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Abstract
Discrete, logic-based models are increasingly used to describe
biological mechanisms. Initially introduced to study gene
regulation, these models evolved to cover various molecular
mechanisms, such as signaling, transcription factor coopera-
tivity, and even metabolic processes. The abstract nature and
amenability of discrete models to robust mathematical ana-
lyses make them appropriate for addressing a wide range of
complex biological problems. Recent technological break-
throughs have generated a wealth of high-throughput data.
Novel, literature-based representations of biological processes
and emerging algorithms offer new opportunities for model
construction. Here, we review up-to-date efforts to address
challenging biological questions by incorporating omic data
into logic-based models and discuss critical difficulties in
constructing and analyzing integrative, large-scale, logic-
based models of biological mechanisms.
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Introduction
Logic-based models have made significant contributions
to our understanding of a wide range of biological pro-
cesses in health and disease. Initially introduced in the
www.sciencedirect.com
60s to describe gene regulatory circuits [1e3], logic-
based models have evolved substantially over the past
five decades to cover various biological processes, such
as signaling cascades, ion channels, coregulation of
transcription factors, and even metabolism. With the
growing body of data available due to technological
breakthroughs, new methods are being developed to
integrate different biological scales and expand the size

and complexity of discrete models. In addition, efforts
to create formalized, large-scale representations of
network ‘maps’ open avenues for rapidly repurposing
these datasets to serve as scaffolds for qualitative
models [4].

Logic-based models use logical operators, such as AND,
OR, and NOT, to describe the functions that govern the
regulation of the biological entities. While detailed
mechanistic knowledge is not a prerequisite, the type of
regulation (positive or negative) between the biological

entities and the directionality of these regulations is
necessary to construct the regulatory graph [5]. In the
logical formalism, genes, proteins, and other bio-
molecules are assigned discrete values that correspond
to activity thresholds (binary values for Boolean net-
works [BNs], multivariate values for logical models),
and logical rules define the evolution of the system in
the next time step. Time is implicitly modeled using
updating schemes that, together with the logical rules,
define the emergent behavior of the system [6,7]. The
precise quantitative relationship between model vari-

ables and experimental observables is model dependent
and needs to be considered during the model build-
ing process.

In silico simulations of the logic-based discrete models
give insights into the dynamics of the modeled system
and allow in-depth analysis, including the searching of
‘attractors’: terminal states of the system such as steady
states or cycles [8]. Simple attractors represent fixed
points that correspond to the system’s stable states.
These states can be linked to cellular decision-making

processes, such as apoptosis, cell proliferation, migra-
tion, and chemotaxis. Complex attractors represent
terminal cycles that can be linked to biological oscilla-
tions, such as, for example, the p53 MDM2 interactions
[9e11]. The absence of parameters makes logic-based
models suitable for large-scale biological networks
where little or no kinetic information is available.
Current Opinion in Systems Biology 2021, 28:100386
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2 Big Data Acquisition & Analysis
Nevertheless, as their size and complexity scale up,
their analysis can prove to be challenging.

Technological advancements including high-throughput
methods have led to an overwhelming amount of bio-
logical data. Such data have created a pressing need to
develop tools and methodologies that could integrate
omic data into the modeling pipelines. These new ap-

proaches include the use of omic data in combination
with small-scale experiments and prior knowledge for (i)
model enrichment, pointing to new interactions and
regulators, (ii) model contextualization, adding speci-
ficity in terms of data origin and type (species, body
fluid, cell type, tissue, single-cell data, bulk, disease
state, treatment, healthy condition, and so on), (iii)
model validation, showcasing that the model can
reproduce known behaviors of the system of interest,
and (iv) as source input to infer network structure and
functions (Figure 1).

High-throughput data integration into logic-based
models
Efforts to combine high-throughput data with discrete
logic-based modeling depend heavily on the model
purpose and the data availability and include model
enrichment, validation, and contextualization. A typical
approach consists of using omic data to expand existing
models with entities of interest that can be measurable
and comparable in different conditions. Early attempts
to combine high-throughput data with logic-based
models consisted mainly of using data as a guide to
model enrichment, identifying key genes and bio-
molecules to include in the model. An example of such

an approach is the building of a logic-based model to
study mast cell activation in the context of allergy,
combining high-throughput proteomics and prior
knowledge [12]. To build the regulatory graph, besides
literature mining, the authors used proteomic data,
Figure 1

Different data types and sources and their uses in th
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pointing to novel SLP76 interactants identified for the
first time in mastocytes [13]. A combination of small-
scale experiments, such as quantitative polymerase
chain reaction (PCR), Western blots, and electropho-
retic mobility shift assay (EMSA), together with data
from genome-wide assays, such as RNA sequencing and
chromatin ImmunopreciPitation (ChIP)-sequencing,
was used to assemble a comprehensive regulatory

network to study the reprogramming of pre-B cells into
macrophages [14]. An iteration of model predictions and
in vitro validation led to the update of the model with
new knowledge and a better understanding of B-cell
reprogramming mechanisms. In the same line, re-
searchers developed a methodology that integrates
several -omics datasets to identify candidate genes,
serving as seeds for network modeling. They analyzed
multiomics data from the consensus molecular subtypes
[15,16] study of colorectal cancer to expand a previously
built generic cell fate decision network [17].

In many studies, omic data are used as a source of
biomarker signatures compared against stable states to
validate phenotypic outcomes. This requires discretiz-
ing the measured data, using statistical thresholds such
as the p-value or fold change. In this case, the regulatory
graph of the discrete model is usually built manually
through curation of the literature, text mining, and
pathway database interrogation. The logical formulae
describing specific mechanisms of gene activation are
derived from the results of small-scale experiments. The

modeler curates the relevant literature and uses the
experiments to infer causality and mechanistic details,
where possible. Then, different types of omic data are
analyzed and compared against the model behavior for
validation. This step includes data discretization using
statistical thresholds to facilitate the comparison with
the discrete nature of the logic-based model results.
Recent examples include the enrichment of a logical
e inference and analysis of logic-based models.
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Data integration in logic-based models Hall and Niarakis 3
model of macrophage polarization to describe cancer
cellemacrophage interactions and its validation using
microarray expression data from in vitro coculture ex-
periments [18,19]. A similar methodology is used for the
building of a logical model for cancer cell invasion and
migration. Alongside model building, researchers pro-
pose matching transcriptomics data to the attractors and
validating the model on cell line experiments [20].

Going one step further and focusing on the role of ion
channels in cancer, an executable model of osmotic
regulation and membrane transport was proposed
predicting behavior from expression data [21,22]. In
addition to considering large data sets, this model ex-
pands the family of biological processes beyond just
expression and gene activation to include the coordi-
nated activities of biomolecules (in this case ions) that
are not under direct control by single genes.

In a recent commentary, the need for personalized

models and the challenges that lie in incorporating high-
throughput data into mechanistic dynamic models were
highlighted [23]. An example of this is the framework
developed to tailor logical models to a particular bio-
logical sample. The approach focuses on integrating
mutation data, copy number alterations, and expression
data (transcriptomics or proteomics) into logical models
[24]. Using these data, the researchers propose a logical
model to study the mechanisms of resistance to BRAF
inhibition between melanomas and colorectal cancers.
The model was built using literature mining and

pathway integration and was contextualized for 100
melanoma and colorectal cell lines using available omics
data, including mutations and RNAseq data [25]. Cell-
specific logic-based models have also been used to
recapitulate experimentally tested dynamic proteomic
changes and phenotypic responses in diverse acute
myeloidleukemia (AML) cell lines treated with a variety
of kinase inhibitors [26]. To improve patient stratifica-
tion, researchers assembled a network of logical re-
lationships linking genes that are mutated frequently in
AML patients and contextualized the model with
genomic data inferring relevant patient-specific clinical

features [27]. In each of these cases, even where the
studied cancer type was the same, different models
reflect not only the biology and specific questions being
studied but also the data used to build the model and
the predictions that could be made. This underlines the
importance of knowing the role data integration plays in
model building.

Data-driven discrete model inference
Although high-throughput datasets offer new ways to
build and analyze models following bottom-up ap-
proaches, reverse engineering methods can also be
applied to infer models from experimental data.
Different algorithms have been developed to recon-
struct logic-based models, and specifically BNs, from
high-throughput data. There exist two broad categories:
www.sciencedirect.com
combinatorial optimization methods, which include
integer or answer set programming (ASP) and allow for
full exploration of the search space to identify the model
that best explains the experimental data, and methods
that implement heuristic approaches. The first category
has the drawback of not scaling well due to computa-
tional explosion, while the second one tends to focus on
specific conditions and stable states to ease the calcu-

lation burden. In broad terms, automated inference of
BNs and functions from data can be a daunting task due
to the uncertainty of the data itself and also to the large
number of unknowns regarding structure and functions
that need estimation. Moreover, identifying the most
suitable data type and available datasets for model
training adds to the task, as they need to be different
from the data used for inference. It should be noted that
the experimental ability to resolve biologically impor-
tant expression or concentration differences will impact
the results; datasets that are prone to noise or that

concern low-expressed genes may introduce bias by
excluding important pathways.

Recently, the caspo time series (caspo-ts) method
[28,29], which allows learning of BNs from phospho-
proteomic time series data given a prior knowledge
network (PKN), was applied to data from four breast
cancer cell lines (BT20, BT549,MCF7, UACC812) [28].
Based on ASP and model checking, the method could
handle a large PKN with 64 nodes and 170 edges [30].
Another popular software for building logic-based models

of signaling networks using prior knowledge and phos-
phoproteomic data is CellNOptR. CellNOptR supports
multiple formalisms, from BNs to differential equations,
in a common framework [31,32]. GABNI (genetic algo-
rithm based boolean network inference) is a method that
searches for an optimal Boolean regulatory function by
exploiting a mutual information-based BN inference. If
this step fails to find an optimal solution, then a genetic
algorithm (GA) is applied to search an optimal set of
regulatory genes on a broader solution space [33]. Bool-
ean omics network invariant-time analysis (BONITA) is
a new algorithm for signal propagation, signal integration,

and pathway analysis capable of modeling heterogeneity
in transcriptomic data. The logical rules of the model are
inferred by the GA and are refined by local search.
Application of BONITA pathway analysis to previously
validated RNA-sequencing studies identifies additional
relevant pathways in in-vitro human cell line experiments
and in-vivo infant studies [34]. Single-cell expression
data have also been used to infer the underlying model of
blood development from the mesoderm. The expression
of 40 genes, measured using quantitative reverse tran-
scription-polymerase chain reaction (qRT-PCR) data in

3934 cells, was discretized and used to infer a BN
consisting of 20 transcription factors, giving insight into
the independent roles of Hox and Sox in Erg activation
[35]. Lastly, BTR, an algorithm for training asynchronous
BNs with single-cell expression data using a novel
Current Opinion in Systems Biology 2021, 28:100386
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4 Big Data Acquisition & Analysis
Boolean state space scoring function, was recently pro-
posed. BTR refines existing BNs and infers new by
improving the match between model prediction and
expression data [36].

Scalability in inference and analysis of logic-based
models
Understanding complex biological processes, such as
immunometabolism, the tumor microenvironment,
chronic or acute inflammation, or autoimmunity, re-
quires models that do not comprise only a handful of
nodes but can be adapted accordingly to incorporate
hundreds of nodes and reactions. Advancements in the
field reflect the tendency to scale up in terms of size and
complexity to create models of more realistic perfor-
mance. Recently, the development of the tool CaSQ
bridged the gap between static and dynamic represen-

tations of disease mechanisms, with the inference of
large-scale BNs from molecular interaction maps [37].
The automated inference of large-scale BNs creates new
challenges in analyzing these models, pushing the limits
of the existing tools and methodologies. Commonly
used software such as GINsim [38] can handle Boolean
and multivariate logic-based models; however, the
attractor’s search can be challenging when scaling up,
relying on model reduction techniques to deal with
large systems.

Several platforms offer different approaches to dealing
with large complex systems, focused on different
problem areas. Cell Collective [39] efficiently handles
large-scale BNs for simulations but does not offer
attractors search. In contrast, BoolNet, an R/Bio-
conductor package, offers a collection of options for the
analysis of BNs and a set of heuristics for attractors
search when the size and the complexity of the model
are considerably large [40]. These heuristics focus on
retrieving stable states in lieu of searching the whole
state space and significantly reducing the calculation

burden, although the results are limited to analyzing
stable states. Bio model analyzer (BMA) [41,42] fo-
cuses on analyzing stable states and, more particularly,
fixed points, offering several highly scalable algorithms
for model analysis, including stability proof, cycle
searching, and linear temporal logic [43e45]. The
specialization of tools emphasizes the importance of
commonly agreed standards for model storage.

In parallel, progress has been made in developing
hybrid and multiscale integrative modeling frame-

works, connecting different formalisms, and generating
new insights from the emergent, combined properties.
FlexFlux, an open-source java software, combines
metabolic and regulatory networks based on the iden-
tification of steady states. These steady states are
further used as constraints for metabolic flux analyses
using flux balance analysis (FBA) [46]. A multiscale
framework that couples cell cycle and metabolic
Current Opinion in Systems Biology 2021, 28:100386
networks in yeast was proposed, integrating BNs of a
minimal yeast cell cycle with a constraint-based model
of metabolism. Models are implemented in Python
using the BooleanNet and COBRApy packages and are
connected using Boolean logic. The methodology
allows for the incorporation of interaction data and
validation through -omics data [47].

Community efforts for the reproducibility of discrete
models in biology
Recent studies have raised concerns about reproducibility

in various scientific fields. In computational systems
biology, efforts have been made to identify the problem
and propose strategies to tackle it [48]. The curation and
annotation of logical models (CALM) initiative emerged
to promote reproducibility, interoperability, accessibility,
and reusability of the discrete biologicalmodels [49]. The
initiative promotes reproducibility by linking model
components to the underlying experimental articles using
proper identifiers such as BioModels.net Qualifiers1, and
interoperability by promoting the use of the SBML-Qual
format, an extension of the SBML Level 3 standard

compatible with the representation of qualitative models
of biological networks [50]. Furthermore, the CoLoMoTo
InteractiveNotebook developed by the community relies
on Docker and Jupyter technologies to provide a unified
and user-friendly environment to edit, execute, share, and
reproduce analyses of qualitative models of biological
networks via streamlining of tools that do not necessarily
use standard formats, circumventing compatibility
issues [51].

In Table 1, we list the tools mentioned in the previous

sections, with a brief description of their features, the
environment, and their capacity of supporting annotations.

New methods for formal analysis of large-scale logic-
based models
In this section, we highlight recent developments
regarding formal analysis. The methodologies presented
here address problems inherent to larger and more
complex models.

One issue that arises as networks become larger is the
role of timings in the control of cellular function. While
timing effects can be accounted for in small models

using synchronous or asynchronous update schemes as
more genes are introduced, this may not be a scalable
approach. Ignoring potential timing effects however may
obscure important model properties. The most
permissive boolean networks (MPBNs) approach is a
promising formal method that addresses the fact that
both synchronous and asynchronous dynamical in-
terpretations of BNs can miss some predictions of be-
haviors observed in similar quantitative systems. The
MPBNs approach formally guarantees not to miss any
www.sciencedirect.com

https://co.mbine.org/standards/qualifiers
www.sciencedirect.com/science/journal/24523100


Table 1

Brief overview of relevant modeling software and their main features.

Tool Features Environment SBML-Qual
support

Annotation
support

Tools for automated inference of logic-based models
CaSQ Inference of BNs from molecular interaction maps Python Yes Yes
Caspo-ts Inference of BNs from time series omic data Python No No
CellNOpt Inference of BNs from time series omic data R/Bioconductor Yes No
BONITA Inference of BNs from transcriptomic data R/Bioconductor No No
Tools for analysis of logic-based models
GINsim Logical network analysis; in silico simulations; reduction functionality;

possibility for exhaustive attractors’ search; updating scheme:
synchronous and asynchronous

Java Yes Yes

Cell Collective BN analysis; real-time in silico simulations; topological analysis; updating
scheme: synchronous and asynchronous

JavaScript, web-based Yes Yes

BoolNet BN analysis; in silico simulations; different options for attractors’ search
including heuristics; updating scheme: synchronous and asynchronous

R/Bioconductor Yes No

Bio model
analyzer
(BMA)

Stability analysis; in silico simulations; exhaustive search for attractors;
linear temporal logic; updating scheme: synchronous

Web-based, optional CLI No Yes

Frameworks for integrative analysis of logic-based models with constrained based metabolic models
FlexFlux BN and FBA analysis R/Bioconductor Yes No
BooleaNet and

COBRApy
BN and FBA analysis Python No No

BN, Boolean network; CLI, Command line interface; FBA, flux balance analysis.
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behavior achievable by a quantitative model following

the same logic. Moreover, MPBNs significantly reduce
the complexity of dynamical analysis, allowing for
modeling genome-scale networks. One limitation of the
approach can be the generation of overapproximated
dynamical representations, with only small subsets of
the corresponding trajectories effectively observed [52].

The control of BNs offers the possibility to delineate
interconnected pathways and specify conditions to
determine a functional outcome, offering a way to focus
on a smaller subset of nodes that possess important

properties over the whole network. Researchers compute
a minimal subset of nodes (Cmin) in recent work that
allows a BN to be driven from any initial state in an
attractor to an attractor of interest by a single step
perturbation of Cmin. In their method, they decompose
the network into modules, compute the minimal control
on the projection of the attractors to these modules, and
then compose the results to obtain the global Cmin [53].

Finally, as models become larger, state space expands
and the potential for rare transitions that undermine

conclusions drawn from the model increases. Model
verification, derived from the broader field of verifica-
tion in software and hardware, offers a new way to tackle
complexity. Here, mathematical proofs are used instead
of simulation to analyze model behavior. These proofs
can offer guarantees of model correctness that apply
over all of state space, for example, stating that one gene
is always activated transiently or another gene never
www.sciencedirect.com
becomes active. Examples include the computation of

attractors [54] and proofs of stability [43], where proofs
of properties of the whole model are composed of proofs
computed on individual components.
Conclusion
The growing availability of high-quality, whole-cell bio-
logical data has underlined the need to develop rigorous
integrative methods that connect observations to
fundamental mechanisms of action. Data-driven model
inference combined with high-quality biocuration could
lead to the construction of more accurate and robust
models. At the same time, the rapid adoption of
increasingly large logic-based models stress tests the
existing methods and tools used for dynamic analysis.

The key challenges of the field consist in developing

efficient formalisms for data integration and tool
implementations to properly combine and integrate data
to models but also to analyze and understand these
models at a larger scale. While model inference meth-
odologies can greatly accelerate model building and
training, the parallel development of formal methods for
analysis, control, and verification is needed to cope with
the size and complexity of such models. The coupling of
logic-based models with other modeling types offers
possibilities to address more complex questions span-
ning over different scales, such as signaling and meta-

bolism. Lastly, the use of common annotation schemes
and standard formats could help maximize transparency
and model reusability and reproducibility (Figure 2).
Current Opinion in Systems Biology 2021, 28:100386
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Figure 2

Key challenges in integrating high-throughput data in logic-based models.

6 Big Data Acquisition & Analysis
As multi-omics data will become increasingly available
for a variety of biological functions in health and disease,
logic-based models can be used as versatile, powerful
tools to deepen our understanding of complex biolog-
ical mechanisms.
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