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FREE PRE-LIE ALGEBRAS OF FINITE POSETS

M. AYADI

Abstract. In this paper, we first recall the construction of a twisted pre-Lie algebra structure on

the species of finite connected topological spaces. Then we construct the corresponding non-

associative permutative coproduct, and we prove that the vector space generated by isomorphism

classes of finite posets is a free pre-Lie algebra and is a co-free non-associative permutative co-

algebra. In the end, we give an explicit duality between the non-associative permutative product

and the proposed non-associative permutative coproduct. Finally, we prove that the results in this

paper remain true for the finite connected topological spaces.
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1. Introduction

A partial order on a set X is a transitive, reflexive, antisymmetric relation on X. A finite poset

is a finite set X endowed with a partial order ≤.

Let P = (X,≤P) and Q = (X,≤Q) be two posets. We say that P is finer than Q if: x ≤P y =⇒ x ≤Q y

for any x, y ∈ X. The Hasse diagram of poset P = (X,≤P) is obtained by representing any element

of X by a vertex, and by drawing a directed edge from a to b if and only if a <P b, and, for any

c ∈ X such that a ≤P c ≤P b, one has a = c or b = c.

Let I ⊆ P, we shall say that I is an upper ideal of P if, for all x, y ∈ P, (x ∈ I, x ≤P y) =⇒ y ∈ I.

Recall [3,12] that a linear (tensor) species is a contravariant functor from the category of finite

sets Fin with bijections into the category Vect of vector spaces (on some field k).

The species P of finite posets is defined as follows: for any finite set X, PX is the vector space

2010 Mathematics Subject Classification. 16T05, 16T10, 16T15, 16T30, 06A11.
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2 M. AYADI

freely generated by the poset structures on X.

Now consider the graded vector space:

(1.1) H = K(P) =
⊕

n≥0

Hn

where H0 = k.1, and where Hn is the linear span of posets on {1, ..., n} when n ≥ 1, modulo the

action of the symmetric group S n [3].

Let P = (X1,≤P), Q = (X2,≤Q) be two finite connected posets, and let v ∈ X2. We define:

Pցv Q := (X1 ⊔ X2,≤),

where ≤ is obtained from ≤P and ≤Q as follows: compare any pair in X2 (resp. X1) by using ≤Q

(resp. ≤P), and compare any element y ∈ X2 with any element x ∈ X1: for any x, y ∈ X1 ⊔ X2,

x ≤ y if and only if:

• Either x, y ∈ X1 and x ≤P y,

• or x, y ∈ X2 and x ≤Q y,

• or x ∈ X2, y ∈ X1 and x ≤Q v.

To sum up, P ցv Q is obtained from the Hasse graphs G1 and G2 of P and Q by adding an

(oriented) edge from v in G2 to any minimal vertex of G1. For example

s2 s1

s3 s4

ցt2

t2
t1 = t1

t2

s2 s1

s3 s4

, s2 s1

s3 s4

ցt1

t2
t1 =

s2 s1

s3 s4

t1

t2

Denoting by V the species of finite connected posets. The productց defined in V by:

Pց Q =
∑

v∈X2

Pցv Q, for all P ∈ VX1
,Q ∈ VX2

,

is twisted pre-Lie, like its counterpart for finite topological spaces defined in [1].

Moreover we notice that, (P,m,∆ց) is a commutative connected twisted bialgebra, and H =

K(P) is a commutative graded bialgebra. The product m is given by the disjoint union, and the

coproduct is given by:

∆ց : PX −→ (P ⊗ P)X =
⊕

Y⊔Z=X

PY ⊗ PZ

P 7−→
∑

I∈P

I ⊗ P\I

where I∈P stands for

• I is a ideal of P,

• I = I1...In, such that for all i ∈ {1, ..., n}, Ii connected and
(

minIi = (minP) ∩ Ii, or there is

a single common ancestor xi ∈ P\I to minIi

)

.

In section 2, we recall the definition of a non-associative permutative algebra, and the dual

defintion of a non-associative permutative coalgebra, due to Muriel Livernet [13]. We recall the
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following rigidity theorem: any pre-Lie algebra (V,�), together with a non-associative permuta-

tive connected coproduct δ satisfying the distributive law

δ(a � b) = a ⊗ b + (a ⊗ 1 + 1 ⊗ a) � δ(b),

is a free pre-Lie algebra and a cofree non-associative permutative coalgebra.

In the third part 3, of this paper, we recall the description of the free pre-Lie algebra in terms

of rooted trees given in [9].

In this section, we define a new bilinear product � defined in the species of finite connected

posets V by: for all P ∈ VX1
and Q ∈ VX2

where X1 and X2 are two finite sets

P� Q =
∑

v∈min(Q)

Pցv Q.

We show that the bilinear product� is a non-associative permutative product.

For any finite set X, we define the coproduct δ by:

δ : VX −→ (V ⊗ V)X =
⊕

Y⊔Z=X

PY ⊗ PZ

P 7−→
1

|min(P)|

∑

I⊚P

I ⊗ P\I,

where I ⊚ P means that I is a subset of P such that

• I− is a singleton included in min(P),

• and I is a connected component of the set {x ∈ P, I− <P x}.

with the set I− equal to the space {x < I, there exists y ∈ I such that x ≤P y}.

We prove that the coproduct δ is a non-associative permutative coproduct, i.e., the following

identity is verified

(Id ⊗ δ)δ = τ12(Id ⊗ δ)δ.

Next we give a compatibility relation between the pre-Lie ց structure and the coproduct δ, by

proving that

δ(Pց Q) = P ⊗ Q + (P ⊗ 1 + 1 ⊗ P)ց δ(Q),

for all P,Q two finite connected posets, where the unit 1 is identified to the empty poset.

Applying the functor K and M. Livernet’s rigidity theorem [13] leads to the main result of

the paper:
(

K(V),ց
)

endowed with the coproduct δ is a free pre-Lie algebra and a cofree non-

associative permutative coalgebra.

Finally in this section, we prove that there exist relations between the non-associative permu-

tative product � and the coproduct δ, and by proving that (H,∆ց) is a coassociative cofree

coalgebra.

Finally we prove in section 4, that the results in this paper remain true for the finite connected

topological spaces, with a small change on the definition of the coproduct δ.
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2. Non-associative permutative algebras and coalgebras

Definition 2.1. A (left) non-associative permutative algebra (NAP algebra) is a vector space V

equipped with a bilinear product · satisfying the relation

a · (b · c) = b · (a · c), for all a, b and c ∈ V.

Note also that an associative algebra that is a non-associative permutative algebra is a permuta-

tive algebra in the terminology of Chapoton in [7].

A (left) non-associative permutative co-algebra is a vector space V equipped with a bilinear

coproduct δ : V → V ⊗ V satisfying the relation

(Id ⊗ δ)δ = τ12(Id ⊗ δ)δ.

This is the dual notion of a non-associative permutative algebra.

Definition 2.2. [8, 14] A left pre-Lie algebra over a field k is a k-vector space A with a binary

composition � that satisfies the left pre-Lie identity:

(x � y) � z − x � (y � z) = (y � x) � z − y � (x � z),

for all x, y, z ∈ A. The left pre-Lie identity rewrites as:

(2.1) L[x,y] = [Lx, Ly],

where Lx : A −→ A is defined by Lxy = x � y, and where the bracket on the left-hand side is

defined by [x, y] = x � y − y � x. As a consequence this bracket satisfies the Jacobi identity.

Definition 2.3. [13] Let (V, δ) coalgebra, i.e., be a vector space V together with linear map

δ : V −→ V ⊗ V. The following defines a filtration on V:

• Prim(V) = V1 = {x ∈ V, δ(x) = 0}

• Vn = {x ∈ V, δ(x) ∈
∑

0<k<n

Vk ⊗ Vn−k}.

The coalgebra (V, δ) is said to be connected if V =
⋃

k>0

Vk.

Theorem 2.1. [13] Any pre-Lie algebra (V,�), together with a non-associative permutative

connected coproduct δ satisfying the distributive law

(2.2) δ(a � b) = a ⊗ b + (a ⊗ 1 + 1 ⊗ a) � δ(b),

is a free pre-Lie algebra and a cofree non-associative permutative coalgebra.

Proposition 2.1. [13, Corollary 3.9] Let (V,�) be a pre-Lie algebra together with a non-

associative permutative connected coproduct δ satisfying relation 2.2. Then V is generated as

a pre-Lie algebra by Prim(V).

3. Free pre-Lie algebras and co-free co-algebras

3.1. Free pre-Lie algebras and rooted trees. Let T the vector space spanned by the set of

isomorphism classes of rooted trees and H = S (T ). Grafting pre-Lie algebras of rooted trees

were studied for the first time by F. Chapoton and M. Livernet [9], see also D. Manchon and A.

Saidi [15]. The grafting product is given, for all t, s ∈ T , by:

(3.1) t → s =
∑

s′ vertex of s

t →s′ s,
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where t →s′ s is the tree obtained by grafting the root of t on the vertex s′ of s. In other words,

the operation t → s consists of grafting the root of t on every vertex of s and summing up.

Following the notation of Connes and Kreimer [5], any tree t writes t := B(v, t1, t2, ..., tn) where is

decorated by v, and t1, ..., tn are trees.

We note RT (n) the space of labelled rooted trees of degree n. For a vector space V , denoted by

RT (V) the space
∑

n RT (n) ⊗Σn
V⊗n, where Σn is the symmetric group on n elements.

We notice that, if using the pre-Lie product→ in RT (V), one has:

B(v, t1, ..., tn) = tn → B(v, t1, ..., tn−1) −
∑

0<k<n

B(v, t1, ..., tn → tk, ..., tn−1)

Proposition 3.1. [9] Equipped by→, the space T is the free pre-Lie algebra with one generator.

Proposition 3.2. [13] Let V be a vector space. Then RT (V), together with the coproduct

∆
(

B(v, t1, t2, ..., tn)
)

=
∑

0<k<n+1

tk ⊗ B(v, t1, ..., t̂k, ..., tn),

is the cofree non-associative permutative connected coalgebra.

3.2. NAP algebras of finite connected posets. Let P be a finite connected poset, and I be a

subset of P. We denote by I− the set {x < I, there exists y ∈ I such as x ≤P y}.

We denote I ⊚ P if:

• I− is a singleton included in min(P),

• and I is a connected component of the set {x ∈ P, I− <P x}.

Lemma 3.1. Let P be a finite connected poset, and I, J two subsets of P, we have

1 - if I, J ⊚ P, then I = J or I ∩ J = ∅,

2 - if I ⊚ P, then min(P\I) = min(P).

Proof. 1- Let P be a finite connected poset, and I, J two subset of P, such as I, J ⊚ P, so we have

two possible cases: either I− , J− or I− = J−.

- If I− , J−, with I− = {y}, and J− = {z}, then I is a connected component of the set {x ∈ P, y <P x}

and J is a connected component of the set {x ∈ P, z <P x}. Then I ∩ J = ∅.

- If I− = J− = {y}, then I and J is two connected component of the set {x ∈ P, y <P x}, then I = J

or I ∩ J = ∅.

2- If there exists x ∈ min (P) ∩ I, then I− <P x, which is absurd, then min(P) ∩ I = ∅. Then

min(P\I) = min(P). �

Definition 3.1. We define the bilinear product� defined in the species of finite connected posets

V by: for all P ∈ VX1
and Q ∈ VX2

, where X1 and X2 are two finite sets,

P� Q =
∑

v∈min(Q)

Pցv Q.

Proposition 3.3. The bilinear product � is a non-associative permutative product, i.e., the

following identity is verified

P� (Q� R) = Q� (P� R),

for all P,Q and R three finite connected posets.
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Proof. Let P,Q and R three finite connected posets, we have:

P� (Q� R) =
∑

v∈min(R)

P� (Qցv R)

=
∑

u∈min(QցvR)

∑

v∈min(R)

Pցu (Qցv R),

and since min(Qցv R) = min(R), for all v ∈ min(R) then

P� (Q� R) =
∑

v, u∈min(R)

Pցu (Qցv R),

Which is symmetric on P and Q. Then we obtain:

P� (Q� R) = Q� (P� R).

�

Corollary 3.1. Applying the functor K gives that
(

K(V),�
)

is a non-associative permutative

algebra (NAP algebra).

Proposition 3.4. Let X be any finite set, we define the coproduct δ by:

δ : VX −→ (V ⊗ V)X =
⊕

Y⊔Z=X

VY ⊗ VZ

P 7−→
1

|min(P)|

∑

I⊚P

I ⊗ P\I,

δ is a non-associative permutative coproduct, i.e., the following identity is verified

(Id ⊗ δ)δ = τ12(Id ⊗ δ)δ, where τ12 = τ ⊗ Id, τ is the flip .

Proof. Let P be a finite connected poset, we have

(Id ⊗ δ)δ(P) =
1

|min(P)|

∑

I⊚P

I ⊗ δ(P\I)

=
1

|min(P)|

∑

I⊚P
J⊚P\I

1

|min(P\I)|
I ⊗ J ⊗

(

(P\I)\J
)

=
1

|min(P)|2

∑

I, J⊚P
I
⋂

J=∅

I ⊗ J ⊗
(

P\(I ⊔ J)
)

= τ12(Id ⊗ δ)δ(P).

�

Example 3.1. δ( ) =0 δ( ) = 2 ⊗

δ( ) = 1
2
⊗ δ( ) = ⊗

Corollary 3.2. Applying the functor K gives that
(

K(V), δ
)

is a non-associative permutative

coalgebra (NAP coalgebra).
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3.3. Free pre-Lie algebras of finite posets. In this subsection, we prove the compatibility rela-

tion [13, Theorem] between the productց and the non-associative permutative coproduct δ.

Theorem 3.1. Let P,Q two finite connected posets. We have the following identity

δ(Pց Q) = P ⊗ Q + (P ⊗ 1 + 1 ⊗ P)ց δ(Q),

where the unit 1 is identified to the empty poset.

Proof. Let P = (X1,≤P), Q = (X2,≤Q) two finite connected posets, we have:

δ(Pց Q) =
∑

v∈X2

δ(Pցv Q)

=
∑

v∈X2
I⊚(PցvQ)

1

|min(Pցv Q)|
I ⊗
(

(Pցv Q)\I
)

=
∑

v∈X2
I⊚(PցvQ)

1

|min(Q)|
I ⊗
(

(Pցv Q)\I
)

=
1

|min(Q)|



























∑

v∈X2, v∈min(Q)
I⊚(PցvQ)

I ⊗
(

(Pցv Q)\I
)

+
∑

v∈X2, v<min(Q)
I⊚(PցvQ)

I ⊗
(

(Pցv Q)\I
)



























,

we notice that

- if v ∈ min(Q), then
{

I, I ⊚ (Pցv Q)} = {P} ∪ {I, I ⊚ Q
}

,

and

- if v < min(Q), then {I, I ⊚ (Pցv Q)} = {Pցv J, J ⊚ Q, v ∈ J} ∪ {J, J ⊚ Q, v < J},

then

δ(Pց Q) =
1

|min(Q)|



























∑

v∈X2, v∈min(Q)

P ⊗ Q +
∑

v∈X2, v∈min(Q)
I⊚Q

I ⊗
(

Pցv (Q\I)
)



























+
1

|min(Q)|



























∑

v∈X2, v<min(Q)
J⊚Q, v∈J

(Pցv J) ⊗ Q\J +
∑

v∈X2, v<min(Q)
J⊚Q, v<J

J ⊗
(

Pցv (Q\J)
)



























,

we notice that
∑

v∈X2, v<min(Q)
J⊚Q, v∈J

(Pցv J) ⊗ Q\J =
∑

J⊚Q

(P ⊗ 1)ց (J ⊗ Q\J),

and
∑

v∈X2, v<min(Q)
J⊚Q, v<J

J ⊗
(

Pցv (Q\J)
)

=
∑

v∈X2, v<min(Q)
J⊚Q

J ⊗
(

Pցv (Q\J)
)

,

then
∑

v∈X2, v∈min(Q)
I⊚Q

I ⊗
(

Pցv (Q\I)
)

+
∑

v∈X2, v<min(Q)
J⊚Q, v<J

J ⊗
(

Pցv (Q\J)
)

=
∑

J⊚Q

(1 ⊗ P)ց (J ⊗ Q\J),
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then

δ(Pց Q) =
1

|min(Q)|

























∑

v∈X2, v∈min(Q)

P ⊗ Q +
∑

J⊚Q

(P ⊗ 1)ց (J ⊗ Q\J) +
∑

J⊚Q

(1 ⊗ P)ց (J ⊗ Q\J)

























.

Then

δ(Pց Q) = P ⊗ Q + (P ⊗ 1)ց δ(Q) + (1 ⊗ P)ց δ(Q).

�

Corollary 3.3. Applying the functor K gives that,
(

K(V),ց
)

endowed with the coproduct δ is a

free pre-Lie algebra and a cofree non-associative permutative coalgebra.

Proof. This is a direct consequence of theorem 3.1 and M. Livernet’s rigidity theorem [13, The-

orem]. �

Corollary 3.4. K(V) is generated as a pre-Lie algebra by Prim
(

K(V)
)

.

Proof. Let K(V)1 = Prim
(

K(V)
)

= {P ∈ K(V), δ(P) = 0}, and let K(V)n = {P ∈ K(V), δ(P) ∈
∑

0<k<n

K(V)k ⊗ K(V)n−k}, we notice that K(V) =
⋃

k>0

K(V)k, i.e., the vector space (K(V), δ) is

connected. Appling proposition 2.1 we obtain that K(V) is generated as a pre-Lie algebra by

Prim
(

K(V)
)

. �

Example 3.2. Here are the posets in Prim
(

K(V)
)

up to four vertices:

, , , , ,

3.4. Relation between� and δ. In this subsection, we prove that there exist relations between

the non-associative permutative product� and the non-associative permutative coproduct δ.

Definition 3.2. Let G be a group acting on X, for every x ∈ X:

- we denote by G · x := {g · x, g ∈ G}, the orbit of x,

- we denote by G−X = {g ∈ G, g · x = x}, the stabilizer subgroup of G with respect to x.

The action of G on X is called: transitive if X is non-empty and if for each pair x, y ∈ X there

exists g ∈ G such that g · x = y. (i.e, that is if there exists x in X with G · x = X, i.e, it has exactly

one orbit.)

Proposition 3.5. Let G be a group acting on X, if G and X is finite, then the orbit-stabilizer

theorem, together with Lagrange’s theorem [17, Theorem 3.9], gives

(3.2) |G · x| = [G−X : G] =
|G|

|G−x|
,

that implies that the cardinal of the orbit is a divisor of the group order.

Definition 3.3. For any poset P on a finite set X, we denote by Aut(P) the subgroup of permu-

tations of X which are homeomorphisms with respect to P. The symmetry factor is defined by

σ(P) = |Aut(P)|. Let X1, X2 two finite sets, we define the linear map 〈, 〉 : VX1
⊗ VX2

−→ K by:

〈Q,R〉 =















σ(Q) if Q ≈ R,

0 otherwise.

In other terms, 〈Q,R〉 is the number of isomorphisms between Q and R.
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Theorem 3.2. Let P,Q and R three finite connected posets. We have the following identity

〈δ(P),Q ⊗ R〉 =
1

|min(P)|
〈P,Q� R〉.

Proof. Let P,Q and R three finite connected posets.

〈δ(P),Q ⊗ R〉 =
1

|min(P)|

∑

I⊚P
I≈Q,

P\I≈R

σ(Q)σ(R) =
1

|min(P)|
|A|

with

A = {(I, σ1, σ2) | I ⊚ P, σ1 : I
∼
−→ Q, σ2 : P \ I

∼
−→ R}.

And:

〈P,Q� R〉 =
∑

v∈min(R)
QցvR≈P

σ(P) = |B|,

with

B = {(v, σ) | v ∈ min(R), σ : P
∼
−→ Qցv R}.

Let us define now a map φ : A −→ B. Let (I, σ1, σ2) ∈ A. We put w = I−. As I ⊚ P,

w ∈ min(P \ I), so v = σ2(w) ∈ min(R). As I ⊚ P, P = I ցw (P \ I), so we obtain an isomorphism

σ : P −→ Qցv R by taking

σ(x) =















σ1(x) if x ∈ I,

σ2(x) otherwise.

We then put φ(I, σ1, σ2) = (v, σ).

Now, we define a map ψ : B −→ A. If (v, σ) ∈ B, we put I = σ−1(Q). As Q ⊚ Q ցv R, I ⊚ P.

Moreover, σ1 = σ|I is a graph isomorphism from I to Q and σ2 = σ|P\I is a graph isomorphism

from P \ I to R. We put ψ(v, σ) = (I, σ1, σ2).

Let (v, σ) ∈ B. We put ψ(v, σ) = (I, σ1, σ2) and φ ◦ ψ(v, σ) = (v′, σ′). Then I = σ−1(Q) and

w′ = I− = w, so v′ = σ(w) = v. Moreover,

σ′|I = σ1 = σ|I ,

σ′|P\I = σ2 = σ|P\I ,

so σ′ = σ. Hence, φ ◦ ψ = idB.

Let (I, σ1, σ2) ∈ A. We put φ(I, σ1, σ2) = (v, σ) and ψ ◦ φ(I, σ1, σ2) = (I′, σ′
1
, σ′

2
). Then

I′ = σ−1(Q) = I, by construction of σ. Moreover,

σ′1 = σ|I = σ1,

σ′2 = σ|P\I = σ2.

So ψ ◦ φ = idA.

Finally, A and B are in bijection and we obtain:

〈δ(P),Q ⊗ R〉 =
1

|min(P)|
〈P,Q� R〉.

�
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Notation. Let E be any finite set, and let π, ρ be two partitions of E, We denote by

j(π, ρ) =
1

|E|

∑

α is a block of
β is a block of ρ

π

|α ∩ β|
|β|

|α|
.

Proposition 3.6. Let P,Q and R three finite connected posets. We denote by E = {v, v ∈ min(R) |

P ≈ Q ցv R}. Let π be the partition of E into Aut(P)-orbits, and let ρ be the partition of E into

Aut(R)-orbits. We have the following identity

j(π, ρ) = 1.

Proof. Let P,Q and R three finite connected posets. In fact: firstly,

〈P,Q� R〉 =
∑

v∈min(R)

〈P,Qցv R〉

=
∑

v∈min(R)
P≈QցvR

σ(P)

= σ(P)|E|,

On the other hand

〈δ(P),Q ⊗ R〉 =
1

|min(P)|

∑

I⊚P

〈I,Q〉〈P\I,R〉

=
1

|min(P)|

∑

I⊚P
I≈Q, P\I≈R

σ(Q)σ(R)

=
1

|min(R)|

∑

I⊚P
I≈Q, P\I≈R

σ(Q)σ(R)

=
1

|min(R)|

∑

v∈min(R)

∑

I⊚P, I−={v}
I≈Q, P\I≈R

σ(Q)σ(R)

=
1

|min(R)|

∑

v∈min(R)

Nv(P,Q,R)σ(Q)σ(R),

where Nv(P,Q,R) := the number of branches I of P above v isomorphic to Q such that P\I

isomorphic to R.

We notice that, for all v ∈ min(R):

• if P 0 Qցv R, then Nv(P,Q,R) = 0,

• if P ≈ Q ցv R, then Nv(P,Q,R) = Nv(Q,R) := the number of branches of Q ցv R above

v isomorphic to Q.
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Then

〈δ(P),Q ⊗ R〉 =
1

|min(R)|

(
∑

v∈min(R)
P≈QցvR

Nv(P,Q,R)σ(Q)σ(R) +
∑

v∈min(R)
P,QցvR

Nv(P,Q,R)σ(Q)σ(R)
)

=
1

|min(R)|

∑

v∈min(R)
P≈QցvR

Nv(P,Q,R)σ(Q)σ(R)

=
1

|min(R)|

∑

v∈min(R)
P≈QցvR

Nv(Q,R)σ(Q)σ(R).

By using the orbit-stabilizer theorem, as well as Lagrange’s theorem for the group
(

Aut(R), ◦
)

endowed with the law of composition, we therefore have:

|Aut(R) · v| =
|Aut(R)|

|Aut(R)v|
, i.e, |Aut(R) · v| =

σ(R)

σv(R)
.

We notice that, for all v ∈ min(R): σv(Qցv R) = σ(Q)σv(R)Nv(Q,R).

Then

〈δ(P),Q ⊗ R〉 =
1

|min(R)|

∑

v∈E

σ(Q)σv(R)|Aut(R) · v|Nv(Q,R)

=
1

|min(R)|

∑

v∈E

σv(P)|Aut(R) · v|

=
1

|min(R)|

∑

v∈E

σ(P)
|Aut(R) · v|

|Aut(P) · v|

=
1

|min(R)|
σ(P)S ,

where

S =
∑

v∈E

|Aut(R) · v|

|Aut(P) · v|
.

Let π be the partition of E into Aut(P)-orbits, and let ρ be the partition of E into Aut(R)-orbits.

We denote by α ∈ π (respectively, β ∈ ρ), if α is a block of π (respectively, if β is a block of ρ).

Then

S =
∑

v∈E

|Aut(R) · v|

|Aut(P) · v|

=
∑

v∈E

∑

α is a Aut(P)-orbit of v
β is a Aut(R)-orbit of v

|β|

|α|

=
∑

α is a Aut(P)-orbit
β is a Aut(R)-orbit

|α ∩ β|
|β|

|α|

= j(π, ρ),
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then 〈δ(P),Q ⊗ R〉 = 1
|min(R)|

σ(P) j(π, ρ). Then

〈δ(P),Q ⊗ R〉 = 〈P,Q� R〉
jP,R(π, ρ)

|min(P)|
.

Appling Theorem 3.2, we obtain

〈δ(P),Q ⊗ R〉 =
1

|min(P)|
〈P,Q� R〉 = 〈P,Q� R〉

j(π, ρ)

|min(P)|
.

Conclusion: for P,Q and R three finite connected posets, if we denote by E = {v, v ∈ min(R) |

P ≈ Q ցv R}, and for π (resp. ρ) the partition of E into Aut(P)-orbits (resp. the partition of E

into Aut(R)-orbits). Then we obtain

j(π, ρ) = 1.

�

3.5. Free Lie algebras of finite posets. F. Chapoton in [6] shows that free pre-Lie algebras are

free as Lie algebras, i.e., if (V,�) is a free pre-Lie algebra, then it is a free Lie algebra for the Lie

bracket [, ] defined by [a, b] = a � b − b � a. This result has been obtained before with different

methods by L. Foissy [10, Theorem 8.4].

Proposition 3.7. [13] For any vector space V, the free pre-Lie algebra on V is isomorphic as a

Lie algebra to the free Lie algebra on some set X(V) of generators.

Application Let H0 be the graded dual of the Hopf algebra H. The primitive element algebra

of the graded dual H0 with the bracket [, ] is a Lie algebra. We denote by ⋆ the Grossman-Larson

product on the dual of H [1]. This product restricted to H0 is the graded dual of the coproduct

∆ց [1].

Applying the general setting above to the case H = H = K(P) we are studying, we obtain that:
(

K(V),ց
)

=
(

Prim(H0),ց
)

is a free pre-Lie algebra, then it is also a free Lie algebra, therefore

U(PrimH0) =
(

S (PrimH0), ⋆
)

is a free associative algebra. Then
(

S (PrimH0), ⋆
)0
= (H,∆ց) is

a coassociative cofree coalgebra.

4. Generalization to finite topological spaces

Recall [2,11] that a finite topological space is a finite quasi-poset and vice versa. Any topology

T (hence any quasi-order on X) gives rise to an equivalence relation:

(4.1) x ∼T y⇐⇒ (x ≤T y and y ≤T x) .

This equivalence relation is trivial if and only if the quasi-order is a (partial) order. Any topology

T on X defines a poset on the quotient X/ ∼T, corresponding to the partial order induced by the

quasi-order ≤T. More on finite topological spaces can be found in [4, 16]

All the results in this paper remain true for the finite connected topological spaces, with a

small change on the definition of the coproduct δ. Indeed: let T = (X,≤T) be a finite connected

topological space, we define

δ(T) =
1

|min(T)|

∑

Y⊚T

T|Y ⊗ T|X\Y ,

where Y ⊚ T means that Y ∈ T such that
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• Y− is a singleton included in min(T),

• and Y is a branch of the set {x ∈ X, such that for all y ∈ Y−, we have y <T x and y � x}.

Here the set Y− equal to the space {x < Y, there exists y ∈ Y such that x ≤ y}, T = (X/ ∼T,≤) is

the poset defined on X/ ∼T corresponding to the partial order ≤ induced by the quasi-order ≤T,

and Y− = Y−/ ∼T|Y− . Let Aut(T) the subgroup of permutations of X which are homeomorphisms

with respect to T, and let G = {g ∈ Aut(T), g · v = v for all v ∈ X}, we notice that G ⊆ Aut(T), G

is a normal subgroup and Aut(T) = Aut(T)/G.

We notice that the results obtained in Lemma 3.1 also work for Y,Z ⊚ T. From Y,Z ⊚ T and

Lemma 3.1 we get that both Y ,Z ⊚ T, then (Y = Z or Y ∩ Z = ∅), and min(T |X\Y) = min(T). Then

Y ∩ Z = ∅ and min(T|X\Y) = min(T).

Hence to show that the proposition 3.4 also works in topological cases, it suffices to change I, J⊚P

by Y,Z ⊚ T in the proof of proposition 3.6. To show that the result of Theorem 3.1 also works in

connected finite topological spaces, we change I ⊚ P by Y ⊚ T in the Proof 3.3.

Finally we prove the existence of a relation between δ and� in the topological case. Exactly:

for T,T
′

and T
′′

three finite connected topological spaces, we have

〈δ(T),T′ ⊗ T′′〉 =
1

n|min(T)|
〈T,T′� T

′′〉,

where n is the number of items in any bag v ∈ min(T′′), such as T ≈ T
′ ցv T

′′.

The proof is similar to the proof of Theorem 3.2. Indeed:

〈δ(T),T′ ⊗ T′′〉 =
1

|min(T)|

∑

Y⊚T
T|Y≈T

′,

T|X\Y≈T
′′

σ(T′)σ(T′′) =
1

|min(T)|
|A|

with

A = {(Y, σ1, σ2) | Y ⊚ T, σ1 : T|Y
∼
−→ T

′, σ2 : T|X\Y
∼
−→ T

′′}.

On the other hand

〈T,T′� T
′′〉 =

∑

v∈min(T′′)

〈T,T′ ցv T
′′〉

=
∑

v∈min(T′′)
T≈T′ցvT′′

σ(T) = |B|,

with

B = {(v, σ) | v ∈ min(T′′), σ : T
∼
−→ T

′ ցv T
′′}.

Let

C = {(u, σ) | u = v, v ∈ min(T′′), σ : T
∼
−→ T

′ ցv T
′′}.

We notice that for all u, u′ ∈ C, we have |u| = |u′|. Hence |B|
|C|

is the number of items in any bag

v ∈ min(T′′), such as T ≈ T
′ ցv T

′′.

We define

f : A −→ C

(Y, σ1, σ2) 7−→ (u, σ),



14 M. AYADI

where u = v = σ2(Y−) and σ is a graph isomorphism from T to T
′ ցv T

′′ defined by

σ(x) =















σ1(x) if x ∈ Y,

σ2(x) otherwise.

Now, we define a map

g : C −→ A

(u, σ) 7−→ (Y, σ1, σ2),

where Y = Xσ−1(T′), σ1 = σ|T|Y is a graph isomorphism from T|Y to T
′ and σ2 = σ|TX\Y

is a graph

isomorphism from T|X\Y to T
′′.

Let (u, σ) ∈ C, we put g(u, σ) = (Y, σ1, σ2), where Y = Xσ−1(T′), σ1 = σ|T′ and σ2 = σ|T′′ . Then

f ◦ g(u, σ) = (u′, σ′), with u′ = w = σ2(Y−) and σ′ is a graph isomorphism from T to T
′ ցw T

′′

defined by

σ′(x) =















σ1(x) if x ∈ Y,

σ2(x) otherwise.

Then u′ = σ2(Y−) = u and σ′ = σ. Hence f ◦ g = IdC.

Let (Y, σ1, σ2) ∈ A, we put f (Y, σ1, σ2) = (u, σ), with u = v = σ2(Y−) and σ is a graph isomor-

phism from T to T
′ ցv T

′′ defined by

σ(x) =















σ1(x) if x ∈ Y,

σ2(x) otherwise.

Then g ◦ f (Y, σ1, σ2) = (Y ′, σ
′

1
, σ

′

2
), with Y ′ = Xσ−1(T′), σ

′

1
= σ|T|Y′ is a graph isomorphism from

T|Y′ to T
′ and σ

′

2
= σ|T|X\Y′ is a graph isomorphism from T|X\Y′ to T

′′.

Then Y ′ = Xσ−1(T′) = Y and














σ
′

1
= σ|T|Y′ = σ1,

σ
′

2
= σ|T|X\Y′ = σ2.

So g ◦ f = IdA.

Finally, A and C are in bijection. Hence

〈δ(T),T′ ⊗ T′′〉 =
1

|min(T)|
|A| =

1

|min(T)|
|C| =

1

|min(T)|
|C|
|B|

|B|
=

|C|

|B||min(T)|
〈T,T′� T

′′〉.

Remark. All the results in this paper remain true for the posets (resp. topological spaces)

decorated by F, that is to say pairs (A, f ), where A = (A,≤A) is a poset (resp. topology) and

f : A→ F is a map.
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Série I (2001), 681-684.

4

[9] F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. (2001), 395-408.

3, 4, 5

[10] L. Foissy, Finite dimensional comodules over the Hopf algebra of rooted trees, Journal of Algebra, Elsevier,

vol. 255, p. 89-120, 2002 .

12

[11] F. Fauvet, L. Foissy, D. Manchon, The Hopf algebra of finite topologies and mould composition, Ann. Inst.

Fourier, Tome 67, No. 3 (2017), 911–945.

12
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Montréal/Can. 1985, Lect. Notes Math. 1234, 126-159 (1986).

1

[13] M. Livernet, A rigidity theorem for pre-Lie algebras, Journal of Pure and Applied Algebra, vol. 207, p. 1-18,

2006.

2, 3, 4, 5, 7, 8, 12

[14] D. Manchon, A short survey on pre-Lie algebras, E. Schrodinger Institut Lectures in Math. Phys. Eur. Math.

Soc, A. Carey Ed. (2011).

4
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