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Abstract Elastic similarity measures are a class of similarity measures specifically
designed to work with time series data. When scoring the similarity between two
time series, they allow points that do not correspond in timestamps to be aligned.
This can compensate for misalignments in the time axis of time series data, and
for similar processes that proceed at variable and differing paces. Elastic similarity
measures are widely used in machine learning tasks such as classification, clustering
and outlier detection when using time series data.

There is a multitude of research on various univariate elastic similarity mea-
sures. However, except for multivariate versions of the well known Dynamic Time
Warping (DTW) there is a lack of work to generalise other similarity measures
for multivariate cases. This paper adapts two existing strategies used in multivari-
ate DTW, namely, Independent and Dependent DTW, to several commonly used
elastic similarity measures.

Using 23 datasets from the University of East Anglia (UEA) multivariate
archive, for nearest neighbour classification, we demonstrate that each measure
outperforms all others on at least one dataset and that there are datasets for
which either the dependent versions of all measures are more accurate than their
independent counterparts or vice versa. This latter finding suggests that these
differences arise from a fundamental property of the data. We also show that an
ensemble of such nearest neighbour classifiers is highly competitive with other
state-of-the-art multivariate time series classifiers.
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1 Introduction

Elastic similarity measures, of which Dynamic Time Warping (DTW) (Sakoe and
Chiba, 1978) is a well known example, are a key tool in many forms of time
series analytics. Examples of their application include clustering (Berndt and Clif-
ford, 1994), anomaly detection (Izakian and Pedrycz, 2014), nearest neighbour
classification (Lines and Bagnall, 2015; Bagnall et al, 2017) and state-of-the-art
time series classifiers such as HIVE-COTE 1.0 (Hierarchical Vote Collective of
Transformation-based Ensembles) (Bagnall et al, 2020) and TS-CHIEF (Time Se-
ries Combination of Heterogeneous and Integrated Embeddings Forest) (Shifaz
et al, 2020).

There are numerous elastic similarity measures, and it has been demonstrated
that each outperforms the others on different types of tasks (Lines and Bagnall,
2015). Many of these measures have only been defined for univariate time series.
However, many significant tasks involve multivariate time series. This paper ex-
tends to the multivariate case seven univariate elastic similarity measures, and
demonstrates that each supports strong nearest neighbour classification of differ-
ent datasets.

One elastic measure that has previously been extended to the multivariate case
is DTW (Shokoohi-Yekta et al, 2017). That work identified two key strategies for
such extension. The independent strategy applies the univariate measure to each
dimension and then sums the resulting distances. The dependent strategy treats
each time step as a multi-dimensional point. DTW is then applied using Euclidean
distances between these multidimensional points. It was shown that each of these
strategies outperformed the other on some tasks.

We develop methods for applying these two strategies to seven further key
univariate similarity measures. One of the significant outcomes is that we demon-
strate that there are some tasks for which the independent strategy is superior
across all measures and others for which the dependent strategy is better. This
establishes a fundamental relationship between the two strategies and different
tasks, countering the possibility that differing performance for the two strategies
when applied to DTW might have been coincidental.

We develop a multivariate version of the Elastic Ensemble (Lines and Bagnall,
2015), and demonstrate that this ensemble of nearest neighbour classifiers using
all multivariate measures provides accuracy competitive with the state of the art.

We organise the rest of the paper as follow: Section 2 presents key definitions
and a brief review of existing methods. In Section 3 we present our new multivari-
ate similarity measures. Section 4 presents experiments on the University of East
Anglia (UEA) multivariate archive, and includes discussion of the implications of
the results. The experiments are set in the domain of multivariate time series clas-
sification. Finally, we draw conclusions in Section 5, with suggestions for future
work.
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2 Related Work

In this section, we first present the main definitions used in this paper. Then we
present a summary of the methods used for univariate Time Series Classification
(TSC) followed by a summary of the methods used for multivariate Time Series
Classification.

2.1 Main Definitions

Definition 1 Time Series
A time series T of length L is an ordered sequence of L time-value pairs

T = 〈(t1,x1), · · · , (tL,xL)〉, where ti is the timestamp at sequence index i,
i ∈ {1, · · · , L}, and xi is a D-dimensional point representing observations of D real-
valued variables or features at timestamp ti. Each time point xi ∈ RD is defined
by {x1i , · · · , x

d
i , · · · , x

D
i }. Usually, timestamps ti are assumed to be equidistant, and

thus omitted, which results in a simpler representation where T = 〈x1, · · · ,xL〉.
A univariate (or single-dimensional) time series is a special case where a single

variable is observed (D = 1). Therefore, xi is a scalar, and consequently, T =
〈x1, · · · , xL〉.

Definition 2 Time Series Dataset
A labelled time series dataset S consists of N labelled time series indexed

by n, where n ∈ {1, · · · , N}. Each time series Tn in S is associated with a label
yn ∈ {1, · · · , c}, where c is the number of classes.

Definition 3 Time Series Classification
In a Time Series Classification (TSC) task, a time series classifier is trained on

a labelled time series dataset, and then used to predict labels of unlabelled time
series. The classifier is a predictive mapping function that maps from the space of
input variables to discrete class labels.

In this paper, to perform TSC tasks, we use 1-nearest neighbour (1-NN) clas-
sifiers, which use time series specific similarity measures to compute the nearest
neighbours between each time series.

Definition 4 Similarity Measure
A similarity measure computes a real value that quantifies the degree of sim-

ilarity between two sets of values. For two time series Q and C, the similarity
measure M is defined as

M(Q,C)→ R (1)

All similarity measures used in our work compute a non-negative real value
(i.e. R+

0 ).
In many cases, a similarity measure is more useful with the following four

properties, since they help with indexing and fast look up from large time series
databases (Chen and Ng, 2004). Similarity measure M is considered to be a metric

if it has the following properties:

1. Non-negativity: M(Q,C) ≥ 0,
2. Identity: M(Q,C) = 0, if and only if Q = C,
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3. Symmetry: D(Q,C) = D(C,Q),
4. Triangle Inequality: D(Q,C) ≤ D(Q,T ) +D(T,C) for any time series Q,C and

T .

2.2 Summary of Univariate TSC

A comprehensive review of the most common univariate TSC methods developed
prior to 2017 can be found in (Bagnall et al, 2017). Here we summarise the existing
univariate TSC methods using a traditionally used method of categorisation as
follows:

– Similarity-based methods which compare whole time series using similarity mea-
sures, usually in conjunction with 1-NN classifiers. Particularly, 1-NN with
DTW (Sakoe and Chiba, 1978; Itakura, 1975) was considered as the de facto
standard for univariate TSC. More accurate similarity-based methods com-
bine multiple measures, which include 1-NN-based ensemble Elastic Ensemble
(EE) (Lines and Bagnall, 2015), and tree-based ensemble Proximity Forest
(PF) (Lucas et al, 2019). In Section 3 we will explore more details of several
similarity measures used in TSC.

– Interval-based methods use subseries or transformations of subseries in con-
junction with its location information as discriminatory features. Examples
include Time Series Forest (TSF) (Deng et al, 2013), Random Interval Spec-
tral Ensemble (RISE) (Lines et al, 2018), and Canonical Interval Forest (CIF)
(Middlehurst et al, 2020).

– Shapelet-based methods extract or learn a set of discriminative subseries for
each class which are then used as search keys for the particular classes. The
presence, absence or distance of a shapelet to other time series could be used as
discriminative information for classification. In shapelet-based methods, infor-
mation from the shape of the subseries is used without its location information.
Examples include Shapelet Transform (ST) (Hills et al, 2014) and Generalized
Random Shapelet Forest (gRSF) (Karlsson et al, 2016).

– Dictionary-based methods transform time series into a bag-of-word model. The
series is either discretized in time domain such as in Bag of Patterns (BoP)
(Lin et al, 2012) or it is transformed into frequency domain such as in Bag-of-
SFA-Symbols (BOSS) (Schäfer, 2015), and Word eXtrAction for time SEries
cLassification (WEASEL) (Schäfer and Leser, 2017a). In addition, Multiple
Representation Sequence Learner (MrSEQL) (Le Nguyen et al, 2019) is also
another recently introduced dictionary-based classifier, which is more accurate
than WEASEL but uses less computational resources.

– Transformation-based methods transform the time series using a transforma-
tion function and then use a general purpose classifier. A notable example is
RandOm Convolutional KErnel Transform (ROCKET) (Dempster et al, 2020)
which uses random convolutions to transform the data, and then uses logistic
regression for classification.

– Combinations of Methods These methods combine previously mentioned meth-
ods to form ensembles. Examples include HIVE-COTE (Hierarchical Vote Col-
lective of Transformation-based Ensembles)(Lines et al, 2018) which combines
EE, ST, RISE and BOSS in one ensemble, and TS-CHIEF (Time Series Com-
bination of Heterogeneous and Integrated Embeddings Forest) (Shifaz et al,
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2020), which is a tree-based ensemble where the tree nodes use similarity, dic-
tionary or interval-based splitters.

– Deep-learning-based methods can be divided into two main types of architec-
tures: (1) based on recurrence (Gallicchio and Micheli, 2017) , or (2) based on
temporal convolutions such as Residual Neural Network (ResNet) (Wang et al,
2017) and InceptionTime (Fawaz et al, 2020). A recent review of deep learning
methods shows that architectures that use temporal convolutions show higher
accuracy (Fawaz et al, 2019).

Currently, HIVE-COTE, TS-CHIEF and ROCKET are considered to be the
state-of-the-art classifiers for TSC (Bagnall et al, 2020). While all three methods
are competitive in accuracy (i.e. statistically indistinguishable), TS-CHIEF leads
in terms of accuracy and ROCKET leads in terms of speed.

We also note that the latest version of HIVE-COTE, which does not include
EE, called HIVE-COTE 1.0, has significantly improved its speed, but is still behind
on accuracy with respect to ROCKET and TS-CHIEF (Bagnall et al, 2020).

2.3 Summary of Multivariate TSC

One elastic similarity measure that has previously been extended to the multivari-
ate case is DTW (Shokoohi-Yekta et al, 2017). That work identified two key strate-
gies for such extension. The independent strategy applies the univariate measure
to each dimension and then sums the resulting distances. The dependent strategy
treats each time step as a multi-dimensional point. DTW is then applied on the
Euclidean distances between these multidimensional points.

Figure 1 shows an illustration of independent DTW (DTWI) and dependent
DTW (DTWD). We present formal definitions of these two methods in Section 3.

Q1

C1

Q2

C2

DTWI  DTWD  

Q1

Q2

C1

C2

q1

q10

C10
C1

multivariate point q 
at index 10

Fig. 1 Independent DTW (DTWI , on the left) and dependent DTW (DTWD, on the right).
Dimension 1 in series Q and C is shown in blue color, and the dimension 2 is shown in green
color.

A variety of other methods also support multivariate TSC. These include
WEASEL with a Multivariate Unsupervised Symbols and dErivatives (MUSE)
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(a.k.a WEASEL+MUSE, or simply MUSE) (Schäfer and Leser, 2017b) and time
contracted Bag-of-SFA-Symbols (CBOSS) (Middlehurst et al, 2019), which are
multivariate version of dictionary-based methods that convert time series into a
bag-of-word model before using it for classification.

Shapelet-based methods include Generalized Random Shapelet Forest
(gRSF) (Karlsson et al, 2016), and time contracted Shapelet Transform
(STC) (Bagnall et al, 2020). According to a recent review, STC is the current
most accurate multivariate method that uses shapelets (which is ranked below
ResNet) (Ruiz et al, 2020).

Interval-based methods that extract location dependent subseries include Ran-
dom Interval Spectral Ensemble (RISE) (Lines et al, 2018) and Time Series Forest
(TSF) (Deng et al, 2013). Currently, the accuracy of these two methods are below
DTWI . However, a recently introduced classifier CIF (Middlehurst et al, 2020) has
shown promising results for multivariate classification.

Deep learning methods include Time Series Attentional Prototype Network
(TapNet) (Zhang et al, 2020), ResNet and InceptionTime.

A recent paper for multivariare TSC algorithms (Ruiz et al, 2020) presents a
comparison of most of these methods on the same set of datasets we use in this
paper. The review compared 12 classifiers on 20 UEA multivariate datasets with
equal length and which completed in a reasonable time. They found that the most
accurate multivariate TSC algorithms are ROCKET (ranked 3.8), InceptionTime
(ranked 5.15), MUSE (ranked 5.25), CIF (ranked 5.85) followed by HIVE-COTE
(ranked 5.9) in that order (Ruiz et al, 2020, Figure 12).

3 Similarity Measures

In this section we present details of the proposed similarity measures. For this
study, we extend the set of similarity measures used in EE and PF (and thus
TS-CHIEF and some versions of HIVE-COTE).

The independent strategy proposed by Shokoohi-Yekta et al (2017) extends
directly to any univariate measure as follows.

Definition 5 Independent Measures
For any univariate measure γ(Q′, C′)→ R and multivariate series Q and C, an

independent multivariate derivative of γ is defined by,

Ind(γ,Q,C) =

(
D∑
d=1

∣∣∣γ(Qd, Cd)
∣∣∣p)1/p

(2)

We compute the distance between Q and C separately for each dimension, and
then take the p-norm of the results. The parameter p is set to 1 in Shokoohi-Yekta
et al (2017). Here, Qd (or Cd) represents the univariate time series of dimension d

such that Qd =< qd1 , · · · , qdL > (or Cd =< cd1, · · · , cdL >).
For ease of reference we indicate an independent variant of a multivariate

measure by adding the subscript I. Hence, DTWI(Q,C) = Ind(DTW,Q,C),
WDTWI(Q,C) = Ind(WDTW,Q,C) and so forth.

However, in most cases it requires more than such a simple formulation to
derive a dependent variant, and hence we below introduce each of the univariate
measures together with our proposed dependent variant.
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3.1 Lp Distance (Lp)

3.1.1 Univariate Lp Distance

The simplest way to calculate similarity between two time series is to use Lp

distance, also known as the Minkowski distance.
Let us denote by Q and C two univariate (D = 1) time series of length L where

qi and ci are scalar values at time point i from the two time series. Equation 3
formulates the Lp distance between Q and C.

Lp(Q,C) =

(
L∑
i

|qi − ci|p
)1/p

(3)

The parameter p is the order of the distance. The most commonly used dis-
tances are: L1 distance (Manhattan distance) and L2 distance (Euclidean dis-
tance).

In the context of TSC, Lp distances are of limited use because they cannot
align two series that are misaligned in the time dimension, since they compute
one-to-one differences between corresponding points only.

For example, in an electrocardiogram (ECG) signal, two measurements from a
patient at different times may produce slightly different time series which belong
the same class (e.g certain heart condition). Ideally, if they belong to the same
class, an effective similarity measure should account for such “misalignments” in
the time axis, while computing the similarity.

To tackle this issue, elastic similarity measures such as DTW were developed.
Elastic similarity measures are designed to compensate for temporal misalignments
in time series that might be due to stretched or shrunken subsequences. From
Section 3.2 to 3.6 we will present various elastic similarity measures.

3.1.2 Multivariate Lp Distance

We here show that Independent Lp distance(LpI) and Dependent Lp distance
(LpD) are identical.

Definition 6 Independent Lp Distance (LpI)
In this case, we simply compute the Lp distance between Q and C separately

for each dimension, and then take the p-norm of the results.

LpI(Q,C) =

(
D∑
d=1

∣∣∣Lp(Qd, Cd)∣∣∣p)1/p

=

(
D∑
d=1

L∑
i=1

∣∣∣qdi − cdi ∣∣∣p
)1/p

(4)

Definition 7 Dependent Lp Distance (LpD)
In this case, we compute the Euclidean distance between each multidimensional

point (qi ∈ RD and ci ∈ RD as defined in Definition 1), and take the p-norm of
the results.
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LpD(Q,C) =

(
L∑
i=1

|Lp(qi − ci)|
p

)1/p

=

(
L∑
i=1

D∑
d=1

∣∣∣qdi − cdi ∣∣∣p
)1/p

(5)

Consequently both the independent and the dependent versions of the non-

elastic Lp distance will produce the same result. However, as we shall see in the
following sections, for elastic similarity measures the two strategies are substan-
tially different.

3.2 Dynamic Time Warping (DTW) and Related Measures

3.2.1 Univariate DTW

The most widely used elastic similarity measure is DTW (Sakoe and Chiba, 1978).
By contrast to measures such as the Euclidean distance, DTW is an elastic similar-
ity measure, which allows one-to-many alignment (“warping”) of points between
two time series. For many years, 1-NN with DTW was considered as the traditional
benchmark algorithm for TSC (Ding et al, 2008).

DTW is efficiently solved using a dynamic programming technique. Let ∆DTW
be an L-by-L dynamic programming cost matrix in which the element (i, j) of the
matrix is defined as the squared Euclidean distance between two corresponding
points qi and cj – i.e. ∆DTW (i, j) = (qi− cj)2 and the minimum of the cumulative
distances of the previous points. Equation 6 defines element (i, j) of the cost matrix
as follows:

∆DTW (i, j) = (qi − cj)2 +min


∆DTW (i− 1, j − 1) if i, j > 0
∆DTW (i, j − 1)
∆DTW (i− 1, j).

(6)

The cost matrix represents the alignment of the two series as according to the
DTW algorithm. DTW between two series Q and C is the accumulated cost in the
last element of the cost matrix (i.e. i, j = L ) as defined in Equation 7:

DTW (Q,C) = ∆DTW (L,L). (7)

DTW has a parameter called “window size” (w) which helps to prevent patho-
logical warpings by constraining the maximum allowed warping distance. For ex-
ample, when w = 0, DTW produces a one-to-one alignment which is equivalent to
the Euclidean distance. A larger warping window allows one-to-many alignments
where points from one series can match points from the other series over longer
time frames. Therefore, w controls the elasticity of the similarity measure.

Different methods have been used to select the parameter w. In some methods,
such as EE, and HIVE-COTE, w is selected using leave-one-out-cross-validation.
Some algorithms select the window size randomly (e.g. PF and TS-CHIEF select
window sizes from the uniform distribution U(0, L/4)).
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Parameter w also improves the computational efficiency, since in most cases, the
ideal w is much less than the length of the series (Tan et al, 2018). When w is small,
DTW runs relatively fast, especially with lower bounding, and early abandoning
techniques (Keogh et al, 2009; Lemire, 2009; Tan et al, 2017; Herrmann and Webb,
2020). Time complexity to calculate DTW with a warping window is O(L · w),
instead of O(L2) for the full DTW.

3.2.2 Dependent Multivariate DTW

Definition 8 Dependent DTW (DTWD)
Dependent DTW (DTWD) uses all dimensions together when computing the

point-wise distance between each point in the two time series. In this method, for
each point in the series, DTW is allowed to warp across the dimensions.

In this case, the squared Euclidean distance between two univariate points –
(qi − cj)2 – in Equation 6 is replaced with two multivariate points qi and cj as in
Equation 8.

L2(qi, cj)
2 =

D∑
d=1

(qdi − c
d
j )

2 (8)

3.2.3 Derivative DTW (DDTW)

Derivative DTW (DDTW) is a variation of DTW, which computes DTW on the
first derivatives of time series. Keogh and Pazzani (2001) developed this version
to mitigate some pathological warpings. Particularly, cases where DTW tries to
explain variability in the time series values by warping time-axis, and cases where
DTW misaligns features in one series which are higher or lower than its correspond-
ing features in the other series. The derivative transformation of a univariate time
point q′i is defined as:

q′i =
(qi − qi−1 + (qi+1 − qi−1)/2)

2
(9)

Note that q′i is not defined for the first and last element of the time series.
Once the two series have been transformed, DTW is computed as in Equation 7.

Multivariate versions of DDTW are very straightforward to implement. We cal-
culate the derivatives separately for each dimension, and then use Equations 2 and
8 to compute from the derivatives independent DDTW (DDTWI) and dependent
DDTW (DDTWD), respectively.

3.2.4 Weighted DTW (WDTW)

Weighted DTW (WDTW) is another variation of DTW, proposed by Jeong et al
(2011), which uses a “soft warping window” in contrast to the fixed warping win-
dow sized used in classic DTW. WDTW penalises large warpings by assigning
a non-linear multiplicative weight w to the warpings using the modified logistic
function in Equation 10,

weight|i−j| =
weightmax

1 + e−g·((|i−j|−L)/2)
, (10)
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where weightmax is the upper bound on the weight (set to 1), L is the series length
and g is the parameter that controls the penalty level for large warpings. Larger
values of g increases the penalty for warping.

When creating the dynamic programming distance matrix for WDTW
∆WDTW , weight penalty weight|i−j| for a warping distance of |i− j| is applied, so

that the (i, j)-th entry in the matrix is ∆WDTW (i, j) = weight|i−j| · (qi − ci)
2.

Therefore, the new equation for WDTW is defined as,

∆WDTW (i, j) = weight|i−j| · (qi − cj)2

+ min


∆WDTW (i− 1, j − 1) if i, j > 0
∆WDTW (i, j − 1)
∆WDTW (i− 1, j).

(11)

WDTW (Q,C) = ∆WDTW (L,L). (12)

Parameter g may be selected using leave-one-out cross-validation as in EE and
HIVE-COTE, or selected randomly as in PF and TS-CHIEF (g ∼ U(0, 1)).

Since WDTW does not use a constrained warping window (i.e. the maximum
warping distance |i− j| may be as large as L), its time complexity is O(L2), which
is higher than DTW.

3.2.5 Dependent Multivariate WDTW

Definition 9 Dependent WDTW

The dependent version of WDTW simply inserts the weight into DTWD. We
define Dependent WDTW (WDTWD) as,

∆WDTWD
(i, j) = weight|i−j| · L2(qi, cj)

2

+ min


∆WDTWD

(i− 1, j − 1) if i, j > 0
∆WDTWD

(i− 1, j)
∆WDTWD

(i, j − 1),

(13)

WDTWD(Q,C) = ∆WDTWD
(L,L). (14)

3.2.6 Weighted Derivative DTW (WDDTW)

The ideas behind DDTW and WDTW may be combined to implement another
measure called Weighted Derivative DTW (WDDTW). This method has also been
traditionally used in some ensemble algorithms (Bagnall et al, 2017).

Multivariate versions of WDDTW are also straightforward to implement. We
calculate the derivatives separately for each dimension, and then use Equations 2
and 14 with them to compute independent WDDTW (WDTW I) and dependent
WDDTW (WDTWD), respectively.
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3.3 Longest Common Subsequence (LCSS)

3.3.1 Univariate LCSS

Longest Common Subsequence (LCSS) distance is based on the edit distance al-
gorithm, which is used for string matching (Hirschberg, 1977). In TSC, the LCSS
algorithm is modified to work with real-valued data by adding a threshold ε for
real-value comparisons. Two real-values are considered a match if the difference
between them is less than the threshold ε. A warping window can also be used in
conjunction with the threshold to constrain the degree of local warping.

Formally, the unnormalised LCSS distance (LCSSUN ) between Q and C is
defined as,

∆LCSS(i, j) =


(qi − cj)2 if i = 1, j = 1
1 +∆LCSS(i− 1, j − 1) if |qi − cj | ≤ ε

max

{
∆LCSS(i− 1, j)
∆LCSS(i, j − 1)

otherwise,

(15)

LCSSUN (Q,C) = ∆LCSS(L,L), (16)

In practice, LCSSUN is then normalised based on the series length L.

LCSS(Q,C) = 1− LCSSUN (Q,C)

L
, (17)

LCSS can be used with a window parameter w similar to DTW. With a window
parameter, LCSS has a time complexity of O(L · w). The parameter ε is selected
from [σ5 , σ], where σ being the standard deviation of the whole dataset.

3.3.2 Dependent Multivariate LCSS

Definition 10 Dependent LCSS
Dependent LCSS (LCSSD) is similar to Equation 15, except that to compute

distance between two multivariate points we use Equation 8 and an adjustment is
made to the parameter ε (see Section 3.3.3). In this case, parameter ε is selected
using the standard deviation of the whole dataset. This is similar to the way it
was selected in the univariate LCSS, in EE.

∆LCSSD
(i, j) =


L2(qi, cj)

2 if i = 1, j = 1
1 +∆LCSSD

(i− 1, j − 1) if L2(qi, cj)
2 ≤ 2 ·D · ε

max

{
∆LCSSD

(i− 1, j)
∆LCSSD

(i, j − 1)
otherwise,

(18)

LCSSUND(Q,C) = ∆LCSSD
(L,L), (19)

Similar to the univariate case, LCSSUND is then normalised based on the series
length L.

LCSSD(Q,C) = 1− LCSSUND(Q,C)

L
. (20)
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3.3.3 Adjusting ε parameter in LCSS

In Equation 18 we multiply ε by 2 times the number of dimensions D, because
the term L2(qi, cj)

2 increases with the number of dimensions and the parameter ε
(floating point comparison threshold) is independent of the number of dimensions
(compare with the univariate definition in Equation 15).

The adjustment factor 2 ·D can be used with a number of assumptions. Firstly,
data should follow a normal distribution. Secondly, the squared Euclidean distance
(L2(qi, cj)

2) is required contrary to the Manhattan distance (L1).

To compensate for the increase in the magnitude of squared Euclidean distance
with respect to the increasing number of dimensions, the adjustment factor should
be able to normalise this value to make the Equation 18 work similarly to the
Equation 15.

Consider two vectors X and Y in D dimension Xi, Yi ∼ N(0, 1) where ∀i ∈
[1, D]. Assume that X and Y are independent and each dimension is independent
as well.

Let another random variable Z = X − Y . By property of the normal distribu-
tion, we have Z ∼ N(0, 2) (as X and Y are independent we can add both mean
and variance, hence N(0 + 0, 1 + 1)).

We are interested in E[Z2]. This follows chi-square distribution, which is the
sum of square of independent normally distributed variables.

However, the chi-square distribution is only if the variance is 1 and here we have
variance of 2 for Z. Let V be another random variable of variance 1. To do so, we
divide Z2 by squared standard deviation (i.e. variance 2), so V = (Z2/2) ∼ χ2(D).
Then we have

E[Z2/2] = E[V ] and we know E[V ] = D by property of the chi square distri-
bution

E[Z2]/2 = D

E[Z2] = 2 ·D
Therefore, if data is normally distributed, (L2)2 distance between points, with

any number of dimensions may be scaled by a factor of 2 ·D to make the values
comparable to average magnitude of values in one dimension. For this reason we
multiply the right hand side (ε) by this factor. Once the left hand side has been
adjusted, it may be compared with ε similarly as in the univariate LCSS definition.

We found that this adjustment works for the datasets we tested. In practice,
if the data distribution differs substantially from the normal distribution, this
adjustment factor may need to be revised, hence further investigation of methods
to adjust the parameter ε is be a potential future work.

3.4 Move-Split-Merge (MSM)

3.4.1 Univariate MSM

Move-Split-Merge (MSM) is introduced by Stefan et al (2013). The goal is to
propose a similarity measure that is a metric invariant to translations and robust
to temporal misalignments. Measures such as DTW and LCSS are not metrics
because they fail to satisfy the triangle inequality (see Definition 4).
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MSM is an edit distance-based similarity measure. Similarity between two se-
ries is computed based on the number and type of edit operations required to
transform one series to the other.

MSM defines three types of edit operations: move, merge and split. The move
operation substitutes one value into another value. The split operation inserts a
copy of the value immediately after itself, and the merge operation is used to delete
a value if it directly follows an identical value.

The cost for a move operation is the pairwise distance between two points, and
the cost of split or merge operation depends on the parameter c.

Formally, MSM is defined as,

∆MSM (i, j) = min


∆MSM (i− 1, j − 1) + |qi − cj |
∆MSM (i− 1, j) + cost(qi, qi−1, cj)
∆MSM (i, j − 1) + cost(cj , qi, ci−1),

(21)

MSM(Q,C) = ∆MSM (L,L). (22)

More precisely, the cost of either a split or a merge operation is defined by
Equation 23. In the univariate case, the algorithm either merges two values or
splits a value if the the value of a point qi is between two adjacent values (qi−1 and
cj).

cost(qi−1, qi, cj) = min


c if qi−1 ≤ qi ≤ cj
c if qi−1 ≥ qi ≥ cj

c+min

{
|qi − qi−1|
|qi − cj |

otherwise.

(23)

In most algorithms (e.g. EE, PF, HIVE-COTE and TS-CHIEF), the cost
parameter c for MSM is selected from an exponential sequence {10−5, 10−4, 5 ·
10−4, 10−3, 5 · 10−3, · · · , 1} as proposed in Stefan et al (2013).

3.4.2 Dependent Multivariate MSM

Definition 11 Dependent MSM

Here we combine Equation 21 and Equation 8. The cost multiv function is
explained in Section 3.4.3, and presented in Algorithm 1.

∆MSMD
(i, j) = min

∆MSMD
(i− 1, j − 1) + L2(qi, cj)

2

∆MSMD
(i− 1, j) + cost multiv (qi,qi−1, cj)

∆MSMD
(i, j − 1) + cost multiv (cj,qi, cj−1)

(24)

MSMD(Q,C) = ∆MSMD
(L,L) (25)
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3.4.3 Cost function for dependent MSM

A nontrivial issue when deriving a dependent variant of MSM is how to translate
the concept of one point being between two others.

A naive approach would test whether a point is between two other points in the
multidimensional space by projecting the query point onto the hyperplane defined
by the other two points. However, this has serious limitations. For an intuitive
example, let us use cities to represent points on a 2-D plane. Assume that we have
two query cities Adelaide and Tokyo which is between Melbourne and Perth. If we
use vector projections, and project the position of Tokyo on to the line between
Melbourne and Perth we will find that it is between the two cities. Similarly, we
will also find that Adelaide is between Melbourne and Perth using this method.
However, orthogonally Tokyo is extremely far away from both Melbourne and
Perth, so it would seem more ideal to define this function in a way that Adelaide
is in between Melbourne and Perth, but Tokyo is not. Using this intuition we define
cost function in such a way that a point is considered to be in between two points
only if the point is “inside the hypersphere” defined by the other two points.

We implement this idea in Algorithm 1. First we find the diameter of the
hypersphere in line 1 by computing ||qi−1 − cj||. In line 2 we find the mid point
mid along the line qi−1 and cj. Then we calculate distance to the mid point using
||mid − qi|| (line 3). Once we have the distance to mid, we check if this distance
is larger than half the diameter. If its larger, then the point qi is outside the
hypersphere, and so we return c (line 5). If distance to mid smaller than half the
diameter, then qi is inside the hypersphere, so we check to which point (either
qi−1 or cj it is closer to). Then we return c plus the distance to the closest point
as the cost of the edit operation (line 9 to 12).

Algorithm 1: Cost by checking if mid point is inside the hypersphere
defined by the other two points

Input: cost multiv(qi,qi−1, cj, c) : three points, and cost parameter c for MSM
Output: cost of operation

1 diameter = ||qi−1 − cj||;
2 mid = (qi−1 + cj)/2;
3 distance to mid = ||mid− qi||;
4 if distance to mid ≤ (diameter/2) then
5 return c;
6 else
7 dist to q prev = ||qi−1 − qi||;
8 dist to c = ||cj − qi||;
9 if dist to q prev < dist to c then

10 return c+ dist to q prev;
11 else
12 return c+ dist to c ;
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3.5 Edit Distance with Real Penalty (ERP)

3.5.1 Univariate ERP

Edit Distance with Real Penalty (ERP) (Chen and Ng, 2004; Chen et al, 2005) is
also based on string matching algorithms. In a typical string matching algorithm,
two strings, possibly of different lengths, may be aligned by doing the least number
of add, delete or change operations on the symbols. When aligning two series of
symbols, the authors proposed that the delete operations in one series can be
thought of as adding a special symbol to the other series. Chen and Ng (2004)
refers to these added symbols as a “gap” element.

ERP uses the Euclidean distance between elements when there is no gap, and a
constant penalty when there is a gap. This penalty parameter for a gap is denoted
as g (see Equation 26).

For time series, with real values, similar to the parameter ε in LCSS, a float-
ing point comparison threshold may be used to determine a match between two
values. This idea was used in a measure called Edit Distance on Real sequences
(EDR) (Chen and Ng, 2004). However, using a threshold breaks the triangle in-
equality. Therefore, the same authors proposed a variant, namely ERP, which is a
measure that follows the triangle inequality.

ERP can also be used with a window parameter w similar to DTW. With the
window parameter, ERP has the same time complexity as DTW. The parameter
g is selected from [σ5 , σ], with σ being the standard deviation of the training data.
Formally, ERP is defined as,

∆ERP (i, j) = min


∆ERP (i− 1, j − 1) + (qi − cj)2

∆ERP (i− 1, j) + (qi − g)2

∆ERP (i, j − 1) + (cj − g)2
(26)

ERP (Q,C) = ∆ERP (L,L). (27)

3.5.2 Dependent ERP

Definition 12 Dependent ERP
We define Dependent ERP (ERPD) as,

∆ERPD
(i, j) = min

∆ERPD
(i− 1, j − 1) + L2(qi, cj)

2

∆ERPD
(i− 1, j) + L2(qi,g)

∆ERPD
(i, j − 1) + L2(cj,g),

(28)

ERPD(Q,C) = ∆ERPD
(L,L). (29)

In Equation 28, note that the parameter g is a vector which represents the
standard deviation of each dimension separately. This is in contrast to the uni-
variate case in Equation 26 which uses the standard deviation of the whole training
dataset (parameter g).

In this case, all terms increases proportionally with respect to the increase in
the number of dimensions. So we do not need to adjust for the parameter g as we
adjusted for ε in LCSS in Section 3.3.3.
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3.6 Time Warp Edit (TWE)

3.6.1 Univariate TWE

Time Warp Edit (TWE) (Marteau, 2009) is a further edit-distance based algorithm
adapted to the time series domain. The goal is to combine an Lp distance based
technique with an edit-distance based algorithm that supports warping in the
time axis, i.e. has some sort of elasticity like DTW, while also being a distance
metric (i.e. it respects the triangle inequality). Being a metric helps in time series
indexing, since it speeds up time series retrieval process (see Definition 4).

TWE uses three operations named match, deleteA, and deleteB . If there is a
match, Lp distance is used, and if not, a constant penalty λ is added. deleteA (or
deleteB) is used to remove an element from the first (or second) series to match
the second (or first) series. Equations 30, 31 and 32 define TWE and these three
operations, respectively.

∆TWE(i, j) = min


∆TWE(i− 1, j − 1) + γM match

∆TWE(i− 1, j) + γA deleteA
∆TWE(i, j − 1) + γB deleteB

(30)

TWE(Q,C) = ∆TWE(L,L) (31)

γM = (qi − cj)2 + (qi−1 − cj−1)2 + 2 · ν match

γA = (qi − qi−1)2 + ν + λ deleteA
γB = (cj − cj−1)2 + ν + λ deleteB

(32)

The multiplicative penalty ν1 is called the stiffness parameter. When ν = 0,
TWE becomes more stiff like the Euclidean distance, and when ν = ∞, TWE
becomes less stiff and more elastic like DTW. The second parameter γ is the cost
of performing either a deleteA or deleteB operation.

Following Marteau (2009), λ is selected from ∪9i=0
i
9 and γ from the exponen-

tially growing sequence {10−5, 10−4, 5 ·10−4, 10−3, 5 ·10−3, · · · , 1}, resulting in 100
possible parameterizations.

3.6.2 Dependent TWE

Definition 13 Dependent TWE
Dependent version of TWE follows a similar pattern. We define Dependent

TWE (TWED) as,

∆TWED
(i, j) = min


∆TWED

(i− 1, j − 1) + γM match

∆TWED
(i− 1, j) + γA deleteA

∆TWED
(i, j − 1) + γB deleteB

(33)

TWED(Q,C) = ∆TWED
(L,L). (34)

1 In the published definition of TWE (Marteau, 2009), ν is multiplied with the time difference
in the timestamps of two consecutive time points. We simplified this equation, for clarity,
by assuming that this time difference is always 1 (UEA datasets do not store the actual
timestamps).
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γM = L2(qi, cj)
2 + L2(qi−1, cj−1)2 + (2 · ν) · 2 ·D match

γA = L2(qi,qi−1)2 + (ν + λ) · 2 ·D deleteA
γB = L2(cj, cj−1)2 + (ν + λ) · 2 ·D deleteB

(35)

Similar to LCSS, in Dependent TWE, we need to make an adjustment to the
parameters. Once again, we multiply the terms that do not grow with 2 ·D.

4 Experiments

We conduct experiments to investigate three hypotheses.
The first hypothesis is that there will be datasets for which each of the new

multivariate distance measures is best suited.
The next hypothesis arises from the observation that there are some datasets

for which either the independent or dependent version of DTW are consistently
more accurate than the alternative (Shokoohi-Yekta et al, 2017). However, it is not
clear whether this is a result of there being an advantage in treating all dimensions
in lock step or the reverse, or due to some other property of the algorithms.

It is credible that there should be some time series data for which it is beneficial
to treat multiple variables in lock step. Suppose, for example, that the variables
each represent the throughput of independent parts of a process and the quantity
relevant to classification is aggregate throughput. In this case, the sum of the
values at each point is the relevant quantity. In contrast, if classification relates
to a failure in any of those parts, it seems clear that independent consideration of
each is the better approach.

We seek to assess whether there are multivariate datasets for which each of lock-
step and independent analysis are best suited, or whether there are other reasons,
such as their mathematical properties, that underlie the systematic advantage on
specific datasets of either DTWI or DTWD.

The third hypothesis, inspired by EE (Lines and Bagnall, 2015), is that an en-
semble of nearest neighbour classifiers, each using a different multivariate distance
measure, will be more accurate than any single nearest neighbour classifier using
a single distance measure.

We start by describing our experimental setup and the datasets we used. We
then conduct an analysis of similarity measures in the context of TSC by compar-
ing accuracy measures of independent and dependent versions. We then conduct a
statistical test to determine if there is a difference between independent and depen-
dent versions of the measures. After that we present three methods of ensembling
the measures and then compare the relative accuracy of the ensembles.

4.1 Experimental Setup

We implemented a multi-threaded version of the multivariate similarity measures
in Java. We also release the full source code in the github repository https://

github.com/dotnet54/multivariate-measures.
In these experiments, for parametrization of the measures, we use leave-one-

out cross-validation of 100 parameters for each similarity measure. We follow the
same setting proposed in (Lines and Bagnall, 2015). This parametrization is also
used in HIVE-COTE, PF and TS-CHIEF.

https://github.com/dotnet54/multivariate-measures
https://github.com/dotnet54/multivariate-measures
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In this study, we use multivariate datasets obtained from https://www.

timeseriesclassification.com. We also use the standard train/test splits pro-
vided in the repository. Out of the available 30 datasets, we use 23 datasets
in this study. Since we focus only on fixed-length datasets, the four variable
length datasets (“CharacterTrajectories”, “InsectWingbeat”, “JapaneseVowels”,
and “SpokenArabicDigits”) are excluded from this study. We also we omit “Eigen-
Worms”,“MotorImagery” and,“FaceDetection”, which was taking too long to run
the leave-one-out cross-validation for 100 parameters in a practical time frame.
Table 2 (on page 26) summarises the characteristics of the 26 fixed length datasets.
Further descriptions of each dataset can be found in Bagnall et al (2018).

We ran experiments for all measures for z-normalised and unnormalised
datasets. We z-normalised each dataset on a per series, per dimension basis. We
found that the accuracy on these datasets are better when used as provided in the
archive without normalisation (Note that 4 datasets on the archive are already nor-
malised). This is also in agreement with a recent paper which conducted a similar
experiment with normalisation using DTWI and DTWD (Ruiz et al, 2020).

However, we note that this does not indicate that not normalising is always
the optimal solution for all datasets. Sometimes normalisation can be useful when
using similarity measures. For example, consider a scenario with two dimensions
temperature (e.g a scale from 0 to 100 degree Celsius) and relative humidity as
a percentage (between 0 and 1). In such a case, temperature will be dominating
the result of the similarity calculation, and normalisation will help to compute the
similarity with similar scales across the dimensions.

We ran the experiments on a cluster of Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50 GHz CPUs, with each experiment run on 32-threads. Total time to train all 23
datasets with leave-one-out-cross-validation was about 1648 hours. The two slowest
datasets were “PEMS-SF” (291 hours) and “PhonemeSpectra” (1153 hours) The
slowest measure to train is MSMD, which took a total of took 801 hours across
all datasets.

4.2 Accuracy of Independent Vs Dependent Measures

First we look at the accuracy of each measure used with a 1-NN classifier. Tables 3
and 4 (on page 27 and 28) present the accuracy for independent measures and
dependent measures, respectively. For each dataset, the highest accuracy is typeset
in bold. Of the values reported in Tables 3 and 4, accuracy for measures other than
than Euclidean distance (labelled “L2” in the table) and DTW are newly published
results in this paper.

Our first observation is that for every similarity measure there is at least one
dataset for which that measure obtains the highest accuracy. This supports our
first hypothesis, that each measure will have datasets for which it is well suited.

To compare multiple algorithms over the multiple datasets, first a Friedman
test is performed to reject the null hypothesis. The null hypothesis is that there
is no significant difference in the mean ranks of the multiple algorithms (at a
statistical significance level α = 0.05.) In cases where the null-hypothesis is re-
jected, we use the Wilcoxon signed rank test to compare the pair-wise difference
in ranks between algorithms, and then use Holm–Bonferroni’s method to adjust
for family-wise errors (Demšar, 2006; Benavoli et al, 2016).

https://www.timeseriesclassification.com
https://www.timeseriesclassification.com
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Figure 2 displays mean ranks (on error) between the 20 similarity measures.
Measures on the right side indicate higher rank in accuracy (lower error). We do
not include L2 distance here because the accuracy for independent and dependent
L2 is the same. Since we use Holm–Bonferroni’s correction, there is not a single
“critical difference value” that applies to all pairwise comparisons. Hence, we refer
to these visualisations as “average accuracy ranking diagrams”.

In Figure 2, DTWI , which is to the further right, is the most accurate measure
on the evaluated datasets. DTWI obtained a ranking of 7.326 from the Wilcoxon
test. By contrast, DDTWFD (ranked 14.783) is the least accurate measure on
these datasets. After Holm–Bonferroni’s correction, computed p-values indicate
that only the pairs DDTWFD and DTWI , and DDTWFD and WDTWD, are sta-
tistically different from each other. This could be because there is a large number
of measures, which win or lose on similar datasets.

1234567891011121314151617181920

DDTWFD
WDDTWD

DDTWD
DDTWFI

LCSSD
TWED
MSMD

ERPI
ERPD

DDTWI WDDTWI
LCSSI

DTWFI

DTWFD
MSMI

TWEI

WDTWI

DTWD

WDTWD

DTWI

Fig. 2 Average accuracy ranking diagram showing the ranks of measures on the error rates
(thus more accurate measures are to the right side).

4.3 Are Independent and Dependent Measures Significantly Different or Similar?

In this section, we test if there are datasets for which independent or dependent
version is always more accurate. We also test if there is a statistically significant dif-
ference between independent and dependent similarity measures. Answering these
questions will help us determine the usefulness of developing these two variations
of the multivariate similarity measures. It will also help us to construct ensembles
of similarity measures with more diversity, that is expected to perform well in
terms of accuracy over a wide variety of datasets.

Figure 3 shows the difference in accuracy between independent and dependent
versions of the measures - deeper reddish colours indicate cases where indepen-
dent is more accurate (positive on the scale), and deeper bluish colours indicate
cases where dependent is more accurate (negative on the scale). The datasets are
sorted based on average colour values to show contrasting colours on the two ends
(dimensions D / length L / number of classes c are given in the bracket after the
dataset name).

From Figure 3 we observe that there are datasets for which either independent
or dependent is always more accurate. For example, the independent versions of
all measures are consistently more accurate for datasets “PEMS-SF” and Basic
Motions (indicated by red colour rows in the heatmap). On the other hand, we
see that “Handwriting” always wins for the dependent versions (indicated by the
blue colour row).
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SelfRegulationSCP1 (6/896/2)
Epilepsy (3/206/4)

FingerMovements (28/50/2)
SelfRegulationSCP2 (7/1152/2)

ERing (4/65/6)
RacketSports (6/30/4)

EthanolConcentration (3/1751/4)
PhonemeSpectra (11/217/39)

NATOPS (24/51/6)
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AtrialFibrillation (2/640/3)
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Fig. 3 Heatmap showing the difference in accuracy between independent and dependent ver-
sions of the measures - deeper reddish colours indicate cases where independent is more accu-
rate (positive on the scale), and deeper bluish colours indicate cases where dependent is more
accurate (negative on the scale).

When we observe the columns, we see that there is no measure where either
independent or dependent versions always win across all the datasets.

Next we present the results of a Wilcoxon signed-rank test on each dataset
across the 10 pairs of measures (without L2), to test if the difference between ac-
curacy of independent and dependent versions are statistically significant or not.
We conduct this test with the null hypothesis that the mean of the difference
between accuracy of independent and dependent versions will be zero with sta-
tistical significance value (α = 0.05). We reject the null hypothesis, and accept
that there is a significant statistical difference in accuracy, if the obtained sig-
nificance value (p − value) obtained after the Wilcoxon signed-rank test is less
than 0.05. Table 1 shows the p-value for each dataset and an asterisk marks the
p-values obtained datasets for which there is a significant difference (p-value less
than 0.05). We also report the p-values after Holm–Bonferroni correction. Before
Holm–Bonferroni correction, out of the 23 datasets, we observe that for 7 datasets
there is a statistically significant difference in accuracy between independent and
dependent measures. After Holm–Bonferroni correction, we conclude there is in-
deed a statistical difference between independent and dependent measures.

4.4 Ensemble of Measures

We now compare the accuracy of these measures within three ensembles. Within
each ensemble, final predicted label is calculated using the maximum class prob-
ability, after each class probability have been weighted by the leave-one-out cross
validation accuracy of each measure. Any ties are broken using a uniform random
choice.

The three ensembles are constructed as follows:
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Table 1 p-values for two-sided Signed Rank Wilcoxon test with α = 0.05 (significant values
are in bold face).

dataset p-value p-value-after-Holm-Bonferroni

BasicMotions 0.0020 0.0021
PEMS-SF 0.0020 0.0022
Handwriting 0.0020 0.0023
HandMovementDirection 0.0059 0.0024
LSST 0.0059 0.0025
Epilepsy 0.0103 0.0026
ArticularyWordRecognition 0.0282 0.0028
PhonemeSpectra 0.1794 0.0029
PenDigits 0.1934 0.0031
StandWalkJump 0.1988 0.0033
DuckDuckGeese 0.2324 0.0036
AtrialFibrillation 0.2820 0.0038
FingerMovements 0.3071 0.0042
Heartbeat 0.4316 0.0045
Cricket 0.5043 0.0050
SelfRegulationSCP2 0.5566 0.0056
SelfRegulationSCP1 0.5748 0.0063
RacketSports 0.6094 0.0071
ERing 0.6101 0.0083
NATOPS 0.7695 0.0100
UWaveGestureLibrary 0.7695 0.0125
Libras 0.8457 0.0167
EthanolConcentration 1.0000 0.0250

– EEI : Ensemble of 1-NN formed using 11 independent measures.
– EED : Ensemble of 1-NN formed using 11 dependent measures.
– EEID : Ensemble of 1-NN formed using 11 independent and 11 dependent

measures.

Figure 4 shows accuracy ranking of our three ensembles vs top seven similarity
measures with 1-NN. We can observe that all ensembles are more accurate than
the classifiers using a single measure. We found that the EEID (avg. rank 3.087)
performs better than both EEI (avg. rank 3.848) and EED (avg. rank 5.152).
Based on the p-values, we found that all pairs of classifiers are statistically indis-
tinguishable except the following pairs: EEID and DTWFD, EEID and EED, and
EEID and WDTWD.

12345678910

DTWFD
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Fig. 4 Average accuracy ranking diagram showing the ranks on the error rate of top 10
measures, and our three ensembles.
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Tables 5 and 6 (on page 29 and 30) show the accuracy of these ensembles as
well as other multivariate algorithms obtained from the recent paper (Ruiz et al,
2020). These algorithms were briefly introduced in Section 2.3.

From Table 5 we observe that ROCKET has the most number of wins (7)
followed by InceptionTime (6 wins). Next is, MUSE and ResNet with 5 wins, and
EEI and CIF with 4 wins. We also observe that EED and EEID win only on one
and two datasets, respectively.

Figure 5 shows accuracy ranking of our ensembles vs top 10 other multivariate
algorithms. The most accurate algorithm, ROCKET, obtained a rank of 5.087.
Although Table 5 reports 2 wins for EEID, compared to HIVE-COTE 1.0 (4
wins) and CIF (2 wins), Figure 5 shows that average error rate of EEID (ranked
6.935) is higher than CIF (ranked 7.130) and just below MUSE (ranked 6.450).
The computed p-values indicate that EEID is statistically indistinguishable from
any of the other algorithms.

This comparison does not compare algorithms of similar complexity. For exam-
ple, HIVE-COTE 1.0 is a far more complex algorithm than our ensembles. However
from this comparison we get some idea about the standing of our similarity-based
ensembles with respect to other dictionary-based, interval-based, and shapelet-
based ensembles for multivariate data.
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Fig. 5 Average accuracy ranking diagram showing the ranks on the error rate of the top 10
classifiers from (Ruiz et al, 2020), and our three ensembles.

5 Conclusion

In this paper, we present multivariate versions of commonly used elastic similarity
measures. Our approach is inspired by independent and dependent DTW measures,
which have proven very successful as strategies for extending univariate DTW to
the multivariate case.

Our experiments show that each of the univariate similarity measures excel at
nearest neighbour classification on different datasets, highlighting the importance
of having a range of such measures in our analytic toolkits.

It has been shown that there are some datasets for which the independent
version of DTW is more accurate than the dependent version and vice versa. Until
now there was no way to determine whether this is a result of a fundamental
difference between treating each dimension independently or not, or whether it
arises from other properties of the algorithms. Our results showing that there are
some datasets for which dependent or independent treatments are consistently
superior across all distance measures provides strong support for the conclusion
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that it is a fundamental property of the datasets, that either the variables do need
to be considered in lock step or do not.

Inspired by the Elastic Ensemble of nearest neighbour classifiers using differ-
ent univariate distance measures, we then further experiment with ensembles of
multivariate similarity measures and show that ensembling results in accuracy
competitive with the state of the art.

Our three ensembles establish a baseline in our future plans to create a
multivariate TS-CHIEF which would combine similarity-based techniques with
dictionary-based, interval-based for multivariate TSC.
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A Summary of the Datasets

Table 2 Summary of the 26 fixed-length multivariate datasets from UAE repository.

# dataset code trainsize testsize dims length classes

1 ArticularyWordRecognition AWR 275 300 9 144 25
2 AtrialFibrillation AF 15 15 2 640 3
3 BasicMotions BM 40 40 6 100 4
4 Cricket CR 108 72 6 1197 12
5 DuckDuckGeese DDG 50 50 1345 270 5
6 EigenWorms EW 128 131 6 17984 5
7 Epilepsy EP 137 138 3 206 4
8 EthanolConcentration EC 261 263 3 1751 4
9 ERing ER 30 270 4 65 6
10 FaceDetection FD 5890 3524 144 62 2
11 FingerMovements FM 316 100 28 50 2
12 HandMovementDirection HMD 160 74 10 400 4
13 Handwriting HW 150 850 3 152 26
14 Heartbeat HB 204 205 61 405 2
15 Libras LIB 180 180 2 45 15
16 LSST LSST 2459 2466 6 36 14
17 MotorImagery MI 278 100 64 3000 2
18 NATOPS NATO 180 180 24 51 6
19 PenDigits PD 7494 3498 2 8 10
20 PEMS-SF PEMS 267 173 963 144 7
21 Phoneme PS 3315 3353 11 217 39
22 RacketSports RS 151 152 6 30 4
23 SelfRegulationSCP1 SRS1 268 293 6 896 2
24 SelfRegulationSCP2 SRS2 200 180 7 1152 2
25 StandWalkJump SWJ 12 15 4 2500 3
26 UWaveGestureLibrary UW 120 320 3 315 8
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B Accuracy of Dependent and Independent Measures

Table 3 Accuracy of independent similarity measures. Note that dtwf and ddtwf refers to
measures that use full window.

dataset L2 dtwf dtw ddtwf ddtw wdtw wddtw lcss msm erp twe

AWR 0.97 0.98 0.98 0.60 0.69 0.99 0.70 0.99 0.99 0.99 0.98
AF 0.27 0.27 0.27 0.07 0.07 0.13 0.27 0.20 0.20 0.27 0.33
BM 0.60 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.85 1.00
CR 0.92 0.99 1.00 0.96 0.96 0.99 0.96 0.97 0.99 0.96 0.99
DDG 0.34 0.48 0.48 0.54 0.54 0.48 0.54 0.34 0.60 0.34 0.60
EP 0.67 0.98 0.95 0.96 0.96 0.96 0.96 0.99 0.99 0.90 0.98
ER 0.95 0.92 0.92 0.81 0.91 0.93 0.84 0.95 0.89 0.94 0.91
EC 0.32 0.30 0.31 0.29 0.27 0.29 0.27 0.27 0.33 0.33 0.30
FM 0.56 0.52 0.54 0.62 0.54 0.51 0.59 0.52 0.51 0.51 0.52
HMD 0.28 0.30 0.23 0.34 0.34 0.26 0.34 0.26 0.32 0.23 0.42
HW 0.34 0.51 0.48 0.31 0.34 0.51 0.33 0.46 0.49 0.41 0.37
HB 0.66 0.66 0.69 0.69 0.69 0.69 0.69 0.75 0.75 0.65 0.72
LIB 0.82 0.89 0.89 0.90 0.90 0.89 0.92 0.84 0.86 0.82 0.89
LSST 0.45 0.58 0.58 0.49 0.48 0.58 0.49 0.34 0.55 0.46 0.53
NATO 0.82 0.85 0.87 0.82 0.83 0.86 0.82 0.81 0.83 0.82 0.83
PEMS 0.77 0.73 0.77 0.62 0.61 0.76 0.64 0.83 0.77 0.73 0.79
PD 0.98 0.94 0.98 0.95 0.97 0.96 0.96 0.96 0.96 0.97 0.94
PS 0.10 0.15 0.15 0.16 0.17 0.16 0.17 0.15 0.18 0.10 0.17
RS 0.80 0.84 0.84 0.77 0.76 0.86 0.78 0.89 0.82 0.83 0.79
SRS1 0.78 0.76 0.78 0.63 0.58 0.78 0.56 0.75 0.77 0.78 0.78
SRS2 0.48 0.53 0.54 0.49 0.51 0.53 0.56 0.51 0.51 0.50 0.57
SWJ 0.27 0.33 0.33 0.40 0.33 0.53 0.20 0.27 0.27 0.33 0.20
UW 0.88 0.87 0.91 0.72 0.84 0.88 0.80 0.91 0.88 0.90 0.88

Wins 3 3 7 2 1 6 2 7 7 3 6
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Table 4 Accuracy of dependent similarity measures. Note that dtwf and ddtwf refers to
measures that use full window.

dataset L2 dtwf dtw ddtwf ddtw wdtw wddtw lcss msm erp twe

AWR 0.97 0.99 0.98 0.35 0.34 0.99 0.36 0.98 0.98 0.98 0.97
AF 0.27 0.20 0.27 0.13 0.33 0.20 0.27 0.33 0.27 0.27 0.13
BM 0.60 0.97 0.97 0.95 0.95 0.97 0.95 0.80 0.68 0.75 0.95
CR 0.94 1.00 1.00 0.75 0.78 1.00 0.75 0.99 1.00 0.97 0.97
DDG 0.50 0.58 0.58 0.32 0.32 0.58 0.32 0.42 0.26 0.36 0.26
EP 0.63 0.96 0.96 0.93 0.93 0.96 0.93 0.92 0.94 0.87 0.94
ER 0.94 0.91 0.94 0.79 0.84 0.93 0.83 0.93 0.90 0.94 0.95
EC 0.32 0.32 0.32 0.24 0.27 0.30 0.25 0.32 0.35 0.31 0.25
FM 0.55 0.53 0.53 0.51 0.51 0.54 0.51 0.50 0.51 0.56 0.50
HMD 0.26 0.19 0.24 0.27 0.24 0.23 0.27 0.23 0.16 0.22 0.35
HW 0.33 0.61 0.61 0.42 0.42 0.61 0.41 0.54 0.57 0.47 0.45
HB 0.62 0.72 0.70 0.71 0.71 0.68 0.71 0.62 0.68 0.74 0.75
LIB 0.83 0.87 0.87 0.98 0.98 0.88 0.98 0.33 0.85 0.83 0.86
LSST 0.45 0.55 0.55 0.43 0.43 0.55 0.43 0.36 0.36 0.45 0.45
NATO 0.84 0.88 0.88 0.85 0.85 0.88 0.79 0.72 0.81 0.84 0.82
PEMS 0.73 0.71 0.73 0.57 0.57 0.73 0.57 0.12 0.71 0.72 0.71
PD 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.95 0.94 0.98 0.98
PS 0.10 0.15 0.15 0.16 0.17 0.16 0.17 0.15 0.16 0.10 0.17
RS 0.82 0.80 0.82 0.78 0.80 0.85 0.78 0.89 0.89 0.74 0.78
SRS1 0.78 0.77 0.78 0.58 0.57 0.76 0.57 0.80 0.78 0.78 0.42
SRS2 0.48 0.54 0.54 0.48 0.52 0.54 0.49 0.47 0.52 0.49 0.54
SWJ 0.20 0.20 0.20 0.20 0.33 0.33 0.20 0.33 0.33 0.27 0.27
UW 0.88 0.90 0.90 0.79 0.80 0.90 0.83 0.89 0.88 0.89 0.88

Wins 2 11 11 1 4 13 2 4 4 2 6
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C Accuracy of Ensembles vs Other multivariate TSC algorithms

Table 5 Accuracy of ensembles of similarity measures compared with existing algorithms.
Column names are shortened as follows: RT for ROCKET, IT for InceptionTime, MUSE for
WEASEL+MUSE and HC1.0 for HIVE-COTE 1.0. Note that wins are counted across all
methods in both Table 5 and 6 (e.g. for the first row ‘AWR’, ROCKET with 1.0 accuracy in
Table 5 wins, therefore Table 6 does not show a win)

dataset EEI EED EEID DTWI DTWD RT IT MUSE CIF HC1.0

AWR 0.99 0.99 0.99 0.98 0.98 1.00 0.99 0.99 0.98 0.98
AF 0.20 0.27 0.27 0.27 0.27 0.25 0.22 0.74 0.25 0.29
BM 1.00 0.95 0.97 1.00 0.97 0.99 1.00 1.00 1.00 1.00
CR 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 0.99
DDG 0.54 0.58 0.60 0.48 0.58 0.46 0.63 N/A 0.56 0.48
EP 0.98 0.96 0.98 0.95 0.96 0.99 0.99 1.00 0.98 1.00
ER 0.96 0.94 0.97 0.92 0.94 0.98 0.92 0.97 0.96 0.94
EC 0.33 0.33 0.35 0.31 0.32 0.45 0.28 0.49 0.73 0.81
FM 0.59 0.55 0.57 0.54 0.53 0.55 0.56 0.55 0.54 0.54
HMD 0.32 0.26 0.28 0.23 0.24 0.45 0.42 0.38 0.52 0.38
HW 0.51 0.60 0.58 0.48 0.61 0.57 0.66 0.52 0.35 0.50
HB 0.72 0.73 0.75 0.69 0.70 0.72 0.73 0.74 0.77 0.72
LIB 0.91 0.89 0.91 0.89 0.87 0.91 0.89 0.90 0.92 0.90
LSST 0.60 0.56 0.60 0.58 0.55 0.63 0.34 0.64 0.56 0.54
NATO 0.88 0.88 0.88 0.87 0.88 0.89 0.97 0.87 0.84 0.83
PEMS 0.77 0.73 0.73 0.77 0.73 0.86 0.83 N/A 1.00 0.98
PD 0.97 0.98 0.98 0.98 0.98 1.00 1.00 0.99 0.99 0.97
PS 0.19 0.19 0.20 0.15 0.15 0.28 0.37 N/A 0.27 0.33
RS 0.85 0.84 0.87 0.84 0.82 0.93 0.92 0.90 0.89 0.91
SRS1 0.79 0.78 0.77 0.78 0.78 0.87 0.85 0.74 0.86 0.86
SRS2 0.54 0.49 0.54 0.54 0.54 0.51 0.52 0.50 0.49 0.52
SWJ 0.33 0.20 0.33 0.33 0.20 0.46 0.42 0.35 0.45 0.41
UW 0.91 0.91 0.92 0.91 0.90 0.94 0.91 0.90 0.92 0.91

Wins 4 1 2 3 2 7 6 5 4 2
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Table 6 Accuracy of ensembles of similarity measures compared with existing algorithms.
Column names are shortened as follows: MRS for MrSEQL, RN for ResNet, TN for TapNet,
CB for CBOSS. Note that wins are counted across all methods in both Table 5 and 6 (e.g. for
the first row ‘AWR’, ROCKET with 1.0 accuracy in Table 5 wins, therefore Table 6 does not
show a win)

dataset EEI EED EEID MRS RN STC TN gRSF CB RISE

AWR 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.98 0.98 0.96
AF 0.20 0.27 0.27 0.37 0.36 0.32 0.30 0.28 0.30 0.24
BM 1.00 0.95 0.97 0.95 1.00 0.98 0.99 1.00 0.99 1.00
CR 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.97 0.98 0.98
DDG 0.54 0.58 0.60 0.39 0.63 0.43 0.58 0.44 0.43 0.51
EP 0.98 0.96 0.98 1.00 0.99 0.99 0.96 0.96 1.00 1.00
ER 0.96 0.94 0.97 0.93 0.87 0.84 0.89 0.92 0.84 0.82
EC 0.33 0.33 0.35 0.60 0.29 0.82 0.29 0.34 0.40 0.49
FM 0.59 0.55 0.57 0.56 0.55 0.53 0.51 0.54 0.51 0.52
HMD 0.32 0.26 0.28 0.35 0.35 0.35 0.32 0.32 0.29 0.28
HW 0.51 0.60 0.58 0.54 0.60 0.29 0.33 0.37 0.49 0.18
HB 0.72 0.73 0.75 0.73 0.64 0.72 0.74 0.75 0.72 0.73
LIB 0.91 0.89 0.91 0.87 0.94 0.84 0.84 0.76 0.85 0.82
LSST 0.60 0.56 0.60 0.60 0.43 0.58 0.46 0.58 0.44 0.51
NATO 0.88 0.88 0.88 0.86 0.97 0.84 0.90 0.82 0.82 0.81
PEMS 0.77 0.73 0.73 0.97 0.82 0.98 0.79 0.91 0.97 0.99
PD 0.97 0.98 0.98 0.97 1.00 0.98 0.94 0.96 0.96 0.87
PS 0.19 0.19 0.20 N/A 0.31 0.31 N/A 0.23 0.19 0.27
RS 0.85 0.84 0.87 0.89 0.91 0.88 0.86 0.88 0.89 0.84
SRS1 0.79 0.78 0.77 0.83 0.76 0.85 0.96 0.80 0.81 0.73
SRS2 0.54 0.49 0.54 0.50 0.50 0.52 0.53 0.49 0.50 0.50
SWJ 0.33 0.20 0.33 0.42 0.31 0.44 0.35 0.38 0.37 0.34
UW 0.91 0.91 0.92 0.91 0.88 0.87 0.88 0.90 0.86 0.71

Wins 4 1 2 1 5 1 1 1 1 2
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