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bIRISA UMR 6074, Université Bretagne Sud, Vannes, France

cFieldSense A/S, Aarhus, Denmark

Abstract

The recent developments of deep learning models that capture the complex temporal patterns of crop phenology have
greatly advanced crop classification of Satellite Image Time Series (SITS). However, when applied to target regions
spatially different from the training region, these models perform poorly without any target labels due to the temporal
shift of crop phenology between regions. To address this unsupervised cross-region adaptation setting, existing methods
learn domain-invariant features without any target supervision, but not the temporal shift itself. As a consequence, these
techniques provide only limited benefits for SITS. In this paper, we propose TimeMatch, a new unsupervised domain
adaptation method for SITS that directly accounts for the temporal shift. TimeMatch consists of two components: 1)
temporal shift estimation, which estimates the temporal shift of the unlabeled target region with a source-trained model,
and 2) TimeMatch learning, which combines temporal shift estimation with semi-supervised learning to adapt a classifier
to an unlabeled target region. We also introduce an open-access dataset for cross-region adaptation with SITS from four
different regions in Europe. On this dataset, we demonstrate that TimeMatch outperforms all competing methods by
11% in F1-score across five different adaptation scenarios, setting a new state-of-the-art for cross-region adaptation.
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1. Introduction

Today, the availability of satellite image time series
(SITS) data is rapidly increasing. For instance, the twin
Sentinel-2 satellites provide imagery of the entire Earth
every two to five days [1]. A frequent acquisition of images
is crucial for vegetation-related remote sensing applications
such as crop type classification [2, 3]. Multi-temporal
data enables capturing the phenological development of
crops (i.e., the progressions of crop growth), a key di-
mension to discriminate each crop type [4]. Recently, the
increasing availability of SITS along with advances in deep
learning has led to crop classifiers with temporal neural ar-
chitectures using convolutions [5, 6], recurrent units [7–10],
self-attention [11, 12], or combinations thereof [13, 14].

These crop classification models achieve impressive per-
formance by capturing the temporal structure of the prob-
lem but rely on the existence of a large amount of labeled
training data. While unlabeled SITS are plenty, access to
labels in the region of interest (the target domain) is often
either costly or otherwise unavailable. A possible solution
is to train a model in a region with labels available (the
source domain) and apply it to the unlabeled target region.
However, when the two regions are geographically differ-
ent, the dissimilarity between the source and target data
distributions can cause a source-trained model to perform
poorly when applied to the target region [15–17].

Solving the distributional shift problem to adapt a source-
trained model to an unlabeled target domain is in ma-
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Figure 1: Normalized difference vegetation index (NDVI) time series
for crops from two different Sentinel-2 tiles in Europe, indicating
the growth of four crop types. Crops develop similarly in different
regions, but the patterns are temporally shifted, e.g . if crops ripen at
different times of the year.

chine learning known as unsupervised domain adaptation
(UDA) [15, 18, 19]. Here, we consider the cross-region UDA
problem for SITS [20], where we are provided with labeled
data from a source region and unlabeled data from a target
region. In this setting, the source and target data distribu-
tions differ due to changes in local conditions, such as the
soil, climate, and farmer practices, which cause spectral
and temporal shifts [15].
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Addressing the temporal shift is of particular importance
when adapting crop classifiers to new regions, as we illus-
trate in Figure 1. While crops in different regions have
similar growth patterns, the timing of key growth stages,
such as the peak of greenness, is shifted along the tempo-
ral axis. As crops are classified primarily by their unique
growth patterns, the temporal shift may cause inaccuracies
when a source-trained model is applied to a target region.
For example, the shift in time could cause the phenology
of spring barley to appear similar to that of winter barley
in the target. Hence, a key factor in reducing the domain
discrepancy for cross-region adaptation is to account for
the temporal shift.

Existing deep learning-based UDA methods typically
tackle domain adaptation by constraining the classifier
to operate on domain-invariant features [21]. This is
achieved by training the classifier to perform well on the
source domain while minimizing a divergence measure be-
tween features extracted from the source and the target
domains [20, 22, 23]. While these methods have been suc-
cessfully applied in various applications [19, 24], they do
not directly account for the temporal shift in SITS and
have thus been reported to provide limited benefits in
cross-region UDA [25].

In this paper, we propose TimeMatch, where we di-
rectly account for the temporal shift of SITS to address
the cross-region UDA problem. TimeMatch consists of two
components: (i) the temporal shift estimation and (ii) the
TimeMatch learning algorithm. As the target region is un-
labeled, it is difficult to estimate the temporal shift directly
from the data by comparing e.g . the vegetation indices for
the individual crop types. Instead, we propose an unsuper-
vised method for temporal shift estimation, where we de-
termine the shift by the confidence and class distribution of
predictions from a source-trained model applied to tempo-
rally shifted target data. Then, by estimating the temporal
shift and applying it to the data, we reduce the domain
discrepancy between the source and target regions. This
changes the problem setting from UDA to semi-supervised
learning (SSL) since the labeled and unlabeled data now
come from similar distributions [26]. Thus, in TimeMatch
learning, we use SSL to train with the unlabeled target
domain. We generate accurate pseudo-labels [27, 28] using
a source-trained model on target samples with a reduced
temporal shift. Then, we adapt the crop classifier to the
target domain using the pseudo-labeled target data along
with the available labels for temporally shifted source data,
resulting in an accurate crop classifier for the target region.

Lastly, we present the TimeMatch dataset, a challenging
new open-access dataset for training and evaluating cross-
region models on SITS with over 300.000 annotated parcels
from four different regions in Europe. Evaluated on this
dataset, our approach outperforms all competing methods
by 11% in F1-score on average across five different cross-
region UDA experiments.

In summary, our contributions are as follows:

• We propose a method for estimating the temporal
shift between a labeled source region and an unlabeled
target region to reduce their temporal discrepancy.

• We propose TimeMatch, a novel UDA method de-
signed for the cross-region problem of SITS, where
crop classification models are adapted to an unlabeled
target region by semi-supervised learning on tempo-
rally shifted data for improved performance compared
to existing UDA methods.

• We release the TimeMatch dataset [29], a new dataset
for training and evaluating cross-region UDA models
on SITS from four different European regions.

This paper is organized as follows. Section 2 describes the
existing literature related to our work. Section 3 describes
the proposed method for temporal shift estimation and
the TimeMatch learning algorithm. Section 4 presents our
dataset and the experimental setup, and Section 5 the
experimental results. Lastly, Section 6 concludes this work.

2. Related Work

TimeMatch is related to existing work in unsupervised
domain adaptation, time-series domain adaptation, cross-
region crop classification, and semi-supervised learning.

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation aims to transfer a
model from a labeled source domain to an unlabeled tar-
get domain by reducing the domain discrepancy [21, 24].
In Ben-David et al . [21], it is shown that a classifier’s
target domain accuracy is bounded by the accuracy on
the source and the domain discrepancy. Hence, most re-
cent domain adaptation methods focus on reducing the
domain discrepancy by learning domain-invariant deep fea-
tures [22, 23, 30].

A popular family of approaches is based on adversar-
ial methods [22, 30, 31]. In domain adversarial neural
networks (DANN) [22, 31], the feature extractor is adver-
sarially trained to produce domain-invariant features that
are indistinguishable by a domain discriminator. Condi-
tional domain adversarial networks (CDAN) [30] improves
upon DANN by conditioning the domain discriminator on
classifier predictions in addition to features to enable the
alignment of multimodal data distributions.

Another approach is to align the feature distributions
directly by minimizing a divergence measure. Choices
for divergence measure include maximum mean discrep-
ancy (MMD) [23], correlation alignment [32], or optimal
transport [33, 34]. Recently, JUMBOT [34] achieves state-
of-the-art UDA results by using mini-batch unbalanced
optimal transport to minimize the domain discrepancy of
joint deep feature and label distributions.

While the aforementioned methods achieve high perfor-
mance on computer vision datasets, they do not handle
the temporal dimension of SITS data.
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2.2. Time Series Domain Adaptation

Only a few UDA methods tackle the challenge of time
series domain adaptation. Current methods for time series
domain adaptation typically follow the approach in non-
temporal UDA and learn domain-invariant features but
instead use temporal network architectures [35, 36].

Recurrent domain adversarial neural network (R-DANN)
and variational recurrent adversarial deep domain adap-
tation (VRADA) explore long short-term memory and
variational recurrent neural networks as feature extractors,
respectively, and learn domain-invariant features with the
DANN domain discriminator [35]. Likewise, the convolu-
tional deep domain adaptation model for time series data
(CoDATS) learns domain-invariant features with a tempo-
ral convolutional network in combination with the DANN
domain discriminator [36]. However, while these methods
are effective at learning domain-invariant features, they are
not designed to learn the temporal shift of SITS.

2.3. Cross-Region Crop Classification

Lucas et al . [25] reports that existing UDA methods,
including existing domain-invariant methods [37, 38], per-
form poorly when applied to cross-region UDA of SITS
due to the temporal shift problem and the change in class
distribution between the two regions.

Recently, Wang et al . [20] proposed the phenology align-
ment network (PAN) as the first method for cross-region
UDA of SITS. PAN learns domain-invariant features with
MMD [23] and a feature extractor consisting of gated re-
current units and self-attention. Still, by learning domain-
invariant features, PAN does not directly address the tem-
poral shift problem. Different from the aforementioned
methods, TimeMatch directly accounts for the temporal
shift of SITS.

2.4. Semi-Supervised Learning

UDA and SSL are closely related. When the source and
target data distributions are aligned, the UDA problem
becomes an SSL problem [26]. A popular class of SSL
methods can be viewed as producing an artificial label for
unlabeled data. For example, pseudo-labeling [27] uses a
model’s own prediction as a label to train against [39, 40].
Similarly, consistency regularization [41, 42] obtains an
artificial label using the model’s predicted distribution
after randomly augmenting the input or model function.
In Mean Teacher [40], the model assumes a dual role as
teacher and student. The student is updated by gradi-
ent descent with pseudo-labels generated by the teacher,
whereas the teacher is updated by an exponential moving
average (EMA) of student parameters to improve the qual-
ity of the teacher-generated pseudo-labels. The FixMatch
algorithm [28] combines pseudo-labeling and consistency
regularization. FixMatch generates pseudo-labels using the
model’s prediction on weakly-augmented images. If the
model prediction is confident, the pseudo-label is then used
to update the model on a strongly-augmented version of

the same image. FixMatch takes advantage of both pseudo-
labeling and consistency regularization between differently
augmented images to achieve strong SSL performance.

By estimating the temporal shift between the source and
target regions, we reduce their domain discrepancy which
enables SSL as a method to learn from the unlabeled target
data. We thus use SSL in TimeMatch learning to adapt
a model to the target region by combining temporal shift
estimation with FixMatch [28] and EMA training [40].

3. TimeMatch

In this section, we describe our proposed method
TimeMatch for cross-region UDA. We begin by formally
defining the problem setting, followed by an overview of
how TimeMatch addresses it. We then give the details of
the two TimeMatch components: temporal shift estimation
and TimeMatch learning.

3.1. Problem Setting

In crop classification, the input is a sequence of satellite

images xi = (x
(1)
i , . . . ,x

(Ti)
i ) of length Ti to be classified

into one of the K crop classes. In object-based classifica-
tion, which we focus on in this work, each xi ∈ RTi×Ni×C

contains a sequence of Ni pixels of C spectral bands within
a field parcel. Each xi is accompanied by a sequence

τi = (τ
(1)
i , . . . , τ

(Ti)
i ) indicating the time τ

(j)
i at which

each observation x
(j)
i is sampled. In practice, τ

(j)
i is typ-

ically represented by the days passed since the first ob-
servation [12]. This extra input makes it possible for
models to account for the irregular temporal sampling
of most satellites. The goal of the crop classification
task is to learn a model which predicts class probabili-
ties p(y|(xi, τi)) ∈ RK , typically learned with supervision
from labels y ∈ {1, . . . ,K}.

In this work, we consider the problem of cross-region
UDA. We are given a source domain Ds = {(xsi , τ si , ysi )}n

s

i=1

of ns labeled SITS and a target domain Dt = {xti, τ ti }n
t

i=1

of nt unlabeled SITS. When the source and target do-
mains consist of SITS from different geographical areas,
the domains can be associated with two different joint dis-
tributions. The distribution shift is a result of changes in
local conditions, e.g . soil, weather, climate, or farmer prac-
tices, causing temporal discrepancies [15]. The resulting
distribution shift causes models trained with the labeled
source domain to fail when applied to the unlabeled target
domain [16], which hinders the large-scale application of
crop classification to regions without available labels.

We aim to address cross-region UDA by adapting a
classifier trained on Ds to make predictions on Dt. We
note that the classes in the source may not be exactly the
same as the classes in the target. This complicates UDA,
which typically assumes a closed-set setting [43], where
the set of classes in the source and target domains are
equal. For simplicity, we focus on a closed-set setting by
adapting a classifier trained for the main K − 1 crop types

3
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Figure 2: Overview of TimeMatch. Both the student and teacher are pre-trained on the source domain. Temporal Shift Estimation: We input
shifted target data to the teacher model and obtain its predictions for each shift. We then score each shift by the confidence and diversity of
the teacher predictions, and the shift with the best score is output as the temporal shift estimate δt→s and δs→t = −δt→s. TimeMatch
Learning : The teacher generates pseudo-labels for unlabeled target data shifted by δt→s. Then, the student is updated for (non-shifted) target
data using the pseudo-labels, and for source data shifted by δs→t using the available source labels. As a result, the student is adapted to the
target domain with both generated target labels and actual source labels. After the student parameters have been updated with gradient
descent, the teacher parameters are updated as an exponential moving average (EMA) of the student parameters. As both models adapt to the
temporal shift of the target domain, the best shift for pseudo-labeling with the teacher changes and must be re-estimated. The EMA ensures
the teacher adapts slowly which enables δt→s to be re-estimated each epoch only for improved training efficiency and pseudo-label accuracy.

in the source region, plus an “unknown” class containing
all remaining source data. This ensures that all target
examples can be classified to either one of the K − 1 crop
classes or “unknown”.

3.2. Approach Overview

Here we give an overview of how TimeMatch addresses
the cross-region UDA problem before describing the full
details. A visual presentation of TimeMatch is given in Fig-
ure 2. TimeMatch consists of two components (i) temporal
shift estimation and (ii) TimeMatch learning.

We aim to estimate the temporal shift between the source
and target regions to reduce their domain discrepancy (see
Section 1). We represent the temporal shift by a scalar
δt→s ∈ Z (as the number of days), here in the direction
from target to source. Note that the shift in the opposite
direction is obtained by δs→t = −δt→s, and we thus only
have to estimate one. To shift the target domain by δt→s,
we write τ t + δt→s, meaning δt→s is added element-wise
to each target day-of-year. With our proposed method for
temporal shift estimation (Section 3.3), we obtain estimates
for δt→s and δs→t.

In TimeMatch learning (Section 3.4), we use δs→t to con-
struct a target-shifted source domain Ds→t = {(xsi , τ si +
δs→t), ysi }n

s

i=1, which is distributed similarly as the unla-
beled target domain Dt. Learning from the labeled Ds→t
and unlabeled Dt can thus be achieved with SSL. To do
so, TimeMatch learning unifies temporal shift estimation
with the loss function of FixMatch [28] and the exponential
moving average (EMA) training of Mean Teacher [40], as
we explain next.

We first obtain source-trained parameters by training
a crop classifier with Ds. We then duplicate the trained
classifier into two models: the teacher and the student.
Our TimeMatch learning algorithm aims to adapt both
the teacher and the student to the new target region. The
teacher generates pseudo-labels for the target domain to
train the student, and the knowledge learned by the student
is then updated back to the teacher, thus the pseudo-labels
used to train the student itself are improved. We generate
pseudo-labels by using δt→s to create an adapted target
domain Dt→s = {xti, τ ti +δt→s}nt

i=1. As Dt→s is temporally
aligned with Ds, the source-initialized teacher generates
more accurate pseudo-labels for Dt→s than Dt. The student
is then trained with labeled Ds→t and pseudo-labeled Dt
via the FixMatch loss [28], thereby leveraging both the
available source labels and the target pseudo-labels to
adapt the student to the target domain.

After updating the student, the teacher is updated via
an EMA of the student parameters. As the two models
adjust to the temporal shift of the target domain, the best
shift δt→s for pseudo-labeling with the teacher gradually
moves to zero during TimeMatch learning. To adjust to the
changing shift and ensure the pseudo-labels are consistently
accurate, it is necessary to re-estimate the temporal shift
of the teacher as it learns. However, repeating temporal
shift estimation is computationally expensive, and drasti-
cally increases training time if done each training iteration.
Therefore, in Section 3.4.3, we discuss how EMA training
alleviates this issue by enabling the re-estimation to be
done only once per epoch.

Next, we first describe our method for estimating the
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temporal shift before describing the loss function and learn-
ing algorithm of TimeMatch learning.

3.3. Temporal Shift Estimation

Estimating the temporal shift directly from the data is
difficult, as labels are not available in the target domain.
Without labels, we cannot separate the target data into
each crop type, which prevents the computation of e.g . veg-
etation indices to compare the source and target phenology
of each crop type directly.

Instead, we propose to estimate the temporal shift by
calculating statistics on the predictions of a source-trained
model when input temporally shifted target data. By doing
so, we estimate the shift that aligns the target data with the
source crop phenology learned by a model, leveraging the
classification ability of the trained model to estimate the
shift from unlabeled data. Another benefit of this approach
is that it enables re-estimation of the best temporal shift
for pseudo-labeling as the learned phenology of the model
changes from source to target in TimeMatch learning.

One possible value to measure is the confidence of the
model predictions. Intuitively, when a source-trained model
is applied to correctly shifted target data, it should out-
put more confident predictions than for incorrectly shifted
target data. As correctly classified examples tend to have
more confident predictions than wrongly classified or out-
of-distribution examples [44], we argue that a confident
temporal shift indicates a better alignment of the target
domain with the source which results in accurate pseudo-
labels and reduced domain discrepancy.

We can measure the confidence of a model for a shift
δt→s by the expected entropy:

E(xt,τ t)∼Dt

[
H
(
pθ
(
y|(xt, τ t + δt→s)

))]
, (1)

where H denotes the entropy, here computed over the
predictions of the model θ when input temporally shifted
target data sampled from Dt. To estimate the temporal
shift, we compute Equation 1 iteratively for each shift
δt→s ∈ {−∆,−∆ + 1, . . . ,∆}, and choose the shift with
minimum entropy. Here, ∆ defines the maximum possible
shift (in days) to estimate between the source and target
regions.

However, due to the class imbalance of SITS, relying
on expected entropy alone could result in choosing a shift
where the model outputs confident predictions for only
the most frequent classes while ignoring the less frequent
classes. This would hinder the adaptation of the model for
the less frequent target classes. To address this problem,
we propose to also choose the shift based on the diversity
of the predicted marginal distribution. The marginal is
given by:

pθ(y) = E(xt,τ t)∼Dt

[
pθ
(
y|
(
xt, τ t + δt→s

))]
, (2)

where we compute the expected predictions of the model
parameterized by θ when input shifted target data.

Optimally, the marginal distribution should match the
class distribution of the target domain, as this indicates
a shift where the model predicts a diverse set of classes
according to their actual frequency. However, as we assume
target domain labels are unavailable, so is the target class
distribution. Instead, inspired by metrics for evaluating
image generative models, we consider two options to ad-
dress this: the Inception score [45] (IS), and the activation
maximization score [46] (AM). Both metrics consider the
entropy and marginal of a pre-trained model, but IS scores
the marginal distribution by its similarity to a uniform dis-
tribution, whereas AM uses the actual class distribution.

As these metrics were originally proposed to evaluate
the quality of generated images, we describe next how they
are repurposed for temporal shift estimation. Finally, we
describe an algorithm where IS is used to bootstrap the tem-
poral shift for estimating the target class distribution with
pseudo-labels and enable a better temporal shift estimate
with AM.

3.3.1. Inception Score

We compute IS for a temporal shift δ by:

IS(δt→s, θ)

= E(xt,τ t)

[
DKL

(
pθ
(
y|(xt, τ t + δt→s)

) ∥∥ pθ(y)
)]

(3)

= H(pθ(y))− E(xt,τ t)

[
H
(
pθ
(
y|(xt, τ t + δt→s)

))]
(4)

where DKL(· ‖ ·) is the KL-divergence between two distri-
butions, here the conditional distribution pθ

(
y|(xt, τ t+δ)

)
and marginal distribution pθ(y) predicted with model pa-
rameters θ. Higher values of IS indicate a better δ, as when
the conditional and marginal distributions are different,
this corresponds to a temporal shift where the former has
low entropy (i.e., the model is confident), and the latter
has high entropy (i.e., the model predicts a diverse set of
classes). Hence, we estimate the temporal shift δt→s with
IS by:

δt→sIS (θs) = argmax
δt→s∈{−∆,...,∆}

IS(δt→s, θs), (5)

where we choose the shift which maximizes IS for a source-
trained model parameterized by θs applied to target data.

3.3.2. AM Score

A shortcoming of IS is that the highest score is achieved
when pθ(y) is uniform [47], which corresponds to an even
distribution of classes in the target domain. For SITS,
where the class distribution is often highly imbalanced,
this may cause IS to estimate a suboptimal shift. AM [46]
addresses this issue by taking the actual class distribution
Ct into account:

AM(δt→s, θ, Ct) = E(xt,τ t)

[
H
(
pθ
(
y|(xt, τ t + δt→s)

))]
+DKL(Ct ‖ pθ(y)).

(6)
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Algorithm 1: EstimateTemporalShift

1 Input: Source-trained parameters θs, target domain

Dt, target class distribution estimate Ĉt

2 if Ĉt = 0 then
3 Estimate temporal shift δt→s ← δt→sIS (θs) (Eq. 5)
4 Compute pseudo labels for each (xti, τ

t
i ) ∈ Dt:

ŷti ← argmaxy (pθs(y|xti, τ ti + δt→s))

5 Estimate class distribution Ĉty ← 1
nt

∑nt

i=1 1ŷti=y

for y ∈ {1, . . . ,K}
6 Estimate temporal shift δt→s ← δt→sAM (θs, Ĉt) (Eq. 7)
7 Output: Temporal shift δt→s

AM consists of two terms: the first term is an entropy term
on the conditional distribution, and the second is the KL-
divergence between the underlying class distribution Ct and
the marginal distribution. Lower values of AM indicate
a better δ, as the model is confident in its predictions,
and the actual class distribution of the data matches the
predicted distribution of classes. To estimate the temporal
shift δt→s with AM, we thus compute:

δt→sAM (θs, Ct) = argmin
δt→s∈{−∆,...,∆}

AM(δt→s, θs, Ct). (7)

where we choose the shift which minimizes AM.

However, as the target domain is unlabeled, we cannot
assume knowledge of the target class distribution Ct. To
address this, we propose to approximate the target class
distribution with pseudo-labels as shown in Algorithm 1.
First, we use IS (Eq. 5) to estimate an initial shift δt→s (line
3). This initial estimate allows us to shift the target domain
so that more accurate pseudo-labels can be generated with
a source-trained model. We then use the pseudo-labels to
estimate the target class distribution Ĉt (lines 4-5). Finally,
we re-estimate the temporal shift more accurately with AM
and Ĉt (line 6).

3.4. TimeMatch Learning

With our method for estimating the temporal shift, we
can reduce the domain discrepancy between the source
and target domains. The TimeMatch learning algorithm
uses the temporal shift to train the student model for the
target domain from teacher-generated pseudo-labels via
the FixMatch [28] loss and EMA training [40]. We present
the complete TimeMatch algorithm in Algorithm 2, and
describe the details of each step in the following.

3.4.1. Pre-training on the Source Domain

As we rely on the teacher to generate pseudo-labels
to train the student, it is important to obtain a good
initialization for both models. Additionally, temporal shift
estimation requires a source-trained model. Thus, we first
use the labeled source domain to obtain source-trained

model parameters θs. Given a batch of labeled source data
from Ds, we optimize the following loss function:

Ls =
1

B

B∑
i=1

L
(
pθs
(
y|(xsi , τ si )

)
, ysi
)
, (8)

where L(·, ·) is a classification loss (e.g . cross-entropy or
focal loss [48]) and B the batch size. After pre-training,
we initialize the parameters of the student θ and teacher
θ′ from θs (line 2).

3.4.2. TimeMatch Loss

The TimeMatch loss is based on FixMatch [28]. As part
of the consistency regularization, FixMatch applies two
types of augmentation functions: weakly-augmented a(·)
and strongly-augmented A(·), corresponding to simple and
extensive augmentations of the input. We describe the form
of augmentations we use for a(·) and A(·) in Section 4.4.
Let δs→t and δt→s be temporal shifts estimated given by
Algorithm 1 using the teacher (line 5-7).

The TimeMatch loss consists of two terms: a supervised
loss Ls→t applied to the adapted source domain Ds→t and
an unsupervised loss Lt applied to the unlabeled target
domain Dt. Using δs→t, we align the source domain with
the target domain and optimize:

Ls→t =
1

B

B∑
i=1

L
(
pθ
(
y|A(xsi , τ

s
i + δs→t)

)
, ysi
)
, (9)

using source labels ysi to update the student θ on strongly
augmented source data shifted by δs→t. This loss makes it
possible for the student to learn the target phenology from
shifted source data (line 10).

To generate pseudo-labels for the target domain, we
obtain the predicted class distribution from the teacher
when input source-shifted target data:

qti = pθ′
(
y|a
(
xti, τ

t
i + δt→s

))
, (10)

where the teacher θ′ is input a weakly-augmented target
sample, shifted by δt→s. Then, we use

ŷti = argmax(qti) (11)

as pseudo-label (line 11). The student θ is then updated on
strongly-augmented target data for confident pseudo-labels
(line 10):

Lt =
1

B

B∑
i=1

1max(qti)>εL
(
pθ
(
y|A
(
xti, τ

t
i

))
, ŷti
)
, (12)

where 1 is the indicator function, and ε is the confidence
threshold for using a pseudo-label. With this loss, the
student is adapted to the target domain data using the
pseudo-labeled target data. The total loss minimized by
the student in TimeMatch is:

Lall = Ls→t + λLt, (13)

where λ is a scalar hyperparameter to control the trade-off
between the supervised and the unsupervised loss (line 13).
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Algorithm 2: TimeMatch

1 Input: Labeled source domain Ds, unlabeled target domain Dt, source-trained parameters θs, total epochs n and
iterations m, pseudo label threshold ε, trade-off value λ, EMA decay rate α, learning rate η

2 Initialize student parameters θ ← θs and teacher parameters θ′ ← θs

3 Initialize estimated target class distribution Ĉt = 0
4 for epoch = 1 to n do

5 Estimate temporal shift with teacher: δt→s ← EstimateTemporalShift(θ′, Dt, Ĉt)
6 if epoch = 1 then
7 Initialize δs→t ← −δt→s

8 for iteration = 1 to m do
9 Sample mini-batches of size B from source S = {(xsi , τ si , ysi )}Bi=1 and target T = {(xti, τ ti )}Bi=1

10 With S shifted by δs→t, compute source loss Ls→t (Eq. 9)
11 For each example in T shifted by δt→s, generate teacher prediction qti and pseudo labels ŷti (Eq. 10 and 11)
12 With T and confident pseudo labels ŷti with max(qti) > ε, compute target loss Lt (Eq. 12)
13 Update student by gradient: θ ← θ − γ∇θ(Ls→t + λLt)
14 Update teacher by EMA: θ′ ← (1− α)θ + αθ′

15 Re-estimate class distribution: Ĉty ← 1
mB

∑
i 1ŷti=y for y ∈ {1, . . . ,K} (using all pseudo labels from epoch)

16 Output: Student parameters θ

3.4.3. EMA training and re-estimating temporal shift

By optimizing Lall, the student and teacher are trained
only for the target phenology, as Ls→t shifts the time of
the source to the target, while Lt keeps the target in its
original time. This loss enables a source-trained model to
adapt to the crop phenology of the target domain.

However, by doing so, the source domain is gradually
“forgotten”, and as a result, it becomes unnecessary to ap-
ply the temporal shift δt→s for pseudo-labeling the target
domain with the teacher. This causes δt→s to gradually
move to zero during TimeMatch learning. Thus, if δt→s is
fixed to the same shift, the target samples will be wrongly
shifted, which results in incorrect pseudo-labels. To ad-
dress this, we re-estimate the temporal shift for the teacher
during TimeMatch learning. As Algorithm 1 chooses the
shift based on the confidence and diversity of model pre-
dictions, re-estimating the temporal shift with the teacher
ensures the generated pseudo-labels remain accurate during
training.

However, if the teacher is a direct copy of the student,
the model will rapidly adapt to the target domain, which
requires the temporal shift to be re-estimated every few
iterations. But doing so drastically increases training time,
as Equation 7 requires forwarding a large sample of target
data for each possible temporal shift. We address this
by introducing EMA training, where the teacher is slowly
updated via an EMA of the student parameters (line 14):

θ′ ← (1− α)θ + αθ′, (14)

where α is a decay rate. By choosing α close to 1, we reduce
the rate at which the teacher adapts to the target domain,
enabling the re-estimation of δt→s to be done only once
each epoch (line 5). Moreover, by averaging model weights
via the EMA, we also obtain less noisy pseudo-labels [40].

By re-estimating the temporal shift, the teacher and the
shift can both evolve jointly during training, resulting in
better pseudo-labels for improved cross-region adaptation.
Note that δs→t is not re-estimated (line 7). The first shift
estimate represents the shift of the data, whereas the re-
estimated shift represents the shift of the teacher. By
fixing δs→t to the initial estimate, the source domain is
kept aligned with the target domains during training, which
enables semi-supervised learning.

4. Dataset and Materials

This section presents the TimeMatch dataset [29] and
the materials for our experiments. We first introduce
the crop classification model we use, followed by a de-
scription of the dataset and its pre-processing. Then, we
describe the competitors and our implementation. Our
source code is publicly available, and contains the imple-
mentation of TimeMatch and the competitors, a link to
download our dataset, and the full experimental results:
https://github.com/jnyborg/timematch.

4.1. Network Architecture

As our model, we use PSE+TAE, a state-of-the-art
object-based crop classifier introduced by Sainte Fare Gar-
not et al . [12]. The network consists of two modules: the
pixel-set encoder (PSE) and the temporal attention encoder
(TAE).

The PSE module handles the spatial and spectral context
of SITS. Rather than applying convolutions, which are time
and memory-consuming when applied to irregularly sized
parcels, PSE samples a random pixel-set of size S among the
Ni available pixels within a parcel. As spatial information is
lost by doing so, the PSE supports an optional extra input
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with various geometrical properties of the given parcel,
such as its area. We do not input this extra feature to
avoid biasing the model towards the shapes of parcels in
the source region, which typically change depending on the
local farmer practices. Thus, we only input the sequence
xi ∈ RTi×Ni×C , which is then encoded by the PSE for each
time step independently.

The TAE module handles the temporal context by ap-
plying self-attention [49]. Based on its performance and
computational efficiency, we use the lightweight version
of the TAE [50], which is a simplified self-attention net-
work. The additional input τi is input to TAE by encoding
the days via a sinusoidal positional encoding function and
adding the result to the output of PSE. As the positional
encoding does not support negative inputs, we support neg-
ative temporal shifts by offsetting each τi by the maximum
temporal shift ∆. Given the sequence of PSE-embeddings
and the encoded τi, TAE outputs a single embedding, which
is then classified by a multi-layer perceptron to produce
class probabilities p(y|(xi, τi)) ∈ RK .

4.2. The TimeMatch Dataset

The TimeMatch dataset [29] contains SITS from Sentinel-
2 Level-1C products in top-of-atmosphere reflectance. Four
Sentinel-2 tiles are chosen in various climates: 32VNH
(Denmark), 30TXT (France), 31TCJ (France), and 33UVP
(Austria). A map of the tiles is shown in Figure 3. We
use all available observations with cloud coverage ≤ 80%
and coverage ≥ 50% between January 2017 and December
2017. Figure 4 shows the resulting acquisition dates for
the four tiles. We leave out the atmospheric bands (1, 9,
and 10), keeping C = 10 spectral bands. The 20m bands
are bilinearly interpolated to 10m.

For ground truth data, we retrieve geo-referenced parcel
shapes and their crop type labels from the openly avail-
able Land Parcel Identification System (LPIS) records in
Denmark1, France2, and Austria3. We select 15 major
crop classes in Europe and label any remaining parcels as
unknown. Figure 5 shows the selected classes and their
frequency in each tile.

We pre-process the parcels by applying 20m erosion and
removing all parcels with an area of less than 1 hectare.
This reduces label noise by removing pixels near the bor-
der of parcels, which are often less representative of the
given crop class compared to the pixels in the middle,
and also by removing small or thin polygons, which are
typically miscellaneous classes such as field borders. The
SITS are pre-processed for object-based classification by
cropping the pixels within each parcel to input sequences
xi ∈ RTi×Ni×10. Each input is then randomly assigned
to the train/validation/test sets of each Sentinel-2 tile by
a 70%/10%/20% ratio. Note that this process assumes

1https://kortdata.fvm.dk/download (“Marker”)
2http://professionnels.ign.fr/rpg (“RPG”)
3https://www.data.gv.at (“INVEKOS Schläge”)

32VNH

30TXT

31TCJ

33UVP

Estimated δt→s

32VNH→30TXT 32
32VNH→31TCJ 42
32VNH→33UVP 16
30TXT→32VNH -35
30TXT→31TCJ 4

Figure 3: Locations of the four European Sentinel-2 tiles in the
TimeMatch dataset. In the upper left corner, we show the temporal
shifts δt→s estimated by Algorithm 1 with a source-trained model.

0 50 100 150 200 250 300 350
day of year

32VNH
30TXT
31TCJ

33UVP

til
e

Figure 4: Acquisition dates for each Sentinel-2 tile in our dataset.
The inputs are irregularly sampled with variable temporal length.

knowledge of parcel shapes in the target region. If this
is not available, TimeMatch may instead be applied for
pixel-based classification by inputting a single pixel (S = 1)
to PSE+TAE.

We choose five different cross-region tasks (written as
“source”→“target”): 32VNH→30TXT, 32VNH→31TCJ,
32VNH→33UVP, 30TXT→32VNH, and 30TXT→31TCJ.
We focus on a subset of the 12 possible tasks to reduce the
experimental running time. When a tile is the source region,
all labels of the train and validation sets are available
for training. When a tile is the target region, no labels
are available, except for the final evaluation on the test
set. Many UDA methods assume a labeled validation
set for the target domain is available for training, and
use it e.g . to select the best model [34]. However, this
assumption is unrealistic, as if labels were available in real-
world scenarios, they would be better used for training
the model. Instead, we report all cross-region UDA test
results with the model output at the end of training. Still,
it is necessary to choose hyperparameters with a labeled
validation set. Therefore, we tune hyperparameters with
the validation set for only one task, 32VNH→30TXT, and
apply the found hyperparameters to all remaining tasks.

The class distributions between regions differ signifi-
cantly, and there may not be enough examples of a crop
type in the source region for a model to learn their classi-
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Figure 5: Class frequencies (log scale) for each Sentinel-2 tile in the
TimeMatch dataset. The dashed line indicates the threshold for the
source region when selecting a class as part of the K classes.

fication. Thus, when pre-training models on source data,
we only use a subset of the available crop types with at
least 200 examples in the source region (as indicated by
the dashed line in Figure 5). The remaining classes are set
as “unknown”. When evaluating on the target data, we
report results on the same selection of source classes no
matter their frequency in the target.

4.3. Comparisons

Baselines. We consider the following baseline methods:

• Source-Trained is PSE+TAE trained on the source
domain and applied to the target domain without
domain adaptation. This represents the baseline cross-
region performance of the model.

• Target-Trained is PSE+TAE trained with labeled tar-
get data using the same classes as the source-trained.
This represents the upper bound cross-region perfor-
mance possible if all target labels were available.

• FixMatch [28] is TimeMatch without temporal shift
estimation and is thus an SSL method. This shows the
benefit of the temporal shift estimation and reveals
whether UDA or SSL is best for each adaptation task.

Competing UDA Methods. We compare TimeMatch to four
of the top-performing UDA methods, which are based on
learning domain-invariant features. We reproduce these
methods for SITS by replacing the original feature extractor
with PSE+TAE. We align the feature vector input to the
classifier (the output of the TAE), similar to the original
approach of these methods. We consider the following:

• MMD [23] learns domain invariant features by mini-
mizing the maximum mean discrepancy metric.

• DANN [22] uses a domain classifier to align feature
distributions through adversarial learning.

• CDAN+E [30] improves upon DANN by conditioning
the domain classifier on the classification output and
minimizing an entropy loss on target data.

• JUMBOT [34] aligns features between domains by a
discrepancy measure based on optimal transport.

We note that time-series domain adaptation methods
VRADA [35] and CoDATS [36] also employ DANN to align
the features extracted by temporal network architecture.
Thus, the only difference between VRADA, CoDATS, and
the DANN approach mentioned here is the architecture of
the feature extractor, which in our case is based on the
temporal feature extractor of PSE+TAE.

PAN [20] learns domain-invariant features for cross-
region adaptation by minimizing the MMD loss for features
extracted by an RNN and self-attention-based crop classi-
fier. Unfortunately, we were unable to gain access to the
source code of PAN for comparison. As an alternative, we
include the MMD comparison, which is similar to PAN,
except the crop classifier is changed to PSE+TAE.

4.4. Implementation Details

All experiments are implemented in PyTorch [51] and
trains on a single NVIDIA 1080 Ti GPU. Our implementa-
tion is based on the source code of PSE+TAE [50].

Pre-training on the source domain. To train models with
the labeled source domain, we follow the original approach
of PSE+TAE [12]. We train for 100 epochs with the
Adam [52] optimizer with an initial learning rate of 0.001
and we decay the learning rate using a cosine annealing
schedule [53]. We use weight decay of 0.0001, batch size
128, focal loss γ = 1. Inputs are normalized to [0, 1] by
dividing by the max 16-bit pixel value 216 − 1. The best
source-trained model is selected using the source validation
set. We augment the inputs by randomly sub-sampling
30 time steps and 64 pixels during training. The same
setup is used for the target-trained model, using the tar-
get domain instead. For the final evaluation, we do not
sample time steps or pixels, and instead input all available
time steps and pixels to the model. This ensures the test
results are deterministic, and also slightly improves results
by providing all available data to the model.

TimeMatch. We use the same training setup as the source-
trained model but instead train for 20 epochs with a lower
initial learning rate of 0.0001. We define an epoch as 500
iterations to fix the frequency in which the temporal shift
is re-estimated. We use maximum temporal shift ∆ = 60
days, as we did not observe shifts greater than 2 months
for our dataset in Europe.

We set the trade-off hyperparameter λ = 2.0 in Eq. 13,
EMA keep-rate α = 0.9999, and pseudo-label threshold
τ = 0.9. A sensitivity analysis of these hyperparameters is
provided in Section 5.5. For the FixMatch [28] augmenta-
tion functions, we use the identity function for the weak
a(·) and randomly sub-sample time steps for the strong
A(·). These are used for simplicity; it may be possible
to further improve performance by more advanced SITS-
based augmentations. At each iteration, we sample two
mini-batches of size 128, one from the source and one from
the target, in order to calculate the TimeMatch objective
in Eq. 13. We use a class-balanced mini-batch sampler
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Method 32VNH→30TXT 32VNH→31TCJ 32VNH→33UVP 30TXT→32VNH 30TXT→31TCJ Avg.

Source-trained 28.3±1.9 29.0±5.2 43.4±4.0 24.9±2.0 70.3±1.9 39.2±3.0

FixMatch [28] 24.2±4.0 28.2±6.9 37.4±5.6 26.2±1.8 70.4±0.9 37.3±3.8

MMD [23] 36.6±0.7 35.5±0.6 49.7±2.0 32.5±2.0 61.6±2.6 43.2±1.6
DANN [22] 38.7±0.7 37.3±0.6 52.0±1.4 34.0±1.8 71.0±0.2 46.6±0.9
CDAN+E [30] 39.3±0.6 37.9±0.3 51.5±2.9 36.5±1.3 71.7±0.6 47.4±1.1
JUMBOT [34] 36.8±0.2 33.6±1.3 50.5±0.6 35.6±3.0 63.7±3.0 44.0±1.6
TimeMatch 57.4±1.5 47.0±0.9 61.7±4.9 52.1±1.4 73.0±0.5 58.2±1.8

Target-trained 74.6±0.6 72.4±1.4 86.9±2.7 90.6±4.3 85.7±0.7 82.0±1.9

Table 1: Macro F1-score (%) results on our dataset for the unsupervised cross-region adaptation setting.

for the source domain to ensure each source mini-batch
contains roughly the same number of samples for each class.
This reduces the class imbalance problem for the source
domain for improved performance. Additionally, we apply
domain-specific batch normalization [54–56] by forwarding
the source and target mini-batches separately instead of
concatenated. This ensures the batch normalization [57]
statistics are calculated separately for each domain, for
improved adaptation.

Existing UDA Methods. We re-implement the competitors
MMD, DANN and CDAN+E following the domain adapta-
tion library in [58], and JUMBOT from the original source
code [34]. All methods are initialized from a source-trained
model, train for 20 epochs, similar to TimeMatch. We also
tune their hyper-parameters on the task 32VNH→30TXT.
The full details of the implementation and chosen hyper-
parameters can be found in our source code.

5. Experimental Results

5.1. Main Results

Table 1 shows the performance obtained with our ap-
proach and the re-implemented baselines and competitors.
We report the mean and standard deviation of macro F1
scores, calculated from the results of three runs with dif-
ferent dataset splits. We observe a source-trained model
transfers very poorly to a different target region, with
an average loss of 43% in F1-score on target data, which
strongly motivates UDA. However, existing UDA methods
only slightly increase the performance of the source-trained
model when applied to SITS. In comparison, our approach
significantly outperforms all existing methods (+11% on
average). This shows that addressing the temporal shift is
crucial for the cross-region adaptation problem of SITS.

The results of the target-trained model are the highest
achievable performance if target labels were available. Our
approach recovers a significant part of this, but we also
find that there still is room for improvement. We note that
the results of the target-trained model have large variation
between cross-region tasks since the F1-score is computed
for the same classes as the source-trained model, no matter

their frequency in the target domain. If some classes have
too few examples in the target, the model may be unable
to properly learn their classification. But as we aim to
compare the performance of the target-trained model with
the other methods, it has to consider the same set of classes.

Additionally, the results show that FixMatch often fails
to improve the source-trained model, indicating that semi-
supervised learning alone is not able to transfer models
across regions. Only by incorporating temporal shift esti-
mation via TimeMatch are we able to use SSL. Interestingly,
the performance of FixMatch is bad for all tasks except
30TXT→31TCJ. As these two regions are geographically
close, their temporal shift is also closer to zero (see the
top-left table in Figure 3). This indicates that the problem
of transferring models across regions changes from UDA to
SSL, depending on the temporal shift between regions. No-
tably, TimeMatch still outperforms FixMatch for this task,
as our approach can dynamically change between UDA
and SSL depending on how close to zero the estimated
shifts are. This makes TimeMatch highly practical to solve
real-world cross-region problems, as, without labels for the
target region, we do not know if it is better to apply UDA
or SSL.

5.2. Analysis of Temporal Shift Estimation

In Figure 6a, we show the change in the overall accuracy
of a source-trained model when applied to target data
with different temporal shifts for 32VNH→30TXT. We
also show the change in entropy, IS, and AM scores of
the model. We observe a significant increase in accuracy
by temporally shifting the target data. Calculating the
statistics of entropy, IS, and AM from the predictions of
the model works well as an unlabeled proxy to accuracy.
We aim to estimate the shift with the highest accuracy
(dashed blue line) for the highest quality pseudo-labels. For
the shown example, the minimum of both entropy and AM
correspond to the best shift. However, we find the AM to
be the most consistent across different adaptation tasks.

In Figure 6b, we show the rate at which the estimated
temporal shift for the teacher goes to zero in TimeMatch
learning when training with different EMA decay rates.
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Figure 6: (a) Overall accuracy, entropy, IS, and AM scores of a source-
trained model when applied to the target domain with different shifts.
The dashed line indicate the most accurate shift. (b) The re-estimated
temporal shifts of the teacher model during TimeMatch learning with
different EMA decay rates.

When the shift changes, the previous estimate becomes sub-
optimal for generating accurate pseudo-labels. We address
this by re-estimating the temporal shift during training.
We observe that low decay rates (e.g . 0.99) require the shift
to be re-estimated after a few iterations, which is inefficient.
In comparison, a decay rate of 0.9999 allows us to only
re-estimate the shift only once every epoch.

The table in the upper left corner of Figure 3 shows the
initial temporal shifts estimated by our method. We find
the estimated shifts are connected to the climatic differences
between regions. For example, the temporal shift (δt→s)
from the warmer 30TXT (western part of France) to the
colder 32VNH (Denmark) is estimated as 32 days. Due to
the warmer climate, crops in 30TXT mature earlier than in
32VNH, and a positive shift is required to align the former
with the latter. In the other direction, the opposite is true,
and indeed, we estimate a negative temporal shift of −35
days. Note that these are may not be exact inverses, as
they are estimated with two different models trained on
different source datasets.

5.3. Visual Analysis

In Figure 7, we visualize t-SNE [59] embedded TAE
features from the source-trained, CDAN+E, TimeMatch,
and target-trained models for 32VNH→30TXT. The colors
of the points represent their class (black is the unknown
class). With TimeMatch, the target features are better
clustered into their respective classes compared to the best
competing method CDAN+E, which does not result in
much better feature separation than the source-trained
model. The target-trained plot shows the best possible
learned features when training with all available target
labels. Even with labels, the classes are not perfectly sepa-
rated, e.g . for unknown/meadow or winter triticale/winter
wheat.

Figure 8 visualizes example predictions of the source-
trained and TimeMatch models compared to the ground
truth. The colors represent the same classes as before. We
observe a large class confusion for the source-trained model,
in particular between winter barley (blue) and winter wheat

Ablation 32VNH→30TXT

No EMA (α = 0.0) 49.9±3.7
No source temporal shift (δs→t = 0) 51.9±1.9
No balanced batch sampler for source 53.3±3.6
IS instead of AM 56.3±2.6
Entropy instead of AM 56.9±1.8
No domain-specific batch norm. 56.9±4.1

TimeMatch 57.4±1.5

Table 2: Ablation study of TimeMatch components, sorted by in-
creasing F1-score (%).

(dark pink), which are also not separated well in Figure 7.
Without using any target labels, TimeMatch resolves this
issue, resulting in predictions that closely resemble the
ground truth.

5.4. Ablation Study

To better understand how TimeMatch is able to obtain
state-of-the-art results, we perform an ablation study on
its components for the task 32VNH→30TXT. We report
the results in Table 2.

We first study the impact of the EMA training. Instead
of the EMA, we set the teacher as a direct copy of the
student (No EMA). We observe that training without the
EMA introduces a significant drop in F1-score—though the
performance is still better than the competing methods.
Setting δs→t = 0 disables the temporal shift of the source
domain, and the student is trained with datasets with
increased domain discrepancy. We observe a significant
decrease in F1-score as a result. Disabling the balanced
mini-batch sampler for the source domain also leads to a
degradation of the performance. If the model is trained
with class imbalanced source data, the teacher will make
biased pseudo-labels for the samples from the target do-
main [60]. This hinders the TimeMatch learning process,
as pseudo-labels for infrequent classes in the source domain
are less likely to be generated for the target. By applying a
balanced mini-batch sampler for the source, we address this
problem by ensuring each source batch contains roughly
the same number of samples for each category. Estimating
the temporal shift with IS or entropy instead of AM results
in a slight performance drop. Experimentally, however,
we find AM to be most consistent across different tasks
in estimating the temporal shift. Domain-specific batch
normalization is simple to implement, as it just requires
forwarding source and target batches separately instead of
concatenated. Disabling this component results in a small
average performance loss with notably higher variance.

5.5. Sensitivity Analysis

Next, we study the sensitivity of the TimeMatch hyper-
parameters. The results are shown in Figure 9. Higher
values of α lead to better results, with a decay rate of 0.9999
being the best. However, increasing it to 1.0, so the teacher
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Figure 7: t-SNE [59] visualizations of PSE+TAE features for the 32VNH→30TXT cross-region task.

(a) Source-Only (b) TimeMatch (c) Ground Truth

Figure 8: Example predictions for the 32VNH→30TXT cross-region task comparing (a) Source-Only, (b) TimeMatch, and (c) the corresponding
ground truth. The colors map to crop types following the legend in Figure 7.
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Figure 9: Sensitivity analysis of TimeMatch for the EMA decay rate,
pseudo-label confidence threshold, and the trade-off in Eq. 13. The
error bars show standard deviation.

is not updated, results in a drop in F1, as the teacher
cannot benefit from the knowledge learned by the student.
The confidence threshold ε controls the trade-off between
the quality and quantity of pseudo-labels. A threshold
of 0.9 gives the best F1 score and further increasing the
threshold to 0.95 drops performance as a result of too few
pseudo-labels, which particularly decreases performance for
the less frequent classes. Finally, the trade-off parameter
λ controls the importance of the source domain loss Ls→t
with respect to the target domain loss Lt. We observe that
this hyperparameter is less important than the other two.
Setting λ = 2.0 gives the best F1-score. Increasing λ too
much, however, results in large variance.

6. Conclusion

This paper presented TimeMatch, a novel cross-region
adaptation method for SITS. Unlike previous methods
that solely match the feature distributions across domains,
TimeMatch explicitly captures the underlying temporal
discrepancy of the data by estimating the temporal shift
between two regions. Through TimeMatch learning, we
adapt a crop classifier trained in a source region to an
unlabeled target region. This is achieved by a learning
algorithm that unifies temporal shift estimation with semi-
supervised learning, where pseudo-labels are generated
for unlabeled, temporally shifted target data to train the
classifier for the target region. Lastly, we presented the
TimeMatch dataset, a new large-scale cross-region UDA
dataset with SITS from four different regions in Europe.
Evaluated on this dataset, TimeMatch outperforms all
existing approaches by 11% in F1-score on average across
five different adaptation tasks, setting a new state-of-the-
art in unsupervised cross-region adaptation.

We hope our proposed method and released dataset
will encourage the remote sensing community to consider
the challenging cross-region adaptation problem and its
temporal aspect.
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Dataset (2021). doi:10.5281/zenodo.5636422.

[30] M. Long, Z. Cao, J. Wang, M. I. Jordan, Conditional adver-
sarial domain adaptation, in: Advances in Neural Information
Processing Systems, 2018, pp. 1647–1657.

[31] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, V. Lempitsky, Domain-adversarial
training of neural networks, The Journal of Machine Learning
Research 17 (1) (2016) 2096–2030.

[32] B. Sun, K. Saenko, Deep coral: Correlation alignment for deep
domain adaptation, in: European Conference on Computer
Vision, Springer, 2016, pp. 443–450.

[33] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia,
N. Courty, DeepJDOT: Deep joint distribution optimal transport
for unsupervised domain adaptation, in: European Conference
on Computer Vision, 2018, pp. 447–463.
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