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Abstract— Diverse disciplines are interested in how the co-
ordination of interacting agents’ movements, emotions, and
physiology over time impacts social behavior. Here, we describe
a new multivariate procedure for automating the investigation
of this kind of behaviorally-relevant “interactional synchrony”,
and introduce a novel interactional synchrony measure based
on features of dynamic time warping (DTW) paths. We
demonstrate that our DTW path-based measure of interactional
synchrony between facial action units of two people interacting
freely in a natural social interaction can be used to predict
how much trust they will display in a subsequent Trust Game.
We also show that our approach outperforms univariate head
movement models, models that consider participants’ facial
action units independently, and models that use previously
proposed synchrony or similarity measures. The insights of
this work can be applied to any research question that aims
to quantify the temporal coordination of multiple signals over
time, but has immediate applications in psychology, medicine,
and robotics.

I. INTRODUCTION

When we interact with each other, our emotions, ac-
tions, movements, and physiology become coordinated over
time [1]. For example, when we walk down the street with
another person we like, our steps fall into sync. When we
listen to somebody tell a story, we subconsciously imi-
tate their facial expressions and gestures. The interdepen-
dence between interacting people’s movements is referred to
broadly as interactional synchrony [2] and has been shown
to cause and reflect specific aspects of social communication
and behavior, such as how much two people like each
other or cooperate [3]. Knowing what types of interactional
synchrony between what types of movements correlate with
behaviors would provide insight into how human brains
process social information, and could inform practical tools
that screen for social disorders, predict negotiation outcomes,
improve customer service interactions, or engender trust
in social robots and avatars. Towards that end, here, we
propose a new automated method for measuring multivariate
interactional synchrony in video interactions, and use it to
identify facial features whose coordination predicts trust in
the Trust Game, a game in which the earnings of two players
are maximized when the first player trusts the second.

This work was partially supported by Duke Bass Connections and
Templeton World Charity Foundation grant TWCF0321.

Automated interactional synchrony tools have proven dif-
ficult to develop [4]. One challenge is that social interaction
data has traditionally been expensive and cumbersome to
collect, resulting in small social synchrony data sets with
only 30–40 interactions [4]. Another challenge is that many
interactional synchrony researchers do not have access to
automated image processing tools, so they extract and ana-
lyze features of an interaction by hand or through subjective
labeling, which is extremely time-intensive. Even when au-
tomated image analysis tools are available, the aspects of
a social interaction that are most important to analyze are
not clear. Is synchrony between people’s emotions, gestures,
pose, or language most influential on the outcomes of social
interactions? Or do the interactions between all of these
responses matter? At present there are no well-established
methods for assessing synchrony between multiple time se-
ries, so most interactional synchrony studies focus on a single
feature, despite consensus from the psychology literature
that social communication occurs through the simultaneous
coordination of multiple types of non-verbal signals [5].

Perhaps the greatest challenge to automating interactional
synchrony measurements is that psychological definitions of
interactional synchrony are not quantitative. One definition
preferred by the authors is “synchrony is the dynamic and
reciprocal adaptation of the temporal structure of behaviors
between interactive partners. Unlike mirroring or mimicry,
synchrony is dynamic in the sense that the important element
is the timing, rather than the nature of the behaviors” [4].
Thus, interactional synchrony can incorporate mimicry or
aligned oscillatory movements, but mimicry and oscillatory
movements are neither necessary nor sufficient to explain
the type of temporal coordination we know occurs between
movements in real social interactions. Another definition
states “synchrony refers to the motion interdependence of
all participants during an interaction focusing on more than
a single behavior” [6]. This adds to the previous definition
by clarifying that interactional synchrony must involve mul-
tiple interdependent motions, but leaves unspecified how the
motions have to be interdependent. It is not clear how to
operationalize such vague concepts using traditional methods
for assessing the coordination between two time series, be-
cause traditional methods often assume that only one type of



temporal coordination (for example, only shared sinusoidal
oscillations or only the time lags between two time series)
is important. Many traditional methods also assume the
relationships between time series are stable over time. The
temporal coordination of real human social interactions, in
contrast, is dynamic, changes directionality and cadence, and
occurs differently for different types of movements (Person
A may slowly follow Person B’s head pose while Person
B simultaneously smiles almost immediately after they see
Person A smile).

The most popular method for automating social synchrony
detection applies a two-stage analysis to videos of interac-
tions. First, motion energy analysis (MEA) is used to create a
single time series of the frame-to-frame intensity differences
of pixels from the head region of each participant. Then
social synchrony is assessed by analyzing the correlation
coefficients of the windowed cross-correlations (WCC) of
these paired time courses (by selecting the peak value or
thresholding the coefficients to compute durations/bouts of
synchrony). A recent study demonstrated that the degree to
which patients trusted clinicians in simulated interactions
was mediated by social synchrony measured in this way [7],
supporting the notion that at least some of the non-verbal
cues that foster trust may be dynamically interdependent
between actors and located somewhere in the head. Yet, the
univariate MEA method of measuring social synchrony has
two important weaknesses. First, it is unable to identify what
facial expressions or specific head movements are coordi-
nating in a behaviorally-relevant way. Even if more detailed
movements than overall head motion were extracted from the
videos, procedures for multivariate interactional synchrony
are not established. Further, many of the multivariate meth-
ods one might consider assume the temporal relationships
between all variables under investigation are the same, which
we know is not true in social interactions, as discussed above.
Second, WCC assumes that the relationships between time
series are stationary across the length of the chosen window.
When this assumption is unknowingly violated, the resulting
correlation can be misleading [8]. As a consequence, WCC is
not ideally-suited for highly dynamic temporal coordination,
especially in multivariate settings where different features
may have different optimal windows.

Here, we propose a new procedure for automating the in-
vestigation of behaviorally-relevant social synchrony. Rather
than focus on single features of visual scenes, like MEA
methods, our method accommodates multiple features of a
social interaction and identifies which ones are behaviorally-
relevant, even when the features are not fully independent.
We also introduce a new approach to measuring social
synchrony that allows for dynamic time lags between actors
and avoids the stationarity assumptions of WCC. We use
dynamic time warping (DTW) to achieve this, but leverage
characteristics of the warping path rather than the DTW “dis-
tance”. We demonstrate that our DTW-path based measure
of social synchrony between facial action units of two people
interacting freely in a natural social interaction can be used to
predict how much they will trust each other in a subsequent

Trust Game. We also show that our approach outperforms
univariate head movement synchrony models, models that
only consider participants’ facial action units independently,
and models that use WCC to assess synchrony.

II. DATA COLLECTION

A. Overall Description

Videos were recorded of two people in separate geographic
locations interacting via Skype. Each pair was given ap-
proximately three minutes to interact freely in any way they
wished. Although research assistants set up the session, they
left the room during this free-interaction phase. The research
assistants returned to the room to open the Trust Game virtual
interface (described below), and then left the room again
so that the participants were alone when they played the
Trust Game and filled out questionnaires. 135 pairs of videos
were collected. Our goal was to predict the outcome of the
Trust Game using our assessment of each pair’s interactional
synchrony during the free interaction period.

B. Trust Game

In the Trust Game [9], “H” (Head player) is given a dollar
and given the opportunity to give $0, $0.20, $0.40, $0.60,
$0.80, or $1 of that dollar to “T” (Tail player). H is told that
the amount they choose to give to T will be tripled before
it is delivered. After H makes their choice and the tripled
amount is delivered, T is then given the opportunity to return
to H as much as they want of the money they received. H
and T are aware of how much the other started with, and
how much they choose to give. The outcome of the game
depends on H’s trust and T’s trustworthiness: to maximize
earnings for both players, H would give T $1 and trust that
T would return more than $1 of their earnings, and T would
be trustworthy and follow-through with returning more than
$1 of their earnings. H and T roles are randomly assigned.

C. Facial Action Units

Humans innately assess others’ trustworthiness when they
see them, and use signals from the way others’ emotional
expressions unfold over time to make these judgments [10].
Dynamic facial features play a more dominant role in
trustworthiness judgments than static facial features [11] or
non-facial nonverbal cues like gestures or body posture [6].
Therefore, we focused our analysis on the facial features
that comprise players’ dynamic emotional expressions. One
option would be to track prototypic emotion categories,
like “disgust” or “joy”. However, the facial configurations
associated with these emotion categories are not as consistent
or universal as previously believed, calling into doubt cur-
rently available models for automatically tracking those types
of supraordinate emotions [12]. Thus, we analyzed facial
action units (AUs) instead of emotional categories, per se.
AUs are well-validated “minimal units of facial activity that
are anatomically separate and visually distinguishable” [13],
such as lid raises or nose wrinkles. Emotional expressions
are comprised of multiple AUs working in tandem to differ-
ent degrees in different people. Automatic AU-detection is



thought to be both more ecologically valid and more reliable
than automatic emotion detection. We extracted the intensity
(from zero to five) of the 17 AUs listed in Supplementary
Table S-I in each frame of each video in a pair of inter-
actions using the open-source deep-neural-network (DNN)
OpenFace [14]. OpenFace’s confidence measures associated
with each of its classifications were used in pre-processing.

III. PROCEDURE

A. Notations

KAU denotes the number of action units (here, KAU =
17). Index k ∈ {1, . . . ,KAU} denotes the kth action unit
from the list in Supplementary Table S-I. Nxp denotes the
number of sessions. Index n ∈ {1, . . . , Nxp} denotes the nth
session. Mn denotes the number of frames contained in the
pair of video recordings of the natural interaction stage of
session n. For a given session, i ∈ {1, 2} arbitrarily identifies
the two subjects in a considered pair. The signal measuring
the kth action unit of the ith subject of the nth session is
therefore denoted by x

(i)
k,n ∈ RMn . Its mth sample is denoted

by x
(i)
k,n[m]. The whole AU data set is thus comprised of

2KAU

∑Nxp

n=1 Mn samples. As detailed in section IV-A, we
try to predict a binarization of the H’s choice in the Trust
Game. This binary variable is denoted by y[n].

B. Session Exclusions

OpenFace provides a confidence score c
(i)
n ∈ RMn from

0 to 1 for its AU classifications in each frame. A session’s
quality is assessed via the worst confidence score over time:

c(min)
n [m] = min

(
c(1)n [m], c(2)n [m]

)
, ∀m ∈ {1, . . . ,Mn}.

To reduce the impact of poor AU feature detection on the
interactional synchrony assessments, we excluded sessions
where the worst confidence score c

(min)
n was below a thresh-

old τ for more than 30% of the frames in at least one of
the videos of a pair. We set τ = 0.7, which resulted in
twelve sessions being excluded. The rest of the analyses were
performed on the remaining 123 sessions.

C. Step 1: Video Preprocessing

1) Smoothing: The OpenFace model occasionally detects
facial landmarks or AUs inaccurately, particularly when a
participant turns their head quickly or puts their hand in
front of their face. Such inaccuracies are brief, and can
therefore cause artificial fast variations in the AU time series.
To prevent these artifacts from disproportionately influencing
subsequent steps, we smoothed the AU time series. x̃

(i)
k,n

denotes the smoothed version of the AU signal x
(i)
k,n. The

smoothing is obtained via the moving average of the signal

x̃
(i)
k,n[m] =

1

|Vm|
∑
p∈Vm

x
(i)
k,n[p], (1)

where Vm = {m−d(i)
n [m], . . . ,m+d

(i)
n [m]}∩{1, . . . ,Mn}.

Here, d(i)
n [m] denotes the smoothing half-width. This quan-

tity is adjusted according to the OpenFace confidence score

c
(i)
n . Thus, the smaller c(i)n [m] is, the larger d(i)

n [m] is chosen.
In practice, the dependence is linear:

d(i)
n [m] =

⌊
dmax − (dmax − 1) c(i)n [m]

⌋
, (2)

where ⌊·⌋ denotes the floor function, and dmax is the max-
imal permitted smoothing half-width. dmax is automatically
chosen within the set {1, . . . , ⌊Mn/10⌋} as the optimal half-
width which, when applied to the corresponding smoothing
to the confidence score itself, gives the smoothed confidence
score with the most frames above the threshold τ .

2) Optional Imputation of Low-Confidence Frames: We
assessed the result of an optional preprocessing step that
imputed AU values in frames where OpenFace’s confidence
estimate was less than the chosen value of τ . If imputa-
tion provides AU values that are more representative of
ground truth than OpenFace’s output of low confidence for
those frames, interactional synchrony assessments may be
improved. We tested a linear imputation method. Assume
that x̃(i)

k,n has to be imputed from sample m1 to sample m2.
On this segment, the values of the signal are replaced with
the linear imputation given by the following reassignment:

x̃
(i)
k,n[m]←−x̃(i)

k,n[m1 − 1]

+
m−m1+1

m2−m1+2

(
x̃
(i)
k,n[m2+1]−x̃(i)

k,n[m1−1]
)
. (3)

3) Matching Pursuit: Visual inspection and statistical
exploration of the AU time courses indicated that most AU
time courses are sparse. AUs are typically active for brief
periods with characteristic activity shapes. High-frequency
and low-amplitude changes typically represent model noise
or incomplete facial movements. We used the matching pur-
suit technique [15] to remove uninformative weak variations
in AU signals while preserving the most characteristic peaks.
Matching pursuit optimally decomposes a given signal into
a dictionary of basis functions using a minimal number of
elements belonging to this dictionary, called atoms. The dic-
tionary used to decompose the signals of the nth experiment
is comprised of the following functions:

• the Gaussian window,

gµ,σ[m] = exp

(
−1
2σ2

(m− µ))
2

)
, (4)

where µ ∈ {1, . . . ,Mn}, σ ∈ {σ0, . . . , σS};
• the Mexican hat wavelet,

wµ,σ[m] =

(
1− 1

σ2
(m− µ)

2

)
gµ,σ[m] , (5)

where µ ∈ {1, . . . ,Mn}, σ ∈ {σ0, . . . , σS}.
The dictionary thus contains 2MnS atoms. The Gaussian-
shaped atoms isolate peaks and bumps from the signal while
the Mexican hat-shaped atoms capture areas of rapid change
around the bumps.

We implemented the standard matching pursuit algorithm.
Let x̂(i)

k,n denote the output of the matching pursuit algorithm
applied to the smoothed signal x̃

(i)
k,n. Then, x̂

(i)
k,n is the

projection of x̃(i)
k,n onto a finite number Q≪ 2MnS of atoms

that minimizes the squared distance ∥x̂(i)
k,n − x̃

(i)
k,n∥2.



D. Step 2: Compute Interactional Synchrony

To assess interactional synchrony, or overall temporal
coordination between AU time series pairs, we propose a
new detection procedure based on DTW [16] and its exten-
sions. DTW estimates the function of local time shifts that
minimizes the overall misfit between time series. It does not
assume any kind of stationarity in signals. The DTW warping
function describes how to shrink and stretch individual parts
of each time series so that the resulting signals are maximally
aligned. By construction, ordinary DTW seeks an alignment
(uk,n[t], vk,n[t])t∈{1,...,T} of both signals x̂

(1)
k,n and x̂

(2)
k,n that

minimizes the following function:

Dk,n =

T∑
t=1

∣∣∣x̂(1)
k,n[uk,n[t]]− x̂

(2)
k,n[vk,n[t]]

∣∣∣ . (6)

The following constraints on the warping path
(uk,n[t], vk,n[t])t∈{1,...,T} are applied to prevent the
alignment from rewinding signals in time and to prevent
signal samples from being omitted:

uk,n[t] ≤ uk,n[t+ 1] , vk,n[t] ≤ vk,n[t+ 1] , (7)
uk,n[1] = vk,n[1] = 1 , uk,n[T ] = vk,n[T ] = Mn . (8)

Since interactional synchrony is more related to the co-
ordinated timing of movements than the coordination of
movements’ magnitudes, we implemented a version of DTW
called derivative DTW (DDTW) [17]. DDTW estimates the
function of local time shifts that minimizes the overall misfit
between the derivatives of a pair of time series instead of
working on the raw time series. The functional result is that
the alignment is influenced more by the time series’ shapes
than their magnitude. DDTW is also more resilient than
DTW to “singularities”, or instances where a single point
from one time series is mapped onto a large subsection of
the other time series in an unintuitive manner.

The DTW distance, or Dk,n in equation (6), is typi-
cally used to assess similarity between two signals. Dk,n

represents the sum of the distances between corresponding
points of the optimally warped time series [18], [16]. Of
note, although Dk,n is referred to as a distance, it does not
meet the mathematical definition of a distance because it
does not guarantee the triangle inequality to hold. When the
DTW distance is used in the present study, it is normalized
by the session’s duration; that is, by the ratio Dk,n/Mn.
Here, we introduce an assessment of interactional synchrony
that leverages the shape of the DTW path instead of the
DTW distance. This new assessment is motivated by the
aforementioned idea that behaviorally-relevant interactional
synchrony is more about the coordinated timing of move-
ments than it is about precise mimicry. The DTW distance
primarily provides information about the difference in shapes
of two individuals’ AU activity bouts. The DTW path, on
the other hand, primarily provides information about how
much shifting in time is required to optimally align similar
AU activity bouts. Thus, the DTW path should be more
relevant to “the temporal linkage of nonverbal behavior” than
the DTW distance. We focused specifically on the warping

path’s median deviation from the diagonal (WP-meddev).
This quantity, denoted zn ∈ RKAU , reads:

zn[k] =
1√
2
×median (|vk,n[t]− uk,n[t]|)t∈{1,...,T} . (9)

Intuitively, the less two time series are temporally aligned,
the more warping will be required to optimally align them,
and the more frequently the warping functions will have
dramatic deviations from the diagnonal. As a result, the
warping function’s median distance across a session will
be longer. We hypothesized that WP-meddev would be a
better representation of interactional synchrony than the
DTW distance, and therefore would also be more useful for
predicting trust.

E. Step 3: Prediction

A critical goal of this research is to develop a procedure
that can select which of many highly-correlated social syn-
chrony inputs are behaviorally-relevant in an interpretable
way. In service of this goal, we chose elastic net penalized
regression to relate DTW features to H’s choices in the Trust
Game [19]. Penalized regression methods are robust in set-
tings where a large number of features are examined relative
to the number of data points. Lasso and elastic net regression
are two specific penalized strategies that also impose sparsity
on the feature set, and unlike most black-box models, the
features that are retained in their models can be interpreted
straightforwardly as being informative for predicting the
outcome measure. When multiple features are both correlated
with each other (as AUs are known to be) and correlated with
the outcome variable, though, lasso regression will randomly
retain only one of the correlated features. Elastic net, on the
other hand, combines the lasso and ridge penalty functions so
that it retains the set of features within correlated groups that
maximize model performance, while still imposing enough
sparsity to prevent overfitting. Its characteristics are therefore
ideal for the present setting. Let D denote the deviance of the
binomial logistic regression. Recall the regression problem:

(
β̂, β̂0

)
= arg min

β∈RKAU

β0∈R

Nxp∑
n=1

D (y[n],βzn + β0)

+ λ

(
1− α

2
∥β∥22 + α∥β∥1

)
, (10)

where λ > 0, and α ∈ [0, 1] are hyperparameters. In
experiments, λ and α are chosen through a grid search that
maximizes the accuracy of the resulting model. Five-fold
cross validation is applied to validate the results.

IV. RESULTS

A. Trust Game Outcomes

To identify the interactional synchrony related to trust
(as opposed to trustworthiness), we focused solely on H’s
actions. The distribution of Hs’ actions was highly un-
balanced, since most H players chose to give the full $1
(Fig. 1). To alleviate the statistical challenges of predicting
such unbalanced classes, all subsequent analyses treat Trust



Game behavior as a binary variable where trust class 0 is
associated with H choices ranging from $0 through $0.80
and trust class 1 is associated with H choices of $1.
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Fig. 1. Histogram of H player choices in the Trust Game.

B. Smoothing and Matching Pursuit Preprocessing

Fig. 2 depicts an example of a “Brow Lower” AU signal
reconstructed after smoothing and matching pursuit prepro-
cessing (depicted in blue). Matching Pursuit retains the most
significant variations in the time series while removing small,
random fluctuations. As little as 3% and no more than 11%
of information was lost from each AU signal after matching
pursuit (Supplementary Table S-I).
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Fig. 2. Brow Lower AU signal of a participant before (in magenta) and
after smoothing and matching pursuit preprocessing (in blue).

C. Dynamic Time Warping

We hypothesized that DDTW would be better suited
for assessing interactional synchrony than ordinary DTW
(section III-D), but compared the performance of both kinds
of DTW. We set Θ, or the maximal time lag permitted when
aligning signals (i.e., |ut−vt| ≤ Θ/fs), to 5 s for our primary
analyses described in subsequent sections, since psychology
studies suggest interactional synchrony events occur with
time lags of up to 5 seconds [4]. The results of alternative
Θ values are provided in Section II-A of the Supplementary
Information, but consistent with the psychology literature,
models with Θ values of 5 s performed the best.

An example pair of AUs aligned by DTW vs. DDTW is
shown in Fig. 3. The benefits of DDTW are apparent. DDTW
avoids some of DTW’s unrealistic alignments where a single
point within a peak of one signal is inappropriately matched
to a stretched segment of the other signal that is artificially
made to be uniformly flat (e.g. the segments between 20–40s
and 80–100s). Fig. 4 shows the deviation from the diagonal

of the warping paths obtained via DDTW vs DTW, and
their associated WP-meddev values. The constraints imposed
by Θ are depicted in gray. Departures from the diagonal
indicate alignments of samples initially distant in time (e.g.,
the segment between 80–100s).
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Fig. 3. Brow Lower AU time series of two participants. The black lines
indicate which time points are aligned via ordinary DTW (first panel) vs.
DDTW (third panel). The signals warped by the shifts prescribed by the
optimal DTW (second panel) and DDTW (fourth panel) warping paths are
shown below the alignments. Blue and red indicate which participant the
signal is from.
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Fig. 4. Deviation from the warping path diagonal obtained via DTW (blue)
and DDTW (red) applied to the AU time series displayed in Fig. 3.

D. Prediction Procedure

We evaluated the ability of multivariate interactional syn-
chrony, as measured by univariate AU’s median deviation
from the diagonal of the DDTW’s warping path (WP-
meddev), to predict the outcome of the Trust Game. Even
with the binary transformation of H’s behavior detailed in
section IV-A, trust behavior represented by the variable y
remained imbalanced. The number of sessions belonging to
trust class 0 was N0 = 36, while the number of sessions
belonging to trust class 1 was N1 = 87. To perform
prediction, we randomly subsampled the overrepresented
class so that only 36 sessions belonging to the trust class
1 were retained. The total number of sessions included in
the subsequent prediction analyses were therefore 72, equally
balanced between trust behavior classes 0 and 1.

The prediction problem was solved via the elastic net
procedure introduced in section III-E as follows. The data
set was partitioned into five subsamples. The parameters



(β̂, β̂0) were learned from a training set (about 58 sessions)
comprised of four subsamples, and then tested by predicting
the Trust Game outcomes in the testing set (about 14
sessions) comprised of the fifth subsample. This was repeated
with different subsamplings of trust class 1 until each session
had been considered at least 50 times.

The above procedure was run on a grid of possible
values for the elastic net model’s hyperparameters λ and
α. Values of λ = 0.0518 and α = 0.802 maximized the
accuracy of the models applied to the non-imputed data.
Since the prediction accuracy did not change much with a
wide range of hyperparameter values (see Section II-B of
Supplementary Information), the identified λ and α values
were retained for all subsequent analyses. Table I shows
how often the WP-meddev models (indicated by “WP” in
the table) correctly predicted Trust Game outcomes when
applied to non-imputed AU signals or AU signals whose
low-confidence frames were linearly imputed (see section III-
C.2). The accuracy rates of WP-meddev models were 63.4–
67.7%, compared to the 50% that would be expected by
chance. These results indicate that interactional synchrony
between AUs is indeed informative for predicting trust.

To ensure that the WP-meddev measure represents biolog-
ically meaningful signal, we computed WP-meddev for two
control data sets:

1) Shuffled pairs. Videos were randomly shuffled so that
each H player video was paired with another video
from a session of the same trust class, but where
the paired partners did not actually interact with each
other over Skype. Any synchrony between these videos
would be due to chance rather than due to natural
synchrony between interacting partners.

2) Shuffled time series. All video pairs from the same
session were divided into 10-second intervals, and
these 10-second intervals were randomly shuffled. The
same shuffling was applied to all AU time series. If
WP-meddev tracks true temporal coordination between
AU time series, the shuffling procedure should disrupt
the accurate assessment of interactional synchrony.

The accuracy of the WP-meddev prediction models using
these two control data sets was worse than chance (Table I).
This confirms that the WP-meddev interactional synchrony
measure tracks real dynamics between interacting human
partners rather than just coincidental temporal coordination
that can be expected from any random pair of time series.

Next, we assessed the predictive utility of WP-meddev
compared to other features that might be extracted from so-
cial interaction videos. We began by comparing the predictive
utility of WP-meddev to the MEA WCC-duration method
described in section I (WCC-UV, where “UV” represents
a univariate head region predictor) using the parameters
recommended by Altmann [20]. Table I shows that WCC-
UV leads to an accuracy of around 55%, which is better
than chance, but worse than our WP-meddev method. To
determine whether the reduction in prediction accuracy is
due to the measure used to assess interactional synchrony
or, instead, due to treating the entire head region as a single

TABLE I
PREDICTION ACCURACY, OBTAINED VIA SUCCESSIVE 5-FOLD CROSS

VALIDATIONS THAT PRESERVE THE CLASS DISTRIBUTION.

Model Name Measure Features
Extracted

Elastic Net
Class 0 Class 1 Overall

WP-DDTW WP-
meddev

Nonimputed
AUs

63.4% 65.0% 64.2%

WP-DDTW
(imputed)

WP-
meddev

Imputed
AUs

67.5% 67.7% 67.6%

WP-DTW WP-
meddev

Nonimputed
AUs

52.5% 53.2% 52.9%

WP-DTW
(imputed)

WP-
meddev

Imputed
AUs

48.3% 46.5% 47.4%

Shuffled Data Sets
Shuffled
Pairs

WP-
meddev

Nonimputed
AUs

48.6% 50.1% 49.3%

Shuffled
Time Series

WP-
meddev

Nonimputed
AUs

51.1% 49.2% 50.1%

WCC Models
WCC-MEA WCC (du-

ration)
MEA 54.2% 55.0% 54.6%

WCC-AUs WCC (du-
ration)

Nonimputed
AUs

55.3% 57.4% 56.4%

Univariate WP-MEA Model
WP-MEA WP-

meddev
MEA 25.8% 68.7% 47.3%

DTW Distance Models
DDTW dis-
tance

DDTW
distance

Nonimputed
AUs

45.1% 47.9% 46.5%

DTW
distance

DTW
distance

Nonimputed
AUs

51.2% 57.0% 50.3%

Optimal Transport Model
Optimal
transport

EMD Nonimputed
AUs

55.3% 57.2% 56.3%

Multivariate Models with independent AU Features (no synchrony)
AU-Durations
(H)

AUs du-
rations

Nonimputed
AUs

44.8% 49.8% 47.3%

AU-Durations
(T)

AUs du-
rations

Nonimputed
AUs

50.9% 55.7% 53.3%

AU Intensi-
ties (H)

AUs in-
tensities

Nonimputed
AUs

53.4% 56.1% 54.7%

AU Intensi-
ties (T)

AUs in-
tensities

Nonimputed
AUs

52.3% 51.4% 51.8%

feature, we ran two additional analyses. The first used the
multivarate elastic net procedure described above with the
AU time courses, but used WCC instead of WP-meddev
to assess interactional synchrony (WCC-AUs). The second
examined the univariate relationship between the MEA time
series and trust, but used WP-meddev instead of WCC to
assess interactional synchrony (WP-MEA). Table I shows
that the multivariate WP model outperformed the WCC-AUs
model, confirming that WP-meddev is a more informative in-
teractional synchrony measure than WCC in this context. The
multivariate WP-meddev model also outperformed the WP-
MEA model, indicating that examining more fine grained
interactional synchrony between AUs is more informative
for predicting trust than examining interactional synchrony
between movement in the head region as a whole.

Next we tested the predictive utility of the DTW distance
between each AU pair, since similarity is often assessed using
DTW distance. As discussed in III-D, the DTW distance
is the sum of the normalized euclidean distances between



corresponding points of optimally warped time series, and
is a fundamentally different measure than the WP-meddev
measure we have introduced. In illustration, the Pearson
correlation coefficient between the DTW/DDTW distances
and WP-meddev measures of all AU pairs in the current data
set is 0.24 (p < 0.001) and −0.19 (p < 0.001), respectively.
This indicates the relationship is not only small, but in the
case of DDTW, also in the negative direction. We ran one
elastic net model using the DTW distance of AU pairs as
features and another using the DDTW distance of AU pairs
as features (both were normalized by the duration of the
session). The accuracy of both models was poor, and in the
case of the DDTW distance, was worse than chance. This
confirmed our prediction that the WP-meddev interactional
synchrony measure would be more behaviorally-relevant than
traditional DTW distance measures.

We also tested the predictive utility of another popular
similarity measure, the optimal transport distance. Optimal
transport approaches calculate the cost of moving one dis-
tribution of data to another, taking spatial proximity into
account [21]. They cannot assess the temporal coordination
between two time series because they treat each time point
as a member of a collection where chronological order is
ignored, so conceptually, they are not well-suited to index
interactional synchrony. Yet, we can take advantage of the
fact that they effectively assess the similarity of the magni-
tudes of two time-series, even when similar magnitudes are
shifted in time. We tested the earth mover’s distance (EMD),
the most common transport distance. The elastic net models
using the EMDs between AU pairs as features performed
similarly to MEA-WCC models. Both types of models pre-
dicted trust much less successfully than WP-meddev models,
providing converging evidence that the temporal coordination
between AUs plays a unique role in predicting trust, beyond
information provided by coordination of AU magnitudes.

To test whether WP-meddev interactional synchrony fea-
tures were more informative for predicting trust than fea-
tures of the multivariate AU time series from each player
considered independently, we examined the performance of
models that used the duration of AU features demonstrated
by the H and T players as features (AU durations in Table I),
and models that used the average intensity of the H and T
players’ AUs across a session as features (AU intensities
in Table I). These features are similar to those used by
previous studies trying to predict trust using automatic visual
feature detection [22]. The duration of an AU was defined
by the proportion of time the AU was detected as visible
(AU intensity > 1) in the H or T player, considered
separately. Table I shows that the AU-Durations models
and AU-Intensities models underperformed relative to most
of the interactional synchrony models. The AU-Intensities
model from the H player had the best performance of the
four, but was still much less accurate than the WP-DDTW
models. This confirms that extracting information about how
the facial features of a pair of people interact with each
other over time is generally more helpful for predicting trust
than extracting information about the people’s facial features

considered independently from one another.
Finally, we compared the performance of all the elastic net

models to the accuracy of random forest models using the
same features and behavioral labels [23] (see Supplementary
Information for model details). In the present study, the
elastic net procedure always outperformed the random forest
models (see Table S-III in Supplementary Information). This
suggests the elastic net strategy is better suited for identifying
the specific types of interactional synchrony that predict
trust or other types of behaviors of interest. That said, the
fact that the performance of both algorithms were similar
suggests that the relatively modest 60–65% accuracy rate
of the models likely reflects an imperfect relationship be-
tween interactional synchrony predictors and trust more than
an unsuitable modeling strategy or inappropriate statistical
assumptions.

Taking advantage of the feature selection built into elastic
net models, Fig. 5 displays the percent of experiments where
an AU was retained in the elastic net model (meaning the
estimated parameter vector β̂ for the AU was nonzero). The
most frequently retained AUs are the AUs that are most
informative for predicting trust. It is notable that four of the
six AUs that were selected by more than 70% of the models
are eye-related—Brow Lower, Lid Tighten, Outer Brow and
Inner Brow (Blink and Lid Raise are the only eye-related
AUs that are not selected regularly). Fig. 5 displays the
box plots of each AU’s WP-meddev interactional synchrony
according to the outcome of the Trust Game. The AUs
with greater interactional synchrony differences between the
two trust classes are retained in a greater percentage of
experiments, confirming the linear models are sensible.
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Fig. 5. Box plots of the DDTW warping paths’ median deviation from
the diagonal for each trust class. The percent of experiments where an AU
was retained in the elastic net model are provided in parentheses. The red
boxes indicate when this percentage is greater than 70%.

V. CONCLUSION AND PERSPECTIVE

We have demonstrated that automatic analysis of inter-
actional synchrony during unconstrained social interactions
can be used to predict trust in a subsequent Trust Game. We



also described a procedure that identifies which interactional
synchrony features from a multivariate set are behaviorally
relevant. Three overarching conclusions can be drawn from
this work. First, analyzing the temporal interactions between
people provides unique insight into social behavior that can-
not be gleaned by analyzing the partners actions in isolation.
Second, the median deviation of DDTW warping paths may
be a more effective way of studying these interactions than
any other interaction measure previously described. Third,
multivariate approaches to studying interactional synchrony
may be more fruitful than univariate approaches.

Of course, this study has limitations. Most notably, al-
though our data set is one of the largest of its kind, it still
only contained 123 usable sessions and its behavioral data
was highly unbalanced. Thus, no strong conclusions should
be made about the AUs found to predict trust in the current
study until the presented analyses can be tested on additional
data. There are also ways the presented analytical strategy
could be improved. The WP-meddev elastic net models we
designed performed better than any other model tested, but
their accuracy might be enhanced in the future by including
additional movement or facial features, finding better repre-
sentations of those movements than are provided by facial ac-
tion units, or relaxing the interpretability requirements so that
a greater variety of prediction algorithms can be employed
(like DNN). Further, parts of the proposed analytical method
can be further optimized and automated. In particular, we
limited the time lags that could be imposed on the AU time
series to 5 seconds (represented by Θ), because that was the
time lag analyzed in most previous interactional synchrony
studies. Our exploratory sensitivity analysis confirmed that
a Θ value of 5 led to most accurate model of those tested,
but establishing a method for automating the selection of Θ
in a data-driven fashion would greatly benefit other applica-
tions of the method. Another issue that requires attention
is that the quality of feature extraction from videos can
impact synchrony detection, especially when signal cleaning
and preprocessing is not optimized. Our prediction results
improved when frames with low confidence values were
imputed, but more research is needed to determine which
time points in a feature time series should be imputed and
what imputation method will be most successful.

Notwithstanding these limitations, the methods described
here provide new procedures and a novel interactional syn-
chrony measure for identifying what kinds of multivariate
facial and gesture interactional synchrony are important for
social behaviors. The information gleaned from applications
of this work may be useful to many fields, and can be
leveraged to understand psychiatric disease, develop more
effective virtual agents, and create interventions that teach
people how to have more successful social interactions.
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I. EFFECT OF MATCHING PURSUIT PREPROCESSING ON
THE AUS

We performed the smoothing and matching pursuit steps
described in section III-C.1 and section III-C.3 of the main
document on all 17 AU signals. Matching pursuit was
performed on the smoothed signals. We set the number of
selected atoms to Q = 25 per signal. The atom shapes are
described in section III-C.3, where σ ∈ {21, . . . , 25}.

Let x̂(i)
k,n denote the preprocessed version of the original

signal x(i)
k,n. The measure of the relative amount of informa-

tion lost in this step is determined by

`k =
`
(1)
k + `

(2)
k

2
where `

(i)
k =

1

Nxp

Nxp∑
n=1

‖x̂(i)
k,n − x

(i)
k,n‖2

‖x(i)
k,n‖2

,

for all k ∈ {1, . . . ,KAU}. Table S-I shows the loss quantity
`k for the 17 AUs that are available through OpenFace.
Matching Pursuit was able to recover most of the information
in the AU time courses, with no information loss exceeding
11.19%. The greatest information loss was from the blink
signal time course, perhaps because it had more and faster
overall variability than other AUs that were more sparse.

II. INFLUENCE OF DDTW AND ELASTIC NET
PARAMETERS ON MODEL PREDICTION ACCURACY

A. Influence of DDTW Time Lag Limit

The parameter Θ represents the maximal time lag permit-
ted when aligning pairs of signals via dynamic time warping.
As described in the main text, we chose a Θ value of 5
seconds for the main experiments a priori to ensure our
analyses were consistent with the time lags permitted in the
psychological interactional synchrony literature. However,
we took advantage of our automated procedure to test
whether the lags most frequently used in the psychology
literature are optimal. The results indicated that the Θ choice
does indeed heavily impact the performance of the prediction
procedure. Table S-II provides the overall prediction of the

This work was partially supported by Duke Bass Connections and
Templeton World Charity Foundation grant TWCF0321.

TABLE S-I
PERCENT INFORMATION LOST FROM EACH AU SIGNAL BY MATCHING

PURSUIT PRE-PROCESSING

Action Unit Loss (%)
Blink 11.17
Lip Stretch 7.79
Lip Corner 7.49
Nose Wrinkle 7.19
Jaw Drop 7.14
Brow Lower 6.96
Chin Raise 6.77
Lid Tighten 5.87
Lid Raise 5.84
Lip Tighten 5.81
Inner Brow 5.42
Outer Brow 5.13
Lip Raise 4.62
Dimple 4.45
Lip Part 4.27
Cheek Raise 3.61
Lip Pull 3.23

elastic net model applied to the nonimputed AUs for different
values of DDTW Θ. The value Θ = 5 s maximizes the
prediction accuracy, thus allowing an effective measurement
of the interactional synchrony.

TABLE S-II
ELASTIC NET MODEL ACCURACY FOR DIFFERENT VALUES OF DDTW Θ.

Θ (s) Overall Accuracy (%)
2 55.6
3 55.7
5 64.2

10 56.8
15 59.2
20 61.2

B. Influence of the Elastic Net Tuning Parameters

We evaluated the influence of changes in the λ and α
elastic net tuning parameters on prediction accuracy. To this
end, the elastic net algorithm was run on the nonimputed AUs
for a grid of possible tuning values, namely λ ∈ [0.02, 0.25]
and α ∈ [0.01, 1]. Fig. S-1 shows the overall accuracy
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Fig. S-1. Overall accuracy of the elastic net model across different α and
λ parameter values.

according to the possible pairs of values. Except when
λ > 0.10 and α > 0.5 simultaneously, the overall accuracy
remains around 65%. Since changes in λ and α values within
these boundaries did not meaningfully impact performance,
the optimal λ = 0.0518 and α = 0.802 values for this model
were retained for all subsequent analyses.

III. COMPARISON BETWEEN ELASTIC NET AND
RANDOM FOREST MODELS

We compared the prediction accuracies of elastic net
models with the accuracies of random forest models with
the same inputs. The random forest prediction results from
the bagging of 20 bootstrap-aggregated classification trees.
Table S-III shows that elastic net outperforms random forest
for most of the models that were tested.



TABLE S-III
PREDICTION ACCURACY, OBTAINED VIA SUCCESSIVE 5-FOLD CROSS VALIDATIONS THAT PRESERVE THE CLASS DISTRIBUTION.

Model name Measure Features extracted Elastic Net Random Forest
Class 0 Class 1 Overall Class 0 Class 1 Overall

WP-DDTW WP-meddev Non-imputed AUs 63.4% 65.0% 64.2% 67.8% 55.8% 61.8%
WP-DDTW (imputed) WP-meddev Imputed AUs 67.5% 67.7% 67.6% 69.0% 60.9% 65.0%

WP-DTW WP-meddev Non-imputed AUs 52.5% 53.2% 52.9% 59.5% 53.2% 56.4%
WP-DTW (imputed) WP-meddev Imputed AUs 48.3% 46.5% 47.4% 56.0% 48.8% 52.4%

Shuffled Data Sets
Shuffled Pairs WP-meddev Non-imputed AUs 48.6% 50.1% 49.3% 52.1% 46.6% 49.3%

Shuffled Time Series WP-meddev Non-imputed AUs 51.1% 49.2% 50.1% 57.4% 50.0% 53.7%

WCC Models
WCC-MEA WCC (duration) MEA 54.2% 55.0% 54.6% 53.5% 53.3% 53.4%
WCC-AUs WCC (duration) Non-imputed AUs 55.3% 57.4% 56.4% 55.3% 50.4% 52.9%

Univariate WP-MEA Model
WP-MEA WP-meddev MEA 25.8% 68.7% 47.3% 48.0% 41.7% 44.8%

DTW Distance Models
DDTW distance DDTW distance Non-imputed AUs 45.1% 47.9% 46.5% 54.9% 45.7% 50.3%
DTW distance DTW distance Non-imputed AUs 51.2% 57.0% 50.3% 56.3% 49.2% 52.8%

Optimal Transport Model
Optimal transport EMD Non-imputed AUs 55.3% 57.2% 56.3% 56.8% 54.3% 55.6%

Multivariate Models with independent AU Features (no interactional synchrony)
AU-Durations (H) AUs durations Non-imputed AUs 44.8% 49.8% 47.3% 47.7% 42.3% 45.0%
AU-Durations (T) AUs durations Non-imputed AUs 50.9% 55.7% 53.3% 56.8% 49.3% 53.1%
AU-Intensities (H) AUs intensities Non-imputed AUs 53.4% 56.1% 54.7% 56.8% 49.1% 53.0%
AU-Intensities (T) AUs intensities Non-imputed AUs 52.3% 51.4% 51.8% 56.1% 51.1% 53.6%


