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Human Body Part Selection by Group Lasso of
Motion for Model-Free Gait Recognition

Imad Rida, Xudong Jiang, Senior Member, IEEE and Gian Luca Marcialis, Member, IEEE

Abstract—Gait recognition is an emerging biometric technol-
ogy that identifies people through the analysis of the way they
walk. The challenge of model-free based gait recognition is to
cope with various intra-class variations such as clothing vari-
ations, carrying conditions and angle variations that adversely
affect the recognition performance. This paper proposes a method
to select the most discriminative human body part based on
group Lasso of motion to reduce the intra-class variation so as
to improve the recognition performance. The proposed method
is evaluated using CASIA Gait Dataset B. Experimental results
demonstrate that the proposed technique gives promising results.

Index Terms—Gait recognition, entropy, group Lasso.

I. INTRODUCTION

GAIT recognition discriminates people by the way they
walk. Techniques can be classified into two main cat-

egories: model-based and model-free approach. Model-based
approach [1]–[3] models the person body structure that es-
timates static body parameters over time. This process is
computationally intensive since it needs to model and track
the subject body. The model-free approach does not recover
a structural model of human motion. It uses the features
extracted from the motion or shape and hence requires much
less computation. Furthermore, dynamic information results in
better recognition performance than its static counterpart [4].
These motivate researchers to develop new feature represen-
tations in model-free approach context.

There exists a considerable amount of work in the context
of model-free approach. BenAbdelkader et al. [5] introduced a
self-similarity representation to measure the similarity between
silhouettes. Collins et al. [6] proposed a template based silhou-
ette matching. Hayfron-Acquah et al. [7] suggested a contour
representation by analyzing the symmetry of human motion.
Lee et al. [8] introduced a novel spatiotemporal representation
called SVB frieze pattern that captures the motion information
over time. Kobayashi et al. [9] used Cubic Local Auto-
Correlation to extract gait features. Lu et al. [10] used mul-
tiple feature representations based on independent component
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analysis and genetic fuzzy support vector machine. Huang et
al. [11] presented a manifold-based approach for cross-speed
recognition. Hu et al. [12] proposed an incremental framework
based on optical flow. Liu et al. [13] integrated gait recognition
in person re-identification. Hu et al. [14] suggested a view-
invariant discriminative projection method by a unitary linear
projection. Hu et al [15] introduced a gait modeling method
for gender classification.

Recent trends seem to favor Gait Energy Image (GEI)
representation suggested by Han and Bhanu [16]. It is a spatio-
temporel representation of the gait obtained by averaging the
silhouettes over a gait cycle. A considerable amount of works
use GEI representation. Yu et al. [17] applied a template
matching on GEI. Tao et al. [18] used Gabor filters to extract
information from GEI and a General Tensor Discriminant
Analysis for recognition. Xu et al. [19] presented an extension
of Marginal Fisher analysis to address the problem of gait
recognition.

The main challenge of model-free gait recognition is coping
with various intra-class variations caused by the presence of
shadows, clothing variations and carrying conditions. Segmen-
tation, view angle are further causes of recognition error [16],
[17], [20]. To overcome the limitations of GEI presentation,
several approaches have been proposed. Bashir et al. [21]
introduced a feature selection method named Gait Entropy Im-
age (GEnI). It computes entropy for each pixel to distinguish
static and dynamic pixels of GEI. The GEnI represents a mea-
sure of feature significance. In the same context Bashir et al.
[22] suggested a gait representation by a weighted sum of the
optical flow corresponding to each direction of human motion.
An unsupervised method is used to select GEI pixels based
on their intensity value [23]. Dupuis et al. [24] introduced a
feature selection method based on Random Forest feature rank
algorithm. Rida et al. [25] estimated a mask based on pixel
variations. Jeevan et al. [26] introduced a gait representation
called Gait Pal and Pal Entropy Image. Kusakunniran [27],
[28] proposed a framework to construct gait feature directly
from a raw video. Rokanujjaman et al. [29] introduced a novel
frequency-domain gait entropy representation. Choudhury et
al. [30] proposed a view-invariant multiscale gait recognition
method (VI-MGR). Zeng et al. [31] introduced a novel method
to cope with the problem of walking speed. Recently, Rida et
al. [32], [33] used the Modified Phase-Only Correlation to
extract the feature.

This paper proposes a new framework to mitigate the effect
of the intra-class variation of GEI representation. Contributions
are summarized as follows:
• A horizontal motion vector is proposed that is more
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reliable and better characterizes the gait than the pixel-
wise motion.

• A human body part selection method is proposed based
on group Lasso to cluster the individual dynamic lines
into homogeneous parts of human body.

• Feature selection set is separated from the training set to
enhance the generalization of body part selection.

II. PROPOSED METHOD

Among the available feature representations we choose GEI
that is an effective representation, a good compromise between
the computational cost and the recognition performance [21].
Fig. 1 shows our framework of part-selection, training and
testing, divided into two modules. The first one estimates
the human body parts based on motion and group Lasso
and selects the discriminative part that is also robust to the
intra-class variation. The estimated body parts should not be
overspecialized for a particular training set [24]. Therefore,
we perform it on a separated feature selection set. The second
module applies Component Discriminant Analysis (CDA) to
the part of GEI features of the training data selected in the first
module. Gait recognition performance is measured by Correct
Classification Rate (CCR) on the testing dataset.

Fig. 1. Scheme of our part-selection, training and testing.

It has been found that the gait of an individual is charac-
terized much more by the horizontal than the vertical motion
[34]. Therefore, instead to estimate the motion of each pixel
[21], we propose to estimate the horizontal motion by taking
the Shannon entropy of each row from the GEI. The resulting
column vector is named as motion based vector.

To generalize the contiguous human body parts from the
motion based vector, we further propose to apply group Lasso
learning algorithm to segment the motion based vector into
shared blocks with similar motion value. The body part with
the highest average motion value over the selection dataset is
selected, which is discriminative and robust to the intra-class
variation.

A. The Proposed Motion Based Vector

GEI is a spatio-temporal representation of gait pattern. It is
a single grayscale image obtained by averaging the silhouettes
extracted over a complete gait cycle [16] as

G =
255

T

T∑
t=1

B(t) (1)

Where G = {gi,j} is GEI, 1 ≤ i ≤ N and 1 ≤ j ≤ M are
the spatial coordinates, T is the number of the frames of a
complete gait cycle, B(t) is the silhouette image of frame t.

For each GEI, a motion based vector e ∈ RN shown in Fig.
2 is generated by computing the Shannon entropy of each row
of GEI. The element of the motion based vector e is given by:

ei = −
255∑
k=0

pik log2 p
i
k (2)

where pik is the probability that the pixel value k occurs in the
ith row of image G, which is estimated by:

pik =
#(gi,j = k)

M
; ∀j ∈ [1,M ] (3)

M

N

GEI

N

Feature Unit

Motion Based
Vector e

ei

Fig. 2. Illustration of the motion based vector.

B. Group Lasso For Multiple Change-Point Detection

Let P motion based vectors {ek}Pk=1 of P GEIs stored in
N × P matrix E . The aim is to detect the shared change-
point locations across all motion based vectors{ek}Pk=1 by
approximating matrix E ∈ RN×P by a matrix V ∈ RN×P of
piecewise-constant vectors that share change points. This can
be achieved by resolving the following convex optimization
problem:

min
V∈RN×P

‖E−V‖2F + λ
N−1∑
i=1

‖vi+1 − vi‖1 (4)

where vi is the i-th row of V and λ > 0. Intuitively, when
increasing λ enforces many increments vi+1−vi to converge
to zero. This implies that the position of non-zeros increments
will be same for all vectors. Therefore, the solution of (4)
provides an approximation of E by a matrix V of piecewise-
constant vectors which share change-points. The problem (4) is
reformulated as a group Lasso regression problem as follows:

min
β∈R(N−1)×P

∥∥E−Xβ
∥∥2
F
+ λ

N−1∑
i=1

‖βi‖1 (5)

where X and E are obtained by centering each column from
X and E knowing that:

X ∈ RN×(N−1); xi,j =

{
1 for i > j

0 otherwise

βi = vi+1 − vi

(6)

The problem (5) can be solved based on the group LARS
described in [35] which approximates the solution path with a
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piecewise-affine set of solutions and iteratively finds change-
points independently of λ value. The full derivation of the
method can be found in [36].

C. Canonical Discriminant Analysis

On the training dataset, Canonical Discriminant Analysis
(CDA) is applied to the GEI features of the robust human
body part determined by the group Lasso on the feature
selection dataset. The CDA applies Principal Component
Analysis (PCA) followed by a Multiple Discriminant Analysis
(MDA). PCA removes unreliable dimensions that adversely
affect the robustness of the classification [37] [38] and hence
improves the classification accuracy. MDA maximizes the
distance between classes and preserve the distance inside the
classes. As suggestion in [16] we retain 2c eigenvectors after
applying PCA, where c corresponds to the number of classes
(the full explanation is found in [39]). The performance of our
method is measured by the Correct Classification Rate (CCR)
that is the ratio of the number of correctly classified samples
over the total number of samples.

III. EXPERIMENTS AND RESULTS

The proposed method is tested on CASIA dataset B [17]
to evaluate its ability to handle the carrying, clothing and
view angle variations. CASIA dataset B is a multiview gait
database containing 124 subjects captured from 11 different
angles starting from 0◦ to 180◦. Each subject has six normal
walking sequences (SetA), two carrying conditions sequences
(SetB) and two clothing variations sequences (SetC). The first
four sequences of setA noted as SetA1 are used for training.
The two remaining sequences of SetA noted as SetA2 as well
as SetB and SetC are used for testing normal, carrying and
clothing conditions, respectively. For each sequence, GEI of
size 64*64 is computed. To create our body-part selection
dataset, we randomly selected 24 GEIs for each variant
(normal, carrying, clothing). All selected GEIs for the feature
selection dataset were removed from the training and testing
sets. We performed a bagging without replacement of 45 GEIs
on the feature selection dataset. The operation was repeated
L = 5 times.

A. Clothing and carrying conditions

We focus on the effect of the body variations caused by
carrying conditions and clothing variations so we carried out
our experiments under 90◦ view angle. Fig. 3 shows the
entropy value (y-axis) of all GEIs against feature index (x-
axis) for the L = 5 experiments The vertical lines represent
the limits of human body parts learnt by the group Lasso on the
feature selection datasets. From Fig. 3 we see that the group
Lasso divides the horizontal motion of human body into 4
parts. The corresponding parts of GEI are shown in Fig. 4.
Fig. 3 shows that the part formed by feature units (rows of
GEI) from 46 to 64 has the highest mean motion value. It is the
most dynamic part from the human body and is also robust to
the intra-class variations (see Fig. 4(c) 4(d)), which is selected
in this work for recognition. Tab. I compares the performance
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(b) Experiment 2
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(c) Experiment 3
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(d) Experiment 4
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(e) Experiment 5

Fig. 3. Values of motion based vectors in selection datasets and parts of
shared motion value separated by group Lasso.

(a) Part1 (b) Part 2

(c) Part 3 (d) part 4

Fig. 4. Human body parts of GEI separated by group Lasso.

of our method against the reported by other methods. It shows
that the CCR of our method is marginally lower in the normal
and carrying conditions and significantly higher in the clothing
variations than all other methods.

It is common in real life that people have different clothes
depending on days (warm or cool days) and seasons (summer
or winter). Unfortunately, the intra-class variation of the static
features (low motion) is mainly caused by the clothing varia-
tion that greatly affects the recognition accuracy adversely. It
has been demonstrated by Matovski et al. [20] that clothing
is the factor that drastically affects the performance of gait
recognition. Thus, alleviating the problems caused by the
clothing variation has significant meaning for gait recognition.
The proposed method alleviates the clothing variation problem
very well as it significantly outperforms all other approaches
as shown in Tab. I. In the normal and carrying conditions,
different persons have different clothing conditions but all
samples of a same person always have the same clothing
condition in the dataset. Thus, the cloths in the normal and
carrying conditions in fact undesirably contribute to differ-
entiate persons. Therefore, these recognition rates could be
misleading as they do not well reflect the real gait recognition
performance. In the next section, we will further see the
problems of testing the gait recognition performance using the
training and test data in the same cloth for the same persons.
Nevertheless, the proposed method performs the best among
all approaches on the whole test dataset that contains one-third
samples with cloth variation and two-third samples without the
cloth variation.

B. View angle variations

Although the proposed method in this paper is not aimed at
solving the view angle problem, we still test its performances
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TABLE I
COMPARISON OF CCRS (IN PERCENT) FROM SEVERAL DIFFERENT ALGORITHMS ON CASIA DATABASE USING 90◦ VIEW.

Method Normal Conditions Carrying Conditions Clothing Conditions Overall Std
Yu et al. [17] 97.60 32.70 52.00 60.77 33.33
Han et al. [16] 99.60 57.20 23.80 60.20 37.99
Bashir et al. [21] 100.00 78.30 44.00 74.10 28.24
Bashir et al. [22] 97.50 83.60 48.80 76.63 25.09
Bashir et al. [23] 99.40 79.90 31.30 70.20 35.07
Dupuis et al. [24] 98.80 73.80 63.70 78.77 18.07
Rida et al. [32], [33] 93.60 81.70 68.80 81.37 12.40
Rida et al. [25] 95.97 63.39 72.77 77.38 16.77
Hu et al. [12] 94.00 45.20 42.90 60.70 28.86
Kusakunniran [27] 95.40 60.90 52.00 69.43 22.92
Rakanujjaman et al. [29] 97.61 83.87 51.61 77.70 23.61
Kusakunniran [28] 94.50 60.90 58.50 71.30 20.13
Jeevan et al. [26] 93.36 56.12 22.44 57.31 35.47
Our Method 98.39 75.89 91.96 88.75 11.59

TABLE II
SELECTED BODY PART CCR (%) WITHOUT PRIOR KNOWLEDGE OF VIEW

ANGLE.

Test angle (◦)

0 18 36 54 72 90 108 126 144 162 180

Normal 97.97 98.79 96.37 96.77 98.39 97.98 97.18 95.56 96.77 97.98 97.58
Carrying 72.76 72.58 75.81 76.42 75.81 73.66 74.60 76.92 76.11 75.10 76.11
Clothing 80.49 83.47 85.08 87.85 91.53 91.07 87.90 86.23 87.45 84.90 83.06
Overall 83.74 84.95 85.75 87.02 88.58 87.57 86.56 86.24 86.78 85.99 85.59

on the view angle variations. We carried out experiments on
CASIA database using 11 different angles from 0◦ to 180◦. We
propose to recognize individuals without a prior knowledge
of the viewpoint. Towards this end, we first estimate the pose
of the query subject using the selected human body part .i.e.
row 46 to 64 and a simple knn with k = 1 to find the
group of training samples that have the similar pose to that
of the query subject. Then, the query subject is identified
among all training samples of this group. Results are shown
in Tab. II, Tab. III and Tab. IV, which respectively record
the CCR of our proposed body part selection approach, the
approach that uses the whole body and the View-Invariant
Multiscale Gait Recognition method (VI-MGR) [30]. Results
in these tables clear show that our body part selection method
significantly outperforms VI-MGR and the approach without
the part selection for all 11 view angle variations in the case of
the clothing variation. On the whole test dataset that contains
one-third samples with cloth variation and two-third samples
without the cloth variation, the proposed approach outperforms
the no-part-selection approach for all view angle variations and
outperforms VI-MGR in 8 of the 11 view angle variations.

TABLE III
WHOLE BODY CCR (%) WITHOUT PRIOR KNOWLEDGE OF VIEW ANGLE.

Test angle (◦)

0 18 36 54 72 90 108 126 144 162 180

Normal 100 100 99.19 99.19 99.19 100 99.60 97.98 99.60 99.19 100
Carrying 82.11 77.42 75.81 68.70 59.68 52.68 53.63 60.73 68.02 66.53 72.47
Clothing 26.83 25.81 28.63 27.53 28.63 22.77 23.79 31.17 34.01 29.39 29.84
Overall 69.65 67.74 67.88 65.14 62.50 58.48 59.01 63.30 67.21 65.04 67.44

The problems of the CCR for normal and carrying con-
ditions are shown in Tab III and IV. It is well-known that
the maximum gait information is captured for the view angle
near 90◦ and the minimum gait information is captured for
the view angle near 0◦ or 180◦. However, while perfect or
near perfect CCR is achieved by almost all view angles in
normal condition, in carrying condition, visibly higher CCR
is achieved for view angles near 0◦ or near 180◦ than that for

TABLE IV
VI-MGR CCR (%) WITHOUT PRIOR KNOWLEDGE OF VIEW ANGLE.

Test angle (◦)

0 18 36 54 72 90 108 126 144 162 180

Normal 100 99 100 99 100 100 99 99 100 100 99
Carrying 93 89 89 90 77 80 82 84 92 93 89
Clothing 67 56 70 80 71 75 77 75 65 64 66
Overall 86.66 81.33 86.33 89.66 82.66 85 86 86 85.66 85.66 84.66

view angles near 90◦. This shows that the cloths in the normal
and carrying conditions in fact undesirably contribute to dif-
ferentiate persons. Therefore, these recognition rates could be
misleading as they do not well reflect the real gait recognition
performance. Fig. 5 shows CCR of the 3 approaches on all test
data with cloth and view angle variations, which clearly shows
the significant performance gain achieved by the proposed
approach.

0 18 36 54 72 90 108 126 144 162 180
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Fig. 5. CCR of different approaches on test data with cloth and view angle
variations.

IV. CONCLUSION

In this paper we proposed a method that finds the dis-
criminative human body part that is also robust to the intra-
class variations for improving the human gait recognition.
The proposed method first generates a horizontal motion
based vector from GEI and then applies the group Lasso
on the horizontal motion based vectors of a feature selection
dataset to learn the discriminative human body part for gait
recognition. The learnt human body part is applied to the
independent training and test datasets. The proposed method
significantly improves the recognition accuracy in the case of
large intra-class variation such as the clothing variation. This
is verified by the experiments, which show that the proposed
methods not only significant outperforms other approaches in
the case of clothing variations but also achieves the overall
best performance among all approaches on the whole testing
dataset that contains normal, carrying, clothing and view angle
variations.
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