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Homology of depth-graded motivic Lie algebras

and koszulity

par Benjamin ENRIQUEZ et Pierre LOCHAK

Résumé. Homologies d’algèbres de Lie graduées associées aux
algèbres de Lie motiviques et koszulité. La conjecture de Broad-
hurst-Kreimer (BK) décrit la série de Hilbert d’une algèbre de
Lie bigraduée a reliée aux nombres multizétas. Brown a conjec-
turé une description de l’homologie de a (conjecture homologique
(CH)), et montré qu’elle implique la conjecture BK. Nous mon-
trons qu’une partie de CH est équivalente à une présentation de
a, et que la partie restante de CH est équivalente à un énoncé plus
faible. Nous montrons enfin qu’en admettant la première partie de
CH, la partie restante de CH est équivalente à l’un des énoncés
suivants : (a) annulation du troisième groupe d’homologie d’une
algèbre de Lie avec présentation quadratique, construite à partir
des polynomes de périodes des formes modulaires ; (b) koszulité
de l’algèbre enveloppante de cette algèbre de Lie.

Abstract. The Broadhurst-Kreimer (BK) conjecture describes
the Hilbert series of a bigraded Lie algebra a related to the multi-
zeta values. Brown proposed a conjectural description of the ho-
mology of this Lie algebra (homological conjecture (HC)), and
showed it implies the BK conjecture. We show that a part of HC
is equivalent to a presentation of a, and that the remaining part
of HC is equivalent to a weaker statement. Finally, we prove that
granted the first part of HC, the remaining part of HC is equi-
valent to either of the following equivalent statements : (a) the
vanishing of the third homology group of a Lie algebra with qua-
dratic presentation, constructed out of the period polynomials of
modular forms ; (b) the koszulity of the enveloping algebra of this
Lie algebra.

Introduction

0.1. The background. The multizeta values (MZVs) are a family of real
numbers ζ(n1, .., ns), where s ≥ 1 and n1, . . . , ns−1 ≥ 1, ns ≥ 2 ([Z]).
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Denote by Z ⊂ R the Q-vector subspace spanned by these numbers ; it
is a subring of R. A wealth of algebraic relations between these numbers
are known ; in particular either of the following two types of relations are
expected to provide a complete set of relations between the MZV’s :
• associator relations arise from the fact that the MZVs are the coeffi-

cients of an analytic object called the Knizhnik-Zamolodchikov associator,
and that this object satisfies the “pentagon and duality relations” ; additio-
nal relations relating the MZVs and the complex number 2πi can be derived
in the same way from the “hexagon relation” ([Dr, LM]) ;
• the (regularized) double shuffle relations are derived from the repre-

sentations of the MZVs both as (discrete) sums and as iterated integrals
([Rac]).

The connection between the various associator relations has been eluci-
dated in [Fur1]. It can be explained as follows. Let Zassoc (resp., Z̃assoc)
be the Q-ring generated by formal analogues ζf (n1, . . . , ns) of the genuine
MZVs (resp., these analogues and a formal analogue (2πi)f of 2πi), sub-
ject to the pentagon and duality relations (resp., to these relations and the

hexagon relation). Then Z̃assoc is isomorphic to the quadratic extension of
Zassoc generated by (2πi)f subject to the relation ((2πi)f )2 = −24ζf (2), so

Z̃assoc is a free Zassoc-module with basis (1, (2πi)f ).
It has also been shown ([Fur2]) that the associator relations on MZVs

actually imply the double shuffle relations. More precisely, let Zds be the
Q-ring generated by the ζf (n1, . . . , ns), subject to the double shuffle and
regularization relations. Then there is a surjective ring morphism Zds →
Zassoc, taking each generator to the one with the same label.

A ring Zmot of motivic analogues of the MZVs has been constructed
([B1], with the notation H) ; it is linearly spanned by motivic analogues
ζm(n1, . . . , ns) of the MZVs. The motivic MZVs satisfy the associator re-
lations (see [B3], end of Section 2.2) so there is a ring morphism Zassoc →
Zmot, given by ζf (n1, . . . , ns) 7→ ζm(n1, . . . , ns). Finally, there is a (period)
evaluation morphism Zmot → Z, given by ζm(n1, . . . , ns) 7→ ζ(n1, . . . , ns).
All this gives rise to a sequence of surjective ring morphisms

(0.1) Zds → Zassoc → Zmot → Z.
The rings Zmot, Zassoc, Zds are equipped with a grading, called the weight
grading, for which ζm(n1, . . . , ns) and ζf (n1, . . . , ns) have weight n1 + · · ·+
ns ; the (very strong) direct sum conjecture asserts that this also defines
a grading on the ring Z. The rings Z,Zmot,Zassoc,Zds are also equipped
with an increasing filtration, the depth filtration, whose dth part is the
linear span of all the elements corresponding to (n1, . . . , ns), with s ≤ d.
This filtration is compatible with the grading, unconditionally in the case
of Zmot,Zassoc,Zds, and under the direct sum conjecture in the case of Z.
The Hilbert series of Zmot with respect to the weight grading has been
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computed in [B1]. It is generally conjectured that the maps from (0.1) are
isomorphisms compatible with the gradings and filtrations. Under the direct
sum conjecture, the depth-graded of Z is a bigraded algebra ; a formula
for its double Hilbert series is conjectured in [BK] ; we will call this the
Broadhurst-Kreimer (BK) conjecture. Combining the BK conjecture with
that of the isomorphism of Z, Zmot, Zassoc and Zds, one obtains three
variants of the BK conjecture predicting the double Hilbert series of the
depth-graded of Zmot, Zassoc and Zds.

The graded and filtered algebras Zmot, Zassoc and Zds are related to prou-
nipotent Lie groups as follows. Set Z0

mot := Zmot/(ζm(2)), then there is an
isomorphism of graded and filtered algebras Zmot ' Z0

mot⊗Q[X], where X
has weight 2 and all the powers X,X2, . . . have depth 1 ([B1], (2.13), with
the notation H = Zmot, A = Z0

mot ; X corresponds to ζm(2)). Moreover,
Z0
mot identifies with the function algebra of a prounipotent group scheme

Um arising in the theory of mixed Tate motives ([B1], Section 2.1 and main
result) and is the space in which Goncharov’s motivic MZV’s are defined
([G1, G2]). Its Lie algebra um is graded and equipped with a decreasing fil-
tration, which induces an isomorphism Z0

mot ' U(um)∨ of graded and filte-
red algebras. In the same way, the fact that the rings Zassoc,Zds are polyno-
mial in infinitely many variables ([And], Remark 25.9.3.2) implies that there
are isomorphisms of graded and filtered algebras Zassoc ' Z0

assoc ⊗ Q[X],
Zds ' Z0

ds⊗Q[X], where X is a formal variable of weight 2 with X,X2, . . .

of depth 1, and Z0
assoc := Zassoc/(ζf (2)), Z0

ds := Zds/(ζf (2)) ; moreover,
there are isomorphisms of graded and filtered algebras Z0

assoc ' U(grt1)∨

([Dr], Prop. 5.9), Z0
ds ' U(ds0)∨ ([Rac], Thm. I), where grt1 is the “graded

version of the Grothendieck-Teichmüller Lie algebra” arising in the study of
associators, and ds0 is the “double shuffle Lie algebra” arising in the study
of combinatorial relations between MZVs. Here and below we consider, as
is usual in this context, graded duals, the graded pieces of the various alge-
bras being always finite dimensional. The above facts can be expressed as
the following compatible isomorphisms of graded and filtered algebras

Zmot ' U(um)∨⊗Q[X], Zassoc ' U(grt1)∨⊗Q[X], Zds ' U(ds0)∨⊗Q[X],

which in their turn yield compatible isomorphisms of bigraded algebras

grdpth(Zmot) ' grdpth(U(um))∨ ⊗Q[X],

grdpth(Zassoc) ' grdpth(U(grt1))∨ ⊗Q[X],

grdpth(Zds) ' grdpth(U(ds0))∨ ⊗Q[X].

The variants of the BK conjecture predicting the double Hilbert series of
grdpth(Zassoc) and its analogues therefore translate into conjectural formulas
for the double Hilbert series of grdpth(U(grt1)) and its analogues, which will
be recalled in Section 3 (Conjecture 3.1).
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0.2. Contents of the paper. Recently, F. Brown proposed a conjecture
describing the homology of these bigraded Lie algebras ([B2]) and implying
these conjectural formulas. The main purpose of this paper is to partially
reduce and derive some consequences of Brown’s homological conjecture.

In Section 1, we introduce several objects : the Lie algebras um, grt1, ds0 ;
the sequence of morphisms um → grt1 → ds0 of Lie algebras dual to the
sequence of morphisms Z0

ds → Z0
assoc → Z0

mot induced by (0.1) ; the depth-
graded version of these Lie algebras and of this sequence of morphisms ;
and an upper bound Lie algebra ls of grdpth(ds0). In Section 2, we present
some known results on these Lie algebras. In Section 3, we present the
BK conjectures and its variants, as well as Brown’s homological conjecture,
which presents itself in four versions relative to the Lie algebras um, grt1,
ds0, ls ; we prove that the version relative to ls implies all the other versions.

The main results of the paper are contained in the remaining sections.
In Section 4, we show that a part of the homological conjecture for one of
these Lie algebras (more precisely, the part predicting the values of the first
and second homology groups) is equivalent to a presentation of the same
Lie algebra. The proof of this result is close to the proof that any positively
graded Lie algebra L has a presentation with generating space H1(L) and
relation space H2(L), where Hi(L) denotes the ith Lie algebra homology
group of L with trivial coefficients ([H], Section 3) ; the arguments from
[H] are themselves analogues of those of [S], Chap. 2 in the pro-p group
situation. In Section 5, we show that the remaining part of the homological
conjecture, more precisely, the vanishing of the homology groups of order
≥ 3, is equivalent to a weaker statement, namely the vanishing of the third
homology group. Again, the technical result used here is an analogue of a
homological result for pro-p groups from [S]. In Section 6, we relate the ho-
mological conjecture with the structure of a Lie algebra M0 with quadratic
presentation, constructed out of the period polynomials of cuspidal modu-
lar forms. We show that granted the first part of the homological conjecture
relative to any of the Lie algebras um, grt1, ds0, ls, the remaining part of this
conjecture is equivalent to either of the following equivalent statements :
(a) the vanishing of the Lie algebra homology group with trivial coefficients
H3(M0,Q) ; (b) the koszulity of the enveloping algebra U(M0).

1. Motivic and related Lie algebras

In this section, we recall a few facts about the Lie algebra gm attached
to the category of mixed Tate motives (§1.1) ; the realization of its Lie
subalgebra um by derivations of a free Lie algebra in two generators (§§1.2,
1.3) ; and the construction of Lie algebras related to um (§§1.4, 1.5, 1.6).
These are all defined over Q.
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1.1. Motivic background. The Tannakian category MT(Z) of mixed
Tate motives over Z can be defined unconditionally (see [DG] ; for a survey
see [And]). It is equipped with the de Rham fiber functor. Let GMT(Z) be
the automorphism group of this functor ; this is a group scheme over Q. It
decomposes as a semidirect product GMT(Z) = UMT(Z)oGm, where UMT(Z) is
a prounipotent Q-group scheme. Its Lie algebra decomposes as gm = umoQ.
It follows from work of Borel and Beilinson that there exist elements s2i+1,
i ≥ 1 of um, freely generating um, and a right inverse Gm → GMT(Z) of the
projection GMT(Z) → Gm, for which each s2i+1 has weight 2i + 1. We will
henceforth view um as graded by this grading.

1.2. The Poisson-Ihara Lie algebra (g, 〈, 〉). Let e0, e1 be free non-
commutative variables of weight 1, and let g := L(e0, e1) be the free Q-Lie
algebra generated by these variables ; its bracket will be denoted [, ]. There
is a linear map g → Der(g), from g to the Lie algebra of its derivations,
given by f 7→ Df , where Df : e0 7→ 0, e1 7→ [e1, f ]. When equipped with
the Poisson-Ihara Lie bracket 〈, 〉 given by

〈f, g〉 := [f, g] +Df (g)−Dg(f),

g is a Lie algebra, and the map f 7→ Df is a Lie algebra morphism. Mo-
reover, (g, 〈, 〉) is graded for the weight grading. The Lie algebra (g, [, ]) is
also equipped with a grading, for which e1 has degree 1 and e0 has degree
0. This equips (g, 〈, 〉) with a grading, the depth grading. The depth filtra-
tion on (g, 〈, 〉) is the decreasing Lie algebra filtration given by F i(g) :=
⊕j|j≥i{part of g of depth j}.

1.3. The Lie algebra morphism um → (g, 〈, 〉). The motivic Galois
group GMT(Z) acts naturally on the fundamental groupoids of certain geo-

metric objects of MT(Z). In the case of P1
Q − {0, 1,∞}, this induces a

weight-graded Lie algebra morphism um → Der(g). It can be shown that
this morphism factors through the inclusion (g, 〈, 〉) ⊂ Der(g) and therefore
gives rise to a graded Lie algebra morphism um → (g, 〈, 〉). Moreover, it
follows from [B1] that this morphism is injective.

1.4. Lie algebras related to um. In [Dr, Rac], explicit weight-graded Lie
subalgebras grt1 and ds0 of (g, 〈, 〉) are introduced.

There is a sequence of Lie algebra morphisms

(1.1) um ' im(um → g) ↪→ grt1 ↪→ ds0 ⊂ (g, 〈, 〉)

where, as mentioned above, the initial isomorphism follows from [B1], and
the next injections follow from work of Drinfeld and Ihara, and from [Fur2],
respectively.
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1.5. The Lie algebra ls. The Lie algebra ds0 is defined to be the set of
elements of the free algebra generated by e0, e1 which are primitive for two
coproducts, the shuffle and the stuffle coproduct. The associated graded of
the stuffle coproduct for the depth filtration can be computed explicitly.
This gives rise to an explicit upper bound Lie algebra for the depth-graded
of the double shuffle Lie algebra ds0, called the “linearized shuffle” Lie
algebra and denoted ls. We have therefore a double inclusion grdpth(ds0) ⊂
ls ⊂ (g, 〈, 〉) (see [B2]).

Remark. This space was introduced earlier in [IKZ] and, in dual form, in
[G1, G2] ; moreover, the Lie algebras ls and ds0 are respectively isomorphic

to the Lie algebras introduced in [E1, E2] under the notation ARI
al/al
ent and

ARI
al/il
ent .

1.6. Bigraded Lie algebras. The depth filtration of the Lie algebra
(g, 〈, 〉) induces a filtration on each of its weight-graded Lie subalgebras ; the
associated graded Lie algebra is then a (depth,weight)-bigraded Lie subal-
gebra of grdpth(g, 〈, 〉) = (g, 〈, 〉). The sequence (1.1) therefore gives rise to
a sequence

(1.2) grdpth(um) ↪→ grdpth(grt1) ↪→ grdpth(ds0) ↪→ ls ⊂ (g, 〈, 〉).

Numerical explorations of these algebras (unpublished) have been conduc-
ted by various authors since the early nineties, reaching weights roughly
between 20 and 30. They seem to confirm that the first two injections of
(1.1), and the first three injections of (1.2) could in fact be isomorphisms.

2. Known results on depth-graded Lie algebras

In this section, we recall some basic results on the Lie algebras grdpth(um),
grdpth(grt1), grdpth(ds0) and ls. We first introduce the space P of even period
polynomials (§2.1) and then, using it, we make explicit a system of genera-
tors and relations for the above Lie algebras (§§2.2, 2.3). Finally we draw
some consequences for ls (§2.4) and as well as for the other Lie algebras a
(§2.5).

2.1. The spaces S and P. Let S denote the (complex) vector space of
cusp forms for the full modular group PSL2(Z), which decomposes as S =⊕

n S2n where S2n denotes the space of forms of weight 2n (n ≥ 0) ; one
sets S(s) :=

∑
n≥0 dim(S2n)s2n. Then

(2.1) S(s) =
s12

(1− s4)(1− s6)
.

Let P̃2n denote the Q-vector space of all even period polynomials of degree
2n− 2, which are the polynomials in Q[X,Y ] satisfying certain symmetry
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conditions : evenness in X and Y , antisymmetry with respect to the ex-
change of X and Y and a functional equation. The additional condition of
divisibility by X2Y 2 defines a hyperplane P2n ⊂ P̃2n. The Eichler-Shimura
correspondence sets up a linear isomorphism S2n ' P2n⊗QC for any n ≥ 0.
We set P :=

⊕
n P2n.

2.2. Generators and relations in ls.

2.2.1. Generators. The depth one subspace ls1 of ls is 1-dimensional in
each odd weight ≥ 3 and 0-dimensional in all the other weights, therefore
if O(s) :=

∑
n≥0 dim(ls1[n])sn, then

(2.2) O(s) =
s3

1− s2

(where [n] means the part of weight n). On the other hand, there exists an
injective linear map e : P → ls4, compatible with the weight gradings on
both sides (see [B2]).

2.2.2. Relations. As mentioned above, there is an isomorphism of gra-
ded vector spaces ls1 ' X3C[X2], where the degree on the right-hand
side is the degree in X. On the other hand, there is an injection P ↪→
X2Y 2C[X2, Y 2]as, where as means antisymmetry in X2, Y 2, and where
P2n maps to the part of total degree 2n− 2. The composition

P ↪→ X2Y 2C[X2, Y 2]as
XY×−→ X3Y 3C[X2, Y 2]as ' Λ2(X3C[X2]) ' Λ2(ls1)

is then an injective graded linear map P → Λ2(ls1). On the other hand,
the Lie bracket of ls induces a linear map Λ2(ls1) → ls2. It follows from
[GKZ, Sch] that these two maps combine into an exact sequence

0→ P→ Λ2(ls1)→ ls2 → 0.

2.3. Generators and relations in grdpth(um), grdpth(grt1), grdpth(ds0),
ls. Let a be one of the Lie algebras grdpth(um), grdpth(grt1), grdpth(ds0),
ls. There are isomorphisms ai ' lsi for i = 1, 2 between the depth 1, 2
subspaces of a and ls. Therefore there is an exact sequence

0→ P→ Λ2(a1)→ a2 → 0.

isomorphic to the analogous exact sequence for the Lie algebra ls.
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2.4. Consequences for ls.

2.4.1. A model Lie algebra M. We define a (weight, depth)-bigraded Lie
algebra M, which will be called the “model” Lie algebra, by the following
presentation. The space of generators is the direct sum of :
• a copy of the (weight, depth)-bigraded vector space ls1 ;
• a copy P{4} of the space P, where {4} means that for each n, the

weight n component of P is placed in bidegree (n, 4).
The map P→ Λ2(ls1) constructed in Subsection 2.2.2 induces a bigraded

linear map P{2} ↪→ Λ2(ls1), where {2} has the same meaning as above. We
then obtain a composed map

P{2} ↪→ Λ2(ls1) ' L2(ls1) ↪→ L2(ls1 ⊕ P{4}) ↪→ L(ls1 ⊕ P{4}),

where L(V ) is the free Lie algebra generated by a (possibly graded) vector
space V , and Li(V ) is its degree i part (with respect to V ). The space of
defining relations of M is defined to be the image of this map. We have
therefore

M := L(ls1 ⊕ P{4})/(P{2}),

where (P{2}) is the ideal generated by the image of the map P{2} ↪→
L(ls1 ⊕ P{4}).

2.4.2. A morphism M → ls. It follows from Subsections 2.2.1 and 2.2.2
that there exists a morphism of bigraded Lie algebras

(2.3) ϕ : M→ ls,

defined by restriction to the space of generators of M as follows : the res-
triction of ϕ to ls1 is the canonical injection ls1 ↪→ ls ; its restriction to

P{4} is the composed map P{4} ' P
e→ ls4 ↪→ ls.

2.4.3. The homology of ls. If a is a Lie algebra, we denote by H·(a) its
homology with coefficients in the trivial module k, given by the homology

of the complex . . . → Λ3(a)
[,]⊗id→ Λ2(a)

[,]→ a → 0. This is a graded cocom-
mutative coalgebra, depending functorially on a.

It follows from the definition of M that

H1(M) ' ls1 ⊕ P{4}.

Moreover, the composed map P{2} → Λ2(ls1)→ Λ2(M)
[,]→M is zero. This

induces a map

P{2} → H2(M).
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One then checks that these maps are compatible with coproducts, so that
the diagram

(2.4) P{2} //

��

Λ2(ls1) // Λ2(ls1 ⊕ P{4})

��
H2(M) // Λ2(H1(M))

commutes. Using the morphism H·(M)→ H·(ls) induced by the morphism
(2.3), one obtains :

Proposition 2.1. i) There exists a bigraded linear map ls1 ⊕ P{4} →
H1(ls) ;

ii) there exists a bigraded linear map P{2} → H2(ls) ;

iii) the diagram (2.4) commutes.

2.5. Consequences for depth-graded Lie algebras. Let a be one of
the Lie algebras grdpth(um), grdpth(grt1), grdpth(ds0), ls.

2.5.1. The Lie algebra M0. We set

M0 := L(ls1)/(P{2}).

Then M0 is a (weight, depth)-bigraded Lie algebra. Then M can be iden-
tified with the free product of Lie algebras M0 ∗ L(P{4}).

2.5.2. A morphism M0 → a. It follows from Subsection 2.3 that there
exists a morphism of bigraded Lie algebras

ϕ0 : M0 → a,

defined by restriction to the space of generators of M0 as follows : the
restriction of ϕ0 to ls1 is the canonical injection ls1 ' a1 ↪→ a.

2.5.3. The homology of a. The map ls1 →M0 induces a linear map ls1 →
H1(M0). The linear map P{2} → Λ2(ls1) is such that the composite map

P{2} → Λ2(ls1) ↪→ Λ2(M0)
[,]→M0 is zero. One derives from there a linear

map P{2} → H2(M0). One checks that the diagram

(2.5) P{2} //

��

Λ2(ls1)

��
H2(M0) // Λ2(H1(M0))

commutes. Using functoriality of Lie algebra homology with respect to the
morphism ϕ0 : M0 → a, and the fact that the morphism M0 → a is an
isomorphism in depths 1 and 2, one obtains :
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Proposition 2.2. i) There exists a bigraded linear map ls1 → H1(a),
which is an isomorphism in depth 1 ;

ii) there exists a bigraded linear map P{2} → H2(a), which is an iso-
morphism in depth 2 ;

iii) the diagram (2.5) commutes.

3. Conjectures on depth-graded Lie algebras

We present the motivic/combinatorial analogue of the Broadhurst-Krei-
mer conjecture, which is a statement about Hilbert series (§3.1). We then
present the homological counterpart of this conjecture, due to Brown, in
§3.2. We then discuss the relations between both conjectures (§3.3).

3.1. Hilbert series. Based on numerical experimentation, the authors of
[BK] formulated a conjecture on dimensions of the depth-graded spaces
of (real) multizeta values. The authors of [B2, CGS] then proposed moti-
vic/combinatorial analogues of this conjecture, which we now recall.

Conjecture 3.1. ([BK, B2, CGS]) Let a be one of the Lie algebras grdpth(um),
grdpth(grt1), grdpth(ds0), ls. Let S(a) be its symmetric algebra and denote
by S(a)[n, d] its piece of weight n and depth d. Then there is an identity of
formal series in two variables s, t :∑

n,d≥0

dimS(a)[n, d] · sntd =
1

1−O(s)t+ S(s)t2 − S(s)t4
,

where O(s), S(s) are defined in (2.2), (2.1).

Conjecture 3.1 for the Lie algebra a will be denoted HS(a) (“Hilbert
series statement for a”). Then :

Proposition 3.1. There holds the sequence of implications

HS(ls)⇒ HS(grdpth(ds0))⇒ HS(grdpth(grt1))⇒ HS(grdpth(gm)).

Proof. Set a0 := gm, a1 := grdpth(grt1), a2 := grdpth(ds0), a3 := ls. For

i = 0, . . . , 3, let fi(s, t) :=
∑

n,d≥0 dimS(ai)[n, d] · sntd ∈ Z≥0[t][[s]]. The

inclusions a0 ⊂ · · · ⊂ a3 imply f0(s, t) ≤ · · · ≤ f3(s, t), where ≤ means
that the difference belongs to Z≥0[t][[s]]. The structure result on gm (see
Subsection 1.1) implies that f0(s, 1) = 1/(1−O(s)).

Fix i ∈ {0, 1, 2}. The statement HS(ai+1) implies that fi+1(s, t) = 1/(1−
O(s)t+ S(s)t2 − S(s)t4) =: g(s, t). It follows that

(3.1) fi(s, t) ≤ g(s, t).

On the other hand,

(3.2) fi(s, 1) ≥ f0(s, 1) = g(s, 1).
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If f, g belong to Z≥0[t] and are such that f(t) ≤ g(t) and f(1) ≥ g(1),
then f = g. It follows that if F,G belong to Z≥0[t][[s]] and are such that
F (s, t) ≤ G(s, t) and F (s, 1) ≥ G(s, 1), then F = G. (3.1) and (3.2) then
imply fi(s, t) = g(s, t), therefore HS(ai). �

3.2. Homology.

Conjecture 3.2. ([B2]) Let a be one of grdpth(um), grdpth(grt1), grdpth(ds0),
ls.

i) There exists a bigraded linear isomorphism ls1⊕P{4} ' H1(a), such
that the diagram

ls1 ⊕ P{4} //

&&

H1(a)

��
H1(ls)

commutes ;

ii) the map P{2} → H2(a) is a linear isomorphism ;

iii) for any k ≥ 3, Hk(a) = 0.

Conjecture 3.2 for the Lie algebra a will be denoted HC(a) (“homology
conjecture for Lie algebra a”). Taking into account Proposition 2.2, ii),
HC(a), ii), says that H2(a) is concentrated in depth 2. It also follows from
Proposition 2.2 that for any Lie algebra a in sequence (1.2), the following
diagram commutes :

P{2} //

��

Λ2(ls1)

��
H2(a) // Λ2(H1(a))

3.3. Relation between the Hilbert series and the homological
conjectures. It has been proved in [B2] that for a one of the Lie alge-
bras grdpth(um), grdpth(grt1), grdpth(ds0), ls, HC(a) implies HS(a).

4. Homological conjecture and presentation

In this section we establish the equivalence between part of the homolo-
gical Conjecture 3.2 and presentation results for the corresponding Lie al-
gebras. In §4.1, we prove one implication, and in §4.2, we show the converse
implication. As mentioned in the Introduction, the results of this section
are close to those of [H] and [S], Chap. 2.
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4.1. From presentation to homology. If V is a vector space and I ⊂
L(V ) is a Lie ideal, then the Lie analogue of Hopf’s formula (see [H], Pro-
position 5.6) gives

H2(L(V )/I) = I/[L(V ), I];

it can be derived from the definition of the homology of L(V )/I using a
long exact sequence.

If now R is a vector subspace of L2(V ) and I := (R) ⊂ L(V ) is the
ideal generated by R, then I decomposes as I = R ⊕ [V,R] ⊕ [V, [V,R]] ⊕
· · · according to the degree with respect to V , while [L(V ), I] = [V,R] ⊕
[V, [V,R]]⊕ · · · ; it follows that

(4.1) H2(L(V )/(R)) = R.

One derives from there

(4.2) H2(M) = P{2}.
Also recall from §2.4.3 that

(4.3) H1(M) = M/[M,M] = ls1 ⊕ P{4}.
(4.3) and (4.2) then imply :

Lemma 4.1. Let a be one of the Lie algebras grdpth(um), grdpth(grt1),
grdpth(ds0), ls. If there is a bigraded Lie algebra isomorphism M ' a, such

that the diagram M //

  

a

��
ls

commutes, then HC(a) i) and ii) hold.

4.2. From homology to presentation. Let g be a positively graded Lie
algebra, so g = g1 ⊕ g2 ⊕ . . ., with [gi, gj ] ⊂ gi+j . The grading of g then
induces a positive grading on each of the homology groups of g. There is
a quotient map g → H1(g) = g/[g, g], which is surjective and graded. Set
H := H1(g) and let H = H1 ⊕H2 ⊕ . . . be the degree decomposition of H.
Let us choose a graded right inverse H → g of the projection map g→ H.
It gives rise to a surjective, graded Lie algebra morphism L(H) → g. Let
I be the kernel of this morphism. Then I is a graded ideal of L(H) ; let
I = I2 ⊕ I3 ⊕ . . . be the degree decomposition of I. Then there is a graded
Lie algebra isomorphism L(H)/I ' g. Equation (4.1) then implies that
H2(g) = I/[L(H), I]. Assume that H2(g) is concentrated in degree 2. Then

I3 = [H1, I2], I4 = [H2 + [H1, H1], I2] + [H1, I3],

I5 = [H3 +[H1, H2]+[H1, [H1, H1]], I2]+[H2 +[H1, H1], I3]+[H1, I4], etc.

It follows that, for any n > 0,

(4.4) In+2 ⊂
∑
k≥1

∑
n1,...,nk>0,

n1+···+nk=n

[Hn1 , [Hn2 , . . . , [Hnk
, I2]]].
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Since, conversely, the right-hand side of (4.4) is contained in its left-hand
side, one has, for any n > 0,

In+2 =
∑
k≥1

∑
n1,...,nk>0,

n1+···+nk=n

[Hn1 , [Hn2 , . . . , [Hnk
, I2]]].

It follows that I = (I2). We also have H2(g) ' I2, and the injective com-
posed map H2(g) ' I2 ⊂ L2(H1) ⊂ L2(H) ' Λ2(H1(g)) can be identified
with the coproduct map H2(g)→ Λ2(H1(g)). It follows that this coproduct
map is injective.

All this implies :

Lemma 4.2. If g is a positively graded Lie algebra, such that H2(g) is
concentrated in degree 2, then the coproduct map H2(g) → Λ2(H1(g)) is
injective, and there exists an isomorphism of graded Lie algebras

g ' L(H1(g))/(H2(g)),

where H2(g) is viewed as a subspace of L2(H1(g)) via the sequence of maps
H2(g)→ Λ2(H1(g)) ' L2(H1(g))).

This lemma can be adapted to the case when g is also equipped with
a second grading, compatible with the first one. Let a be one of the Lie
algebras grdpth(um), grdpth(grt1), grdpth(ds0), ls, and assume that it satisfies
HC(a), i) and ii). Then applying the graded version of Lemma 4.2 to a
equipped with the depth grading as the first grading, and the weight grading
as the second grading, we obtain a bigraded isomorphism M ' a.

4.3. Combining Lemma 4.2 with Lemma 4.1, we obtain :

Theorem 4.1. For a one of the Lie algebras

grdpth(um), grdpth(grt1), grdpth(ds0), ls,

the conjunction of HC(a) i) and ii) is equivalent to the existence of a bi-
graded Lie algebra isomorphism M ' a, such that the diagram in Lemma
4.1 commutes.

Remark. Under HC(a) i) and ii), Theorem 4.1 gives a presentation of a.
When a = grdpth(ds0), this presentation was first conjectured in [E1], §§17,
18 and [E2], §§7, 8.

5. Reduction of the homological conjecture

Let g = ⊕i>0gi be a positively graded Lie algebra over a field k of
characteristic 0. We assume that the graded pieces gi are finite dimensional.

Let Mod be the category whose objects are the graded g-modules V of
the form V =

⊕
i∈Z Vi, where each graded piece Vi is finite dimensional
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and Vi = 0 for i � 0, and the morphisms are the graded g-module mor-
phisms. Let Vec denote the category of graded vector spaces with the same
conditions.

Define the valuation v as the map from the set of objects of any of
these categories to Z ∪ {∞} given by v(V ) = min{i ∈ Z, Vi 6= 0} for V a
nonzero object and v(0) = ∞. For a an integer, define the shift operator
by a, denoted V 7→ V [a], as the self-map of the set of objects of any of the
categories Mod or Vec, given by V [a]i = Vi+a for any i ∈ Z.

For k ≥ 0, there is a functor Hk : Mod → Vec given by Hk(V ) :=
Hk(g, V ) (Lie algebra homology group) ; we call it the k-th homology func-
tor.

Let n > 0 be an integer. Denote again by k the trivial g-module (one-
dimensional, concentrated in degree 0), and assume that Hn(g,k) = 0.

Let V be a nonzero object in Mod ; set v := v(V ). For s ≥ 0, define
the truncated module V {s} as the object of Mod given by V {s}i = Vi for
i ≥ v + s, V {s}i = 0 otherwise (in particular, V {0} = V ). Then for any
s ≥ 0, there is an exact sequence in Mod

0→ V {s+ 1} → V {s} → k[s+ v]dim(Vs+v) → 0,

where the last module is a direct sum of copies of shifts of the trivial
module k. The assumption Hn(k) = 0 implies Hn(k[s + v]) = 0, therefore
the homology long exact sequence implies that, for any s ≥ 0, the map
Hn(V {s + 1}) → Hn(V {s}) is onto. For any s ≥ 0, each of the maps of
the sequence Hn(V {s}) → Hn(V {s − 1}) → · · · → Hn(V {0}) = Hn(V ) is
therefore onto, so that

(5.1) the composed map Hn(V {s})→ Hn(V ) is onto.

On the other hand, Hn(V {s}) is the homology group of a complex construc-
ted out of the graded vector space Λ·(g)⊗ V {s} , which is nonzero only in
degrees ≥ v + s, therefore

(5.2) Hn(V {s}) is nonzero only in degrees ≥ v + s.

For any integer k ∈ Z and any s ≥ max(0, k − v + 1), (5.2) implies that
(degree k part of Hn(V {s}))=0 and (5.1) implies that the map (degree k
part of Hn(V {s})) →(degree k part of Hn(V )) is onto, so that (degree k
part of Hn(V )) = 0. It follows that Hn(V ) = 0. Therefore, if Hn(g,k) = 0,
then

(5.3) for any object V of Mod, one has Hn(V ) = 0.

Let U(g) be the universal enveloping algebra of g. When equipped with the
grading induced by g and with the action of g by left multiplication, U(g)
is an object of Mod. The truncation U(g){1} can be identified with the
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kernel U(g)+ of the counit map U(g)→ k. Then there is an exact sequence
in Mod

0→ U(g)+ → U(g)→ k→ 0.

Shapiro‘s lemma implies that Hi(g, U(g)) = 0 for any integer i > 0, whe-
reas H0(g, U(g)) ' k ' H0(g,k). The homology long exact sequence then
implies an isomorphism Hi+1(g,k) ' Hi(g, U(g)+) for any integer i. Com-
bining this equality for i = n with the specialization of (5.3) for V = U(g)+,
we obtain Hn+1(k) = 0.

We summarize these results as follows :

Proposition 5.1. Let g = ⊕i>0gi be a positively graded Lie algebra over
a field k of characteristic 0, such that all the graded pieces gi are finite
dimensional. Let n be an integer ≥ 0. If Hn(g,k) = 0, then for any m ≥ n,
Hm(g,k) = 0.

Remark. Proposition 5.1 illustrates a general principle in homological al-
gebra for (pro)nilpotent objects ; compare in particular Proposition 21 in
[S] (§4) for pro-p groups. �

An immediate corollary of Proposition 5.1 is the following result.

Theorem 5.1. For a one of the Lie algebras

grdpth(um), grdpth(grt1), grdpth(ds0), ls,

item iii) of the Homological Conjecture 3.2 is equivalent to H3(a) = 0.

6. Homological conjecture and koszulity

In this section, we show that for a one of the Lie algebras grdpth(um),
grdpth(grt1), grdpth(ds0) or ls, the conjecture HC(a) implies two equivalent
statements, namely the vanishing of the homology group H3(M0,Q), and
the koszulity of the algebra U(M0), equipped with the depth grading. This
section is organized as follows. In §6.1 we compute the homology of free
products of algebras ; then in §6.2, we use this result to show that HC(a)
implies the vanishing of H3(M0,Q). In §6.3 we use a result of Goncharov
([G1]) to prove a vanishing (ls1 ⊗ P) ∩ (P⊗ ls1) = 0 on the generators and
relations of M0. After recalling some results on Koszul algebras (§6.4), we
study Lie algebras with a quadratic presentation in §6.5 : we prove that
for such a Lie algebra with space of generators V and space of relations
R ⊂ L2(V ), such that (V ⊗ R) ∩ (R ⊗ V ) = 0, the vanishing of the third
Lie algebra homology group is equivalent to the koszulity of its enveloping
algebra. In §6.6 we gather all these results in order to prove the main
Theorem 6.1.
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6.1. Homology of free products of algebras. Let k be a field. The
category of k-algebras with unit is equipped with a coproduct operation
(see [Bbk], Chap. III, p. 195, exercice 6). For A,B two k-algebras with
unit, we denote by A ∗ B their coproduct in this category (also called the
free product of A and B).

The coproduct property implies that if A,B admit presentations of the
form A = T (V )/(R), B = T (W )/(S), where V,W are vector spaces and
R,S are vector subspaces of T (V ), T (W ), then a presentation of A ∗B is

(6.1) A ∗B ' T (V ⊕W )/(R⊕ S),

where we use the canonical injections R ⊂ T (V ) ↪→ T (V ⊕ W ), S ⊂
T (W ) ↪→ T (V ⊕W ).

It is proved in loc. cit. that A∗B is equipped with a complete increasing
filtration P0 ⊂ P1 ⊂ · · · ⊂ A∗B, where Pn is the image of the part of tensor
degree ≤ n of the tensor algebra T (A ⊕ B) under the algebra morphism
T (A⊕ B) → A ∗ B induced by the linear map A⊕ B → A ∗ B, the direct
sum of the canonical maps A → A ∗ B, B → A ∗ B, and that there exist
isomorphisms

P0 ' k, P2n/P2n−1 ' ((A/k)⊗ (B/k))⊗n ⊕ ((B/k)⊗ (A/k))⊗n if n > 0,

P2n+1/P2n ' ((A/k)⊗ (B/k))⊗n ⊗ (A/k)⊕ ((B/k)⊗ (A/k))⊗n ⊗ (B/k)

if n ≥ 0. One derives from there that if A,B are equipped with augmenta-
tion morphisms A → k, B → k with kernels I, J , then injection followed
by product induces an isomorphism
(6.2)

k⊕
(⊕
n>0

(I⊗J)⊗n⊕(J⊗I)⊗n
)
⊕
(⊕
n≥0

(I⊗J)⊗n⊗I⊕(J⊗I)⊗n⊗J
) ∼→ A∗B.

Moreover, the augmentation morphisms A → k, B → k induce an aug-
mentation morphism A ∗B → k, whose kernel I can be identified with the
image of the sum of all the summands of (6.2) except k. Together with the
fact that (6.2) is an isomorphism, this implies :

Lemma 6.1. The map (A ∗ B) ⊗A I ⊕ (A ∗ B) ⊗B J → I induced by the
product is an isomorphism of left A ∗B-modules.

Let C → k be an augmented algebra and let N be a C-module. Recall
that k is a C-module through the augmentation map. Let K ⊂ C be the
kernel of this map ; there is an exact sequence of C-modules

0→ K → C → k→ 0.

As C is a free C-module, one has TorCi (C,k) = 0 for any i ≥ 1. The long
exact sequence for Tor then yields the isomorphism

(6.3) TorCi (k, N) = TorCi−1(K,N) for any i ≥ 1.
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Let now A → k, B → k be augmented algebras and let M be an A ∗ B-
module. The isomorphism (6.3) implies that, for any i > 1, there is an
isomorphism

(6.4) TorA∗Bi (k,M) ' TorA∗Bi−1 (I,M).

Lemma 6.1 then implies that

(6.5) TorA∗Bi (I,M) ' TorA∗Bi−1 ((A∗B)⊗AI,M)⊕TorA∗Bi−1 ((A∗B)⊗BJ,M)

According to (6.2), inclusion followed by product induces an isomorphism
of A-modules

A⊗X ∼→ A ∗B, where X = k⊕
(⊕
n>0

(J ⊗ I)⊗n
)
⊕
(⊕
n>0

(J ⊗ I)⊗n ⊗ J
)

where A ⊗ X is viewed as a free A-module and A ∗ B is viewed as an
A-module under left multiplication. It follows that A ∗ B is free as an A-
module, and therefore is flat over A. Likewise, A ∗ B is flat over B. One
derives from there isomorphisms TorA∗Bi−1 ((A ∗B)⊗A I,M) ' TorAi−1(I,M)
and likewise exchanging A and B, therefore

TorA∗Bi−1 ((A ∗B)⊗A I,M)⊕ TorA∗Bi−1 ((A ∗B)⊗B J,M)(6.6)

' TorAi−1(I,M)⊕ TorBi−1(J,M).

Using again (6.3), we obtain

(6.7) TorAi−1(I,M)⊕ TorBi−1(J,M) ' TorAi (k,M)⊕ TorBi (k,M).

Combining (6.4), (6.5), (6.6) and (6.7), we obtain :

Proposition 6.1. If A,B are augmented algebras and M is any A ∗ B-
module, then

TorA∗Bi (k,M) = TorAi (k,M)⊕ TorBi (k,M)

for any i ≥ 2.

6.2. Homological conjecture and vanishing of H3(M0,k). Let a be
one of the Lie algebras grdpth(ds0), . . . , ls in sequence (1.2). Assume that
HC(a) i) and ii) hold. By Theorem 4.1, we then have a Lie algebra isomor-
phism a 'M. According to Theorem 5.1, HC(a), iii) says that H3(a,Q) =
0. Given the isomorphism a 'M, this last statement is equivalent to

(6.8) H3(M,Q) = 0.

Set A := U(M0) and B := T (P{4}). Identity (6.1) implies that A ∗B iden-
tifies with U(M) as an augmented algebra. Proposition 6.1 and the identity

Hi(g,M) = Tor
U(g)
i (Q,M) relating the homology of a Lie algebra g with

values in a g-module M with the Tor groups of its enveloping algebra ([W],
Cor. 7.3.6) imply the equality Hi(M,Q) = Hi(M0,Q)⊕Hi(L(P{4}),Q) for
any i ≥ 2. The equality Hi(L(P{4}),Q) = 0 for i ≥ 2 then implies that



18 Benjamin Enriquez, Pierre Lochak

Hi(M,Q) = Hi(M0,Q) for i ≥ 2, and therefore H3(M,Q) = H3(M0,Q).
Equality (6.8) is therefore equivalent to H3(M0,Q) = 0.

We have proved :

Proposition 6.2. Assume that for a one of the Lie algebras grdpth(um),
grdpth(grt1), grdpth(ds0), ls, HC(a) i) and ii) hold. Then HC(a) iii) is equi-
valent to H3(M0,Q) = 0.

6.3. The equality (ls1 ⊗ P) ∩ (P ⊗ ls1) = 0. The three last lines of
[G1] contain the computation of the homology of a complex denoted there
D•,3 → D•,2⊗D•,1 → Λ3(D•,1) : this complex is acyclic except at D•,3. The

dual complex is Λ3(ls1)
[,]⊗id→ ls2⊗ ls1

[,]→ ls3 ; the result of [G1] then implies
that the map

(6.9) Λ3(ls1)
[,]⊗id→ ls2 ⊗ ls1

is injective.
Since the kernel of the map [, ] : Λ2(ls1) → ls2 is equal to P, the kernel

of the map (6.9) is equal to (P ⊗ ls1) ∩ Λ3(ls1). It then follows form the
injectivity of (6.9) that

(6.10) (P⊗ ls1) ∩ Λ3(ls1) = 0.

The subspace (ls1 ⊗ P) ∩ (P ⊗ ls1) of ls⊗3
1 is contained in ls1 ⊗ Λ2(ls1)

(as P consists of antisymmetric tensors) and in Λ2(ls1)⊗ ls1 (for the same
reason), therefore it is contained in the intersection of these spaces, namely
Λ3(ls1). It follows that (ls1 ⊗ P) ∩ (P⊗ ls1) is contained in the intersection
of Λ3(ls1) with P⊗ ls1, which by (6.10) is zero. We have proved :

Proposition 6.3. The equality (ls1 ⊗ P) ∩ (P⊗ ls1) = 0 holds (equality of
subspaces of ls⊗3

1 ).

6.4. The notion of koszulity. Let A = ⊕i≥0Ai be a graded connected
algebra over a field k, with finite dimensional graded pieces. Set A+ :=
⊕i>0Ai ; equip the space

T+(A+) := ⊕s>0A
⊗s
+

with the bidegree (syzygy degree, weight) by assigning to the piece An1 ⊗
· · ·⊗Ans the bidegree (s, n1 + · · ·+ns). The space T+(A+) is equipped with

a differential of bidegree (−1, 0) given by a1⊗· · ·⊗as 7→
∑s−1

i=1 (−1)i+1a1⊗
· · · ⊗ aiai+1 ⊗ · · · ⊗ as. The corresponding homology group H(T+(A+), d)
inherits a bigrading, so it decomposes as

H(T+(A+), d) = ⊕i,j>0TorAij(k,k)

with a double subscript (ij is shorthand for i, j). Observe that the group
TorAij(k,k) vanishes unless i ≤ j. The graded algebra A is called Koszul iff
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the groups TorAij(k,k) vanish unless i = j ([PP], Def. 1, p. 19, and loc. cit.,
identity relating Tor and Ext, end of p. 3).

When A is quadratically presented, i.e., A = T (V )/(R), where V is a
finite dimensional vector space and R ⊂ V ⊗2 is a vector subspace, and V
has degree 1, the diagonal homology ⊕i>0TorAii(k,k) identifies as a graded
vector space with the positive part of the graded coalgebra dual to A, say
C(A) := ⊕i≥0Ci(A), with ([LV], §3.1.3 or [PP], Chap. 1, §3)

Ci(A) = ∩i−2
j=0V

⊗j ⊗R⊗ V ⊗i−2−j

6.5. Koszulity of enveloping algebras. Let V be a finite dimensional
vector space over a field k and R ⊂ L2(V ) be a vector subspace. Let
g := L(V )/(R) be the corresponding Lie algebra. Its enveloping algebra
will be denoted by A, so A = U(g) = T (V )/(R). If we assign to V the
degree 1, this is a quadratic algebra.

There are canonical isomorphisms Hi(g) ' Ci(A) for i = 1, 2. Together
with the equality Hi(g) = ⊕jTorAij(k,k) (see e.g. [W], Cor. 7.3.6) and the

isomorphism Ci(A) ' TorAii(k,k) (see §6.4 above), this implies

(6.11) TorAij(k,k) = 0 for i 6= j and i = 1, 2.

Assume now that (V ⊗R)∩ (R⊗V ) = 0. Then Ci(A) = 0 for any i ≥ 3,
so that the higher diagonal homology vanishes :

(6.12) TorAii(k,k) = 0 for i ≥ 3.

Granted (6.11), the koszulity of A is equivalent to TorAij(k,k) = 0 for i 6= j,
i ≥ 3. In view of (6.12) this is the same as

TorAij(k,k) = 0 for i ≥ 3 and any j > 0.

In turn, this statement is equivalent to

⊕j>0TorAij(k,k) = 0 for i ≥ 3,

which finally translates into

Hi(g,k) = 0 for i ≥ 3.

Taking into account Proposition 5.1, this is equivalent to the vanishing of
H3(g,k).

We have thus shown

Proposition 6.4. Let V be a finite dimensional vector space and R ⊂
L2(V ) be a vector subspace. Assume that (V ⊗ R) ∩ (R ⊗ V ) = 0. Let
g := L(V )/(R) be the Lie algebra with space of generators V and space of
relations R. The following conditions are equivalent :

i) the algebra U(g), equipped with the grading for which V has degree 1,
is Koszul ;

ii) H3(g,k) = 0.
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Note that, in this proposition, the category of finite dimensional vector
spaces can be replaced by that of Z≥0-graded vector spaces with finite
dimensional graded pieces.

Combining Proposition 6.3 with this variant of Proposition 6.4 applied
to V = ls1, R = P and g = M0 and k = Q, we obtain

Proposition 6.5. The following statements are equivalent :
i) H3(M0,Q) = 0 ;
ii) the algebra U(M0), equipped with the depth grading, is Koszul.

Remark. As M0 is graded by depth, so is its homology group H3(M0,Q).
If H3(M0,Q)d denotes the depth d part of this group, then H3(M0,Q)d = 0
for d = 1, 2 for obvious reasons. Proposition 6.3 implies that H3(M0,Q)3 =
0.

6.6. Main theorem. Combining Theorem 4.1, Proposition 6.2 and Pro-
position 6.5, we obtain :

Theorem 6.1. Let a be one of the Lie algebras grdpth(um), grdpth(grt1),
grdpth(ds0), ls. Then :

(a) The conjunction of HC(a) i) and ii) is equivalent to the isomorphism
a 'M.

(b) Granted the conjunction of HC(a) i) and ii), HC(a) iii) is equivalent
to either of the following statements : (1) the vanishing of H3(M0,Q) ;
(2) the koszulity of the algebra U(M0), equipped with the depth gra-
ding (for which ls1 has depth 1).
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