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Abstract In this review, we focus on the works done

by Yilmaz and by Drösler. They both proposed color vi-

sion models based on projective hyperbolic metric. We

integrate those models in a unified mathematical frame-

work, we called the Yilmaz-Drösler model. This model

can be used to geometrically represent current views on

color perception and processing. Because color vision is

trichromatic and lights spectra are positive functions,

the space of color perception is delimited by a con-

vex cone in a three-dimensional metameric space. The

space inside the cone can be decomposed into stacks of

iso-intensity hyperboloid surfaces. Yilmaz postulated a

Lorentz transformation to accounting for adaptation in-

duced by change in illumination. As shown by Drösler,

this transformation can be viewed as a projective trans-

formation. We show that hyperbolic metric models with
projection are well-suited for describing the relation be-

tween physiology and perception. This review aims at

presenting those theories to a larger audience using a

geometrical description.

Keywords Color Vision · Hyperbolic geometry ·
Yilmaz-Drösler model · Color Adaptation · Projective

geometry

Introduction

Relations between physical and perceptual spaces have

been studied for long time in psychophysics. Psychophys-

ical laws have been proposed for weight, light inten-

sity, length, or speed discrimination as few examples

Bouguer (1729); Fechner (1907); Stevens (1957). How-

ever, the extension of those uni-dimensional laws to
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LPNC CNRS-UGA UMR5105 Grenoble
E-mail: firstname.lastname (@) univ-grenoble-alpes.fr

multidimensional perceptual systems, such as color vi-

sion, is challenging Helmholtz (1896, 1852); Schrödinger

(1920); MacAdam (1970); Niall (2017). Due to trichro-

macy; color perception is a phenomenon that can be

fully characterized in three dimensions. For a given ob-

server under given viewing condition, a triplet of num-

bers (color coordinates in a color space) is necessary

and sufficient to define a perceived color. Two triplets

can correspond to either two observers in the same con-

dition or to a single observer under two different con-

ditions. But it is unclear how the values between the

two triplets are related to each other within and be-

tween observers. For this reason, current color spaces

can hardly account for human experience of color vi-

sion. We cannot predict the appearance of a physical

stimulus for a given observer nor the shift in appear-

ance when viewing conditions are changed.

Yilmaz (1961, 1962a,b) and Drösler (1994, 1995)

both attempted to circumvent this difficulty by address-

ing the problems of adaptation, metric and transfor-

mation between color spaces. Yilmaz proposed that the

perceptual color space is limited by a cone of maxi-

mal saturation. Color vision is restricted to that cone

because lights spectra are positive functions of wave-

length. In Yilmaz’s color space, what counts for color

perception is not the absolute coordinate of the phys-

ical stimulus but the relation between stimuli. Colors

relative to the white remains invariant under change in

illumination giving humans the impression that colors

are constant physical properties of objects. The contri-

bution of Drösler was to place color vision in the con-

text of projective geometry. He considered the Weber

ratio as a projective invariant. In doing so, he extended

psychophysical principles to any multi-dimensional pro-

jective space. In the following, we will detail those stud-

ies and their geometrical formulations. We attempt to
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merge them into a modern mathematical framework

embedding current models of color vision.

Fig. 1 Yilmaz-Drösler model of color vision. Our interpre-
tation of the Yilmaz-Drösler color vision model is given by a
transformation between the space of spectral functions, de-
fined by light’s spectral power distribution function, to a cone
in a three-dimensional space where color perception takes
place. Color perception is given by two alternative projec-
tions. First, the space of sampled spectral functions, isomor-
phic to Rn, is projected orthogonally into a metameric space
that corresponds to a span by the sensitivity functions of
the three photoreceptors involved in color vision. Metameric
space is three-dimensional isomorphic to R3. Because light’s
spectra are positive functions, light’s domain is restricted to
a cone shape volume into the three-dimensional metameric
space. The visual system adopts a hyperbolic metric that is
the natural metric inside a convex cone which defines color
perception space isomorphic to H2×R+ (where H2 is the unit
hyperboloid in the metameric coordinate system).

As illustrated in Figure 1, we define the correspon-

dence between the space of spectral functions and per-

ceptual space. This conception is common in Yilmaz

and Drösler studies.

From space of light’s spectral functions to per-

ceptual color space

The metric of color vision space has been directly mea-

sured as contour of constant discrimination in physi-

cal color spaces. MacAdam (1942) showed that those

contours are ellipses in the chromaticity diagram also

called CIE1931-xy. Ellipses vary in size and orienta-

tion with their positions on the chromaticity diagram.

This is a manifestation of a non Euclidean metric for

color discrimination expressed in physical variables. It

is indicative of local metric within the color space or

otherwise said a local modification of the global met-

ric. Discrimination contours were shown to vary quite a

lot between and within observers Wyszecki and Fielder

(1971); Brown and MacAdam (1949). This variation

can be modeled as a consequence of a nonlinear and

adaptive correspondence between physical and percep-

tual spaces Alleysson and Hérault (2001); Alleysson and

Meary (2012).

Many authors have tried to formalize the transfor-

mation from the space of light to the perceptual space

as a metrical transform Riemann (1854); Helmholtz

(1896); Schrödinger (1920); Niall (2017); Koenderink

et al. (1972). Models are generally written as a Rie-

mannian metric with an infinitesimal variation ds:

ds2 =
1

(R+G+B)2−α

(
dR2

Rα
+
dG2

Gα
+
dB2

Bα

)
,

(1)

where R, G and B represent the components of the light

in a color space and dR, dG, dB the variation around

the components. For Helmholtz, Schrödinger and Koen-

derink models, α equal 2, 1, and 0, respectively Koen-

derink et al. (1972). Other recent approaches used hy-

perbolic models to represent the geometry of color space

based on discrimination measurement Farup (2014); Lenz

and Meer (1999). They maybe closer to a definition of

the color space in term of psychological variable such

as hue, saturation and brightness.

It was probably Grassmann Grassmann (1853); Krantz

(1975) that firstly stated that color perception occurred

in a space shaped by a cone. Using monochromatic

light, several authors Guild (1931); Wright (1930) es-

timated color vision space using color matching experi-

ment Maxwell (1860). For a color match the participant

had to adjust the intensity of three monochromatic pri-

maries (in the red, green and blue part of the spectrum)

in order to visually equalize a reference monochromatic

light. The level of intensities adjusted for the three pri-

maries were taken as coordinates for the three color

matching functions for all reference lights covering the

visible spectrum.

Figure 2(a) shows the color matching functions X, Y

and Z as normalized by the Commission International

de L’Eclairage in 1931 (CIE1931-XYZ). Taking these

functions as axis for a three-dimensional space one can

construct a three-dimensional curve called spectrum lo-

cus. Each point of the curve corresponds to a wave-

length and has coordinates given by the values of the

functions XYZ at that wavelength (Figure 2(b)). The

curve delimits a volume that could be considered as a

deformed convex cone. If we project the curve on the

chromaticity diagram we obtain the limit of the cone

(red curve in Figure 2(b)). Whether or not we can define

a transformation of the XYZ color matching functions

that make the cone perfectly circular and symmetric

around an axis, as assumed by the Yilmaz model, is

largely documented in the book written by Koenderink

(2010).
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(a) (b)

Fig. 2 Cone in CIE color space. (a) Color matching ex-
periment allows to measure three functions of wavelength X,
Y and Z. Each value of these functions at a particular wave-
length is the amount of intensity of three primaries needed to
equalize a monochromatic light at that wavelength. (b) These
functions are used to draw the curve of spectrum locus in a
three-dimensional XYZ space. In this space the curve (black)
is seen as being in the frontier of a deformed cone. This is
illustrated by the projection of the spectrum locus on the
plane orthogonal to the vector (1,1,1) using the CIE model
(red curve).

Authors have also been looking for a direct corre-

spondence between the space of light’s spectral func-

tions and the space of color perception. Weinberg (1976)

proposed a model of the projection between physical to

perceptual space using the formalism of Grassmannian

space. Similarly, Ashtekar et al. (1999) were able to

define a hyperbolic metric by assuming conic shape for

the perceptual space. Suppes and Krantz (2007) pro-

posed a review on the correspondence between physical

and perceptual spaces for color vision.

Other models of the transformation from physical to

perceptual spaces were derived using Lie algebra Hoff-

man (1966); Lenz et al. (2005). Resnikoff (1974) also

used group transformation theory to justify a repre-

sentation of the color vision space as a hyperbolic met-

ric Provenzi (2017, 2016); Berthier and Provenzi (2019).

Finally, we would like to recall the work by Benzécri

(1981) who tried to make a systematic description from

the ray of light to perception. We think that the work of

Yilmaz and Drösler are the keys to unify these models

and better understand the geometry of the color per-

ception space.

Relativistic color vision: Yilmaz

Yilmaz (1961) proposed an analogy between color vi-

sion and space-time special relativity. He justified the

analogy by considering that color experience is well

described as hue, saturation and brightness which are

cylindrical coordinates inside a cone of maximal satu-

ration. Maximal saturation in color vision being analog

to maximum speed (the speed of light in vacuum) in

space-time relativity.

The envelop of the cone of maximal saturation Σ

is defined as a null space q(X) = 0 of a quadratic

form q(X) = −α2 − β2 +Σ2γ2, in a three-dimensional

color space equipped with an orthogonal basis ᾱ, β̄,

γ̄. With X = (α, β, γ), and α, β, γ are color coordi-

nates of a point in the color space. The quadratic form

is an invariant over color coordinate systems (with a

common origin) and the transform between two color

coordinate systems is given by the Lorentz transform.

Lorentz’s transformation leaves invariant the quadratic

form q(X) that link the coordinates. The equivalent

Lorentz factor is written: Ω11 = 1√
1− σ2

Σ2

where σ is the

saturation of the light and Σ is the maximum possi-

ble saturation (see section The two rooms experiment:

Yilmaz for further explanations). The invariant, based

on a quadratic form, can be similarly constructed from

a Lorentzian inner product Ratcliffe (2013). Therefore,

the space of color perception, restricted to a cone, is

parametrized by a stack of hyperboloid sheets. (Fig-

ure 3).

Fig. 3 Yilmaz color perception space. According to Yil-
maz, color vision space is delimited by a convex cone of max-
imum saturation Σ defined in an orthogonal basis ᾱ, β̄, γ̄.
The axis γ̄ represent the direction of the illuminant. In this
space, a perceived color is represented by a point inside the
cone or, equivalently, a vector from the origin to the point.
The point corresponds to the metameric projection of a light’s
spectrum. The angular departure of this vector from γ̄ can-
not be larger than the limits imposed by the vertices of the
cone. The interior of the cone can be parametrized by a stack
of hyperboloid sheets oriented along γ̄ (to each point inside
the cone it corresponds an hyperboloid that passes through
it). A particular revolution hyperboloid symmetric around γ̄

defines the surface of constant intensity k = 1. All points that
belong to this surface correspond to colors that are of same
perceived intensity.

Yilmaz gave a particular interpretation for the Lorentz

transformation. The cone of maximal saturation is ori-

ented along the axis γ̄. This axis represents the illumi-
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nant of the visual scene. When the illuminant change,

the orientation of the cone of perceivable colors change.

The perceptual invariant is the white color which is al-

ways located on the axis representing the illuminant.

White, defined as the property of a diffuse surface that

perfectly reflects illumination, remains perceptually con-

stant. The other perceived colors are defined by their

positions relative to γ̄ and their perceptual distances

are preserved. Yilmaz (1961)[p. 242] wrote: From one

illuminant to another the light reflected from each ob-

ject changes. Under this change object-color identities

and their interrelationships must not change. Therefore

the transformation must be such that the change in the

physical characteristics due to the change in the illu-

minant is compensated by the transformations so as to

leave object-colors and their interrelationships invari-

ant.

Fig. 4 Adaptation to illumination change. When illumi-
nant changes, the cone of perceived color and the unit hy-
perboloid change accordingly. If γ̄′ is the vector for the new
illuminant then the new cone and the new hyperboloid were
aligned to it. The transformation conserves the perceived
white point. If the white point is called W under the for-
mer illuminant, it is located on the γ̄ axis because that axis
represents achromatic colors. Under the new illuminant, the
white point is transformed into W ′ placed on the γ̄′ axis. The
transformation between the two coordinate systems is given
by a Lorentz transformation because the white point slides
along the unit hyperboloid and the transformation is a hy-
perbolic rotation.

Yilmaz’s interpretation of Lorentz’s transformation

is different from its interpretation in special relativity.

In special relativity, a Lorentz transformation gives a

new oblique coordinate system in which the new space-

time has the properties of length contraction and time

dilation. For color vision those properties are not repro-

duced. The Lorentz transformation is a change of the

symmetry axis of the cone of perceived colors according

to the vector representing the new illuminant.

There are several physiological and psychological ev-

idences for a change of perceptual space with adapta-

tion. Photoreceptors are equipped with photopigments

that participate for the transformation of photons into

neural signals. Those photopigments are subject to bleach-

ing under moderate and high light intensity Rushton

and Henry (1968). Bleaching reduces the sensitivity of

the photoreceptors and potentially modulates differ-

entially the axis of the metameric coordinate system.

From a psychological point of view, two surfaces that

are metameric under one illuminant are not necessary

metameric under another one Foster et al. (2006). This

implies that the change in the position of the cone of

perceived colors is certainly due to a change in the

metameric sub-space.

Trichromacy is a strong limitation for light encod-

ing but by adapting its measurement process to envi-

ronmental conditions, the visual system is able to ex-

tend its discrimination power between lights under il-

lumination change. This transformation of the cone of

perceived colors allows color constancy, the well-known

observation that humans are able to perceive constant

color despite changes in illumination D’Zmura and Lennie

(1986); Foster (2003, 2011).

The two rooms experiment: Yilmaz

Yilmaz (1961, 1962b) proposed an experiment1 to show

how the hyperbolic model of color vision may behave

when illuminant is changed. His analytic formulation

showed a Lorentz transformation between the white

points under two illuminants.

In his model, Yilmaz considered that color vision

space belongs to a cone of maximal saturation Σ into a

three-dimensional Euclidean space with coordinate sys-

tem {0, ᾱ, β̄, γ̄} (Figure 6(a)). Any physical light F cor-

responds to a point in that Euclidean space of coordi-

nate F (α, β, γ) = αᾱ+ββ̄+γγ̄. Saturation of the light

is given by: σ =

√
α2+β2

γ .

Yilmaz considered general change of illuminant from

illuminant I1 to illuminant I2. Under I1, the observer

has basis B1 = {0, ᾱ1, β̄1, γ̄1} and (α1, β1, γ1) are the

coordinates of a light. Under I2 the observer basis is

B2 = {0, ᾱ2, β̄2, γ̄2} with coordinate of the light being

(α2, β2, γ2). Yilmaz used the projection onto a chro-

maticity diagram, which is defined by the disk of radius

Σ situated at γ = 1, to represent the different illumi-

nants and their respective cone envelops as shown in

Figure 6(b).

His goal was to find the transformation Ω of the

basis from B1 to B2. Yilmaz made two assumptions: (1)

1 This experiment is not a proper psychology experiment
because no experimental results based on observers have been
reported as far as the authors known. One can consider the
experiment as a proof of concept.
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The transformation is linear. (2) The transformation

leaves invariant the β axis.

The constraint of condition (2) for the vectors rep-

resenting the two illuminants I1 and I2 is that they lie

on a line at β constant, even β = 0. This kind of sim-

plification is usual in space-time relativity where one

considers the motion between two Galilean coordinate

systems on the x direction only to simplify the writing

of the Lorentz transformation. So he wrote the trans-

formation as:α2

β2
γ2

 = Ω

α1

β1
γ1

 , Ω =

Ω11 0 Ω13

0 1 0

Ω31 0 Ω33

 . (2)

The experimental set-up consists of two rooms. Two

halves of a white paper, approximating perfect reflec-

tors, are placed in each room. A small hole between

the two rooms allowed the observer to see the paper in

room 2 or 1 while standing in room 1 or 2, respectively.

Each room can be illuminated by a different illuminant.

Three experiments have been proposed with the set-up.

They are illustrated in Figure 5.

Fig. 5 The two rooms experiment. Yilmaz proposed three
experiments: (1) Change of perceived saturation with illumi-
nant changes; (2) The judgment of the appearance of a fully
saturated color; (3) Change in hue due to observer’s adap-
tation induced by varying illuminant. All perceived changes
being estimated using a color atlas under illuminant I1.

In the mathematical development given by Yilmaz,

the coordinates (α1, β1, γ1) for illuminant I1 in room 1

and (α2, β2, γ2) for illuminant I2 in room 2 serve for

several light sources depending on experiments. Fig-

ure 5 indicates to which illuminant the coordinates cor-

respond to.

Exp 1

The first room was illuminated with illuminant I1 and

the second room with illuminant I2. Illuminants were

chosen to be two different illuminants of near daylight

chromaticity Yilmaz (1962b). We choose D65 and D50

for illustration. When the observer is placed in the first

room he sees the white paper as white and through the

hole he sees the white paper in the other room chro-

matically colored with a shift in saturation σ (assessed

by matching with a patch on the OSA atlas under il-

luminant I1). The same observer move to the second

room, all other things being identical, he sees the white

paper in room 1 with a slight shift in saturation com-

pared to the white paper in its current room. How-

ever, the shift in saturation goes in opposite hue direc-

tion. Yilmaz denotes it as −σ, indicating that the hue

is complementary to the former hue. This should be

understood as α = σ cos(π) in the coordinate system

(α, β) of the chromaticity diagram for which γ = 1.

Indeed, let us suppose that the illuminant I2 appear

a bit reddish compared to illuminant I1. In this case,

σ (or α = σ cos(0)) represents a shift toward the red

whereas −σ (or α = σ cos(π)) represents a shift toward

the green.

In this first experiment, the white paper in room 1

seen from room 1 is perceived as white. So, (α1, β1, γ1)

is proportional to (0, 0, 1) because the white is on the

γ̄1 axis by definition. Similarly, the white paper in room

2 seen from room 2 is white too. So, (α2, β2, γ2) is also

proportional to (0, 0, 1).

From Equation 2, we have α2 = Ω11α1+Ω13γ1. But

because the white paper appear white under I2 in room

2, α2 = 0, so:

α2 = Ω11α1 +Ω13γ1 = 0,

Ω13 = −Ω11α1

γ1
.

The cone of color vision under I1 is defined by: α2
1 +

β2
1 = Σ2γ21 . Any light of saturation σ inside the cone

has coordinates that follow the equation α2
1 + β2

1 =

σ2γ21 , thus σ =
√
α2
1 + β2

1/γ1. But, because the change

in coordinate leaves β invariant, the β component of σ

is null, so we have σ = α1/γ1 which implies:

Ω13 = −σΩ11 . (3)

So, α2 can be expressed as:

α2 = Ω11 (α1 − σγ1) .

Expressing −σ in term of α2 and γ2 and expressing

γ2 using Equation 2 when the observer move to room 2

gives:

−σ =
α2

γ2
=
Ω11(α1 − σγ1)

Ω31α1 +Ω33γ1
.

But, because the white paper is seen white in room

1 under I1, we have α1 = 0. So, −σ = −σΩ11/Ω33 thus:

Ω11 = Ω33 . (4)
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Exp 2

The observer is placed in room 1 illuminated with the

illuminant I1. Room 2 is then illuminated with a very

narrow red spectrum (point R in Figure 6(b)). From

room 1, the observer has to match the color reflected

by the white paper in room 2 using the OSA color atlas.

Yilmaz predicted that observer would choose the most

saturated color of the atlas because it would have the

feeling that the paper is still more saturated than the

available atlas color.

Maximal saturation in either cone for I1 or I2 illu-

minant is given by σ = Σ, which gives:

Σ = α1

γ1
⇒ α1 = Σγ1

Σ = α2

γ2
= Ω11(α1−σγ1)

Ω31α1+Ω11γ1
= Ω11(Σ−σ)

Ω31Σ+Ω11
,

Ω31 = −Ω11
σ

Σ2
. (5)

Exp 3

During the experiment, the illuminant in room 1 is

changed from I1 to I2. The white paper in room 2 is

illuminated with a monochromatic yellow (point Y1 or

Y2 in Figure 6(b) depending on the illuminant I1 or I2
in room 1). Because of the variation in illuminant in

room 1, the observer placed in room 1 experiences a

shift of hue of the white paper in room 2 seen through

the hole. This shift is a consequence of a move toward

a new adaptation state.

For the modeling of the experiment 3, Yilmaz used

the coordinate (α, β) in the chromaticity diagram which
is a projection into the plane at γ1 = 1 in basis B1

(Figure 6(b)). The monochromatic yellow is considered

placed in an orthogonal direction to the ᾱ axis and

fully saturated so the coordinates of Y1 in B1 are α1 =

0 and β1 = γ1Σ (Figure 6(b)). Considering now the

coordinate system B2 for I2, we see on Figure 6(b) that

Y1 transposes into Y2 to belong to the limit of saturation

in B2. According to the Pythagorean theorem in the

right angled triangle I1I2Y2, for expressing cos(φ) on

Figure 6(b), we can estimate:

tanφ =
sinφ

cosφ
= − σ√

Σ2 − σ2
=

−σ

Σ
√

1− σ2

Σ2

.

In B2 the tangent can also be expressed as the ratio of

the coordinate of Y2 (because the angle between β̄2 and
−−→
I2Y2 is also φ). Using Equation 2 and the coordinate of

Y1 in B1 we have:

tanφ =
α2

β2
=
Ω11(α1 − σγ1)

β1
= −Ω11σ

Σ
.

(a)

(b)

Fig. 6 Yilmaz two rooms experiment modeling. (a) Yil-
maz considers that color perception space belong to a cone in
a three-dimensional space. Any light represented by its spec-
tral distribution function has three coordinates α, β and γ on
the corresponding axis ᾱ, β̄ and γ̄. Another way of represent-
ing a point in that space is the use of cylindrical coordinates
ρ, φ and γ. Saturation σ = ρ/γ is defined as being the amount
of deviation from the γ̄ axis. This deviation is always less than
Σ which define the interior of the cone as σ ≤ Σ. Yilmaz pro-
posed that the chromaticity diagram should be a disk defined
by the intersection of the plane γ̄ = 1 and the cone, so it is
a disk of radius Σ placed at γ = 1. (b) Yilmaz assumes that
the two cones for the two adaptation states of the observer
under two illuminants I1 and I2 respectively are represented
as perfect circles in the chromaticity diagram. The two circles
represent the rotation of the two cones respectively symmet-
ric to I1 and I2 for the point of view given by the axis γ̄.
In this representation the monochromatic red (R) and the
two yellows (seen under I1 (Y1) and under I2 (Y2)) allow the
calculation of the shift in hue as angle φ in Experiment 3.

By identification of the two expressions of the tangent

we have:

Ω11 =
1√

1−
(
σ
Σ

)2 , (6)

which could be consider as the Lorentz factor for color

vision.

Over the three experiments, the transform from il-

luminant I1 to I2 is given by the following formula:

α2 =
α1 −∆σγ1√

1−
(
∆σ
Σ

)2 , β2 = β1, γ2 =
γ1 − ∆σ

Σ2 α1√
1−

(
∆σ
Σ

)2 , (7)
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with ∆σ is the relative saturation of the illuminant

I2 compare to I1. The transformation in matrix form

writes:α2

β2
γ2

 =


1√

1−(∆σΣ )
2

0 −∆σ√
1−(∆σΣ )

2

0 1 0
−∆σ
Σ2√

1−(∆σΣ )
2

0 1√
1−(∆σΣ )

2


α1

β1
γ1

 . (8)

Posing ∆s = arctanh(∆σΣ ) as being the relative sat-

urability (in analogy to rapidity in space-time) of the

illuminant I2 compare to illuminant I1, the transforma-

tion writes:

Ω =

 cosh(∆s) 0 −Σ sinh(∆s)

0 1 0

− 1
Σ sinh(∆s) 0 cosh(∆s)

 , (9)

which is an hyperbolic rotation of boost ∆s as illus-

trated in Figure 4 for which W ′ = ΩW .

Using change in observer’s adaptation state induced

by the change in illuminant along with a carefully de-

signed thought experiment, Yilmaz (1961, 1962a,b) did

a tour de force by showing a transformation similar to

the Lorentz transformation for special relativity. As we

show earlier ( Relativistic color vision: Yilmaz), Lorentz

transformation is justified by a hyperbolic rotation of

the white point with adaptation change. The work of

Drösler in psychophysics extended this model in the

context of projective geometry.

Projective hyperbolic metric color space: Drösler

The law of psychophysics proposed by Bouguer (1729)

and Weber (1846) for the perception of light intensity
and the perception of weight, respectively, could be

stated as follow. Let’s suppose an initial condition of

intensity I that corresponds either to the perception of

intensity of a light or of the weight of an object. The

Bouguer-Weber law stipulates that the minimum vari-

ation ∆I of the physical variable that elicit a perceived

difference for the observer is given by ∆I
I = k. So the

perceived minimal variation of intensity ∆I depends

on the reference intensity I such that the ratio between

them remain constant.

The Bouguer-Weber ratio defines a direct correspon-

dence between physical and perceptual variables. Let’s

call S the sensation of the observer. Suppose this sensa-

tion is a function f of the physical intensity I, S = f(I).

From the definition of f we can write ∆S = f ′(I)∆I

where f ′(I) = dS/dI is the derivative of f , dS and

dI are the infinitesimal variation of the variables. We

consider ∆S and ∆I commensurate because the varia-

tion are supposed smalls. Let’s define the minimal per-

ceived variation of sensation being constant and equal

to 1, ∆S = 1 for a participant to report a perceived

difference in sensation. According to Bouguer-Weber

ratio, we may write ∆S = 1 = 1
I∆I which in turn de-

fine f ′(I) = 1/I. Thus f is defined as f(I) =
∫ I
I0

1
xdx.

As Fechner (1907) states, we have f(I) = log I
I0

with I0
being the absolute detection threshold for the physical

variable. According to the Weber-Fechner formulation,

physical and perceptual variables are related non lin-

early by a log function.

Psychophysical laws are well formalized by contrast

measurements. Indeed if you ask an observer to de-

scribe feeling when seeing a light or holding a weight

in hand, the observer would probably respond some-

thing that you can hardly put on a scale. But if you

ask to report when a difference is perceived in between

two different intensities of light (or weight), you can

plot these two intensities as points on a scale. Figure 7

shows the relationship between the physical and per-

ceptual scales in case of a Weber-Fechner law of kind

S = 4 log(I) with 4 being an arbitrary value for illustra-

tion and I0 = 1 for referring to the previous notation.

Following this law, a difference in sensation depends

on a geometrical increase of this physical variable I.

Let’s define (∆I)i = Ii+1 − Ii. We can check by the

points defined on the figure that (∆I)i/Ii = k. We have

(I1 − I0)/I0 = (e1/4 − 1)/1 = 0.2840, (I2 − I1)/I1 =

(e1/2 − e1/4)/e1/4 = 0.2840, and so on. Thus, the loga-

rithmic law, allow to transform the geometrical scale of

stimulus intensity I into an arithmetical scale of sensa-

tion S with the property that the Weber ratio is con-

stant.

Fig. 7 Weber-Fechner psychophysical law. The psy-
chophysical law associates a geometric interval scale of in-
tensity I to a linear interval scale of sensation S.
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Psychophysical laws have inspired numerous arti-

cles in the literature related to the neural origin of

the non linear relation between physical and percep-

tual spaces Billock and Tsou (2011). Baird and Noma

(1978) have reviewed the literature on psychophysical

laws focusing on the scaling fundamentals. Scaling was

also considered by Yilmaz (1967) who showed that psy-

chophysical laws provide scale invariant properties that

could be useful for living systems. He showed that the

law of Stevens (1957) made a scale invariant by change

of the origin, scale and inverse. The same idea is also

presented in the work of Benzécri (1979). Scale invari-

ance was also central in Resnikoff’s work. In his book

Resnikoff (1989) proposed an interpretation of the in-

variance caused by the logarithmic law in terms of in-

formation theory.

Drösler (1995, 1994) proposed a different interpreta-

tion of the invariance phenomenon. He formalized psy-

chophysical laws in term of projective geometry. Projec-

tive geometry is a mathematical formalism born from

the need to represent three-dimensional spatial rela-

tionship between objects by their perspective into a

two-dimensional drawing on a sheet of paper. Drösler

showed that the Weber ratio could be seen as a projec-

tive invariant of the projective line. It is invariant over

any projective transformation. This allowed to under-

stand visual non linearity as a projection and also to

extend Weber ratio and more generally psychophysical

laws into multi-dimensional models (Figure 8).

Fig. 8 Invariance of the cross-ratio. Consider lines a, b, c, d
and a”, b”, c”, d” as two projective lines. Because the points
are related by the projection originating from 0, they are
related by a projective transform. The transform generates a
non linear scale between the point a”, b”, c” and d” from the
arithmetic scale given by a, b, c, d. Nevertheless, the cross-
ratio [a, b, c, d] is identical to the cross-ratio [a′′, b′′, c′′, d′′].

In projective geometry, cross-ratio is invariant un-

der any linear projective transformation. Consider four

points a, b, c, d on a real projective line P1 = R∪{∞}.
The cross-ratio is defined as:

ρ = [a, b, c, d] =
ca db

cb da
=

(a− c)(b− d)

(b− c)(a− d)
. (10)

From Figure 8 we can check that the two cross-ratios

[a, b, c, d] and [a′, b′, c′, d′] are equal because ab = ka′b′.

The conservation of the cross ratio for the line L′′ is

less intuitive. The scale defined by a, b, c, d is a lin-

ear/arithmetic scale whereas a′′, b′′, c′′, d′′ define a

non-linear scale. However, the two scales are related

through a projective transform because the points a,

a′ and a′′ are related through the line originating at 0.

Thus, there is a projective transformation that trans-

form a, b, c and d into a′′, b′′, c′′ and d′′. If two scales

are related each other through a projective transform,

they could be projectively equivalent even if one of the

scale is linear with an arithmetic progression and the

other is a non linear progression.

However, if two scales are related through a log func-

tion (Fechner (1907)), or through a power law (Stevens

(1957)), they cannot originate from a projectivity. In-

stead, it was shown by Poincaré (1906, 1887) that the

general transform between projective scales is analyt-

ically given by: y = ax+b
cx+d where x is a variable on a

projective line L = P1 mapped to another projective

line L′ = P1 with variable y. The parameters a, b, c

and d define the transformation from L to L′ in the

homogeneous coordinate in R2 by:

[
sy

s

]
=

[
a b

c d

] [
x

1

]
⇒ y =

sy

s
=
ax+ b

cx+ d
. (11)

Figure 9(a) shows that if we draw lines from points

on the abscissa and the ordinate for the psychophysics

model of Figure 7 these lines do not cross on a single

point. Rather the intersection of two lines seems to shift
back along a curve. This is due to the log(x) function

which tends to infinity when x increases. In opposite, if

we draw the function that relates two orthogonal axis

(the abscissa and the ordinate) with lines originating

from a single point (Figure 9(b)) the function is neither

a log nor a power law. In that case the function has

an horizontal asymptote and does not tends to infinity

when x increases.

In vision study, the kinetic of the photoreceptor

response to light has been shown to follow the Naka

and Rushton (1966) function which can be written y =

k xn

xn+xn0
≈ ax+b

cx+d if n = 1. Where x is the light inten-

sity received by the photoreceptor, y the current it de-

livered through its polarization, and x0 the factor of

adaptation. From a neurobiological point of view, this

function is more plausible than a log (because it satu-

rates). It shows its usefulness for chromatic adaptation

and color discrimination Meylan et al. (2007); Alleysson

and Hérault (2001); Alleysson and Meary (2012). How-

ever, the drawback is that the value of the derivative is
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(a)

(b)

Fig. 9 Log is not projective. (a) If two scales are related to
each other through a logarithm function, they are not projec-
tively related. This means that one cannot find a projective
point from which lines relate the two scales. Instead, the in-
tersection of lines passing through the position of the two
scales is not fixed. (b) If one chooses to relate the two scales
with a projective transform by connecting them through lines
from a projective origin point, the function that is drawn is
of the form y = ax+b

cx+d

given by:

df(x)

dx
=

ad− bc
(cx+ d)2

≈ 1

x2
, (12)

instead of 1/x in Weber-Fechner law. This implies con-

stant k = ∆I/I2, instead of k = ∆I/I.

Drösler discussed this point of view and proposed,

like Yilmaz did, that the quadratic form for color vision

should have the envelop of a cone as null space. There

is a natural distance between two points a and b that

can be defined in a space equipped with a quadratic

form (Figure 10). This distance d(a, b) is the logarithm

of the cross-ratio, [p, q, a, b] of four points a, b, p, q.

Where p, q are the points of intersection of the line

(ab) with the isotropic cone. This formulation was intro-

duced by Laguerre-Verly (1853) and has been extended

by what is called today the Cayley-Klein metric Klein

(1873, 1897) or Hilbert (1895) metric.

From this definition of the distance, we infer an in-

tuitive justification for the log function found in psy-

chophysics. In the case of an one dimensional experi-

Fig. 10 Cayley-Klein metric. Inside a quadric, such as the
isotropic cone in three-dimensional space, there is a natural
metric that could be set up. Considering two points a and b

inside the quadric. The distance between a and b is given by
d(a, b) = k log([p, q, a, b]) where k is a constant, p and q are the
intersection of the line (ab) with the quadric and [p, q, a, b] is
the cross-ratio between points p, q, a and b. This formalism
can explain why psychophysicists have observed a logarithmic
relation. Suppose that the Weber ratio is measured along a
line going from p′ = 0 to q′ = ∞, then the distance resumes

to d(a′, b′) = k log b′

a′ which is the Fechner law.

ment, the independent variable goes from 0, absence of

sensation, to infinity or saturation. Thus p = 0 and

q = ∞. In that case, the distance formula leads to

d(a, b) = k log b
a due to the properties of the cross-

ratio, [0,∞, a, b] = b/a. In multidimensional cases, such

as color, the line (ab) do not necessarily originate from

0. For color discrimination for example you could have

two points a and b such that the line (ab) does not cross

zero.

In our interpretation of Drösler’s work, visual adap-

tation is the consequence of the visual system’s state

given the physical space.

The Yilmaz-Drösler color vision model

In this part, we give our interpretation of the Yilmaz-

Drösler model of color perception. The model involves

two steps. The first step is an orthogonal projection

of the space of spectral functions onto a subspace of

metamerism related to the measurement of spectral func-

tions by the photoreceptors (Figure 1). The second step

is a representation of the light on a space restricted by

a convex cone and endowed with a hyperbolic metric

(Figure 3). The direction of the cone and the associated

hyperbolic metric change according to the adaptation

of the observer induced by the illumination (Figure 4).

The axis of the cone is aligned with the vector that rep-

resents the illuminant in the metameric space. This is

what we call the colorimetric point of view adopted by

the visual system.

We define the projection of the points in the convex

cone as a central projection on the unit hyperboloid
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(Figure 13). A point in the convex cone can be decom-

posed into its color components (i.e., the position of its

projection on the unit hyperboloid), and its intensity,

given by the affix on the projective line. This decompo-

sition could be assimilated to a chrominance-luminance

decomposition. This decomposition is not unique be-

cause it depends on the orientation of the cone and its

associated hyperbolic metric on the metameric space

accordingly to the adaptation state of the observer.

Space of spectral functions L

Let’s consider a function of wavelength f(λ) that can

represent the spectrum of a light. Yilmaz proposed a

change of variable from the wavelength variable λ =

[λm, λM ] to a phase variable φ = [−π, π] given by2:

φ =
2π(λ− λm)

λM − λm
− π. (13)

It is common to associate the space of spectral func-

tions with a real vector space Schrödinger (1920); Wein-

berg (1976); Dubois (2009). Yilmaz (1961) talk about

a Hilbert vector space for the space of spectral func-

tions. Even if the formalism of Hilbert space allows

to consider a function as being an infinite dimensional

vector, here we restrict functions to their discrete ap-

proximation for simplification. We consider then φ as a

discrete variable being sampled into n different values

along its range. Any functions `(φ) are then represented

as a row vector ` = [`1, `2, ..., `n]t, with `i = `(φi),

φi = −π + 2π(i − 1)/n, with i = 1..n. This vector of

n components corresponds to a sampling of a spectrum

function. We called L the space of all spectral functions

given by their sampled points on the n value of φ and

represented by a vector of n components.

It is usual in spectroscopy to use the scalar prod-

uct between spectral functions. The scalar product is

written:

(f, g) =

∫ λM

λm

f(λ)g(λ)dλ, (14)

This scalar product is transposed in L as a scalar prod-

uct between vectors and can be written:

∀`,m ∈ L, (`,m) =
2π

n
`tm. (15)

The norm of a vector is given by:

‖`‖ =
√

(`, `) =

√
2π

n
`t` (16)

With this definition of the scalar product, we defined L
to be isomorphic to Rn.

2 φ is rather defined in the interval [0, 2π] in Yilmaz’s pa-
pers.

Space of metamerism M⊂ L

Following Schrödinger (1920) views, Yilmaz proposed

that if color vision belongs to a three-dimensional space

it should be a projection from the space of spectrum

functions to the three-dimensional vector space in which

color perception arise.

Yilmaz proposed three functions α(φ), β(φ) and γ(φ)

that served as a basis for a three-dimensional subspace

of the space of spectral functions L3. He called this

subspace an idealized color space. But, one can call

this subspace a space of metamerism because two spec-

tra that are represented the same in this subspace are

not distinguishable thus perceived the same. Even if

their spectral distribution functions differ. We interpret

then these functions as a basis for an idealized space of

metamerism M. These functions are written:

α(φ) =
1√
π

cos(φ), (17)

β(φ) =
1√
π

sin(φ),

γ(φ) =
1√
2π
.

It is easy to show that those functions are of norm

one and are orthogonal, (α, α) = 1, (β, β) = 1, (γ, γ) =

1, (α, β) = 0, (α, γ) = 0 and (β, γ) = 0. They form an

orthonormal basis of a three-dimensional vector sub-

space of the space of spectral functions.

The three functions (Figure 11(a)) correspond to

the first three components of the Fourier basis of L2([−π, π])

(the space of square integral functions on the range

[−π, π]). This choice of the basis functions for the meta-

meric space is not related to mathematical properties of

the space of spectral functions nor it corresponds to the

measured spectral sensitivities of the photoreceptors in

the human eye or color matching functions. It is driven

by the orthogonality of the basis function according to

the scalar product defined in Equation 14 and by a

parametrization of the function by φ that corresponds

to hue4.

Let’s call α, β and γ the row vectors corresponding

to the sampled basis functions of M. The metameric

space M is a subspace of L defined through an or-

thogonal projection R. The projection operator R is

3 This model is called Grassmann model in Koenderink
(2010) book
4 Yilmaz (1961)[p. 243 before e)] justify further the use

of lower term of the Fourier expansion: Higer terms in the
expansion do not have the property of isotropy and are therefore

unacceptable for the invariance of high saturation.
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an operator of L onto itself as follow:

R : L → L ⊃M (18)

` 7→m = R`,

R =
2π

n

[
α βγ

] [
α β γ

]t
= BBt,

B =

√
2π

n

[
α β γ

]
.

The R matrix of size n × n is what is called the

Cohen matrix R Cohen and Kappauf (1982); Cohen

(2001) and represents the spectral operator that project

any light’s spectral power distribution vector onto its

metameric fundamental component. Formally, Cohen

R matrix is rather defined as R = B(BtB)−1Bt but

because α, β and γ are orthogonal vectors in L, the

product BtB is the identity matrix. R is a projec-

tion operator, we can check easily that it is idempotent

(R2 = RR = R) because BtB is the identity ma-

trix. R is an orthogonal projector that splits the space

of spectral functions L into two orthogonal subspaces.

The two orthogonal subspaces are called the fundamen-

tal space of metamerism of dimension 3 (the image of

the linear projector R) and the black space (the ker-

nel of R) of dimension n − 3 (Koenderink, 2010). Any

spectrum function can be written as a sum of its fun-

damental plus black space components:

` = R`+ (1−R)`, (19)

where 1 is the identity matrix of dimension n. Figure 11

shows an example of the projection operator.

(a) (b)

Fig. 11 Metamerism projection. (a) Yilmaz defined three
spectral functions α(φ), β(φ) and γ(φ) that served as a
basis functions for the three-dimensional subspace M of
metamerism. The projector R project any vector ` on its
fundamental f . The difference vector q = ` − f is invisi-
ble for the metameric subspace. (b) The linear application œ
provides a three-dimensional representation of the metameric
space, isomorphic to R3. The images of the three functions
through œ form the standard basis {ᾱ = œ(α) = (1, 0, 0), β̄ =
(0, 1, 0), γ̄ = (0, 0, 1)}. The images of ` and f = R` give the
same point because they are metameric. œ(q) is equal to zero
because it is invisible for the metamerism space.

We can define a linear application to project any

spectrum vector onto a three-dimensional space as fol-

low:

œ: L →M (20)

` 7→ x =

x1x2
x3

 = œ(`) =

√
2π

n
Bt`

So, every vector ` ∈ L could be represented by x = œ(`)

in the metameric space M. M is then equal to the

Euclidean space R3 because its basis vectors are given

by {(1, 0, 0) = œ(α), (0, 1, 0) = œ(β), (0, 0, 1) = œ(γ)}
and the scalar product is x.y =

∑
i xiyi = œ(x)tœ(y).

Metamerism between lights is defined by equal co-

ordinates in the metameric space M. The projection

of a spectrum vector into the metameric space define

equivalence classes between spectra. Two vectors ` and

m are metameric if they project on the same point on

the metameric space. This can be written as:

` ∼m =⇒ œ(`) = œ(m). (21)

By defining three spectral functions as a basis for

the idealized space of metamerism, Yilmaz was able to

represent metameric colors as equivalent classes of light

spectra. It should be noted that those functions are

not the only one that define an orthogonal basis for a

three-dimensional metamerism subspace of L. Again,

those functions are idealized compared to metamerism

in human vision because they are not issued from the

CIE measurement (Figure 2). However, those functions

allow the definition of the color vision cone in a simple

way as we will see now.

The cone C of perceived color

The locus of spectral functions corresponding to lights

in the metameric space is a restricted domain because

light’s spectral functions are positive functions. We call

L+ the restriction of the space of functions to positive

functions. To compute the domain of positive functions

in the metameric space, let consider the canonical basis

B of Rn which is the set of vectors ei:

B = {e1, e2, ..., ei, ..., en}, (22)

ei = [0, 0, ..., 0, 1, 0, .., 0]t,

where the value 1 is at the position i. A sampled light

spectral function defined by its spectral power distribu-

tion vector is a positive sum of the basis vectors:

` =
∑
i

`iei with `i ≥ 0. (23)

The limit of the representation of lights in the meta-

meric space is given by the image of the basis B of Rn
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(scaled by n/2
√
π for illustration purpose) through the

linear application œ, which can be written:

œ

(
n

2
√
π

[
e1 . . . en

])
=
√
π

α1 . . . αn
β1 . . . βn
γ1 . . . γn

 . (24)

The locus of the basis vectors of Rn are the vertices of

the envelop δC = œ(B) of a cone C in the metameric

space R3. The cone has an aperture of Σ =
√

2, because

of the definition of the basis functions α(φ), β(φ) and

γ(φ) (Figure 12(b)).

(a) (b)

Fig. 12 The cone of perceived color (a) The image of the
basis B of the spectral functions (scaled at n/(2

√
π)), through

the application œ, are the vertices of the envelop of the cone
materialized by the red circle in (b). Because a light spectral
function is a positive function it is a positive linear combi-
nation of the vertex, therefore it is located in the interior of
the cone. So the image of light spectra is inscribed into the
cone C = œ(L+). Vertices also correspond to monochromatic
lights, thus the envelop of the cone is the image of monochro-
matic lights which are maximal saturated lights. So the cone
envelop is the locus of maximal saturation lights.

The vectors of the basis B can also be seen as the

sampled monochromatic lights. Thus, the envelop of the

cone also defines the locus of monochromatic lights, the

most saturated lights, in the metameric space as pre-

dicted by Yilmaz (1961). The locus of monochromatic

light forms the vertices of a cone having an aperture

Σ =
√

2. Figure 12(b) show the three-dimensional space

M along with the locus of monochromatic lights that

form the vertices of the cone. Any light can be written

as a positive weighted sum of monochromatic lights.

Thus, lights are inscribed into the volume delimited by

the cone C = œ(L+).

The equation of the envelop of the cone is given in

Cartesian and parametric form by:

δC = {x = (α, β, γ) | xtJ x = 0}, (25)

δC(k, φ) = k

cos(φ)

sin(φ)

1/Σ

 ,
J =

−1 0 0

0 −1 0

0 0 Σ2

 , Σ =
√

2

where xtJ x = −α2 − β2 +Σ2γ2 is the quadratic form

that remains invariant in the Yilmaz’s idealized model

of color perception space.

Functions chosen by Yilmaz imply a cone of per-

ceived colors with aperture Σ =
√

2. Because no natu-

ral lights can be represented outside the cone, there is

no need for the visual system to adopt a metric for the

whole metameric space. Instead it is more efficient for

the visual system to develop a metric associated to the

cone domain of the encoded light.

A natural parametrization of the points inside the

cone is given by a foliation with hyperboloid sheets.

Consider the set of hyperboloid surfaces parametrized

by k > 0 as follows:

H2
k = {X = (α, β, γ) | XtJX = k2}, (26)

H2
k(s, φ) = k

sinh(s) cos(φ)

sinh(s) sin(φ)
1
Σ cosh(s)

 .

Fig. 13 Projection in Yilmaz-Drösler model. Inside the
cone, a natural parametrization is given by a set of hyper-
boloids of revolution around γ̄. Any point X inside the cone
belong to a particular hyperboloid of parameter k =

√
XtJX.

This point could be projected onto a point x = X/(Σk) in
the unit hyperboloid. The coordinates (s, φ) in the unit hy-
perboloid can be considered as chrominance value whereas
the affixe k of X on the line (Ox) is the luminance value of a
color.

This parametrization highlights the projective na-

ture of the cone. If X = (α, β, γ) is a point inside the

cone, it has an intensity k given by k =
√
XtJX. Us-

ing Drösler’s work we can project that point on the unit

hyperboloid by defining x = X/(Σk). Figure 13 shows

the projection x of a point X onto the unit hyperboloid.

Any point inside the space delimited by the cone can be

fully defined by its coordinates on the unit hyperboloid,

s and φ, and an affix, k, on the projective line. This rep-

resentation is a chrominance-luminance decomposition

on the hyperbolic metric.

Such projection could explain why the appearance

of colors is the same while the overall level of light in-

crease or decrease. For a broad range of light level, be-

fore receptor saturation, the visual system is able to
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build a representation of the color that is independent

of this level. Only k changes when the overall level of

light changes along the illuminant axis. The parameters

s and φ, that define the perceived color, are constants.

But, this decomposition is not unique because it de-

pends on the direction of the axis γ̄ in the metameric

space. Under two different illuminations, the axis of the

cone of perceived color is changing. We assimilate that

transformation as a involuntary change in colorimetric

point of view adopted by the observer on the visual

scene.

Color adaptation induced by change in illuminant

We can model Yilmaz’s two rooms experiment using

the perceptual space defined above. It is implicit in

Yilmaz’s modeling of the metameric space using α(φ),

β(φ) and γ(φ) that the observer is adapted to an iso-

energetic illuminant. The cone in the metameric space is

aligned along γ̄, which corresponds to a constant func-

tion of wavelength, γ̄ → γ(φ) → γ(λ). Yilmaz repre-

sents the two conditions of adaptation (I1 or I2) in the

chromaticity diagram associated to an observer adapted

to γ̄ (with I1 corresponds to the axis γ̄). This is why he

drew the two illuminants in a common representation

in Figure 6(b). In doing so he did an approximation

because he represented the two cones in the chromatic-

ity diagram using circles (saying: From one illuminant

to another the limiting saturation remains almost un-

changed) instead of ellipses (Compare Figure 6(b) with

Figure 15).

For I1 and I2 in experiment 1, Yilmaz (1962b) talked

about two different illuminants of near daylight chro-

maticity, that we choose previously to be D65 and D50.

We then take the point of view given by γ̄ to repre-

sent the two cones under the two illuminants. Because

the quadratic form is invariant in any coordinate sys-

tems, the two cones have a fixed shape (same aperture).

They differs only by their orientation relative to the illu-

minant axis. Knowing the spectral power distribution

functions for the two illuminants D50 and D65 Hunt

and Pointer (2011) we can draw the illuminants as vec-

tors starting from 0 (Figure 14).

It should be noted that the length of the vectors

representing illuminants is arbitrary because of the pro-

jective nature of color vision. Whatever the level of the

illuminant, lights are represented by the unit hyper-

boloid and an affix on the projective line. Only the affix

will be changed by the level of illuminant. With this in

mind, the coordinates of the illuminants D65 and D50

have been normalized to unit norm according to scalar

(a) (b)

Fig. 14 D65 and D50 in Yilmaz-Drösler model. (a) Spec-
tral power distribution of the two illuminants D65 (red), D50
(green) plotted together with Yilmaz’s basis spectral func-
tions. (b) Corresponding vectors in the three-dimensional
metameric space according to the basis functions of the
Yilmaz-Drösler model.

product in R3.

γ1 =

0.099

−0.15

0.98

 , γ2 =

0.16

0.03

0.99

. (27)

Those vectors define two novel basis for the metame-

ric space in which equations of the cones are identical

apart from a change of variable. The conservation of the

quadratic form q(X) between the two coordinate sys-

tems for the two cones gives: −α2
1−β2

1 +Σ2γ21 = 0 and

−α2
2−β2

2 +Σ2γ22 = 0. Where γ1 and γ2 are the coordi-

nates on the axis corresponding to the two illuminants

in the metameric space of the observer adapted to γ̄.

Figure 15(a) shows the rotation of the two unit hy-

perboloids for the two illuminants. The chromaticity

diagram from the point of view of the Yilmaz-Drösler

model is given by the so-called Klein disk through the

stereographic projection on the plane orthogonal to the

achromatic axis γ̄ at level γ = 1. In the chromaticity di-

agram the two hyperboloid surfaces project onto elliptic

surfaces (Figure 15(b)). The corresponding hyperboloid

models are aligned along and symmetric around either

γ1 or γ2 following illumination by I1 or I2.

To account for change in illumination from γ1 to γ2
from the point of view of γ̄, we can define two trans-

formations T1 and T2 that change γ̄ axis into γ1 and

γ2. The transformation consists of finding an orthogo-

nal basis for which the third vector of the basis is the

axis of the illuminant. The two transforms are defined

as follows:

T1 =
[
α1 β1 γ1

]
, (28)

β1 =
[
1 0 0

]
∧ γ1, β1 = β1/ ‖ β1 ‖,

α1 = γ1 ∧ β1,
T2 =

[
α2 β2 γ2

]
,

β2 =
[
1 0 0

]
∧ γ2, β2 = β2/ ‖ β2 ‖,

α2 = γ2 ∧ β2,
where ∧ is the vector product in R3.
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(a)

(b)

Fig. 15 Transformation from D65 to D50. (a) When the
cone is moving with illuminant, the change of metrics corre-
sponds to two different unit hyperboloids centered on each
illuminant axis. (b) Representation of the two cones in the
chromaticity diagram from the point of view of observer
adapted to γ̄. The two disks are deformed into ellipses because
of the projection in the chromaticity diagram. Yilmaz approx-
imated these ellipses as identical circles (see Figure 6(b)).

The transformation from γ1 to γ2 is given by γ2 =

T2T
−1
1 γ1 thus Ω = T2T

−1
1 . In this case, Ω is not a

Lorentz transformation, it is rather a rotation of the

achromatic axis. This is due to the additional projection

onto the unit hyperboloid after the Lorentz transforma-

tion as suggested by Drösler. Suppose I1 and I2 were

aligned along the β̄ axis (Yilmaz simplification) and

suppose the perceived intensity of the two illuminants

are equal for an observer adapted to γ1 (they belong

to the same hyperboloid under γ1 axis as in Figure 4),

then we retrieve the Lorentz transformation Ω given by

Yilmaz.

Having a more sophisticated model does not change

the conclusion of Yilmaz. Adaptive transformations in

the perceptive color space should imply relativity be-

cause the quadratic form is invariant. Drölser provided

a projective reading that is the key for understanding

its application in psychophysics.

Conclusion

Projective hyperbolic model provides an invariant rep-

resentation for a broad range of intensity and chro-

maticity of illumination. This could be a way by which

the brain represents light. Yilmaz introduced the con-

cept when proposing that change in illuminant could

induce a transformation in perceptive space that be-

haves like the Lorentz transformation. The analogy be-

tween color adaptation and special relativity rests on

the invariance of a quadratic form that defines a limit-

ing cone. In this conception, the saturation limit in color

vision is the analog of limiting speed of light in vacuum

of Einstein’s special relativity. Saturability is the analog

to rapidity. But change of illuminant causes a change of

the coordinate system in which the hyperbolic metric

is defined. In this interpretation, interrelation between

colors remains fixed and provides a constant color per-

ception despite global change in the physics of the lights

reflected by objects. Because of the decomposition of

the cone of perceived colors C ⊂ R3 into luminance R+

and chrominance H2 through a central projection, the

representation of color is invariant for the overall level

of the illumination. Considering color perception as a

relativistic phenomenon is, in our view, the best way to

formalize adaptation in color vision.

Relativity models have been considered by several

authors as model for describing perception. Consider-

ing the perception of motion, for example, Caelli et al.

(1978) assumed a limit in the encoding of the speed

of motion. They justified theoretically and experimen-

tally the use of Lorentz’s equations (with a velocity

limit imposed by neural coding is c′ � c) to explain

why the perceived velocity of an object does not cor-

respond to its physical velocity. Binocular vision had

also been stated in term of hyperbolic metric based in

the limit imposed by the visual field Luneburg (1950);

Indow (1967). For most of the cognitive dimension of

human perception, one can imagine a limiting variable

that defines a limiting cone in which perception takes

place. For color we have seen that this is the positive-

ness of the light spectra that delimit the cone of max-

imal saturation for which the visual system adopts an

appropriate metric.

Those color vision models date from the early seven-

ties but their advantages are still underestimated by the

color community. This is probably because the experi-

ments of Yilmaz are not easy to set up and experimental

results have never been published. To be fully applica-

ble, this model must clearly state its relation with neu-

ral activity. If the visual system represents the world on

a hyperbolic manifold, we should be able to empirically

test the existence of this hyperbolic representation. To-
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day neurosciences use elaborate brain imaging appa-

ratus to visualize brain functioning in vivo. Still, the

operations achieved by the brain are difficult to under-

stand on the basis of neural activity. Finding evidence

of hyperbolic transformation for color vision would be

a fundamental result for modeling how neurons could

encode color information. The next step in the model

would be to establish a clear relation between geometry

and neural physiology for perception.

Beyond that, it is very exciting to consider non

linearities in general cognitive process as a projective

transform on a representation that defines metamerism.

This approach has the advantage of considering phys-

iology as a limit for cognitive representation or as a

cone of maximum cognitive ability (perceived satura-

tion for instance). This could help fill the gap between

psychophysics and neurosciences.

As stated by Poincaré (1895) about the geometry

of space, there is not a preferred geometry per se. For

color vision, projective hyperbolic metric is a powerful

tool for describing mechanism of color perception and

its adaptation.
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