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Abstract— The usual trend for the conventional palmvein
recognition techniques is first to extract discriminative hand-
crafted feature representations from the raw images, and then
feed a classifier with them. Unfortunately, it is not yet clear
how the effectiveness of such features may be held in case of a
large user population or in environments where the variability
among acquisitions of the same person may increase. In order
to face with this problem, it may be considered that the use
of multiple classifiers may increase the recognition performance
with respect to that of the best individual classifier, and also
may handle the problem of an effective feature extraction step.
In this paper, we explore the ensemble classifier approach based
on Random Subspace Method (RSM), where the basic feature
space is derived after a preliminary feature reduction step on the
source image, and compare results achieved with and without
the use of hand-crafted features. Experimental results allow
us concluding that this approach leads to better results under
different environmental conditions.

Keywords— Image processing, palmvein recognition, features,
multiple classifiers.

I. INTRODUCTION

Over the two prior decades, biometric security has known
a big infatuation in order to increase the security and conve-
nience. Nowadays, biometric systems are used in our everyday
life such as airports security, time attendance, law enforcement
and buildings access control. A large variety of biometric
modalities including face, iris, gait, fingerprint and palmvein,
have been investigated providing different rates of robustness,
accuracy and user acceptability [13]. Among these modali-
ties, palmvein is one of the newest and emerging biometric
techniques which has gained a growing interest thanks to its
reliability, stability and high user tolerance [1]. Furthermore,
the blood vessels are hidden under the skin and invisible to
the human, which make them harder to spoof when compared
to other biometric traits.

The usual trend for the conventional palmvein recognition
techniques is first to extract discriminative hand-crafted feature
representations from the raw images, and then feed a classifier
with them. Features are chosen so as to enforce similarities
within a class and disparities between classes. The more dis-
criminative the features are, the better the classifier performs
to attain valuable recognition accuracies. Unfortunately in the
camera-based acquisition, the pixels density, scale, rotation
and translation are affected by the distance of the camera
from the palm which make the large majority of the predefined

hand-crafted features non reliable in practice [11]. Moreover,
it is not yet clear which specific contribution is given by hand-
crafted features to characterize the person uniqueness, so it is
very difficult to explain why palmvein recognition is working
and in which scenario it could not be effective.

Aware about the above problems, we explore a data-driven
method for palmvein personal identification. The proposed
technique was already presented in [12] and directly applied
to the image pixels after a preliminary feature reduction step.
Here we further investigate the benefits of that method by
adding an additional module of hand-crafted features. This
may further help in improving the performance when adopting
the ensemble classifier approach based on Random Subspace
Method (RSM). The RSM builds many individual weak clas-
sifiers potentially achieving good accuracy and by aggregating
them it can further boost the performances and promote more
generalization ability in order to avoid overfitting. In [12],
further investigations were pointed out to be necessary. There-
fore, experiments reported in this paper pursue that purpose. In
addition, we want to confirm how much the well-known ability
of multiple classifiers-based systems may help, namely, the
increase of robustness and performance independently of the
specific working scenario. To this aim, two data sets captured
by a contact-based sensor and a contactless-based sensor, with
images acquired at different wavelengths, were used.

The paper is organized as follows. Section II summarizes
related work. Section III describes the proposed method.
Section IV reports the experimental results and discussions.
Finally, Section V concludes the paper.

II. RELATED WORK

A recent survey on palmvein recognition methods appeared
in [24].

In the literature, various palmvein recognition approaches
have been proposed. Relying on feature extraction methods
they can be organized in four main categories: geometry-based,
statistical-based, local-invariant-feature-based and subspace-
based [2], [3].

Geometry-based methods, derived from fingerprint and
palmprint recognition, extract the local characteristics of the
veins as principle lines, wrinkles, minutiae point etc. and are
usually based on spatial methods, such as Gaussian filters,
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Gabor filters and points of maximum curvature. However,
geometric features suffer from loss of information due to small
and/or blurred textures and are sensitive to scaling, rotation
and displacement.

Statistical-based methods process palmvein image as a
whole and they can be divided into global or local approaches.
Global methods work on the whole image and extract physical
characteristics such as center of mass, density and moments
[7]. Local statistical-based methods divide the image into small
regions, according to a predefined scheme, from which it is
possible to extract statistical information. Local binary patterns
(LBPs) [15], [4], [5], local derivative patterns (LDPs) [5], and
their variants [6] are local methods.

Among the statistical-based methods, the textural methods
allow to manage changes of scale, rotations and translations,
analyzing the image at a global or local level, with the ultimate
aim of creating descriptors that represent in a compact way
a region of pixels close to each other. Textural methods
have a significant discriminative power, independently of the
biometrics considered. The LBP [15] is a textural method
based on dividing the image into multiple blocks, from which
local binary patterns are extracted. A global feature histogram
is then constructed that represents both micro-pattern statis-
tics and their spatial locations. Another example of textural
methods is the BSIF [14]. The BSIF algorithm calculates a
binary code string for the pixels of a given image. The value
of each pixel is considered as a local descriptor and may be
used to build the histograms that allow to characterize the
textural properties within subregions of the image. Each bit in
the binary code string is calculated binarizing the response of
a linear filter with a threshold at zero. BSIFs were proposed
for palmvein recognition in [22], [23].

Methods based on local-invariant features extract stable
local invariant features for matching. These methods offer an
important advantage, since they are independent of rotation,
translation and scaling, they are appropriate for use with
contactless sensors. An efficient local-invariant descriptor is
the SIFT [8] applied to local key-points. Basically it samples
the size and orientation of the image gradients, creating
histograms that contain important information about the sur-
roundings of the points considered. Subspace-based methods,
also named appearance-based, derive from face recognition.
Principal Component Analysis (PCA) [9] and Linear Discrim-
inant Analysis [10] are the main ones in this category. These
methods project the palm vein image in a lower space for
recognition.

III. THE INVESTIGATED METHOD

In this paper we use an ensemble classifier for palmvein
recognition based on Random Subspace Method (RSM), al-
ready proposed in [12].

The method proposed in this paper is reported in Fig. 1.
Two different approaches were investigated:

1) using a standard hand-crafted features module, basically

BSIF and LBP, on which performing the subspace
sampling;

2) using raw images (without features extraction).

RSM is a successful ensemble construction method that
attempts to reduce the correlation between estimators in an
ensemble by dividing the feature space randomly to some
subsets and submitting each one to the individual classifiers. In
order to build the random subspaces from which the features
are randomly extracted, we rely on a two-dimensional PCA
(2DPCA) [20] (n subspaces are randomly generated from the
eigen-vectors). The resulting subspaces are refined through
2DLDA to ensure classes separability. This step allows to ex-
tract discriminative features. Then, for each random subspace,
the subject is identified by a classifier Ci (Fig 1). The final
classification is obtained using the majority vote (MV) [21]
over the outcomes of the n classifiers.

The individual classifier Ci is a Nearest Neighbor, that takes
as input the related features from the input data and from
each subject templates. The outcome is the most probable
class/identity on the basis of the nearest template to the input
sample.

Further details on the method are reported in [12].

IV. EXPERIMENTAL RESULTS

A. Data sets and experimental protocol

To compare the performance of the proposed approach,
two public datasets containing multispectral palmprint images,
PolyU [16] and CASIA [17], are used (Table 1).

The PolyU MS Database (Fig. 2) is composed by multi-
spectral palmprint images collected from 250 volunteers (195
males and 55 females). Samples were collected in two separate
sessions, 6 images for each palm per session. The database
contains 6000 images from 500 different palms (24 images
from 2 palms were collected from each subject). The average
time interval between the two sessions was about 9 days.
Users have been asked to place their hand on the device,
where several pegs serve as control points for the correct
positioning of the user’s hands. The samples were acquired
at different spectral bands. Palmprint characteristics, such as
lines for example, are more visible in the “ Blue” bands (470
nm) and “ Green” (525 nm), compared to the “ Red” bands
(660 nm) and “ NIR” (880 nm), where the characteristics of the
palmvein are observed. From each image ROIs were detected
and cropped to a 128x128 size.

The CASIA Palmprint Image Database (Fig. 3) is composed
of 7200 palmprint images collected from 100 subjects. For
each of them, 6 palmprint images were collected from both
left and right palms, in two sessions distant more than one
month. All images are 8 bit gray-level JPEG files. Since in
the acquisition device there are no pegs to restrict postures and
positions of palms, subjects were required to put their palms
into the device and lay it on a uniform-colored background.
The device supplies an evenly distributed illumination and
captures palmprint images using a CMOS camera fixed on



Fig. 1: The proposed approach: the RSM module generates a set of n random subspaces. These are sampled from the reduced
feature space provided by the application of 2DPCA-2DLDA. It can be also seen that such step may take as input hand-crafted
features such as LBP and BSIF, or the individual gray levels of the ROI extracted from the raw image. The individual classifier
Ci is a generic Nearest Neighbor, which takes as input the template of each subject stored in the system’s database and
generates the most probable class/identity as function of the nearest template to the input sample. The majority voting rule is
finally applied for obtaining the final class/identity.

the top of the device. Each sample was captured at 6 different
spectral bands: white light, 460 nm, 630 nm, 700 nm, 850
nm and 940 nm. Unlike the PolyU dataset, in the CASIA
dataset a preprocessing step is required. As a matter of fact,
since there are no pegs to restrict the hands in fixed positions,
it is necessary to find reference points in order to compute
the relative rotation, scale variation or translation between
different samples. Among the various features commonly used,
the spaces between the fingers are ideal references thanks to
their invariance with the movement of the hand, identified
through the use of a contour tracking algorithm. For each
image a ROI has been extracted and resized to 236x236.

Histogram equalization was applied to enhance the charac-
teristics of the veins with respect to the background. The ROIs
were then divided into 16 blocks of variable size depending on
the dataset, 32x32 for PolyU and 64x64 for CASIA. For each
of those blocks two textural descriptors, LBP and BSIF, were
applied and, for each image, a unique vector that contains the
linked features of all the blocks is obtained. This procedure

was repeated for each spectral band.
Table 2 summarizes the size of the feature spaces and RS

number at each step. For example, by retaining 40 random
eigenvectors from the overall set derived by 2DPCA applied
to raw images or textural feature vectors (column 2DPCA),
we generated a novel 20-sized subspace 2DLDA (column
2DLDA) on which each NN classifier performs the partial
classification. Templates are stored as 20-sized feature vectors.
This process is repeated 50 times (column # classifiers). The
final decision is taken by majority voting.

In Table 2 the details of the experimental protocol are
schematized.

Since the RSM uses multiple classifiers, their number must
be set. In order to simulate a real-case scenario we tried to limit
the execution time, without overly reducing the performance.
For these reasons, we decided to set the number of classifiers
to 50, considering it is a fair compromise between quality and
execution times. In the RSM the N -sized feature vector is
reduced to K elements (with K << N ) by the PCA and then



Fig. 2: Typical multispectral ROI images of the PolyU
database.

Fig. 3: The six multispectral samples of the CASIA database.

is further reduced to J elements (with J < K) by the LDA.
In our experiments K = 10, 20, 30, 40 and J = 5, 10, 15, 20.
The datasets have been divided in template and probe sets
with two samples per class in the template set and the others
in the probe set. The experiments were performed using the
LBP and BSIF feature vectors without any RSM, the RSM
applied to the LBP and BSIF feature vectors and the RSM
applied directly to the raw images.

The performance parameter reported as set of bins in Figs. 4
is the Correct Classification Rate (CCR), also called Accuracy,
that is, the ratio between the number of samples correctly
classified/identified and the total number of samples submitted
to the system during the probing phase.

Table 1: PolyU and CASIA datasets characteristics.

Dataset PolyU CASIA
Sensor Contact Contactless

Users (dx & sx) 250 100
Samples per user 12 6
Images per band 6000 1200

Bands per sample 4 6
Wavelength (nm) 470, 525, 460, 630, 700,

660, 880 850, 940, white light

Table 2: Details on the experimental protocol adopted.

# classifiers 2DPCA 2DLDA # templates
subspace subspace per user

50 10, 20, 30, 40 5, 10, 15, 20 2

B. Results

Fig.4 summarizes the best outcomes of the experiments
carried out.

We noticed that experiments on the PolyU data set achieved
better results in all cases. We can explain this by the fact that,
on overall, this data set has images of high quality. This is
basically due to the fact that PolyU was collected using a
contact sensor, which allows a better control of the position
of the hand with respect to the sensor surface. On the contrary,
CASIA data set is made up of images acquired by a contactless
sensor, that implies less control on the distance between hand
and sensor, an acquisition surface smaller than that of the
PolyU sensor and the fact that the user’s hand cannot be
sufficiently firm during acquisition. This is evident especially
when comparing accuracies attained by hand-crafted features
(blue and orange bins of Figs. 4).

With regard to LBP and BSIF as individual feature sets, the
latter are generally more accurate than the former for both data
sets. Zhang et al. [19] showed experimentally how sample’s
quality is relevant in a biometric system. We confirm their
findings, because we voluntarily maintained the same BSIF’s
parameters for both data sets to test how images’ quality has
impact on the recognition process. In particular, the best LBP
parameters were set as follows: P = 16 and R = 4 for the
PolyU data set and P = 16 and R = 7 for the CASIA
data set; the obtained histogram sized 243 bins. The best
BSIF parameters were set as follows: the number of filters
is 8, that is the length of BSIF’s bit-code, and W = 7 for
both data sets. The final feature vector size is 243 and 256
for LBP and BSIF, respectively1 We tested different sizes
of the histogram computed by LBP and BSIF in order to
show that an appropriate parameterization of the descriptor can
partially solve the problems related to low quality images. For
example, we optimized LBP parameters in the CASIA data
set as done in [5]. This is reflected by Figs. 4, where bands
at 850 nm and 940 nm obtained the best recognition rates, in

1More information about LBP and BSIF parameters, namely P , K, W and
number of filters is given in [15], [14].



(a)

(b)

Fig. 4: Histogram reporting the best Accuracy or Correct Classification Rate (CCR) computed when using individual hand-
crafted features with standard template-based recognition approach (blue and orange bins), RSM using hand-crafted features
(red and yellow bins) and RSM on raw images (green bins).

agreement with [5]. These bands were the most exposed to a
performance decrease due to the images quality. However, by
an appropriate and careful optimization step, as done in [5], the
recognition rate in those bands is still good. In general, textural
descriptors need a careful parameterization and images with
sufficiently high quality. It could be interesting to evaluate
different parameters of the BSIF algorithm applied to the
CASIA database, because it is reasonable to hypothesize that
increasing the number of BSIF filters should further improve
the performance. If this study was already done in [5] for LBP,
to the best of our knowledge this has not yet been done for
BSIFs, although they were investigated and cited in [22], [23],
[24].

Despite the performance of the basic handcrafted features,
the application of RSM brought a further, significant perfor-
mance improvement in all cases. On the basis of previous
works, the performance improvement by RSM when using
LBP and BSIF may be expected [22], [23], although not
investigated in [12]. On the other hand, obtaining a very high
level of accuracy when extracting random subspaces from
raw images is surprising: in particular, the CASIA’s 700 nm
band reached a remarkable level of accuracy, compared to the
previous cases. High accuracy was already noticed in [12],

but in this paper tests were extended to two data sets (CASIA
and PolyU) and we also did the direct comparison with hand-
crafted feature alone and coupled with the RSM module. It
can be observed that the reported accuracy is comparable
with that of RSM using hand-crafted features (green bins
against the other ones in Fig. 4); the performance is even
better in the case of images captured by a contactless sensor
(CASIA data set). An explanation for this is that relevant
information, which emphasizes the complementarity among
classifiers, is already embedded into the raw images. This
makes possible to avoid the textural descriptor, thus speeding
up the recognition process, especially in the case of BSIF-
based feature extraction.

Finally, we don’t know exactly the reason why in some
cases the use of raw images did not achieve better results, as
well as in the case of textural descriptors. We can assume
that during the process of space reduction by PCA and
LDA, important information was lost from the features of the
textural operators, and thus their expressive power when used
individually decreased. This is still an open problem when
textural descriptors or statistical feature reduction methods are
applied to images and it is not clear the relationship between
uniqueness characteristic of the biometric itself and features



extracted to look for such uniqueness. Nevertheless, this is a
promising starting point for future theoretical and experimental
investigations.

V. CONCLUSIONS

This paper explored the use of Random Subspace Method
(RSM) for palmvein recognition by adding novel evidences
to a previously published paper. The architecture includes the
extraction of RSs after a preliminary feature reduction step
by PCA-LDA. With respect to the early publication, RSM
was applied both on raw palmprint/palmvein images and on
textural features extracted with two different algorithms, BSIF
and LBP. Moreover, the performance was analyzed on two
different sets of images, namely, provided by a contact sensor
(CASIA data set) and a contactless sensor (PolyU data set).

Our findings suggest that the use of RSM leads to an
improvement of the performance especially when applied to
raw images, independently of the sensor adopted. This may
help in speeding up the recognition process and allow avoiding
the non-trivial step of optimizing LBP and/or BSIF parameters.
This difficulty is still present because of the lack of explanation
of why textural descriptors are so effective in palmprint and
palmvein recognition, as reported by many authors and as
confirmed by our experiments. Finally, the very good results
obtained on images captured by a contactless sensor may be
promising for a possible realistic implementation without the
need of a strong cooperation from the user, as it is necessary
when a contact sensor is adopted.

In the future, we will further extend this investigation to
other textural descriptors and also we will show at which
extent the proposed architecture can be simplified or improved,
by focusing on the feature reduction module or the adoption
of hybrid techniques with more than one typology of hand-
crafted features.
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