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CHARACTERISATION OF TIMBER CONNECTION BEHAVIOUR FROM 

REDUCED SCALED EXPERIMENTS BASED ON SIMILITUDE LAWS 
 

 

Yann Sousseau1, Sidi Mohammed Elachachi1, Myriam Chaplain1, Carole Faye2, 

Thomas Catterou2, Patrice Garcia2 

 

 
ABSTRACT: Testing a full size structure requires very expensive means. Therefore, the proposed methodology consists 

in testing a representative scaled down model, whose design is based on similitude laws. The purpose of this article is the 

constitution, for timber construction, of scale factors related to mechanical characteristics of frame connections, for 1/2 

and 1/3 reduced scales. Firstly, scale factors were obtained by experimental tests on connections and then compared to 

the theoretical ones. Discrepancies have been noticed between experimental and theoretical scale factors. For most 

connection characteristics, discrepancies not only result from dispersions noticed on the three scales, but also from 

distortions in connections geometry. Secondly, a numerical approach will be developed to predict the timber construction 

behaviour, whose input data are provided by mechanical characteristics, described in this paper. 
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1 INTRODUCTION 123 

To perform full size tests requires expensive means. A 

possible solution is to test a representative reduced size 

building, whose design is based on similitude laws [1]–

[3]. Then, from observed responses on reduced scale, the 

similitude laws allow to deduce those in full scale (Figure 

1). For that, scale factors have to be established. They are 

defined, for each 𝑥  variable (parameters or variable of 

interest) as the ratio 

𝜆𝑥 = 𝑥(F)/𝑥(R) (1) 

with 𝑥(F) and 𝑥(R) the values for 𝑥 at (F) full scale and 

(R) reduced scale respectively. A set of values assigned to 

theses factor is a similitude law. 

 

Similitude laws theory has been developed mainly in 

structures (automobile, aeronautics and aerospace) and 

fluid mechanics [1], [2]. Recently, some works have dealt 

with civil engineering structures [4], [5]. To constitute 

similitude laws, several methods in literature have been 

developed: Dimensional Analysis (DA) and Similitude 

Theory Applied to Governing Equations (STAGE). Based 

mainly on mathematical principles, these methods are 

usable for any ideal physical behaviour’s study. Once the 

study’s behaviour is defined, these methods result in 

similitude relationships, which are relationships between 

scale factors. Because of the number of equations superior 
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to unknown scale factors, there are many potential 

similitude laws. 

 

DA method [6]–[8] is used in structures [9]–[13] and fluid 

mechanics [14]–[17]. This method, which uses Vaschy-

Buckingham theorem, does not require the knowledge of 

behaviour equations.  

 

STAGE method [2], [3] is based on behaviour equations, 

which need to be established (but not necessarily to 

resolve). This method is based on conservation equations 

from reduced scale to full scale. Most authors using 

STAGE study behaviours which may be described by 

equations. For example, equation from thin plate theory is 

used to characterize steel plates vibrations behaviour in 

aeronautic [18]–[21]. Equation from composite structure 

behaviour are also used for wind turbine[3], [22]–[25]. 

Note that similitude laws reliability may be impacted if 

equations used do not take into account some influent 

phenomena [26], [27]. Finally, for some behaviour 

equations, STAGE makes accessible some similitude 

laws [28], [29] which are not with DA method. 

 

For these works, similitude laws obtained with STAGE 

are same as those obtained with DA, so the latter will be 

used. Note that, in literature very little work focus on both 

timber and similitude laws. 
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Figure 1: Similitude laws principle 

These works are the first step of a research programme to 

establish similitude laws to study mid and high-rise timber 

buildings behaviour. The studied structure (Figure 2) is 

representative of constructive systems frequently used in 

mid and high-rise timber buildings. 

 

 

Figure 2: Studied structure and  joints 

This paper focuses in establishing a similitude law 

allowing to estimate the main connections mechanical 

characteristics: elastic stiffness 𝐾𝑒 (N/m), strength 𝐹𝑢 (N) 

and associated displacement 𝑢𝑢  (m). The parameters, 

whose studied characteristics depend, and which need to 

be considered, are the material properties 𝐶  (elasticity 

modulus, stress limits,… in N/m²) and the geometrical 

properties 𝐿  (in m). Using DA, the similitude 

relationships are obtained as follows: 

 

{

[𝐾𝑒] = [𝐶][𝐿]

[𝐹𝑢] = [𝐶][𝐿]2

[𝑢𝑢] = [𝐿]

⇒ {

𝜆𝐾𝑒 = 𝜆𝐶𝜆𝐿

𝜆𝐹𝑢 = 𝜆𝐶𝜆𝐿
2

𝜆𝑢𝑢 = 𝜆𝐿

 (2) 

 

where [𝑥]  is the 𝑥  unit and 𝜆𝑥  is the scale factor 

associated to 𝑥. In our study, specimens are, for full and 

reduced scale, made of the same materials. However, 

despite materials are same between full and reduced scale, 

material properties can be different. Indeed, it was 

observed in literature [30]–[32] variations of material 

properties with size reduction (for example, stress limits 

increase). Such phenomena are called material scale 

effects. Otherwise, these properties can be different 

between full and reduced scale, because of material 

properties variability. First, material scale effects and 

variability not being considered, so the best hypothesis for 

material properties is to take a scale factor (𝜆𝑐) equal to 1. 

Therefore, for 1/2 reduced scale, similitude law is 𝜆𝐾𝑒 =
2 , 𝜆𝐹𝑢 = 4  and 𝜆𝑢𝑢 = 2 , and for 1/3 reduced scale, 

similitude law is 𝜆𝐾𝑒 = 3 , 𝜆𝐹𝑢 = 9  and 𝜆𝑢𝑢 = 3 . 

However, because of technological reasons, reduction 

steel plate thickness 𝑒 is hard to realize as the thickness is 

already small in full scale. Also, the factor 𝜆𝑎0 of the edge 

spacing 𝑎0 (Figure 3) is not taken equal to 𝜆𝐿, in order to 

avoid undesirable fracture by failure [33]–[35]. Such 

situations are called distortions. Therefore, the 𝜆𝐾𝑒 , 𝜆𝐹𝑢 

and 𝜆𝑢𝑢 experimental values may differ from those given 

by DA (equation (2)). Problematics of distortion are 

frequently raised in the literature, for example because of 

impossibility to reduce thin steel elements [18], [19], [36]. 

Therefore, the cited authors establish empirical similitude 

laws from numerical simulations.  

 

First, connections are experimentally tested in full and 

reduced scales, in order to determine their characteristics. 

Then, the scale one behaviour is estimated from reduced 

scales experimental results and scale factors. Also, from 

full scale experimental results, the experimental scale 

factors are deduced, and are compared with the theoretical 

ones. 

 

2 EXPERIMENTAL STUDY OF 

CONNECTIONS BEHAVIOUR 

2.1 TESTS DESCRIPTION 

The tested connections and test configuration are 

presented in Figure 3. The reduced scale connections 

dimensions are deduced from full scale ones and the scale 

factor 𝜆𝐿. 

 

 

Figure 3: Tested connections 

The tests are performed according to EN NF 26 891 

standard [37]. The axial load is applied in tension or 

compression. The relative displacement between steel 

plate and wood (targets A and B respectively, Figure 3), 

the slide of the joint (𝑢), is measured. Targets located on 

bolt edge sides allow measuring bolt deformation mode. 

These tests are monotone and under slide of the joint 

control. This displacement 𝑢  evolves as follows 

(Figure 4): increase until load reaches 0.4𝐹𝑢,th  (A-B, 
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𝐹𝑢,th  is estimated theoretical strength), stabilization 

during 30 seconds (B-C), decrease until load reaches 

0.1𝐹𝑢,th  (C-D), stabilization during 30 seconds (D-E), 

increase until fracture (E-F). Without 2-3 et 4-5 steps, the 

displacement evolves with a constant rate. 

 

 

Figure 4: Displacement, joint slide u, control during  test 

2.2 MAIN CHARACTERISTICS 

DETERMINATION 

For one test, the load displacement curve (Figure 5) is 

obtained, from which the mains characteristics are 

calculated: elastic stiffness 𝐾𝑒, strength 𝐹𝑢 and associated 

displacement 𝑢𝑢 . Stiffness 𝐾𝑒  is obtained by linear 

regression, between the points corresponding to E-F step 

and for which 𝐹 < 0.4𝐹𝑢 [33], [34] (this corresponds to 

D0-D1 on Figure 5). Then (A-E) parts are removed from 

curve, which is shifted so that its extension passes through 

origin. Displacement 𝑢𝑢 is determined from shifted curve. 

Also, points whose displacement is greater than 𝑢𝑢  and 

force is lower than 0.9𝐹𝑢 are removed from the curve. The 

resulting maximum displacement of processed curve 

(Figure 5) is noted 𝑢max 

 

 

 

Figure 5: Load displacement curve for one test in full scale 

For one test, a load displacement behaviour model is 

established. Saws model [38]–[40] is chosen for these 

works and is described by the equation (3) : 

 

{
𝑢 ≤ 𝑢𝑢 ∶ 𝐹 = (𝐹0 + 𝑟1𝐾𝑒𝑢) (1 − e

−
𝐾𝑒𝑢

𝐹0 )

𝑢𝑢 < 𝑢 ≤ 𝑢max ∶ 𝐹 = 𝐹𝑢 + 𝑟2𝐾𝑒(𝑢 − 𝑢𝑢)

 (3) 

 

with 𝑢 the displacement, 𝐹 the load, and 

 

𝐹𝑢 = (𝐹0 + 𝑟1𝐾𝑒𝑢𝑢) (1 − e
−𝐾𝑒𝑢𝑢

𝐹0 ) (4) 

The negative slope 𝑟2𝐾𝑒  is determined by linear 

regression between (𝑢𝑢 , 𝐹𝑢) and the end of the curve. The 

𝑓0 = 𝐹0/𝐹𝑢 coefficient is calculated by the mean square 

method between experimental 𝐹 values and those given 

by equation (3).  

 

Then, for one given scale, mean characteristic values 

(Tables 1, 2 and 3) are calculated based on all tests in 

tension and compression, from which a representative 

model curve is established (Figures 6, 7 and 8, black 

curve), based on equation (3). Dispersion is important, 

and it will be noticed later the significant impact on scale 

factors dispersion. 

 

 

 

Figure 6: Experimental load displacement curves (shifted) for 

all tests, full scale 
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Figure 7: Experimental load displacement curves (shifted) for 

all tests, 1/2 reduced scale 

 

 

Figure 8: Experimental load displacement curves (shifted) for 
all tests, 1/3 reduced scale 

Table 1: Experimental characteristics, full scale 

Quantity of tests 𝑛(F) = 8 

Characteristic 𝑥 
Experimental 

mean 𝑥(F)̅̅ ̅̅ ̅ 
COV (%) 

Elastic stiffness 𝐾𝑒 

(MN/m) 
174 18.5 

Strength 𝐹𝑢 (kN) 69.5 8.20 

Displacement 𝑢𝑢 (mm) 9.69 10.7 

Coefficient 𝑓0 0.847 1.42 

Coefficient 𝑟2 -0.0049 96 

Displacement 𝑢max (mm) 14.2 17.5 

 

 

 

 

 

Table 2: Experimental characteristics, 1/2 reduced scale 

Quantity of tests 𝑛(R) = 9 

Characteristic 𝑥 
Experimental 

mean 𝑥(R)̅̅ ̅̅ ̅ 
COV (%) 

Elastic stiffness 𝐾𝑒 

(MN/m) 
79.7 17.2 

Strength 𝐹𝑢 (kN) 19.7 7.20 

Displacement 𝑢𝑢 (mm) 5.55 18.7 

Coefficient 𝑓0 0.887 3.77 

Coefficient 𝑟2 -0.0043 39 

Displacement 𝑢max (mm) 9.65 11.3 

 

Table 3: Experimental characteristics, 1/3 reduced scale 

Quantity of tests 𝑛(R) = 10 

Characteristic 𝑥 
Experimental 

mean 𝑥(R)̅̅ ̅̅ ̅ 
COV (%) 

Elastic stiffness 𝐾𝑒 

(MN/m) 
44.2 19.3 

Strength 𝐹𝑢 (kN) 8.89 5.82 

Displacement 𝑢𝑢 (mm) 3.22 13.8 

Coefficient 𝑓0 0.904 2.34 

Coefficient 𝑟2 -0.0068 32 

Displacement 𝑢max (mm) 5.58 13.7 

 

 

2.3 EVALUATION OF SIMILITUDE SCALE 

FACTORS 

The experimental scale factors are obtained using 

equation (1), for each 𝑥  studied characteristic, then are 

compared with the theoretical ones 𝜆𝑥
(th)

 (Tables 4 and 5). 

The experimental mean value for 𝜆𝑥, 𝜆𝑥
̅̅ ̅, is so obtained by 

 

𝜆𝑥
̅̅ ̅ = 𝑥(F)̅̅ ̅̅ ̅/𝑥(R)̅̅ ̅̅ ̅ (5) 

and its standard deviation, 𝜎𝜆𝑥
 by 

 

(𝜎𝜆𝑥
)

2
= (

𝜎𝑥(F)

𝑥(R)̅̅ ̅̅ ̅
)

2

+ (𝜎𝑥(R)

𝑥(F)̅̅ ̅̅ ̅

(𝑥(R)̅̅ ̅̅ ̅)
2)

2

 (6) 
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Table 4: Comparison between experimental and theoretical 
scale factors, for 1/2 scale 

Characteristic 𝑥 

Theoretical 

scale factor 

𝜆𝑥
(th)

 

Experimental scale 

factor 𝜆𝑥
 

Experimental 

mean 𝜆𝑥
̅̅ ̅ 

COV 

(%) 

Elastic stiffness 

𝐾𝑒 (N/m) 
2 2.18 25.3 

Strength 𝐹𝑢 (N) 4 3.53 10.9 

Displacement 𝑢𝑢 

(m) 
2 1.74 21.6 

 

Table 5: Comparison between experimental and theoretical 
scale factors, for 1/3 scale 

Characteristic 𝑥 

Theoretical 

scale factor 

𝜆𝑥
(th)

 

Experimental scale 

factor 𝜆𝑥
 

Experimental 

mean 𝜆𝑥
̅̅ ̅ 

COV 

(%) 

Elastic stiffness 

𝐾𝑒 (N/m) 
3 3.93 26.7 

Strength 𝐹𝑢 (N) 9 7.82 10.1 

Displacement 𝑢𝑢 

(m) 
3 3.01 17.4 

 

Experimental scale factors have large dispersion. We aim 

to know if the deviation between theoretical and 

experimental values are explained by this dispersion, 

geometrical distortions or phenomena which were not 

considered. 

 

2.3.1 Elastic stiffness 

For the estimated mean of stiffness scale factor, 𝜇𝜆𝐾𝑒
, it is 

proposed to establish a confidence interval [41]. For that, 

we assume that experimental mean ln 𝜆𝐾𝑒
̅̅ ̅̅ ̅̅ ̅̅ = ln 𝐾𝑒

(F)̅̅ ̅̅ ̅̅ ̅̅ ̅
−

ln 𝐾𝑒
(R)̅̅ ̅̅ ̅̅ ̅̅ ̅

 follows a normal distribution, then the confidence 

interval for 𝜇ln 𝜆𝐾𝑒
 is obtained by 

 

𝐿𝑖 ≤ 𝜇ln 𝜆𝐾𝑒 ≤ 𝐿𝑠 (7) 

with 

 

𝐿𝑖 = ln 𝜆𝐾𝑒
̅̅ ̅̅ ̅̅ ̅̅ − 𝑞

√
(𝜎

ln 𝐾𝑒
(F))

2

𝑛(F)
+

(𝜎
ln 𝐾𝑒

(R))
2

𝑛(R)
 

(8) 

 

 

and 

 

𝐿𝑠 = ln 𝜆𝐾𝑒
̅̅ ̅̅ ̅̅ ̅̅ + 𝑞

√
(𝜎

ln 𝐾𝑒
(F))

2

𝑛(F)
+

(𝜎
ln 𝐾𝑒

(R))
2

𝑛(R)
 

(9) 

 

with 𝑞 is the quantile of normal distribution. Finally, we  

obtained eq (10): 

 

exp (𝐿𝑖 +
(𝜎ln 𝜆𝐾𝑒

)
2

2
) ≤ 𝜇𝜆𝐾𝑒  

≤ exp (𝐿𝑠 +
(𝜎ln 𝜆𝐾𝑒

)
2

2
) 

(10) 

 

with 

 

(𝜎ln 𝜆𝐾𝑒
)

2
= (𝜎

ln 𝐾𝑒
(F))

2

+ (𝜎
ln 𝐾𝑒

(R))
2

 (11) 

 

A “risk” parameter 𝛼  is defined then 𝑞  is the 1 − 𝛼/2 

quantile: 𝛼 correspond to the probability that 𝜇𝜆𝐾𝑒  is out 

of the confidence interval. For 𝛼 = 0.05, we have 1.87 ≤
𝜇𝜆𝐾𝑒

≤ 2.72  for 1/2 reduced scale and 3.39 ≤ 𝜇𝜆𝐾𝑒
≤

4.88 for 1/3 reduced scale. For 1/3 reduced scale, it is 

noticed that 𝜆𝐾𝑒
(th)

 is not included into the confidence 

interval, in other words the probability that 𝜆𝐾𝑒
(th)

 be equal 

to 𝜇𝜆𝐾𝑒
 is lower than 0.05, so this hypothesis is rejected. 

Therefore, differences between theoretical and 

experimental mean, as displayed on table 5, are 

significant. 

 

For stiffness 𝐾𝑒, as explained in the end of paragraph 1, 

edge spacing 𝑎0 and plate’s thickness 𝑒 do not satisfy the 

similitude relationships. More particularly, 𝜆𝑎0  factor 

experimental value is lower than that required by 

similitude relationships. In other words, compared to ideal 

full scale whose scale factors satisfy the similitude 

relationships, spacing 𝑎0
(F)

= 𝜆𝑎0𝑎0
(R)

 on full scale is 

lower, so stiffness 𝐾𝑒
(F)

 increases, then factor 𝜆𝐾𝑒 =

𝐾𝑒
(F)

/𝐾𝑒
(R)

 is greater, as observed with results displayed 

on Tables 4 and 5. Indeed, if spacing 𝑎0  decreases, the 

steel plate’s height is lower, so the plate gets less 

deformed when loaded in height direction, then 

connection stiffness 𝐾𝑒  increases. Otherwise, 

consequences of 𝜆𝑒  factor on 𝜆𝐾𝑒 , in particular through 

interaction between bolt and plate, is difficult to evaluate. 

Also, relative deviation between 𝜆𝐾𝑒
(th)

 and 𝜆𝐾𝑒
̅̅ ̅̅̅  is lower 

for 1/2 scale than for 1/3 scale, probably because of the 

relative deviation, between 𝜆𝑒  and 𝜆𝑎0  experimental 

values and those required is lower for 1/2 scale than for 

1/3 scale. 

 

Finally, wood heterogeneity, as well as gap and friction 

between steel and wood, are also distortions which 



6 

 

contribute to deviation between experimental and 

theoretical scale factor.    

 

2.3.2 Strength 

For the estimated mean of strength scale factor, the 

confidence intervals are 3.30 ≤ 𝜇𝜆𝐹𝑢
≤ 3.81 for 1/2 

reduced scale and 7.34 ≤ 𝜇𝜆𝐹𝑢
≤ 8.39  for 1/3 reduced 

scale, with a risk 𝛼 = 0.05. For both 1/2 and 1/3 reduced 

scales, 𝜆𝐹𝑢
(th)

 value is not included into the confidence 

interval, so the observed deviations between theoretical 

𝜆𝐹𝑢
(th)

 and experimental mean 𝜆𝐹𝑢, as displayed on tables 4 

and 5, are significant. 

 

- Material scale effects (wood and / or bolt) may cause an 

increase of stress limits at reduced scale, so an increase of 

𝐹𝑢
(R)

, therefore a decrease of 𝜆𝐹𝑢 = 𝐹𝑢
(F)

/𝐹𝑢
(R)

 compared 

to 𝜆𝐹𝑢
(th)

. 

 

- When edge spacing 𝑎0 is low, it may cause side effect 

resulting to a reduction of strength 𝐹𝑢. Considering edge 

spacing 𝑎0 values at different scales, side effect is more 

important for full scale than for reduced scales. So, side 

effect may decrease 𝜆𝐹𝑢 compared to 𝜆𝐹𝑢
(th)

. 

 

- Plate’s thickness does not satisfy the similitude 

relationships, this distortion may decrease or increase 𝜆𝐹𝑢 

compared to 𝜆𝐹𝑢
(th)

. 

 

Value 𝜆𝐹𝑢  being lower than 𝜆𝐹𝑢
(th)

, we can conclude that 

causes of discrepancies between 𝜆𝐹𝑢  and 𝜆𝐹𝑢
(th)

 are bolt 

steel scale effects or side effects or plate’s thickness 

distortion or both. Because of a lack of information about 

how much material scale effects, side effects and plate’s 

thickness distortion influence 𝜆𝐹𝑢 , it is not possible to 

conclude more. 

 

If we focus on factor 𝜆𝐹𝑢
(1/3→1/2)

 which correspond to the 

ratio between 1/2 and 1/3 reduced scale, because there are 

probably not side effects at these scales, material scale 

effects and plate’s thickness distortion would be the only 

phenomena which may impact 𝜆𝐹𝑢
(1/3→1/2)

. Otherwise, 

based on results displayed on tables 2 and 3, we obtain 

𝜆𝐹𝑢
(1/3→1/2)

= 2.22 which is very close to the theoretical 

one 𝜆𝐹𝑢
(th,1/3→1/2)

= 𝜆𝐹𝑢
(th,1/3)

/𝜆𝐹𝑢
(th,1/2)

= 2.25 . So, two 

hypotheses may be considered: plate’s thickness 

distortion does not impact 𝜆𝐹𝑢
(1/3→1/2)

 and there are not 

material scale effects; or plate’s thickness distortion 

impacts 𝜆𝐹𝑢
(1/3→1/2)

 and there are material scale effects, but 

these two phenomena compensate. Because of a lack of 

information about how much material scale effects and 

plate’s thickness distortion influence 𝜆𝐹𝑢 , it is not 

possible to conclude more. 

 

2.3.3 Load displacement curves 

In order to establish similitude laws to the structure, 

connections load displacement curves at full scale and 

reduced scale must be similar [6], [42], [43]. Two curves 

are similar if two values 𝜆𝑢 and 𝜆𝐹 exist, such as, at any 

reduced scale displacement 𝑢(R) , 𝑢(F)  and 𝐹(F)  can be 

expressed as following: 𝑢(F) = 𝜆𝑢𝑢(R), 𝐹(F) = 𝜆𝐹𝐹(R) , 

with 𝐹(F)  and 𝐹(R)  loads corresponding to 𝑢(F)  and 𝑢(R) 

displacements respectively.  

 

In other words, two curves are similar if the full scale one 

can be established from the reduced scale one, using two 

scale factor 𝜆𝑢  and 𝜆𝐹 . Then, scale factors 𝜆𝑢  and 𝜆𝐹 

allow to establish the structure similitude laws, but this is 

not investigated in this article. For curves being similar, 

their characteristics scale factors have to satisfy the 

following similitude relationships obtained by DA: 

 

{

[𝑓
0
] = 1

[𝑟2] = 1

[𝑢𝑢] = [𝐹𝑢]/[𝐾𝑒]

⇒ {

𝜆𝑓0 = 1

𝜆𝑟2 = 1

𝜆𝑢𝑢 = 𝜆𝐹𝑢/𝜆𝐾𝑒

 (12) 

 

Then, 𝜆𝑢  and 𝜆𝐹  factors can be obtained by the 

relationship (13), (14) or (15) : 

 

{
[𝑢] = [𝑢𝑢]

[𝐹] = [𝐹𝑢]
⇒ {

𝜆𝑢 = 𝜆𝑢𝑢

𝜆𝐹 = 𝜆𝐹𝑢
 (13) 

{
[𝑢] = [𝐹𝑢]/[𝐾𝑒]

[𝐹] = [𝐹𝑢]
⇒ {

𝜆𝑢 = 𝜆𝐹𝑢/𝜆𝐾𝑒

𝜆𝐹 = 𝜆𝐹𝑢
 (14) 

{
[𝑢] = [𝑢𝑢]

[𝐹] = [𝑢𝑢][𝐾𝑒]
⇒ {

𝜆𝑢 = 𝜆𝑢𝑢

𝜆𝐹 = 𝜆𝑢𝑢𝜆𝐾𝑒
 (15) 

 

Noted that relationships (13) to (15) perfectly match if 

equation (12) is satisfied.  

 

Considering the obtained model curves (Figures 6, 7 and 

8) and their corresponding characteristics scale factors 

(tables 4 and 5), relationships given by the equation (12) 

are not satisfied. Therefore, 𝜆𝑢  and 𝜆𝐹  factors given by 

relationships (13) to (15) are not correct (they do not 

enable to reproduce the exact full-scale curve from the 

reduced scale one). However, assume that for some of 

these relationships, 𝜆𝑢 and 𝜆𝐹 factors enable to reproduce 

an approximate full-scale curve from the reduced scale 

one. For each factor given by relationships (13) to (15), an 

error function is introduced: 

 

𝜀 = √∑ 𝜀𝑖
2

𝑖

 (16) 
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with 𝜀𝑖 = (𝐹(F) − 𝐹(F,est))/𝐹(F) , F(F) corresponding to 

𝑢(F) = 𝜆𝑢𝑢(R)  and 𝐹(F,est) = 𝜆𝐹𝐹(R) . 𝜀  corresponds to a 

quadratic mean of the error 𝜀𝑖 for each point of the curves.  

 

Best choices for 𝜆𝑢  and 𝜆𝐹  scale factor could be those 

which minimize deviation 𝜀 . The lower 𝜀  is, the more 

similar are the displacement curves. Then it is so to 

determine which of these relationships correspond to the 

smallest deviation 𝜀 The Figures 9, 10 and 11 show that, 

from 1/3 reduced scale, deviations resulting from 

equations (13) and (14) are relatively close to each other, 

compared to the one resulting from equation (15). This 

may be explained by the fact that influence of 𝐹𝑢 on curve 

generally is higher than that of 𝐾𝑒 , 𝑢𝑢 , 𝑓0  and 𝑟2 . So, 

influence of 𝜆𝐹  factor would be higher than 𝜆𝑢  factor. 

Furthermore, equations (13) and (14) only differentiate on 

the least influent factor 𝜆𝑢, so deviations resulting from 

these equations are very close from each other. In the 

same way, equations (14) and (15) only differentiate on 

the most influent 𝜆𝐹 , so deviations resulting from these 

equations are very different from each other. More 

particularly, equation (13) or (14) results to a smaller 

deviation than equation (15). 

 

Deviations between real and estimated full scale curves 

can also be investigated through their characteristics such 

as 𝐾𝑒 , 𝐹𝑢  and 𝑢𝑢 . Comparing real and estimated curves 

using equation (13) (Figure 9), we notice that 𝐹𝑢 and 𝑢𝑢 

are the same, this is because only 𝐹𝑢  and 𝑢𝑢  are 

considered in equation (13). In the same way, comparing 

real curve and estimated curve using equation (14) (Figure 

10), we notice that 𝐹𝑢 and 𝐾𝑒  are the same, because only 

𝐹𝑢  and 𝐾𝑒  are considered in equation (14). Finally, 

comparing real curve and estimated curve using equation 

(15) (Figure 11), we notice that 𝑢𝑢 and 𝐾𝑒 are the same, 

because only 𝑢𝑢 and 𝐾𝑒 are considered in equation (15). 

 

 

 

 

Figure 9: Full scale curve estimation using equation (13), from 
1/3 reduced scale 

 

Figure 10: Full scale curve estimation using equation (14), 

from 1/3 reduced scale 

 

Figure 11: Full scale curve estimation using equation (15), 

from 1/3 reduced scale 

3 CONCLUSIONS 

These works are the first step of a research program to 

establish similitude laws to study mid and high-rise timber 

buildings behaviour. 

 

First, similitude laws were established, using DA method, 

allowing to estimate the main connections mechanical 

characteristics. Experiments were carrying on connection 

in order to determine their characteristics, then deduced 

experimental scale factors are compared with theoretical 

ones. Discrepancies were observed between experimental 

and theoretical scale factors. For stiffness scale factor, 

these deviations may be explained by the fact that edge 

spacing and plate’s thickness do not satisfy the similitude 

relationships because of several geometrical “distortions”. 

For strength scale factor, causes of the deviations may be 

plate’s thickness distortion or side effects or material scale 

effects or both. 

 

Then, characteristics scale factors were used to study 

connections load displacement curve similitude, in order 

to establish similitude laws to the structure. This curve 

similitude between scale and reduced scale was evaluated, 

and optimal scale factors associated to load displacement 

curve were investigated. Several potential relations 
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providing scale factor values were defined, then the best 

one was determined, based on both 1/2 and 1/3 scales. 

 

Based on connection behaviour similitude evaluation, 

further studies allowing to establish similitude laws to the 

structure need to be performed. 
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