

en (NCT/UCC) and National Center for Tumor Diseases Heidel- 

erg ). 

Broadly speaking, much of the academic work in SDS is cur- 

ently focusing on the application of ML methods in various con- 

exts ( Navarrete-Welton and Hashimoto, 2020; Zhou et al., 2019b; 

lapatt et al., 2020 ), but clinical impact remains to be demon- 

trated (see Section 6 ). 

.3. Standards, platforms and tools 

A broad range of software tools are used by the SDS commu- 

ity each day, reflecting the interdisciplinary nature of the field. 

epending on the SDS application, tools may be required from 

he following technical disciplines that intersect with SDS: classi- 

al statistics, general ML, deep learning, data visualization, medical 

mage processing, registration and visualization, computer vision, 

atural language processing (NLP), signal processing, surgery sim- 

lation, surgery navigation and augmented reality (AR), robotics, 

I and software engineering. Many established and emerging soft- 

are tools exist within each discipline and a comprehensive list 

ould be vast and continually growing. In Table B.3 , we have listed 

oftware tools that are commonly used by SDS practitioners to- 

ay, organized by the technical disciplines mentioned above. In 
15 
his section, we focus on ML frameworks and the regulatory as- 

ects of software development for SDS. 

ML frameworks and model standards: ML is today one of the 

entral themes of SDS analytics, and many frameworks are used by 

he SDS community. The scikit-learn library in Python is the most 

idely used framework for ML-based classification, regression and 

lustering using non-DL models such as Support Vector Machines 

SVMs), decision trees and multi-layer perceptron (MLPs). DL, the 

ub-field of ML that uses Artificial Neural Networks (ANNs) with 

any hidden layers, has exploded over the past 5 years, also 

ue to the mature DL frameworks. The dominating open-source 

rameworks today are TensorFlow by Google and PyTorch by Face- 

ook (Menlo Park, CA, USA). These provide mechanisms to con- 

truct, train and test ANNs with comprehensive and ever-growing 

PIs and they are backed up by large industrial investment and 

ommunity involvement. Other important, but less widely used 

rameworks include Caffe, Caffe2 (now a part of PyTorch), Apache 

XNet, Flux, Chainer , MATLAB’s Deep Learning Toolbox and Mi- 

rosoft’s CNTK . Wrapper libraries have been constructed on top of 

everal frameworks with higher level APIs that simplify DL model 

esign and promote reusable components. These include Tensor- 

low’s Keras (now native to TensorFlow), TensorLayer, TFLearn, fas- 

ai and NiftyNet (specifically for medical image data), and Py- 

orch’s TorchVision ( Nguyen et al., 2019 ). Other useful tools in- 

lude training progress visualization with Tensorboard, and Au- 

oML systems for efficient automatic hyperparameter and model 

rchitecture search, such as Hae2O, auto-sklearn, AutoKeras and 

oogle Cloud AutoML . NVIDIA DIGITS takes framework abstraction 

 step further with a web application to train DL models for image 

lassification, segmentation and object detection, and a graphical 

ser interface (GUI) suitable for non-programmers. Such tools are 

elevant in SDS where clinical researchers can increasingly train 

tandard DL models without any programming or ML experience 

 Faes et al., 2019 ). On the one hand this is beneficial for tech-

ology democratization, but on the other hand it elevates known 

isks of treating ML and DL systems as “black boxes” ( PHG Founda- 

ion, 2020 ). Recently NVIDIA has released NVIDIA Clara , a software 

nfrastructure to develop DL models specifically for healthcare ap- 

lications with large-scale collaboration and federated learning. 

Each major framework has its own format for representing 

nd storing ML models and associated computation graphs. There 

re now effort s to st andardize f ormat s to improve interoperabil- 

ty, model sharing, and to reduce framework lock-in. Examples in- 

lude the Neural Network Exchange Format (NNEF), developed by 

he Khronos Group with participation from over 30 industrial part- 

ers, Open Neural Network Exchange (ONNX) and Apple’s (Cuper- 

ino, CA, USA) Core ML for sharing models, and for sharing source 

ode to train and test these models. GitHub is undeniably the most 

mportant sharing platform, used extensively by SDS practitioners, 

hich greatly helps to promote research code reusability and re- 

roducibility. “Model Zoos” (e.g. Model Zoo, ONNX Model Zoo ) are 

lso essential online tools to allow easy discovery and curation of 

any of the landmark models from research literature. 

Regulatory software standards: The usual research and devel- 

pment pipeline for an SDS software involves software developed 

t various stages including data collection and curation, model 

raining, model testing, application deployment, distribution, moni- 

oring, model improvement, and finally a medically approved prod- 

ct. For the classification as a medical product, the intended pur- 

ose by the manufacturer is more decisive than the functions of 

he software. Software is a “medical device software” (or “software 

s a medical device” (SaMD)) if “intended to be used, alone or 

n combination, for a purpose as specified in the definition of a 

edical device in the medical devices regulation or in vitro diag- 

ostic medical devices regulation” ( MDCG 2019-11 ), i.e. if intended 

o diagnose, treat or monitor diseases and injuries. The manufac- 
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urer of an SDS software application as SaMD needs to ensure that 

he safety of the product is systematically guaranteed, prove that 

hey have sufficient competencies to ensure the relevant safety and 

erformance of the product according to the state of the art (and 

eep evidence for development, risk management, data manage- 

ent, verification and validation, postmarket surveillance and vigi- 

ance, service, installation, decommissioning, customer communi- 

ation, monitoring applicable new or revised regulatory require- 

ents). 

Yet, ML-based software requires particular considerations 

 Gerke et al., 2020 ). For example, the fact that models can be im-

roved over time with more training data (often called the “vir- 

uous cycle”) is not well handled by these established standards. 

n 2019, the FDA published a “Proposed Regulatory Framework for 

odifications to Artificial Intelligence/Machine Learning (AI/ML)- 

ased Software as a Medical Device (SaMD)”, specifically aimed 

o clarify this subject ( FDA, 2019 ). In contrast to the previously 

locked” algorithms and models, this framework formulates re- 

uirements on using Continuous Learning Systems (CLS) and de- 

nes a premarket submission to the FDA when the AI/ML software 

odification significantly affects device performance, or safety and 

ffectiveness; the modification is to the device’s intended use; or 

he modification introduces a major change to the SaMD algorithm. 

he implementation of these requirements, especially with regard 

o the actual product development, is an unsolved problem. 

.4. Current challenges and next steps 

The data analytics-related mission as well as corresponding 

oals generated by the consortium are provided in Table 4 . This 

ection elaborates on the most important research questions from 

 ML methodological perspective: 

How to ensure robustness and generalization? (goal 3.1) 

odels trained on the data from one clinical site may not neces- 

arily generalize well to others due to variability in devices, indi- 

idual practices of the surgical team or the patient demographic. 

hile data augmentation ( Itzkovich et al., 2019 ) can address this 

ssue to some extent, an alternative promising approach is to de- 

elop architectures designed to generalize across domains. Early 

pproaches focused on domain adaptation ( Heimann et al., 2013; 

irkert et al., 2017 ) or more generically transfer learning ( Pan and 

ang, 2010 ) to compensate for domain shifts in the data. Other at- 

empts have focused on converting data into a domain-invariant 

epresentation and on decoupling generic task-relevant features 

rom domain-specific ones ( Dai et al., 2017; Mitchell, 2019; Sabour 

t al., 2017; Sarikaya and Jannin, 2020 ). Generally speaking, how- 

ver, ML methods trained in a specific setting (e.g. hospital) still 

end to fail to generalize to new settings. 

How to improve transparency and explainability? (goal 3.2) 

he WHO document on Ethics & Governance of Artificial Intelli- 

ence for Health ( WHO, 2021 ) (see Section 3 ) states that “AI tech-

ologies should be intelligible [...] to developers, medical profes- 

ionals, patients, users and regulators” and that “two broad ap- 

roaches to intelligibility are to improve the transparency of AI 

echnology and to make AI technology explainable”. In this con- 

ext, transparency also relates to the requirement that “sufficient 

nformation be published or documented before the design or de- 

loyment of an AI technology and that such information facilitate 

eaningful public consultation and debate on how the technol- 

gy is designed and how it should or should not be used”. Ex- 

lainability stems from the urge to understand why an algorithm 

roduced a certain output. In fact, the complexity of neural net- 

ork architectures with typically millions of parameters poses a 

ifficulty for humans to understand how these models reach their 

onclusions ( Reyes et al., 2020 ). As a result, the EU’s GDPR, imple-

ented in 2018, also discourages the use of black-box approaches, 
16 
hus providing explicit motivation for the development of models 

hat provide human-interpretable information on how conclusions 

ere reached. Interpretable models are still in their infancies and 

re primarily studied by the ML community ( Adebayo et al., 2018; 

ach et al., 2015; Koh and Liang, 2017; Shrikumar et al., 2017 ). 

hese advances are being adopted within medical imaging com- 

unities in applications that are used to make a diagnosis (e.g. de- 

ecting/segmenting cancerous tissue, lesions on MRI data) ( Gallego- 

rtiz and Martel, 2016 ), and to generate reports that are on a par

ith human radiologists ( Gale et al., 2018 ), for example. Open re- 

earch questions are related to how to validate the explanation of 

he models (lack of ground truth) and how to best communicate 

he results to non-experts. A concept related to explainability is 

ausality. To date, it is generally unknown how a given intervention 

r change is likely to affect outcome, which is influenced by many 

actors even beyond the surgeon and the patient. Furthermore, ran- 

omized controlled trials (RCTs) to evaluate surgical interventions 

re difficult to perform ( McCulloch et al., 2002 ). Thus, it is hard to

rovide the same quality of evidence and understanding of surgery 

s, for example, for a drug treating a common non-life-threatening 

ondition ( Hager et al., 2020 ). While large-scale data may help re- 

eal relationships among many factors in surgery, correlation does 

ot equal causation. Recent work on causal analysis ( Peters et al., 

017; Schölkopf, 2019; Castro et al., 2020 ), however, may help in 

his regard. 

How to address data sparsity? (goal 3.3) One of the most cru- 

ial problems in SDS is the data sparsity (see Section 2 ), which 

s strongly linked to the lack of robustness and generalization ca- 

abilities of algorithms. Several complementary approaches have 

een proposed to address this bottleneck. These include crowd- 

ourcing ( Maier-Hein et al., 2014; 2015; Malpani et al., 2015; Heim 

t al., 2018; Albarqouni et al., 2016; Maier-Hein et al., 2016 ) and 

ynthetic data generation ( Pfeiffer et al., 2019; Ravasio et al., 2020; 

irkert et al., 2017; Rivoir et al., 2021 ) briefly mentioned above. 

nlabeled data can also be exploited by using self-supervised (see 

.g. ( Ross et al., 2018 )) and semi-supervised learning (see e.g. ( Yu

t al., 2019; Srivastav et al., 2020 )). Self-supervised methods solve 

n alternate, pretext or auxiliary task, the result of which is a 

odel or representation that can be used in the solution of the 

riginal problem. Semi-supervised methods can exploit the unla- 

eled data in many different ways. In ( Yu et al., 2019; Srivastav 

t al., 2020 ), for example, pseudo-annotations are generated on the 

nlabeled data using a teacher model, and the resulting pseudo- 

nnotated dataset is then used to train another (student) model. 

ecent studies have further shown that exploiting the relation- 

hip across different tasks with the concept of multi-task learning 

 Twinanda et al., 2017 ) may be used to address data sparsity as 

ell. It has been demonstrated to be beneficial to jointly reason 

cross multi-tasks ( Kokkinos, 2017; Long et al., 2017; Yao et al., 

012; Sarikaya et al., 2018 ) and take advantage of a combination of 

hared and task-specific representations ( Misra et al., 2016 ). How- 

ver, the performance of some tasks may also worsen through such 

 paradigm ( Kokkinos, 2017 ). A possible solution to this problem 

ight lie in the approach of attentive single-tasking ( Maninis et al., 

019 ). Finally, meta-learning ( Vanschoren, 2018; Godau and Maier- 

ein, 2021 ) and more generally lifelong learning ( Parisi et al., 2019 )

re further potential paradigms for addressing the problem of data 

parsity in the future. Progress in this field will, at any rate, cru- 

ially depend on the availability of more public multi-task data 

ets, such as described by Maier-Hein et al. (2021) . 

How to detect, represent and compensate for uncertainties 

nd biases? (goal 3.4) A common criticism of ML-based solutions 

s the way that they handle “anomalies”. If a measurement is out- 

f-distribution (ood; i.e. it does not resemble the training data), 

he algorithm cannot make a meaningful inference, and the prob- 

bility of failure (error) is high. This type of epistemic uncertainty 
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 Kendall and Gal, 2017 ) is particularly crucial in medicine as not 

ll anomalies/pathologies can be known beforehand. As a result, 

urrent work is dedicated to this challenge of anomaly/novelty/ood 

etection ( Adler et al., 2019 ). Even if a sample is in the support

f the training distribution, a problem may not be uniquely solv- 

ble ( Ardizzone et al., 2018 ) or the solution may be associated with

igh uncertainty. Further research has therefore been directed at 

stimating and representing the certainty of AI algorithms ( Adler 

t al., 2019; Nölke et al., 2021 ). Future work should focus on mak-

ng use of the uncertainty estimates in clinical applications and 

ncreasing the reliability of ood methods, as well as systemati- 

ally understanding and addressing the issue of biases and con- 

ounders (see Section 4.4 ). In this context the increased involve- 

ent of statisticians and experts from clinical epidemiology, such 

s in the biomedical image analysis initiative ( Maier-Hein et al., 

020; Roß et al., 2021a ), would be desirable. Adopting the ne- 

essity of reporting data biases and confounders in publications 

hould be a natural progression for the field of SDS. 

How to address data heterogeneity and complexity? (goal 

.5) The surgeons and surgical team dynamics play a significant 

ole in intraoperative care. While the main surgeon has the lead 

nd makes decisions based on domain knowledge, experience and 

kills, anesthesiologists, assistant surgeons, nurses and further staff

lay crucial roles at different steps of the workflow. Their smooth, 

ynamic collaboration and coordination is a crucial factor for the 

uccess of the overall process. Data analytics can play a key role 

n quantifying these intangibles by modeling workflows and pro- 

esses. Surgeon skill evaluation, personalized and timely feedback 

uring surgical training, optimal surgeon and patient/case or sur- 

eon and surgical team matches are among the issues that can 

enefit from data analytics tools. Furthermore, data collected from 

ultiple sources such as vital signs from live monitoring devices, 

lectronic health records, patient demographics, or preoperative 

maging modalities require analysis approaches that can accom- 

odate their heterogeneity. Recent approaches in fusion of het- 

rogeneous information include the use of specialized frameworks 

uch as iFusion ( Guo et al., 2019 ). Other work has specifically 

ocused on handling incomplete heterogeneous data with Varia- 

ional Autoencoders (VAEs) ( Nazábal et al., 2020 ). Graph neural 

etworks ( Zhou et al., 2019a ) appear to be another particularly 

romising research direction in this regard. Here as well, how- 

ver, the lack of large amounts of annotated data is a limiting 

actor ( Raghu et al., 2019 ). Heterogeneity may also occur in la- 

els ( Joskowicz et al., 2019 ). This could potentially be addressed 

ith fuzzy output/references as well as with probabilistic methods 

apable of representing multiple plausible solutions in the output, 

s suggested by some early work on the topic ( Kohl et al., 2018;

dler et al., 2019; Trofimova et al., 2020 ). 

How to enable real-time assistance? (goal 3.6) Fast inference 

n an interventional setting relies on (1) an adequate hardware 

nd communication infrastructure (covered in Section 3 ) and on 

2) fast algorithms. The trade-off between algorithm and software 

ptimization should be finely balanced between the available edge 

ompute power and the latency requirements of the specific ap- 

lication. Moving high resolution video between devices or dis- 

lays inherently adds delays and should be minimized for dynamic 

ssistance applications or whether data inference links to control 

ystems. This means that edge compute solutions should carefully 

onsider the input to the display pipeline and the size of the infer- 

nce models that can be loaded into an edge processor. Where la- 

ency is less critical, cloud execution of AI models has already been 

hown to be viable in assistive systems (e.g. Cydar EV from Cydar 

edical (Cambridge, UK) for endovascular navigation, or CADDIE 

 CADDU from Odin Vision Ltd (London, UK) for AI assisted en- 

oscopy). Cloud computing for real-time assistance relies on good 

onnectivity to move data but offers the possibility of running po- 
17 
entially large inference models and returning results for assistance 

o the OR. Recent advances in the emerging research field of Tac- 

ile Internet with Human-in-the-Loop (TaHiL) ( Fitzek et al., 2021 ), 

hich involves intelligent telecommunication networks and secure 

omputing infrastructure is an enabling technology for real-time 

emote SDS application. To trigger progress in the field, specific 

linical applications requiring real-time support should be identi- 

ed and focused on. Dedicated benchmarking competitions in the 

ontext of these applications could further guide methodological 

evelopment. 

How to train and apply algorithms under regulatory con- 

traints? (goal 3.7) When an SDS data set contains personal med- 

cal data, an open challenge lies in how to perform data analyt- 

cs and train ML models without sensitive information being ex- 

osed in the results or models. A general solution that is gain- 

ng increasing traction in ML is differential privacy ( Dwork et al., 

006 ). This offers a strong protection mechanism against linkage, 

e-anonymization and data reconstruction attacks, with rigorous 

rivacy guarantees from cryptography theory. A limitation of dif- 

erential privacy can be seen in the resulting compromise in terms 

f model accuracy, which may conflict with accuracy targets. Dif- 

erential privacy may ultimately be mandatory for federated learn- 

ng ( Li et al., 2019 ) and publicly releasing SDS models built from 

ersonal medical data. Since patients have the right to delete 

heir data, privacy questions also arise regarding models that were 

rained on their data. In addition, it might be an attractive business 

odel for companies to sell their annotated data or make them 

ublicly available for research purposes. This requires methods to 

etect whether specific data has been used to train models, e.g. 

sing concepts of “radioactive data” ( Sablayrolles et al., 2020 ), or 

ethods that detect whether a model has forgotten specific data 

 Liu and Tsaftaris, 2020 ). A complementary approach to preserv- 

ng privacy is to work with a different representation of the data. 

or example, Twinanda et al. (2015); Sharghi et al. (2020) eval- 

ate the use of depth images rather than RGB images to rec- 

gnize human activity in the hospital, while Chou et al. (2018) ; 

rivastav et al. (2019) perform the analysis on low-resolution im- 

ges. 

How to ensure meaningful validation and evaluation? (all 

oals) Validation - defined as the demonstration that a system 

oes what it has been designed to do - as well as evaluation - 

efined as the demonstration of the short-, mid- and long-term 

dded values of the system - are crucial for the development of 

DS solutions. The problem with the assessment of ML methods 

oday is that models trained on a particular data set are evalu- 

ted on new data taken from the same distribution as the train- 

ng data. Although recent efforts have been made in healthcare 

 McKinney et al., 2020 ) to include test data from different clin- 

cal sites, these still remain limited. This situation poses a chal- 

enge particularly for healthcare applications, as real-world test 

ata, after the model is deployed for clinical use, will typically 

ot have ground-truth annotation, making its assessment difficult 

 Castro et al., 2020 ). A recent example of this is Google Health’s

eep learning system that predicts whether a person might be 

t risk for diabetic retinopathy. In this case, after its deployment 

t clinics in rural Thailand, despite having high theoretical accu- 

acy, the tool was reported to be impractical in real-world testing 

 TechCrunch, 2020 ). In the future, evaluation of methods should 

e performed increasingly in multi-center settings and incorporate 

he important aspects of robustness to domain shifts, data imbal- 

nce and bias. Global initiatives such as MLCommons and its Med- 

cal Working Group will play a central role in designing bench- 

arks and propose best practices in this regard. Furthermore, 

atching performance metrics to the clinical goals should be more 

arefully considered, as illustrated in recent work ( Reinke et al., 

021 ). Finally, specific technical aspects (e.g. explainability, gener- 



L. Maier-Hein, M. Eisenmann, D. Sarikaya et al. Medical Image Analysis 76 (2022) 102306 

a

c

q

e

6

b

p

s

t

c

s

t

l

t

t

u

e

a

6

l

p

b

c

p

b

S

t

t

s

c

h

t

t

t

i

A

s

o

r

i

q

i

t

d

W

q

a

p

a

(

p

r

n

s

l

o  

i

i

m

t

m

6

p

i

a

s

v

s

t

(

s

h

t

e

h

m

i

r

i

e

p

(

i  

b

a

p

h

(

c

s

C  

s

b

z

s

c

t

a

A

b

m

a

r

s

t

o

m

a

i

i

p

c

m

d

c

s

lization) should be comparatively benchmarked with international 

hallenges and covered at dedicated workshops. In this context, ac- 

uiring dedicated sponsor money for annotations could help gen- 

rate more high-quality public data sets. 

. Clinical translation 

The process of clinical translation from bench to bedside has 

een described as a valley of death, not only for surgical (software) 

roducts, but biomedical research in general ( Butler, 2008 ). In this 

ection, we will begin by describing current practice and key ini- 

iatives in clinical translation of SDS. We elaborate on the con- 

ept of “low-hanging fruit” that may be reached in a comparatively 

traightforward manner through collaboration of surgeon scien- 

ists, computer scientists and industry leaders. Finally, we will out- 

ine current challenges and next steps for those low-hanging fruit 

o cross the valley of death, rendering SDS applications from op- 

ional translational research projects to key elements of the prod- 

ct portfolio for modern OR vendors, which in turn will increase 

ngagement on the part of researchers, industry, funding agencies 

nd regulatory bodies alike. 

.1. Current practice 

Clinical translation of products developed through SDS is regu- 

ated under existing rules and guidelines. Ultimately, systems or 

roducts using SDS components must be able to provide value 

efore, during or after surgery or interventions. Validating such 

apabilities requires prospective clinical trials in real treatment 

ractices, which require ethics and safety approval by relevant 

odies as well as adherence to software standards described in 

ection 5.4 . System documentation and reliability is critical to pass 

hrough such approval procedures, which can however also excep- 

ionally be obtained for research purposes without proof of code 

tability. 

From a clinical research perspective, meta-analyses of RCTs are 

onsidered the gold standard. However, the field of surgery ex- 

ibits a notable lack of high-quality clinical studies as compared 

o other medical disciplines ( McCulloch et al., 2002 ). While long- 

erm clinical studies are a common prerequisite for clinical transla- 

ion, despite intense research, the number of existing clinical stud- 

es in AI-based medicine is extremely low ( Nagendran et al., 2020 ). 

s a result, most current clinical studies in the field are based on 

elected data that are retrospectively analyzed, leading to a lack 

f high quality evidence that in turn hampers clinical progress. A 

ecent scoping review on AI-based intraoperative decision support 

n particular named the small size, single-center provenance and 

uestionable representability of the data sets, the lack of account- 

ng for variability among human comparators, the lack of quan- 

itative error analysis, and a failure to segregate training and test 

ata sets as the prevalent methodological shortcomings ( Navarrete- 

elton and Hashimoto, 2020 ). 

Despite these shortcomings, it should be noted that not all 

uestions that arise in the process of clinical translation of an 

lgorithm necessarily need to be addressed by RCTs. For exam- 

le, a recent DL algorithm to diagnose diabetic retinopathy was 

pproved by the FDA based on a pivotal cross-sectional study 

 Abràmoff et al., 2018 ). Translational research on SDS products for 

rognosis also leverages existing methodology on prospective and 

etrospective cohort studies for the purposes of internal and exter- 

al validation. 

Generally speaking, the field of SDS still faces several domain- 

pecific impediments. For instance, digitalization has not perco- 

ated the OR and the surgical community in the same way as 

ther areas of medicine ( Wilhelm et al., 2020 ). A lack of standard-

zation of surgical procedures hampers the creation of standard- 
18 
zed annotation protocols, an important prerequisite for large-scale 

ulti-center studies. Pioneering clinical success stories are impor- 

ant motivators to help set in motion a virtuous circle of advance- 

ent in the OR and beyond. 

.2. Key initiatives and achievements 

The following section will provide an overview of existing SDS 

roducts and clinical studies in SDS. 

SDS products: Over the past few years, modest success in clin- 

cal translation and approval of SDS products has been achieved, 

s summarized in Table 5 . This predominantly includes decision 

upport in endoscopic imaging. Endoscopic AI (AI Medical Ser- 

ice, Tokyo, Japan) and GI Genius TM (Medtronic, Dublin, Ireland) 

upport gastroenterologists in the detection of cancerous lesions, 

he former albeit struggling with a low positive predictive value 

 Hirasawa et al., 2018 ). Other successful applications include OR 

afety algorithms or computer vision-based data extraction. 

Translational progress in academia: While most of the work 

as focused on preoperative decision support, here, we place a par- 

icular focus on intraoperative assistance. Table 6 shows several ex- 

mplary studies in academia that illustrate how far SDS products 

ave been translated to clinical practice in this regard. 

Intraoperative assistance: A recent review on AI for surgery 

ainly found studies that use ML to improve intraoperative imag- 

ng such as hyperspectral imaging or optical coherence tomog- 

aphy ( Navarrete-Welton and Hashimoto, 2020 ). Further notable 

ntraoperative decision support effort s have focused on hypox- 

mia prevention ( Lundberg et al., 2018 ), sensor monitoring to sup- 

ort anesthesiologists with proper blood pressure management 

 Wijnberge et al., 2020 ) and intelligent spinal cord monitoring dur- 

ng spinal surgery ( Fan et al., 2016 ). A number of models have

een developed to promote safety in laparoscopic cholecystectomy, 

 very common and standardized minimally invasive abdominal 

rocedure. For instance, a model for bounding box detection of 

epatocystic anatomy was recently tested in the operating room 

 Tokuyasu et al., 2021 ). Another example of SDS for safe chole- 

ystectomy is DeepCVS, a neural network trained to semantically 

egment hepatocystic anatomy and assess the criteria defining the 

VS ( Mascagni et al., 2020b ). A recent study based on 290 laparo-

copic cholecystectomy videos from 37 countries showed that DL- 

ased image analysis may be able to identify safe and dangerous 

ones of dissection ( Madani et al., 2021 ). Finally, a cross-sectional 

tudy using DL algorithms developed on videos of the surgi- 

al field from more than 10 0 0 cholecystectomy procedures from 

wo institutions showed an association between disease severity 

nd surgeons’ ability to verify the CVS ( Korndorffer et al., 2020 ). 

nother example of intraoperative decision support is a study 

y Harangi et al. (2017) , who developed a neural network-based 

ethod to classify a structure specified by a surgeon (by drawing 

 line in the image) into the uterine artery or ureter. The authors 

eported a high accuracy, but the study was a cross-sectional de- 

ign with a convenience sample. In fact, convenience samples are 

he norm in most existing studies in SDS addressing recognition of 

bjects or anatomical structures in the surgical field. This sampling 

echanism makes the findings susceptible to selection bias, which 

ffects generalizability or external validation of the methods. 

Perioperative decision support and prediction: A selection of stud- 

es on perioperative assistance can be found in Appendix D . One 

mportant application of academic SDS is clinical decision sup- 

ort systems (CDSS) that integrate various information sources and 

ompute a recommendation for surgeons about the optimal treat- 

ent option for a certain patient. Many of these CDSS are pre- 

iction systems that integrate into a mathematical model clini- 

al, radiological and pathological attributes collected in a routine 

etting and weigh these parameters automatically to achieve a 
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Table 5 

Selection of SDS products with machine learning (ML)-based components as of October 2020. 

Manufacturer Product Purpose SDS functionality Approval 

Decision Support 

AI Medical Service, Inc. (Tokyo, Japan) Endoscopic AI Early detection of 

gastrointestinal 

cancers 

Data-driven detection of cancer 

lesions in endoscopic videos 

FDA: Breakthrough 

Device Designation 

Europe: none 

Medtronic plc (Dublin, Ireland) GI Genius TM Early detection of 

colorectal cancer 

Data-driven anomaly detection in 

colonoscopy videos 

FDA: none Europe: 

none 

Gauss Surgical, Inc. (Menlo Park, CA, US) Triton TM Improvement of 

safety in the 

operating room 

Data-driven obstetric hemorrhage 

quantification through scans of 

sponges and canisters and sponge 

counting through scans of surgical 

field or counter bags 

FDA: De Novo and 

510(k) Europe: CE 

mark 

Surgical Education 

Theator, Inc. (San Mateo, CA, US) Surgical 

Intelligence 

Platform 

Surgical training Computer vision-based key moment 

extraction and annotation on surgical 

videos and video-based training 

FDA: none Europe: 

none 

Table 6 

Selection of SDS clinical studies. Searches were performed in June 2021 using [machine learning] AND [surgery] or [deep learning] AND [surgery] or [artificial 

intelligence] AND [surgery] or [decision support] AND [surgery] or [surgical data science] AND [clinical] in PubMed and Google. Search results were manually 

evaluated and all studies that analyzed an intraoperative SDS system with a machine learning (ML)-based component were included. 

Publication Subject Type of study Study size (# patients) 

Fan et al. (2016) ML-based intraoperative somatosensory evoked potential 

monitoring based on somatosensory evoked potential 

measurements 

Cross-sectional 10 

Harangi et al. (2017) ML-based classification of uterine artery and the ureter based on 

video images from gynecologic surgery 

Cross-sectional 35 

Korndorffer et al. (2020) ML-based detection of intraoperative events of interest and case 

severity based on laparoscopic cholecystectomy videos 

Cross-sectional n/a (1,051 videos) 

Lundberg et al. (2018) Explainable ML-based predictions for the prevention of 

hypoxemia during surgery based on minute-by-minute data from 

electronic health records 

Prospective cohort n/a (53,126 procedures) 

Madani et al. (2021) ML-based segmentation of safe and dangerous zones of 

dissection based on laparoscopic cholecystectomy videos 

Cross-sectional n/a (290 videos) 

Mascagni et al. (2020b) ML-based segmentation of anatomy and assessment of CVS 

criteria based on laparoscopic cholecystectomy videos 

Cross-sectional n/a (201 videos) 

Tokuyasu et al. (2021) ML-based bounding box detection of hepatocystic anatomy on 

laparoscopic cholecystectomy videos 

Cross-sectional 1 (99 videos) 

Wijnberge et al. (2020) ML-based early warning system for intraoperative hypotension 

based on continuous invasive blood pressure monitoring 

Randomized controlled trial 68 
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ovel risk stratification ( Shur et al., 2020 ). Trained with a specif- 

cally selected subpopulation of patients, these prediction systems 

ay help improve current classification systems in guiding surgi- 

al decisions ( Tsilimigras et al., 2020 ). Relevant information like 

verall- and recurrence-free survival ( Schoenberg et al., 2020 ) or 

he likelihood of intra- and postoperative adverse events to occur 

 Bhandari et al., 2020 ) can be assessed and obtained quickly via 

nline applications such as the pancreascalculator.com ( van Roes- 

el et al., 2020 ). In contrast to these score-based prediction sys- 

ems, ML-based systems are more flexible. The most prominent 

L-based system, IBM’s Watson for Oncology, is based on NLP and 

terative features and demonstrated good accordance with treat- 

ents selected by a multidisciplinary tumor board in hospitals in 

ndia ( Somashekhar et al., 2018 ) and South Korea ( Lee et al., 2018 ).

eaknesses of this system include the necessity of skilled oncol- 

gists to operate the program, low generalizability to different re- 

ions, and the fact that not all subtypes of a specific cancer can be

rocessed ( Yao et al., 2020; Strickland, 2019 ). 

Another important application besides decision support is pre- 

iction of adverse events. A widely discussed work showed 

hat DL may predict kidney failure up to 48 hours in advance 

 Tomašev et al., 2019 ). In the intensive care unit (ICU), where 

urgeons face enormous quantities of clinical measurements from 

ultiple sources, such as monitoring systems, laboratory values, 

iagnostic imaging and microbiology results, data-driven algo- 

ithms have demonstrated the ability to predict circulatory failure 

 Hyland et al., 2020 ). 
19 
Table E.1 provides an overview of currently registered SDS clin- 

cal studies. While most aim for evaluation of specific applications, 

 number of ongoing clinical trials focus on data collection for the 

riginal development of future CDSS or other SDS applications. 

.3. Low-hanging fruit 

In light of the lack of a critical number of clinical success sto- 

ies, a viable approach to clinical translation initially should fo- 

us on “low-hanging fruit”. We believe the following criteria influ- 

nce the likelihood of successful translation of an SDS application: 

igh patient safety, technical feasibility - especially regarding data 

eeds and performance requirements - easy workflow integration, 

igh clinical value and high business value to encourage industry 

doption. Low-hanging fruit typically also avoid being classified as 

 high-risk medical product, thereby reducing regulatory demands 

nd development barriers. However, it is difficult to satisfy all of 

hese often conflicting criteria simultaneously. For example, appli- 

ations of significant clinical value such as real-time decision sup- 

ort are highly technically challenging. By contrast, low-level video 

rocessing applications such as uninformative frame detection are 

echnically simple but of limited clinical value. SDS applications 

hat are low-hanging fruit are ones that offer a good balance be- 

ween most or all of these criteria. 

An example for a low-risk medical device in the broader scope 

f SDS is the aforementioned GI Genius that uses AI for real-time 

etection and localization of polyps during colonoscopy, support- 
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Table 7 

Mission statement corresponding to clinical translation ( Sec. 6 ) along with corre- 

sponding goals. The distribution of priorities (from left to right: not a priority, low 

priority, medium priority, high priority, essential priority) as rated by the partici- 

pants of the Delphi process is depicted for each goal. 
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ng the examination but not replacing the clinical decision making 

nd diagnostics by clinicians. Considering the low risk to patients, 

I Genius is classified as a Class II medical device (with special 

ontrols) by the FDA ( FDA, 2021b ). 

Different types and opportunities: In surgery, a framework 

hat may help determine the next steps for low-hanging fruit is the 

igital technology framework that categorizes data-centric product 

nnovations in descriptive, diagnostic, predictive and prescriptive , as 

etailed in Section 5 . Currently, the overwhelming focus for SDS 

esearchers is in the prescriptive technology area - for example 
20 
n tools that provide surgical decision support or predict adverse 

vents. Changing the development lens from prescriptive to de- 

criptive SDS applications, however, may open up entirely new av- 

nues. For instance, a low-hanging fruit may lie in a descriptive 

ecision support tool that informs surgeons on how many sur- 

eons performed certain steps within an intervention and the con- 

equences. Such a data-centric SDS product would not require em- 

edded surgical expertise in order to provide value to the surgeon, 

ut only a database of surgical videos and automated recognition 

f anatomical structures and surgical instruments, which is techni- 

ally feasible. In essence, instead of the very difficult automation 

f surgical decisions, value can be found in providing surgeons and 

urgical teams with moment-to-moment risk stratification data to 

acilitate their decisions. An additional benefit of this approach is 

hat it can be combined with real-time data acquisition regard- 

ng how surgeons interact with the risk stratification data, which 

ould greatly facilitate the development of both predictive and 

rescriptive decision support tools. 

Importantly, presenting statistical data and evidence-based risk 

tratification information to the surgeon would also have a differ- 

nt regulatory path than a prescriptive SDS product that offers sur- 

ical decisions based on an AI database grounded in surgical deci- 

ion making. The data-focused product leaves the surgeon fully re- 

ponsible, while the decision based product makes it questionable 

ho is fully responsible if the surgeon followed an AI-based de- 

ision and there was a poor outcome. Another benefit of focusing 

n descriptive technologies is there is a much smaller technology 

doption hurdle for the surgeon when faced with trusting descrip- 

ive statistics compared to an AI-based prescriptive decision sup- 

ort tool. 

An ML-based descriptive low-hanging fruit could be data-driven 

urgical reporting and documentation. Surgical procedures are cur- 

ently documented as one to two pages of text. While a six to eight 

our video will not serve as a report in itself, SDS may help ex- 

ract relevant information from this video by automatically docu- 

enting important steps in the procedure. Here, computer vision 

lgorithms for recognition of surgical phases and instruments may 

e used to extract metainformation from videos ( Mascagni et al., 

021b ). 

An ML-based predictive low-hanging fruit could lie in the op- 

imization of OR logistics. Prediction of procedure time either pre- 

peratively or utilizing intraoperative sensor data may not improve 

atient outcome, but could provide value to hospital managers if 

t helps cut down costs in the OR by optimizing patient volume 

 Aksamentov et al., 2017; Bodenstedt et al., 2019b; Twinanda et al., 

019 ). This, too, harbors low risk for patients and has a low bar- 

ier for market entry. Furthermore, the reference information, i.e., 

ime between incision and suture, is already documented in most 

ospitals and no laborious annotation by surgical experts is neces- 

ary to train the respective ML algorithms. Since OR management 

ools already exist, SDS applications could even yield success sto- 

ies within existing tools without having to establish entirely new 

oftware tools. Improvements in patient safety may already result 

rom a simple tool that combines SDS algorithms for object recog- 

ition in laparoscopic video (e.g. gauze, specimen bag or suture 

eedle) with a warning for surgeons and scrub nurses if these ob- 

ects are introduced into the patient’s abdomen but not removed 

fterwards. Since such an SDS application warns clinical staff but 

oes not perform an action on the patient itself, the risk for the 

atient is inherently low. Here, a combination of surgical knowl- 

dge (which objects are at what time introduced into the patient’s 

ody?) with SDS algorithms (which objects can robustly be de- 

ected?) and an unobtrusive user interface with a low false alarm 

ate may result in a low-hanging fruit. Along these lines, automa- 

ion of the surgical checklist ( Conley et al., 2011 ) would be a tech-

ically feasible SDS application with high clinical value. 
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Surgical robotics as catalyst: The impending success of next- 

eneration surgical robotics in the OR may bring further opportu- 

ities to the clinical translation of SDS. The da Vinci® surgical sys- 

em (Intuitive Surgical Inc., Sunnyvale, CA, USA) and its upcoming 

ompetitors lay the foundation for systematic data capture as well 

s surgical guidance by information augmentation in the OR. A rel- 

tively low-hanging fruit with benefit to the surgeon in the domain 

f surgical robotics may be an automated camera guidance system, 

s suggested by Wagner et al. ( Wagner et al., 2021 ). On the one

and, the risk of poor camera positioning for the patient is low 

ompared to that of invasive tasks such as suturing. On the other 

and, correcting the camera position is currently a highly disrup- 

ive task to the surgeon. The first products for autonomous endo- 

copic camera control are now emerging in robotic surgery, such as 

he FDA-approved system from TransEnterix (Morrisville, NC, USA). 

.4. Current challenges and next steps 

As highlighted in several previous publications ( Maier-Hein 

t al., 2017; 2018a; Hager et al., 2020 ), clinical applications for SDS 

re manifold, ranging from pre- and intraoperative decision sup- 

ort to context-aware assistance and surgical skills training. The 

linical translation-related goals generated by the consortium as 

art of the Delphi process are provided in Table 7 . The following 

spects deserve particular attention: 

How to catalyze clinical translation of SDS? (goals 4.1/4.2) 

linical data is recognized as “the resource most central to health- 

are progress” ( Institute of Medicine (USA) Roundtable on Value & 

cience-Driven Health Care, 2010 ). What is needed is thus a cul- 

ural shift toward data acquisition, annotation and analysis within 

 well-defined data governance framework as a primary clinical 

ask ( August et al., 2021 ). The allocation of economic, infrastruc- 

ural and personnel resources within hospitals for this appears as 

 non-negotiable requirement for the purpose. The need for cre- 

ting value from large amounts of representative data, both for 

e novo development/validation and external validation studies, 

urther necessitates multi-institutional collaborations. Researchers 

n other domains have achieved such collaborations, for example 

n genomics and bioinformatics; SDS would benefit from adopt- 

ng relevant aspects of these domains’ research cultures. In ad- 

ition, enabling explicit academic recognition for developing rig- 

rously annotated data sets can facilitate data resources for re- 

earch in SDS, as discussed in Section 4 . Paving the way for short-

erm clinical success stories as well as long-term clinical transla- 

ion further requires SDS applications to be integrated into clin- 

cal workflows. In fact, the sparsity of studies on SDS solutions 

or intraoperative care illustrate the challenge of conducting multi- 

isciplinary research while prioritizing the patient. Therefore, re- 

earch on SDS products should consider the impact on workflow 

arly in product development and closely engage relevant stake- 

olders (see Table 1 ). Impactful success stories could then be gen- 

rated by focusing on low-hanging fruit presented in the previous 

ection. These, in turn, would contribute to building public trust in 

DS and boost public enthusiasm to spark patient demand. 

How to improve knowledge transfer among different stake- 

olders? (goal 4.3) The creation of interdisciplinary networks in- 

olving the different stakeholders and the regular organization of 

DS events in conjunction with both technical and medical confer- 

nces is key to improving knowledge transfer between the groups. 

uch events should, in part, be dedicated to specific questions, 

uch as annotation guidelines, data structures or good practices 

ith respect to external validation. As a means for actively dissem- 

nating, discussing, and promoting new insights in the field of SDS, 

 well-curated community web platform should be established as 

he central information hub. One could even go further and offer 

.g. a prize for clinical trials demonstrating SDS success. A good 
21 
eans for public outreach could be the hosting of public days fo- 

used on a particular topic at major conferences in the field, as a 

ay of creating awareness for that topic, or campaigns e.g. in the 

ein of ”Stop the Bleed” ( ACS Committee on Trauma ). 

How to train key SDS personnel? (goal 4.4) In order to facili- 

ate clinical translation of SDS in the long term, it will further be 

rucial to promote the transdisciplinary training of future surgical 

ata scientists and thereby establish SDS as a career path. Com- 

uter scientists will have to enter ORs on a regular basis to under- 

tand real clinical problems and to get an impression of the ob- 

tacles in clinical translation. Similarly, surgeons will have to un- 

erstand the basic principles, capabilities and limits of data sci- 

nce techniques to identify solvable clinical problems and proper 

pplications for SDS. A viable path to improve knowledge trans- 

er would be to establish SDS as a commonly respected career 

ath in hospitals. In this context, both technical and clinical dis- 

iplines should be complemented by knowledge and expertise in 

linical research methodology, i.e., epidemiology and biostatistics. 

oreover, human factors engineering and human computer inter- 

ction researchers should be integrated into the community. Set- 

ing up such an SDS career path should also involve the definition 

f specifics and skills an ’AI-ready’ clinician should meet. A cur- 

iculum should put a specific focus on medical statistics covering 

onfounding variables, risk correction and data biases, as well as 

n regulatory issues (e.g. SaMD). On top of the research-oriented 

ositions, we should further seek to establish SDS-related jobs for 

ata acquisition, management and annotation, specifically in uni- 

ersity hospitals. 

How to ensure high-quality external validation of SDS ap- 

lications? (goal 4.5-4.7) A critical pitfall with clinical prediction 

odels, which include models for diagnosis and prognosis, is un- 

ridled proliferation of de novo development and validation stud- 

es, but scant external validation studies ( Adibi et al., 2020 ). Re- 

earch to support regulatory approval of SDS products, i.e., in order 

o market these products, would typically address external valida- 

ion. However, advances in clinical care are not restricted to mar- 

eted products. Therefore, it is necessary for the research commu- 

ity to not only conduct de novo development and validation stud- 

es but also well designed external validation studies. Past experi- 

nce with clinical prediction models shows the need for creative 

olutions. While some solutions, such as “living registries”, have 

een proposed ( Adibi et al., 2020 ), proactive effort by the SDS com- 

unity to develop effective solutions that allow for consistent and 

niform external validation can be a transformative contribution. 

he status quo, summarized in a review of existing literature in AI- 

ased intraoperative decision-making, shows that the SDS commu- 

ity has not addressed the pitfall of inadequate external validation 

tudies ( Navarrete-Welton and Hashimoto, 2020 ). This challenge is 

ystematically addressed when the end-goal for the translational 

esearch is regulatory approval to market a SDS product; the regu- 

atory agency serves as a steward in this case. Similar stewardship 

ay benefit translational research in SDS that is not intended to 

upport regulatory approval. Finally, it is important to develop new 

erformance metrics for AI algorithms that quantify clinically rele- 

ant parameters currently not accounted for in outcome validation 

tudies. One particular challenge lies in the assessment of long- 

erm outcomes. Many established metrics, such as 5-year-survival 

fter a surgical intervention for cancer, may not be immediately 

vailable following surgery. Here, ML techniques can help by cap- 

uring data patterns that could serve as potential surrogate mea- 

ures: Surgical video or motion data localized to anatomy through 

maging studies may be used to identify activities or events that 

ncrease the risk of cancer cell seeding and subsequent metastasis 

nd thus predict the long-term outcome. 

How to ensure ethical and legal guidance? (goals 4.8/ 4.9) 

ith the face of data-driven clinical practice about to change in 
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 vast manner, unprecedented ethical and legal questions per- 

aining to both the regulation of medical AI as well as its prac- 

ical use will be raised. Moving forward, liability and medical 

egligence/insurance regulations need to be adapted for data- 

riven clinical practice. A recent survey among Dutch surgeons 

evealed privacy and liability concerns as significant grounds for 

bjection to video and audio recording of surgical procedures 

 van de Graaf et al., 2020 ), reinforcing the importance of clear 

egulatory frameworks toward better clinical acceptance. New reg- 

lations will have to go much further than these current con- 

iderations, with a particular focus to be placed on cases of AI 

ailure, human rejection of AI recommendations, or potentially 

he omission of AI ( European Parliament, 2020 ). Notably, the FDA 

ecently put forth an Artificial Intelligence and Machine Learning 

AI/ML) Software as a Medical Device Action Plan ( FDA, 2021a ). These 

egulatory issues strongly interconnect with previously raised is- 

ues of trust in as well as transparency and explainability of 

I models, which have also been raised in the very recent 

HO report Ethics & Governance of Artificial Intelligence for Health 

 WHO, 2021 ). An ethical and human rights-based framework in- 

ended to guide the development and use of AI was further pro- 

osed by Fjeld et al. (2020) , taking eight key themes such as 

rivacy, accountability, safety/security, transparency/explainability, 

airness and non-discrimination, human control of technology, pro- 

essional responsibility, and promotion of human values into ac- 

ount. Moreover, ethical and moral considerations regarding the 

emocratization of data and/or AI model access will be necessary. 

n the specific context of surgery, first guidance on the ethical im- 

lications of integrating AI algorithms into surgical training work- 

ows has recently become available ( Collins et al., 2021 ). Similarly, 

ew concepts for obtaining patient consent to data sharing that 

ake into account the dynamics and unforeseeability of data us- 

ge in future SDS applications need to be established. One way 

o go might be the introduction of a data donor card, analogously 

o organ donor cards, as suggested in Section 4.4 . Both patient- 

nd healthcare professional-centric ethical and legal considerations 

re likely to have a large impact on the public perception of and 

rust in SDS, which needs to be boosted for higher patient demand. 

bove all, patient safety must be supported by the development of 

ontemplative regulatory frameworks. 

In summary, a multi-pronged approach to address challenges 

hat can catalyze rapid advances in SDS and to develop solutions to 

roblems considered low-hanging fruit will be crucial to the future 

f SDS as a scientific field. The introduction of initial features that 

rovide clear benefits can facilitate advanced changes. To this end, 

 compositional approach may be pursued wherein complex SDS 

roducts reuse simpler AI models that have been previously ap- 

roved and adopted in clinical care. Once a number of high value 

pplications are established and there is hospital buy-in, a virtuous 

ircle of SDS can be expected to begin, enabling more applications, 

igher volume data collection, stronger models, streamlined regu- 

ation, and better acceptance. 

. Discussion 

15 years have passed since the vision of the OR of the future 

as sketched for the year 2020 ( Cleary et al., 2004 ). A central goal

f the SDS 2019 workshop was to revisit the paper and report pro- 

uced by Cleary et al. (2005) and Mun and Cleary (2005) and in- 

estigate where we stand, what has hindered us to achieve some 

f the goals envisioned and what are new trends that had not been 

onsidered at the time. 

When asked: “What has really changed when you are enter- 

ng the OR of today as compared to the setting in 2004?”, partici- 

ants came to the conclusion that they do not perceive any disrup- 

ive changes. Improvements were stated to be of rather incremen- 
22 
al nature including advances in visualization (e.g. 3D visualization 

nd 4K video imaging ( Ceccarelli et al., 2018; Dunkin and Flow- 

rs, 2015; Rigante et al., 2017 )) and improvements in tissue dissec- 

ion, which is now safer, easier and faster to perform due to ultra- 

ound scissors and impedance controlled electrosurgery, for exam- 

le. None of these innovations includes a relevant AI or ML aspect. 

nd some developments did not even come with the envisioned 

enefits. For instance, staplers of today are by far more sophisti- 

ated than 10 years ago, but the problem of anastomotic leakage is 

till relevant ( Stamos and Brady, 2018 ). The following paragraphs 

ut the main (six) topics of the 2004 workshop into today’s per- 

pective. 

Operational efficiency and workflow: Core problems identi- 

ed in 2004 were the “absence of a standard, computerized med- 

cal record for patients that documents their histories and their 

eeds” as well as “multiple and disparate systems for tracking re- 

ated work processes”. While these problems have remained un- 

il today (see Section 3 ), the challenge of integrating the differ- 

nt information sources related to the entire patient pathway has 

eanwhile been widely acknowledged. Emerging standards like 

L7 FHIR and the maturing effort s of IHE f orm a solid base f or

uture developments. However, standards alone are not sufficient 

o solve the problem; hospitals need to make data acquisition, ex- 

hange and accessibility a requirement. HIT that enables fast de- 

loyment of tools for data acquisition, annotation and processing 

hould be seen as a core service to enable cutting edge research. 

y centralizing such effort s, dat a pools can be maintained over the 

cope of many projects instead of creating isolated databases. This 

rings with it the need to standardize regulatory workflows. Get- 

ing access to data for research is often highly challenging. By out- 

ining clear guidelines and codes of conduct, time spent on formal- 

ties can be cut while reducing uncertainties regarding what is the 

ight or wrong way to handle sensitive data. Finally, the prevalence 

f unstructured data needs to be decreased in order to increase 

ata accessibility. At this point, this also seems to be a matter of 

ser interfaces - by providing clinicians with tools to rapidly create 

tructured reports, reliance on free text can be reduced. This, how- 

ver, requires training and acceptance by clinical personnel - which 

ould be increased through education in data science topics. 

Systems integration and technical standards: OR integration 

as the aim of multiple international initiatives, such as OR.NET, 

he Smart Cyber Operating Theater (SCOT) project ( Iseki et al., 

012 ) and the Medical Device “Plug-and-Play” (MD PnP) Interoper- 

bility Program. Despite these ongoing effort s we are, however, still 

ar from an OR in which “all machines and imaging modalities can 

alk to each other”, as postulated in 2004. Again, interoperability 

ith intraoperative devices should be viewed as a prerequisite by 

linical management, and as an investment in future workflow and 

ost optimization. Emerging standards like SDC provide a means to 

nable data exchange; however, more work needs to be invested in 

he creation of platforms that enable dynamic reactions to events 

nd complex interactions. 

Telecollaboration: While the OR of the twenty-first cen- 

ury connects many different individuals from various disciplines, 

elecollaboration has only slightly evolved during the last one and 

 half decades, and a genuine breakthrough has not yet been 

chieved ( Choi et al., 2018 ). Many of the impediments can be seen

n missing technical developments (e.g. regarding data compres- 

ion and latency), coordination issues and knowledge gaps on the 

art of the prospective users as well as the aforementioned lack of 

ata standardization ( Mun and Cleary, 2005 ). It is to be hoped that 

oming improvements in intelligent telecommunication networks 

e.g. 5G) might trigger future progress in telecollaboration. 

Robotics and surgical instrumentation: In 2020, numerous 

urgical procedures, including major surgery on the esophagus, 

ancreas or rectum, are feasible to be performed using surgical 
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obots. In striking contrast, the actual use of surgical robotics is 

till marginal. A number of high-quality controlled trials failed to 

rove superiority, making the use of surgical robotics in many 

ases difficult to justify ( Roh et al., 2018 ). Another reason for the

oor progress may lie in the lack of competition in hardware. 

ince the discontinuation of the development of the ZEUS device 

n 2003, the field has been clearly dominated by the da Vinci 

ystem. Only in recent times, truly competitive systems such as 

he Senhance TM (TransEnterix) or the Versius® (Cambridge Med- 

cal Robotics Ltd., Cambridge, UK) system have begun to emerge 

 Peters et al., 2018 ). It will be exciting to see whether a broader

ange of technical solutions, along with, perhaps, a stronger inter- 

ocking with next-generation intraoperative imaging, will stimulate 

his particular aspect of the next OR. 

Intraoperative diagnosis and imaging: While intraoperative 

maging appeared very promising in 2004, the modest successes 

hat have been made in that area are mostly related to mobile 

-Ray based devices and drop-in devices in robotics ( Diana et al., 

017; Goyal, 2018 ). The pivotal problem of matching pre- and in- 

raoperative images still remains, as does the unsolved issue of 

daptive real-time visualization during intraoperative deformation 

f soft tissue. One emerging and very promising field is the field 

f biophotonics (see Section 3 ). Benefiting from a lack of ionizing 

adiation, low hardware complexity and easy integrability into the 

urgical workflow, biophotonics has yielded an increasing number 

f success stories in intraoperative imaging ( Bruins et al., 2020; 

euschler et al., 2017 ). 

Surgical informatics: In 2004, the term SDS had not been in- 

ented. At that time, surgical informatics was defined as the col- 

ection, storage/organization, retrieval, sharing, and rendering of 

iomedical information that is relevant to the care of the surgi- 

al patient, with an aim to provide comprehensive support to the 

ntire healthcare team ( Mun and Cleary, 2005 ). Since the begin- 

ings of the field of computer-aided surgery, however, AI and in 

articular ML have arisen as new enabling techniques that were 

ot in the focus 15 years ago. While these techniques have be- 

un revolutionizing other areas of medicine, in particular radiol- 

gy ( Kickingereder et al., 2019; Shen et al., 2017 ), SDS still suffers

rom a notable absence of success stories. This can be attributed to 

 number of various challenges, specifically related to high quality 

nd high volume data annotation, as well as intraoperative data 

cquisition and analysis and surgical workflow integration, as de- 

ailed in Section 3 - 6 . 

Overall, the comparison between the workshop topics discussed 

n 2004 and 2019 revealed that the most fundamental perceived 

ifference is related to how the future of surgery is envisioned 

y experts in the field. While discussions in 2004 were mainly 

entered around devices, AI is now seen as a key enabling tech- 

ique for the future OR. This article has therefore been centered 

round technical challenges related to applying AI/ML techniques 

o surgery. A core challenge now is to put the vision of SDS into

linical practice. The large number of relevant SDS stakeholders 

 Table 1 ) as well as the large number of goals with high priority

 Table 2 , 3 , 4 , 7 ), as compiled by the international Delphi expert

anel, illustrate that the hurdles are high. With the presented con- 

rete recommendations for addressing the complexity of SDS and 

oving forward, we hope to support the SDS community in over- 

oming existing barriers and eventually achieving clinical transla- 

ion. 
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A ositories 

 the categories (1) robotic minimally-invasive surgery, (2) laparoscopic surgery, (3) 

(6) other. Note that each repository occurs only once in the table although some 

Data Source 

Data 

Type Reference/Annotation Year 

virtual video, 

kinemat- 

ics 

segmentation of instruments/ 

pegs/blocks, phase, steps, 

activity 

2021 

in-vivo/ex-vivo, 

human/phantom 

video action bounding boxes 2021 

virtual video bounding boxes tool, skill 2021 

ex-vivo, phantom 

kinematics, 

video 

phase, step, activity 2020 

virtual/ex-vivo 

phantom/porcine 

video activity 2020 

in-vivo, human video action bounding boxes 2020 

ex-vivo, porcine video depth maps, calibration 2019 

in-vivo, porcine video segmentation of instrument 

parts, objects, anatomy/tissue 

2018 

ex-vivo, phantom video activity, skill, instrument 

bounding box 

2017 

in-vivo, porcine video kidney boundary 2017 

in-vivo, porcine video segmentation of instrument 

parts, instrument type 

2017 

in-vivo, human video phase 2017 

ex-vivo, phantom images 3D surface reconstruction, 

calibration 

2016 

ex-vivo, phantom 

kinematics, 

video 

activity, skill 2014 

in-vivo/ex-vivo, 

hu- 

man/porcine/phantom 

video depth maps, calibration, 3D 

surface reconstruction 

2005 

- 

2017 

in-vivo, human images instrument, verb, target 2021 

in-vivo, human images, 

video 

segmentation of 23 different 

structures, phase, action, tool 

2021 

in-vivo, human images, 

video 

segmentation of pathol. 

endometriosis categories, 

pathology type 

2020 

in-vivo, human video multi-instance segmentation 

of instruments 

2019 

in-vivo, human video phase, action, instrument type, 

skill 

2019 

in-vivo, human images, 

video 

actions, anatomy, instrument 

count 

2018 

in-vivo, human video phase, instrument type 2017 

in-vivo, human video, 

device 

signals 

phase, instrument type 2017 

in-vivo/ex-vivo, 

hu- 

man/porcine/goat 

video 2D polygon around area of 

interest, attributes of area 

2017 

in-vivo, human video instrument type 2016 

in-vivo, human video instrument bounding box 2016 

in-vivo, human video phase 2016 

in-vivo/ex-vivo, 

human/porcine 

video, 

images 

segmentation of instrument 

parts and center, 2D pose 

2015 

in-vivo, human images segmentation of instruments 2014 

ex-vivo, porcine images 3D surface reconstruction, 

calibration 

2014 

( continued on next page ) 
ppendix A. Publicly accessible and annotated surgical data rep

Table A.1 

List of publicly accessible and annotated surgical data repositories, assigned to

endoscopy, (4) microscopic surgery, and (5) surgery in sensor-enhanced OR, 

categories overlap. 

Source Procedure(s)/Activity(ies) 

ROBOTIC MINIMALLY-INVASIVE SURGERY 

PETRAW multiple training tasks 

SARAS-MESAD prostatectomy 

SimSurgSkill multiple training tasks 

EndoVis-MISAW micro-surgical anastomosis 

(suturing, knot-tying) in training 

setting 

EndoVis-SurgVisDom needle-driving, knot tying, 

dissection in training setting 

SARAS-ESAD (Bawa et al., 2021) prostatectomy 

EndoVis-Scared (Allan et al., 2021) exploration of abdominal organs 

EndoVis-RobSeg nephrectomy 

ATLAS Dione (Sarikaya et al., 

2017) 

ball placement, ring peg transfer, 

suture pass, suture and knot tie, 

urethrovesical anastomosis 

EndoVis-Kidney (Hattab et al., 

2020) 

partial nephrectomy 

EndoVis-RobInstrument (Allan 

et al., 2019) 

different porcine procedures 

Nephrec9 (Nakawala, 2017) partial nephrectomy 

EndoAbS (Penza, 2016) exploration abdominal organs 

JIGSAWS (Gao et al., 2014) suturing, knot-tying, needle 

passing in training setting 

Hamlyn Centre Laparoscopic 

/Endoscopic Video data sets 

(Stoyanov et al., 2005; Lerotic 

et al., 2008; Mountney et al., 

2010; Pratt et al., 2010; Stoyanov 

et al., 2010; Giannarou et al., 

2013; Ye et al., 2017) 

diverse procedures, e.g. partial 

nephrectomy, totally endoscopic 

coronary artery bypass graft, 

intra-abdominal exploration 

LAPAROSCOPIC SURGERY 

CholecTriplet21 cholecystectomy 

HeiSurf cholecystectomy 

GLENDA (Leibetseder et al., 2020) laparoscopic gynecology 

EndoVis-ROBUST-MIS (Roß et al., 

2021) 

laparoscopic rectal resection, 

proctocolectomy 

EndoVis-WorkflowAndSkill cholecystectomy 

LapGyn4 (Leibetseder et al., 2018) gynecologic laparoscopic surgeries 

Cholec80 (Twinanda et al., 2017) cholecystectomy 

EndoVis-Workflow laparoscopic colorectal surgery 

TrackVes (Penza et al., 2017) exploration of abdominal organs 

m2cai16-tool (Twinanda et al., 

2017) 

cholecystectomy 

m2cai16-tool-locations (Jin et al., 

2018) 

cholecystectomy 

m2cai16-workflow (Twinanda 

et al., 2017; Stauder et al., 2017) 

cholecystectomy 

EndoVis-Instrument laparoscopic colorectal surgery, 

robotic minimally invasive surgery 

Crowd-Instrument (Maier-Hein 

et al., 2014) 

laparoscopic adrenalectomy, 

pancreas resection 

TMI Dataset (Maier-Hein et al., 

2014) 

exploration of abdominal organs 
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Table A.1 

( continued ) 

Source Procedure(s)/Activity(ies) Data Source 

Data 

Type Reference/Annotation Year 

Laparoscopy Instrument Sequence 

(Sznitman et al., 2012) 

cholecystectomy in-vivo, human video instrument center, scale 2012 

MICROSCOPIC SURGERY 

EndoVis-CATARACTSSemSeg cataract surgery in-vivo, human images segmentation of anatomical 

structures and instruments 

2020 

EndoVis-CATARACTSWorkflow cataract surgery in-vivo, human video phase 2020 

Cataract-101 (Schoeffmann et al., 

2018) 

cataract surgery in-vivo, human video phase, experience level of 

surgeon 

2018 

EndoVis-CATARACTS cataract surgery and surgical tray in-vivo, human video instrument type 2018 

NeuroSurgicalTools data set 

(Bouget et al., 2015) 

neurosurgery in-vivo, human images instrument bounding polygon, 

instrument type 

2015 

Retinal Microsurgery Instrument 

Tracking (RMIT) (Sznitman et al., 

2012) 

retinal surgery in-vivo, human video instrument center, scale 2012 

ENDOSCOPY 

AdaptOR endoscopic heart surgery ex-vivo/in-vivo, 

phantom/human 

images landmarks in phantoms 2021 

EndoCV21 colonoscopy in-vivo, human video bounding box and pixel-wise 

segmentation of polyps 

2021 

EndoSLAM (Ozyoruk et al., 2021) standard/capsule endoscopy ex-vivo/synthetic, 

porcine/phantom 

images 6 DoF pose, 3D map ground 

truth 

2021 

FetReg fetoscopy in-vivo, humanl images, 

video 

segmentation of 

vessel/tool/fetus, phase, steps, 

activity 

2021 

GIANA21 colonoscopy in-vivo, human images, 

video 

polyp masks, classification of 

polyps 

2021 

Endoscopy Disease Detection and 

Segmentation (EDD) 

gastroscopy, gastro-esophageal, 

colonoscopy 

in-vivo, human video bounding boxes and 

segmentation of multi-class 

disease regions 

2020 

HyperKvasir (Borgli et al., 2020) gastro- and colonoscopy in-vivo, human images, 

video 

anatomical landmarks, 

pathologies, partially 

segmentation mask and 

bounding boxes 

2020 

Kvasir-Capsule (Smedsrud et al., 

2021) 

capsule endoscopy in-vivo, human images, 

video 

anatomical landmarks, quality 

of mucosal view and 

pathological findings 

2020 

Sinus-Surgery-Endoscopic-Image- 

Datasets (Qin et al., 

2020) 

endoscopic sinus surgery ex-vivo/in-vivo, 

human 

images segmentation of instruments 2020 

Endoscopic Artefact Detection 

(EAD) (Ali et al., 2020) 

gastroscopy, cystoscopy, 

gastro-esophageal, colonoscopy 

in-vivo, human video bounding box and 

segmentation of multi-class 

artefacts 

2019 

NBI-InfFrames (Moccia et al., 

2018) 

laryngeal endoscopy in-vivo, human video informative frames 2018 

AIDA-E gastrointestinal confocal 

endoscopy, gastric 

chromoendoscopy, esophagus 

microendoscopy 

in-vivo, human images bounding box of abnormalities 2017 

KID (Koulaouzidis et al., 2017) capsule endoscopy in-vivo, human images, 

video 

abnormalities 2017 

Laryngeal data set (Moccia et al., 

2017) 

laryngeal endoscopy in-vivo, human images patches healthy/cancerous 

laryngeal tissues 

2017 

Hamlyn Centre Laparoscopic / 

Endoscopic Video data sets (Ye 

et al., 2016) 

gastrointestinal endoscopy in-vivo, human video bounding box of optical biopsy 

sites 

2016 

Kvasir (Pogorelov et al., 2017) gastro- and colonoscopy in-vivo, human images anatomical landmarks, 

pathologies 

2016 

EndoVis-GIANA (Bernal et al., 

2017) 

colonoscopy, wireless capsule 

endoscopy 

in-vivo, human video, 

images 

segmentation and 

classification of polyps / 

angiodysplasia / bowel lesions 

2015 

- 

2018 

SURGERY IN SENSOR-ENHANCED OR 

Multi-View Operating Room 

(MVOR) (Srivastav et al., 2019) 

vertebroplasty, lung biopsy in-vivo, human RGB-D human bounding boxes, 2D/3D 

human body pose key points 

2018 

xawAR16 (Loy Rodas et al., 2017) experimental setting for radiation 

awareness in hybrid operating 

room 

ex-vivo, phantom RGB-D poses of the moving camera 2016 

OTHER 

DeepFluoroLabeling-IPCAI2020 

(Grupp et al., 2020) 

fluoroscopy ex-vivo, human images segmentation of hip in CT and 

fluoroscopy, anat. landmarks 

2020 

Curious neurosurgery in-vivo, human images MRI images, intra-op. US with 

labeled anat. landmarks 

2019 

26 
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A

countries. Elasticsearch is a trademark of Elasticsearch BV, registered in 

t rch BV, registered in the U.S. and in other countries. 

munication in SDS. 

ability 

Acceptance in / outside 

healthcare Purpose 

rare / widespread Data serialization format, 

especially for Apache Hadoop 

quasi-universal / none Defines usage of medical 

imaging information 

rare / occasional Data format 

/ 

 

widespread / none Focuses on interoperability of 

electronic health information 

in healthcare 

/ 

 

widespread / none Defines exchange, integration, 

distribution and retrieval of 

electronic health information 

3–20702 

ability, 

3-20701 

tandard 

IEEE 11073-20702 is 

based on industry 

standard DPWS, other 

substandards 

occasional / rare 

Communication protocol for 

service-oriented medical 

devices and IT systems 

rare / widespread Collective term describing the 

interconnection of various 

systems and actors through 

the Internet with the purpose 

of providing intelligent 

services. 

occasional / 

widespread 

Format for data exchange and 

serialization, especially in 

REST-APIs 

 widespread / rare Terminology standard for 

laboratory and clinical 

measurements, observations 

and documents 

occasional / rare Enables communication 

between various systems and 

devices in the operating room 

for image-guided therapy 

/ 

 

widespread / none Architecture used for 

modelling patient-centric 

health data and management 

of electronic health records 

with a query language and an 

open API 

rare / occasional Data format 

 occasional / 

widespread 

Data model for describing 

resources and their 

relationship to each other 

occasional / 

widespread 

Set of principles for web 

services 

/ 

 

widespread / universal Data serialization format for 

textual information. 
ppendix B. Surgical Data Science standards & tools 

RabbitMQ is a trademark of VMware, Inc. in the U.S. and other 

he U.S. and in other countries. Kibana is a trademark of Elasticsea

Table B.1 

Selected standards relevant to data acquisition, access, storage and com

Standard Organization 

Stage of 

interoper

AVRO Apache Software Foundation syntactic 

DICOM National Electrical 

Manufacturers Association 

syntactic 

HDF5 HDF Group syntactic 

HL7 FHIR Health Level Seven 

International (HL7) 

syntactic 

semantic

HL7 Version 2 & 3 

(including CDA) 

Health Level Seven 

International (HL7) 

syntactic 

semantic

IEEE 11073 SDC 

standard family 

IEEE, OR.NET e.V. IEEE 1107

syntactic 

interoper

IEEE 1107

binding s

IoT Public consensus syntactic 

JSON Ecma syntactic 

LOINC Regenstrief Institute at Indiana 

University School of Medicine 

(IUSM) in Indianapolis + 

Community 

semantic

OpenIGTLink primarily supported by the 

U.S. National Institutes of 

Health (NIH R01EB020667, PI: 

Junichi Tokuda) 

syntactic 

openEHR openEHR International syntactic 

semantic

Protobuf (Protocol 

buffers) 

Google syntactic 

RDF RDF Working group from the 

World Wide Web Consortium 

(W3C) 

semantic

REST Public consensus syntactic 

XML XML Working group from the 

World Wide Web Consortium 

(W3C), derived from SGML 

(ISO 8879) 

syntactic 

semantic
27 
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, storage and communication in SDS. 

Acceptance Purpose 

in / outside 

healthcare 

occasional / 

widespread 

Cloud Computing 

rare / widespread Streaming platform for 

message distribution 

rare / widespread Tool for building software 

packages, called containers 

rare / widespread Orchestration tool for 

Docker containers 

rare / occasional Search and Analytics 

Engine 

occasional / 

widespread 

Cloud Computing 

occasional / 

occasional 

Framework for distributed 

computing 

rare / occasional Dashboard for data 

visualization 

rare / widespread Orchestration tool for 

Docker containers 

rare / occasional Key-value storage 

occasional / 

widespread 

Cloud Computing 

rare / widespread Message broker 

occasional / 

occasional 

Framework with a set of 

libraries and tools for 

robot applications 

sentative software tools that are commonly used 

ive software tools 

cipy.stats, Python statsmodels, MATLAB 

d Machine Learning Toolbox 

it-learn, Python statsmodels, MATLAB 

d Machine Learning Toolbox 

s: TensorFlow (including Keras), PyTorch, Caffe, 

Net, Microsoft Cognitive Toolkit (CNTK), 

ep Learning Toolbox, OpenCV, NVIDIA Clara, 

Net, fastai Pre-trained model repositories: 

 ONNX Model Zoo, TensorFlow Model Garden, 

 models 

tplotlib, Python seaborn, MATLAB 

K-SNAP, 3D Slicer, MITK Visualization tools 

k et al. (2016) 

L, VLFeat, MATLAB Computer Vision Toolbox 

K and spaCy, PyTorch-NLP, Google Cloud 

guage, Amazon Comprehend 

y.signal, MATLAB Signal Processing Toolbox 

K, OpenSurgSim 

Fusion Suite 

, Jupyter Notebook, Data Version Control (DVC) 
Table B.2 

Selected tools relevant to data acquisition, access

Tool Organization 

Amazon AWS Amazon Web 

Services Inc., 

Amazon 

Apache Kafka Apache Software 

Foundation 

Docker® Docker Inc. 

Docker® Swarm Google Inc. 

Elasticsearch Elastic 

Google Cloud 

Platform 

TM 

Google Inc. 

Hadoop® Apache Software 

Foundation 

Kibana Elastic 

Kubernetes® Cloud Native 

Computing 

Foundation 

LevelDB Google Inc. 

Microsoft Azure Microsoft 

Corporation 

RabbitMQ® Pivotal Software 

ROS Community 

Table B.3 

Disciplines that intersect with SDS and repre

in each discipline. 

Discipline Representat

Classical statistics R, Python s

Statistics an

General machine learning Python scik

Statistics an

Deep learning Framework

Apache MX

MATLAB De

DLTK, Nifty

Model Zoo,

torchvision

Data visualization Python Ma

Medical image processing 

and visualization 

VTK, ITK, IT

survey: Haa

Classical computer vision OpenCV, PC

Natural language 

processing 

Python NLT

Natural Lan

Signal processing Python scip

Surgical simulation SOFA, iMST

Surgery navigation / 

Augmented Reality 

SlicerIGT, Im

Robotics ROS 

Software engineering Git, Docker
28 
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A

d temporal annotations. 

Ontology 

integration Automatic annotation tools 

- Plugins for AI-assisted 

annotation 

- Automatic tagging 

- - 

- Semi-automatic bounding box 

annotation, detection 

- Plugins for AI-assisted 

annotation 

- Semi-automatic segmentation 

+ interactive mode 

- Watershed segmentation 

- Polygon (automatic option) 

- Version control system, 

collaborative 

 - Interactive mode, 

semi-automated labeling 

- Semi-automatic segmentation, 

detection, collaborative 

- Active learning, interactive 

mode 

- Semi-automatic detection + 

tracking 

- Optical flow, crowdsourcing 

- Automatic object detection 

- - 

yes - 

- - 

yes - 

s with managed human workforces. 

Domain 

General computer vision 

General computer vision 

General computer vision 

General computer vision 

General computer vision 

General computer vision 

General computer vision 

Medical imaging 

Specialized computer vision & medical imaging 

Specialized computer vision & medical imaging 

Specialized computer vision & medical imaging 

Specialized computer vision & medical imaging 

Specialized computer vision & medical imaging 

Specialized computer vision & medical imaging 

Specialized computer vision & medical imaging 
ppendix C. Surgical Data Science annotation tools & services 

Table C.1 

Selection of annotation tools for spatial, spatio-temporal an

Tool Data type 

Spatial annotation 

3D Slicer Images 

DeepLabel Images 

LabelMe Images 

Make Sense Images 

MITK Images 

NVIDIA Clara Imaging Images 

Pixel Annotation Tool Images 

Semantic Segmentation 

Editor 

Images, point clouds 

EXACT ( Marzahl et al., 

2021 ) 

Images 

Spatio-temporal annotation 

Amazon SageMaker 

Ground Truth 

Images, videos, 3D point

clouds, text 

CVAT Images, videos 

SuperAnnotate Desktop Images, videos 

UltimateLabeling Videos 

VATIC Videos 

VoTT Images, videos 

Temporal annotation 

ANVIL Videos, audio 

b <> com Surgery 

Workflow Toolbox 

Videos 

Observer XT Multimodal 

s.w.an Videos 

Table C.2 

Leading companies providing data set annotation

Company 

Alegion, Inc. (Austin, TX, US) 

Appen Ltd (Chatswood, NSW, Australia) 

CloudFactory Ltd (Richmond, UK) 

Cogito Tech LLC (New York, NY, US) 

General Blockchain, Inc. (San Jose, CA, US) 

Samasource Impact Solutions, Inc. (San 

Francisco, CA, US) 

Scale AI, Inc. (San Francisco, CA, US) 

CapeStart, Inc. (Cambridge, MA, US) 

Edgecase AI LLC (Hingham, MA, US) 

iMerit Technology Services Pvt Ltd 

(Kolkata,West Bengal, India) 

Infolks Ptv Ltd (Mannarkkad, Kerala, 

India) 

Labelbox, Inc. (San Francisco, CA, US) 

Steldia Services Ltd (Limassol Agios 

Athanasios, Cyprus) 

SuperAnnotate LLC (Sunnyvale, CA, US) 

Telus International (Vancouver, BC, CA) 
29 
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A

 performed in June 2021 using [machine learning] AND [surgery] 

D [surgery] or [decision support] AND [surgery] or [surgical data 

ere manually evaluated and all studies that analyzed a perioperative 

ere included. 

Type of study 

Study size 

(# patients) 

ological upgrade 

d reduction of 

 based on data 

 text features 

Retrospective 

cohort 

986 

perative 

 patients based 

ata 

Prospective cohort 66,370 

 for postoperative 

rgery based on 

haracteristics 

Retrospective 

cohort 

64 

platform for 

mplications and 

 based on patient 

Prospective cohort 200 

ased on clinical Prospective cohort 51,697 

 circulatory 

unit based on 

boratory) 

 organ systems 

Prospective cohort 36,098 

ptimal treatment 

sive care based 

tient data 

Prospective cohort 17,083 

ction of severe 

ectomy in 

tients based on 

eters 

Prospective cohort 353 

ical resectability 

a based on 

Retrospective 

cohort 

135 

l moments in 

 videos for 

n 

Cross-sectional n/a (155 videos) 

n of severe 

surgical critical 

lth record data 

Prospective cohort 42,007 

e acute kidney 

ealth records 

Prospective cohort 703,782 

screw planning 

urgery based on 

Cross-sectional 40 
ppendix D. Published SDS clinical studies - perioperative 

Table D.1 

Selection of perioperative SDS clinical studies. Searches were

or [deep learning] AND [surgery] or [artificial intelligence] AN

science] AND [clinical] in PubMed and Google. Search results w

SDS system with a machine learning (ML)-based component w

Publication Subject 

Bahl et al. (2017) ML-based prediction of path

of high-risk breast lesions an

unnecessary surgical excision

such as histologic results and

from pathologic reports 

Corey et al. (2018) ML-based prediction of posto

complication risk in surgical

on electronic health record d

De Silva et al. (2020) ML-based prediction models

outcomes of lumbar spine su

image features and patient c

Duke University (2016) ML-based clinical analytical 

predicting risk of surgical co

improving surgical outcomes

care parameters 

Futoma et al. (2017) ML-based sepsis prediction b

patient data over time 

Hyland et al. (2020) ML-based early prediction of

failure in the intensive care 

physiological (clinical and la

measurements from multiple

Komorowski et al. (2018) ML-based identification of o

strategies for sepsis in inten

on laboratory and clinical pa

Mai et al. (2020) ML-based preoperative predi

liver failure after hemihepat

hepatocellular carcinoma pa

laboratory and clinical param

Marcus et al. (2020) ML-based prediction of surg

in patients with glioblastom

preoperative MRI imaging 

Mascagni et al. (2021b) ML-based detection of critica

laparoscopic cholecystectomy

selective video documentatio

Meyer et al. (2018) ML-based real-time predictio

complications in post-cardio

care based on electronic hea

Tomašev et al. (2019) ML-based prediction of futur

injury based on electronic h

Vijayan et al. (2019) ML-based automatic pedicle 

in cone-beam guided spine s

CT imaging data 
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A

 were performed using the following keywords: [machine learning] AND [surgery] or 

on support] AND [surgery] or [data science] AND [surgery] or [surgical data science]. 

 test an SDS system or component, or collect data to create and test an SDS system or 

pe Period 

# Partic- 

ipants Locations 

tional, 

ized, 

enter 

Oct. 2020 - Oct. 

2025 

600 Northern Orthopaedic 

Division, Clinic Farsø, Aalborg 

University Hospital, Farsø, 

Northern Jutland, Denmark 

tional, 

domized, 

enter 

Jan. 2019 - Dec. 

2024 

100 Zhujiang Hospital of Southern 

Medical University, 

Guangzhou, Guangdong, China 

tional, 

ctive, 

enter 

Oct. 2017 - Oct. 

2018 

2,000 Shanghai Tenth People’s 

Hospital, Shanghai, China 

tional, 

ctive, 

enter 

Jan. 2012 - Jan. 

2018 

558 Visum Eye Center, São José do 

Rio Preto Medical School, São 

José do Rio Preto, Brazil 

tional, 

ctive, 

enter 

Jul. 2020 - May 

2023 

4,000 The Ninth People’s Hospital of 

Shanghai Jiaotong University 

School of Medicine, Shanghai, 

China 

tional, 

tive, 

enter 

May 2019 - May 

2020 

150 The University of Valencia, 

Valencia, Spain 

tional, 

tive, 

enter 

Aug. 2017 - Feb. 

2018 

400 Izmir Bozyaka Training and 

Research Hospital, Izmir, 

Turkey 

tional, 

tive, 

enter 

May 2017 - May 

2022 

50,000 School of Medicine, Zhejiang 

University, Hangzhou, China 

tional, 

tive, 

nter 

Apr. 2008 - Aug. 

2021 

1,200 Children’s Hospital Medical 

Center, Cincinnati, Ohio, 

United States 

tional, 

ctive, 

enter 

Jan. 2008 - Dec. 

2014 

2,229 Kepler University Hospital, 

Linz, Austria 

tional, 

ized, 

nter 

Sep. 2020 - May 

2021 

80 Hospital de Jerez de la 

Frontera, Cádiz, Spain 

( continued on next page ) 
ppendix E. Registered SDS clinical studies 

Table E.1 

Registered SDS clinical studies at ClinicalTrials.gov as of October 2020. Searches

[deep learning] AND [surgery] or [artificial intelligence] AND [surgery] or [decisi

Search results were manually evaluated and all studies were included that either

component. ID is the ClinicalTrials.gov identifier. 

Study summary Patient data Study ty

PREOPERATIVE APPLICATIONS 

Evaluation of an ML-based CDSS 

to help decide if a patient should 

undergo hip or knee replacement 

surgery based on functional and 

health related quality of life 

(HRQoL) changes. ID: 

NCT04332055 

Preoperative patient 

questionnaire 

Interven

random

single-c

Evaluation of an ML-based CDSS 

(IBM Watson) for hepatocellular 

carcinoma treatment, prognosis 

and assessment of surgical 

resection risk with radiomics. ID: 

NCT03917017 

Preoperative abdominal 

images and radiomic 

parameters 

Interven

non-ran

single-c

Evaluation of an ML-based CDSS 

to predict ST-segment elevation 

myocardial infarction (STEMI). ID: 

NCT03317691 

Preoperative ECG Observa

retrospe

single-c

Evaluation of an ML-based CDSS 

to help assess risk of refractive 

eye surgery complications from 

corneal ectasia. ID: NCT04313387 

Preoperative corneal 

tomography parameters 

Observa

retrospe

single-c

Data collection and creation of an 

ML-based CDSS to detect if a 

patient has an airway that 

increases risk of anesthesia 

related injury. ID: NCT04458220 

Preoperative 3D face scans 

in different positions and 

from different angles 

Observa

retrospe

single-c

Data collection and creation of an 

ML-based CDSS to predict total 

knee arthroplasty (TKA) surgery 

outcome. ID: NCT03894514 

Demographic, psychosocial 

and preoperative clinical 

parameters from the EHR 

Observa

prospec

single-c

Data collection and creation of an 

ML-based CDSS to assess risk and 

treatment strategy of patients 

with acute coronary syndromes in 

emergency departments. ID: 

NCT03286491 

Unspecified Observa

prospec

single-c

Data collection and creation of an 

ML-based CDSS to detect if a 

patient has an airway that 

increases risk of anesthesia 

related injury. ID: NCT03125837 

Preoperative digital 

photographs in different 

positions and from 

different angles 

Observa

prospec

single-c

Data collection and creation of an 

ML-based CDSS to predict pain 

response, opioid response and 

morphine usage requirements in 

pediatric patients requiring 

surgery, using electronic health 

record and genetic data. ID: 

NCT01140724 

Genetic Observa

prospec

multi-ce

Data collection and creation of an 

ML-based CDSS to assess patient 

risk of elective heart valve 

surgery. ID: NCT03724123 

Demographic and 

preoperative clinical 

parameters from the EHR 

Observa

retrospe

single-c

INTRAOPERATIVE APPLICATIONS 

Evaluation of an ML-based CDSS 

(Edwards Hemosphere platform) 

to detect and prevent arterial 

hypotension during abdominal 

surgery with the Hypotension 

Prediction Index (HPI) using the 

FloTrac system. ID: NCT04301102 

Intraoperative 

hemodynamic parameters 

Interven

random

multi-ce
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Table E.1 

( continued ) 

Evaluation of an ML-based CDSS 

(Edwards Hemosphere platform) 

to detect and prevent arterial 

hypotension during lung surgery 

with the Hypotension Prediction 

Index (HPI) using theFloTrac 

system. ID: NCT04149314 

Intraoperative 

hemodynamic parameters 

Interventional, 

randomized, 

single-center 

Nov. 2019 - Dec. 

2022 

150 University of Giessen, Giessen, 

Germany 

Evaluation of an ML-based CDSS 

(AlertWatch Anesthesia Control 

Tower) to support risk assessment 

for the anesthesiology team. ID: 

NCT03923699 

Physiological parameters, 

EHR, anesthesia machine 

parameters, laboratory 

results 

Interventional, 

randomized, 

single-center 

Jul. 2019 - Jul. 

2024 

40,000 Washington University School 

of Medicine, Saint Louis, 

Missouri, United States 

Evaluation of an ML-based CDSS 

to detect intraoperative 

hypertension, using blood 

pressure (Nexfin finger cuff). ID: 

NCT03533205 

Intraoperative 

hemodynamic parameters 

(blood pressure) 

Observational, 

prospective, 

single-center 

Apr. 2015 - Apr. 

2018 

507 The Academic Medical Center, 

The University of Amsterdam, 

Amsterdam, Netherlands 

Data collection and creation of an 

ML-based CDSS to recognize 

healthy and abnormal tissue 

characteristics in abdominal 

surgery. ID: NCT04589884 

Intraoperative 

hyperspectral images (HSI) 

Observational, 

prospective, 

single-center 

Sep. 2020 - Oct. 

2024 

600 The Digestive and endocrine 

surgery service, NHC, 

Strasbourg, France 

Multi-objective data collection of 

colorectal cancer surgery videos 

and biopsy samples for developing 

ML-based systems. ID: 

NCT04220242 

Colorectal surgery videos 

and tissue microsections 

Observational, 

prospective and 

retrospective, 

multi-center 

Dec. 2019 - Dec. 

2022 

250 The Mater Misericordiae 

University Hospital, Dublin, 

Ireland 

Data collection and creation of an 

ML-based CDSS to detect cerebral 

ischemia and reperfusion during 

cardiac surgery. ID: NCT03919370 

Intraoperative 

hemodynamic and cerebral 

oxygenation parameters 

Observational, 

prospective, 

single-center 

Dec. 2019 - Dec. 

2022 

10 Sahlgrenska University 

Hospital, Gothenburg, Sweden 

Data collection and creation of an 

ML-based CDSS to predict 

postoperative outcomes (mortality, 

morbidity, Intensive Care Unit 

admission, length of hospital stay, 

and hospital readmission). ID: 

NCT04014010 

Intraoperative 

hemodynamic parameters 

(blood pressure, heart 

rate), oxygen level, carbon 

dioxide level and 

hemodynamic medication 

records 

Observational, 

retrospective, 

single-center 

Jan. 2013 - Dec. 

2017 

35,000 Nova Scotia Health Authority 

Queen Elizabeth II hospitals, 

Halifax, Canada 

POSTOPERATIVE APPLICATIONS 

Evaluation of an ML-based CDSS 

for real-time vasoactive and 

inotropic support de-escalation in 

pediatric patients following 

cardiac surgery. ID: NCT04600700 

Postoperative blood 

oxygenation parameters 

(the inadequate oxygen 

delivery index) 

Observational, 

retrospective, 

single-center 

Jan. 2021 - Mar. 

2022 

250 Boston Children’s Hospital, 

Boston, United States 

Evaluation of a gait monitoring 

system with ML components 

(GaitSmart) to detect gait 

deficiencies after total hip or knee 

replacement surgery, and detect 

differences from different 

rehabilitation programs. ID: 

NCT04289025 

Postoperative gait 

parameters from inertial 

motion units (IMUs) 

Interventional, 

randomized, 

single-center 

Jan. 2021 - Mar. 

2021 

100 Norfolk and Norwich 

University Hospital, Norwich, 

Norfolk, United Kingdom 

Evaluation of an ML-based CDSS 

(AlertWatch Anesthesia Control 

Tower) for risk forecasting 

immediately after surgery with 

telemedicine notifications. ID: 

NCT03974828 

Physiological parameters, 

EHR, anesthesia machine 

parameters, laboratory 

results 

Interventional, 

randomized, 

single-center 

Nov. 2020 - Jan. 

2024 

3,375 Washington University School 

of Medicine, St. Louis, 

Missouri, United States 

Evaluation of an ML-based system 

(Caption Health/Caption AI) to 

improve cardiac ultrasound image 

standardization and quality after 

surgery (step down unit). ID: 

NCT04203251 

Postoperative cardiac 

ultrasound 

Observational, 

prospective, 

single-center 

Mar. 2020 - May 

2020 

100 University of California San 

Francisco, San Francisco, 

California, United States 

Evaluation of an at-home 

ML-based postoperative 

monitoring system (Smart Angel, 

2020) to reduce unplanned 

recourse. ID: NCT04068584 

Postoperative 

hemodynamic, blood 

oxygenation and 

well-being parameters 

(pain, nausea, vomiting, 

comfort) 

Interventional, 

randomized, 

multi-center 

Feb. 2020 - Aug. 

2021 

1,260 Nïmes University Hospital 

Centre, Nïmes, France 

Evaluation of an ML-based CDSS 

(CALYPSO) that creates 

personalized risk predictions to 

reduce postoperative 

complications. ID: NCT02828475 

Unspecified Observational, 

prospective, 

single-center 

Jun. 2016 - Jan. 

2017 

200 Duke University Medical 

Center, Durham, North 

Carolina, United States 

( continued on next page ) 
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Table E.1 ( continued ) 

Evaluation of an ML-based CDSS 

to help manage postoperative 

cataract surgery patients. ID: 

NCT04138771 

Postoperative visual acuity 

parameters, intraocular 

pressure parameters and 

slit-lamp images 

Interventional, 

single-center 

Jan. 2013 - Mar. 

2020 

300 Zhongshan Ophthalmic Center, 

Sun Yat-sen University, 

Guangzhou, Guangdong, China 

Data collection and creation of an 

ML-based CDSS to predict 

postoperative respiratory failure 

within 7 days. ID: NCT04527094 

Pre- and intraoperative 

EHR 

Observational, 

prospective, 

single-center 

Nov. 2020 - Aug. 

2021 

8,000 Seoul National University 

Hospital, Seoul, Republic of 

Korea 

Data collection and creation of an 

ML-based CDSS to predict 

postoperative outcomes after 

vascular stent placement using 

data from a wearable device (ECG 

bracelet). ID: NCT04455568 

Postoperative ECG Observational, 

prospective, 

multi-center 

Jul. 2020 - Jul. 

2024 

400 Taipei Medical University 

Shuang Ho Hospital, New 

Taipei City, Taiwan 

Data collection and creation of an 

ML-based system to compute 

continuous blood pressure of 

patients in surgical intensive care 

non-invasively, using a wearable 

blood pressure measuring device 

and a patient monitor (IntelliVue 

MX700, Philips). ID: NCT04261062 

Postoperative 

hemodynamics (blood 

pressure) 

Observational, 

prospective, 

single-center 

May 2020 - Jan. 

2022 

220 Yonsei University College of 

Medicine, Department of 

Anesthesiology and Pain 

Medicine, Seoul, Republic of 

Korea 

Data collection and creation of an 

ML-based CDSS to detect and 

predict opioid induced respiratory 

compromise (OIRC) events in 

postoperative pain management. 

ID: NCT03968094 

EHR and postoperative 

blood oxygenation, 

ventilation and 

transcutaneous PCO2 

parameters 

Observational, 

prospective, 

single-center 

Jun. 2019 - Mar. 

2020 

50 Buffalo General Medical 

Center, Buffalo, New York, 

United States 

Data collection and creation of an 

ML-based CDSS to assess 

postoperative glioblastoma surgery 

images to distinguish progression 

from pseudo-progression. ID: 

NCT04359745 

Preoperative and 

postoperative MRI 

Observational, 

prospective, 

multi-center 

Mar. 2019 - May 

2023 

500 Guy’s and St Thomas’ NHS 

Foundation Trust and King’s 

College, London, United 

Kingdom 

Data collection and creation of an 

ML-based CDSS to predict kidney 

injury after hyperthermic 

intraperitoneal chemotherapy 

(HIPEC). ID: NCT03895606 

Preoperative and 

intraoperative 

physiological parameters 

including hemodynamics, 

blood oxygenation, body 

temperature, cardiac index 

and stroke volume 

variation 

Observational, 

prospective, 

single-center 

Mar. 2019 - Mar. 

2020 

57 Gangnam Severance Hospital, 

Seoul, Republic of Korea 

Data collection and creation of an 

ML-based CDSS to predict risk of 

readmission following discharge 

after cardiovascular surgery, using 

data from a wearable device 

(Snap40 Monitor). ID: 

NCT03800329 

Postoperative 

hemodynamic, blood 

oxygenation, respiration, 

body temperature and 

movement parameters 

Interventional, 

randomized, 

single-center 

Mar. 2018 - Mar. 

2021 

100 Mayo Clinic in Rochester, 

Rochester, Minnesota, United 

States 

MULTI-STAGE/OTHER APPLICATIONS 

Evaluation of an CDSS (Digital 

Surgery GoSurgery) with ML 

components for OR workflow 

assistance and analytics. ID: 

NCT03955614 

Surgery workflow and OR 

video 

Interventional, 

non-randomized, 

multi-center 

Oct. 2019 - Oct. 

2020 

150 Imperial College Hospitals 

NHS Trust, London, United 

Kingdom 

Evaluation of an ML-based CDSS 

to predict motor response after 

subthalamic nucleus deep brain 

stimulation (STN DBS) therapy in 

Parkinson patients. ID: 

NCT04093908 

Demographic, clinical and 

postoperative UPDRS 

variables 

Observational, 

retrospective, 

multi-center 

Aug. 2019 - Dec. 

2019 

322 Maastricht UMC, Maastricht, 

Limburg, Netherlands 

Evaluation of an ML-based CDSS 

(Kia et al., 2020) to predict if a 

hospitalized patient requires care 

escalation within 6 hours. ID: 

NCT04026555 

Admission discharge 

transfer (ADT) events, 

structured clinical 

assessments (e.g. nursing 

notes), physiological 

parameters, ECG and 

laboratory results 

Interventional, 

non-randomized, 

single-center 

Jun. 2019 - Mar. 

2020 

2,915 Mount Sinai Hospital, New 

York, New York, United States 

Evaluation of an ML-based CDSS 

to help report and monitor 

patients before and after total 

knee arthroplasty (TKA), using 

data from a wearable device 

(unspecified). ID: NCT03406455 

Preoperative and 

postoperative physical 

activity parameters 

including step counting 

and knee range-of-motion 

Observational, 

prospective, 

single-center 

Jul. 2018 - May 

2019 

25 Cleveland Clinic, Cleveland, 

Ohio, United States 

( continued on next page ) 

33 



L. Maier-Hein, M. Eisenmann, D. Sarikaya et al. Medical Image Analysis 76 (2022) 102306 

Table E.1 ( continued ) 

Evaluation of a deep brain 

stimulation surgery navigation 

system (Surgical Information 

Sciences) with ML components for 

enhanced image visualization. ID: 

NCT02902328 

Preoperative MRI Observational, 

prospective, 

single-center 

Mar. 2016 - Sep. 

2016 

30 Surgical Information Sciences 

Inc., Minneapolis, Minnesota, 

United States 

Data collection and creation of an 

ML-based system for early sepsis 

detection for patients in ICUs 

including surgical ICUs. ID: 

NCT04130789 

ICU device parameters, 

microbiology parameters 

and laboratory results 

Observational, 

prospective, 

multi-center 

Nov. 2019 - Jun. 

2023 

17,500 Clinical Microbiology, 

University Hospital Basel, 

Basel, Switzerland 

Data collection and creation of an 

ML-based CDSS to predict liver 

transplant (LT) complication risk 

using microbial flora data at 

pre-LT, early post-LT and late 

post-LT timepoints. ID: 

NCT03666312 

Preoperative and 

intraoperative microbial 

flora parameters 

Observational, 

prospective, 

multi-center 

Sep. 2019 - Aug. 

2021 

275 IRCCS San Raffaele, Milan, Italy 

Multi-objective data collection to 

create and evaluate ML-based 

systems for liver volume 

assessment before and after 

surgery, and liver lesion detection. 

ID: NCT03960710 

Preoperative and 

postoperative CT images 

Observational, 

retrospective, 

single-center 

Apr. 2019 - Sep. 

2019 

120 Radiology service, Imaging 

research unit, Edouard Herriot 

Hospital, Lyon, France 

Data collection and creation of an 

ML-based CDSS to predict risk of 

postoperative cognitive 

complications. ID: NCT03175302 

Preoperative digital 

cognititive testing data 

Observational, 

prospective, 

single-center 

Jun. 2018 - Aug. 

2021 

25,240 University of Florida, 

Gainesville, Florida, United 

States 

Data collection and creation of an 

ML-based CDSS to predict risk of 

postoperative complications 

(Clavien-Dindo score). ID: 

NCT04092933 

Patient Data Management 

System (PDMS) data 

including physiological 

parameters (vitals and 

respiratory), medication, 

intraoperative events and 

times 

Observational, 

retrospective, 

single-center 

May 2014 - Feb. 

2022 

109,000 The Technical University of 

Munich, Munich, Germany 

Data collection and creation of an 

ML-based CDSS to predict 

postoperative acute renal failure 

after liver resection. ID: 

NCT01318798 

Preoperative and 

intraoperative 

physiological data 

(unspecified) 

Observational, 

retrospective, 

single-center 

Jan. 2010 - Apr. 

2012 

549 University Hospital of Zurich, 

Department of Visceral and 

Transplantation Surgery, 

Zurich, Switzerland 
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A

. 
ppendix F. Stakeholder importance 

Importance of stakeholders as determined in the Delphi process
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