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Experimental study of a two-stroke relaxation oscillator (TSO) has enabled to show that this
electronic component has the same features as the so-called “memristor”. So, we have used the
memristor’s direct current (DC) vM − iM characteristic for modeling the TSO’s DC current-voltage
characteristic. This led us to confirm on one hand, that the TSO is a memristor and, on the
other hand to propose a new four-dimensional autonomous dynamical system allowing to describe
experimentally observed phenomena such as the transition from a limit cycle to torus breakdown.

I. FROM TWO-STROKE OSCILLATOR TO TWO-STROKE MEMRISTOR

A. The Two-Stroke Relaxation Oscillator

In the beginning of the sixties, the French engineer, mathematician and physicist Philippe Le Corbeiller (for more
details about his works and life, see Ginoux [1]) initiated the study of TSOs. He considered “several mathematical
models of non-symmetrical oscillators, in which the energy stored in the generalized flywheel varies from a minimum
to a maximum value and back again only once per period.” He called these oscillators TSOs [2] and provided the
following general nonlinear ordinary differential equation characterizing their oscillations:

ẍ+ F (ẋ) + x = 0. (1)

He named it Lord Rayleigh-type equation (LRT) in reference to the works Sir William Strutt, alias, Lord Rayleigh
[3] on maintained vibrations and explained that the characteristic function F (ẋ) is such that the equation (1) has a
unique periodic solution, i.e., a Poincaré’s limit cycle [4, p. 261]. In fact, as recalled by Ginoux [1], this characteristic
function F (ẋ) plays the role of a “negative resistance” the sign of which is alternating between positive and negative
values such that the oscillations are self-sustained instead of being damped. Of course, the main difficulty in this
problem lies in the modeling of such characteristic function. In his paper, Le Corbeiller [2] wrote that he “has tried
out a number of functions, some with one, and some with two exponentials, which lead to two-stroke oscillators.”

Less than ten years after, the American electronics scientist Donald L. Hester [5] published an article in which he
showed that simplified versions of tuned-collector, tuned-base, and Hartley transistor oscillators are characterized by
a nonlinear ordinary differential equation of the form:

ẍ− µ
[
eaẋ − κe(a+b)ẋ

]
+ γẋ+ x = 0, (2)

where µ, κ, γ, a and b are positive constants and κ ≪ 1. Hester [5] used the Ebers-Moll large-signal model for
bipolar junction transistors [6]. So, the characteristic function of his LRT equation (2) read:

F (ẋ) = −µ
[
eaẋ − κe(a+b)ẋ

]
+ γẋ = −f (ẋ) + γẋ. (3)

While using the classical D’Alembert transformation [7], Hester’s LRT equation (2) can be recast in its most general
form as a two-dimensional dynamical system:


dx

dt
= −y,

dy

dt
= x+ F (ẋ) = x− γy − f (−y) .

(4)
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Following these seminal works and by setting γ = 0 in Eq. (4), Jelbart and Wechselberger [8] recently proposed a
model for the electronic two-stroke oscillator which can be written as follows:


dx

dt
= −y,

dy

dt
= x−R (y) ,

(5)

where x and y denotes respectively dimensionless ‘current’ and ‘voltage’ and

R(y) = f(−y) = µ
[
e−ay − κe−(a+b)y

]
. (6)

The intersection of the nullclines of Eq. (5) defines the fixed points of the corresponding dynamical system.
Moreover, the nullcline corresponding to the equation describing the time evolution of y(t) can be employed to define
the characteristic function of the two-stroke oscillator : x = R(y) = f(−y) that has been plotted in Fig. 1 with the
parameter values given in [8], i.e. for (µ, κ, a, b) = (1, 10−2, 4, 6).
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FIG. 1: Characteristic function of the two-stroke oscillator (6).

B. The memristor

The missing two terminal circuit element,that is, the memristor, postulated fifty years ago by L.O. Chua was finally
implemented in 2008 [9]. However, contrary to what one might think, it is not by experimenting, but by logical
deduction that L. O. Chua was able to postulate the existence of a missing circuit element. In particular, in his
now famous publication of 1971, L.O. Chua [10] considered the three basic building blocks of an electric circuit: the
capacitor, the resistor and the inductor as well as the three laws linking the four fundamental circuit variables, namely,
the electric current i, the voltage v, the charge q and the magnetic flux φ (see Fig. 2). Then, L.O. Chua [10, p. 507]
explained that:

“. . . by the axiomatic definition of the three classical circuits elements, namely, the resistor (defined by a
relationship between v and i), the inductor (defined by a relationship between φ and i), and the capacitor
(defined by a relationship between q and v). Only one relationship remains undefined, the relationship
between φ and q.”
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Resistor

dv = Rdi

Capacitor

dq = Cdv

Inductor

dj = Ldi

Memristor

dj = Mdq

Memristive systems
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j
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dq = idt

FIG. 2: The four fundamental two-terminal circuit elements, [9, p. 80]

He thus concluded from the logical as well as axiomatic points of view, that it is necessary, for the sake of complete-
ness, to postulate the existence of a fourth circuit element to which he gave the name memristor since it behaves like
a nonlinear resistor with memory [11]. Unlike the transistor that allows the current to flow or not, and so uses bits
(0 or 1), the memristor has a variable resistance and can therefore take all the values between 0 and 1. Depending
on the incoming signal and its previous state, the memristor adjusts its resistance to current and keep in memory its
previous state, hence its name. In 2010, Muthuswamy & Chua [12, p. 1574] plotted the direct current (DC) vM − iM
characteristic function of the memristor (see Fig. 3).

FIG. 3: The DC vM − iM characteristic function of the memristor, [12, p. 1574].

In their paper, Muthuswamy & Chua [12, p. 1580] stated the equation of this curve representing the direct current
(DC) vM − iM characteristic function of the memristor:

vM = iM

(
−1 +

i2M
(iM + α)

2

)
β. (7)

The comparison of the graphs reported in figures 1 and 3 clearly show that, apart for the meaning of the variables,
translations and scale factors, they exhibit a similar dependence on the independent variables. Thus, the great
similarity between the shape of such curves motivated us to adopt as characteristic function of the two-stroke oscillator
(6) a functional form corresponding to that of thememristor in equation (7). Consequently, according to this rationale,
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we assume that the characteristic function x = R(y) of the two-stroke oscillator is described by a memristor’s like
direct current (DC). More precisely, we define:

x = R (y) = g (y) = y

(
−1 +

y2

(y + a)
2

)
b (8)

where a, b are parameters to be determined from the experimental data. In our laboratory we already measured
the electrical nonlinear voltage-current characteristic of the UJT (Unipolar Junction Transistor; for more details see
Fig. 3b in Ref.[13] where the VE − IE characteristic is shown and Fig. 8 in section IV of this manuscript where the
schematic of the UJT relaxation oscillator is represented Then, the values of the parameters a and b were determined
by fitting our experimental data with the characteristic defined in Eq. 8 and the result were:

a = −0.0546778, b = 14.0334,

with the coefficient of determination R2 = 0.929789 indicating a quite good fit of the data [14]

C. Two-stroke relaxation memristor

Thus, starting from the previous works of Le Corbeiller [2], Hester [5] and Jelbart and Wechselberger [8] and by
using the memristor characteristic function (8), we designed the following two-stroke relaxation memristor model.


dx

dt
= −y,

dy

dt
= x− y

(
−1 +

y2

(y + a)
2

)
b,

(9)

where x and y denotes respectively dimensionless ‘voltage’ and ‘current’ and a = −0.0546778 and b = 14.0334. The
numerical integration of this dynamical system (9) was performed and the quantities −x and −y are plotted in Figs.
4a & 4b.
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FIG. 4: Two-stroke relaxation memristor model (9).

It appears that we obtain exactly the same results as Hester [5] and Jelbart and Wechselberger [8].
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II. CHAOTIC TWO-STROKE RELAXATION MEMRISTOR

Now we are in position to define our two-stroke relaxation oscillator by just performing the following transformations:
a) changing symbolic representation of the dependent variables (x −→ y and y −→ x); b) reversing signs (x −→ −x
and y −→ −y). With these changes the dynamical systems employed to define our two-stroke relaxation oscillator
(9) reads:


dx

dt
= y − x

(
−1 +

x2

(x− a)
2

)
b = y − g (x) ,

dy

dt
= −x.

(10)

It is worth noticing that, due to the symmetry properties of Eqs. 9, the above transformations produced only a
change in the relative sign between the two terms in the denominator of the memristor characteristic function. The
dimensionality of the above two-stroke relaxation oscillator model can be increased by adding an external sinusoidal
driving term sin(ωt). This makes the system non-autonomous and chaotic instabilities can be easily foreseen by
adjusting the forcing term. In addition, the equation describing the voltage variable can be slightly modified by
adding other two terms accounting for specific features of UJT oscillator (see [15] for additional details). Definitely,
the second equation (10) is modified as it follows:

dy

dt
= A0 −A1y −A2x+ εωz, (11)

where z(t) is the solution of the harmonic oscillator, satisfying the initial conditions z(0)=0 and z(0)=1, described
by the equations:

dz

dt
= u,

du

dt
= −ω2z.

(12)

This strategy, which represents a general way to introduce a coupling with another oscillator, was successfully
applied for modeling the complex dynamics of a glow discharge Ne tube [16]. Thus, the continuous model for the
UJT, i.e., for the two-stroke relaxation memristor can be rewritten as it follows:

dx

dt
= y − g (x) ,

dy

dt
= A0 −A1y −A2x+ εωz,

dz

dt
= u,

du

dt
= −ω2z.

(13)

where: a = −0.0546778, b = 14.0334, A0 = 0.01, A1 = 0.7925, A2 = 49.59 and ω = 2πν with ν = 0.2944. The
adopted values of A0, A1, A2 are from [15] where they were also employed to describe another UJT model based on
the analogies with the glow discharge in a Ne tube. In this relaxation oscillator it is physically plausible to introduce
a parasitic inductive effect while for the UJT oscillator, this effect has been introduced as an ”ad hoc” one to have
two separate time scales.

III. STABILITY ANALYSIS

A. Fixed points

Fixed points are determined while using the classical nullclines method. Thus, by plugging y and z in the first
equation of the dynamical system (13) we obtain, with this parameter set, the following unique real fixed point of
this four-dimensional dynamical system:
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I

(
x∗, y∗ =

A0

A1
− A2

A1
x∗, z∗ = 0, u∗ = 0

)
, (14)

where the expression of x∗ (too large to be explicitly written here) only depends A0 and A2 and not on the control
parameter ε. Moreover, with this parameter set, x∗ ≪ 1 (x∗ ≈ 0.0002599). So, this fixed point is very near the origin.

B. Jacobian matrix

The Jacobian matrix of dynamical system (13) reads:

J =


−g′ (x) 1 0 0

−A2 −A1 εω 0

0 0 0 1

0 0 −ω2 0

 (15)

where g′ (x) = −a2b(a− 3x)

(a− x)3
(16)

By replacing the coordinate of the fixed point I (14) in the Jacobian matrix (15) one obtains the following Cayley-
Hamilton fourth degree eigenpolynomial:

(
λ2 + ω2

) [
λ2 + (A1 + g′(x))λ+A2 +A1g

′(x)
]
= 0. (17)

Thus, it appears that the eigenpolynomial (17) has a pair of two complex conjugate eigenvalues λ1,2 = ±iω which
correspond to those of the harmonic oscillator and a pair of real eigenvalues:

λ3,4 =
1

2

[
− (A1 + g′(x))±

√
∆
]

(18)

where ∆ = (A1 − g′(x))
2 − 4A2 (19)

Since, with this parameter set x∗ ≪ 1, we have according to (16): g′(x∗) ≈ −b. So, ∆ > 0 and the real parts of all
eigenvalues are strictly positive (8.93398, 4.30595). So, the fixed point I is unstable according to Lyapunov’s theorem
[17].

C. Bifurcation diagram

From equations 13 it follows that the dynamical properties of the forced TSO strongly depend on the amplitude (ε)
and frequency (ω) of the harmonic forcing. Thus, in order to highlight how the changes of these control parameters
impact the corresponding dynamics of the attractor we have built a bifurcation diagram (see Fig. 5). Moreover, for
a more clear identification of the possible occurring dynamical regimes we have compared the phase portraits and
Poincaré section plotted in Fig. 6 & 7. Analysis of this bifurcation diagram shows that for ε = 0, the attractor is a
limit cycle of period 1 (see Fig. 6a & 7a). When 0 < ε < 0.46, the attractor becomes a “torus” and its trajectories
are dense on the attractor (see Fig. 6b & 7b). For 0.46 < ε < 0.463, the “torus” breaks down (see Fig. 6c & 7c).
For 0.463 < ε < 1.77, a limit cycle of period 2 appears. When 1.77 < ε < 1.94 a period doubling cascade occurs and
leads to a chaotic attractor (see Fig. 6d & 7d). Finally, for 1.94 < ε < 2.05 a reverse period doubling cascade occurs
and limit cycle of period 2, 3 and 4 appears(see Fig. 6f & 7f). In order to confirm this scenario, Lyapunov exponents
have been computed in each case.
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D. Numerical computation of the Lyapunov exponents

The algorithm developed by Sandri [18] for Mathematica R⃝ has been used to perform the numerical calculation
of the Lyapunov characteristics exponents (LCE) of dynamical system (13) in each case. LCEs values have been
computed within each considered interval (ε ∈ [0, 0.463] and [1.77, 2]). As an example, for ε = 0.4623, 1.92 and 2,
the corresponding LCEs are (0, 0,−0.033,−78.53), (+0.043, 0,−0.037,−85.05) and (+0.042, 0,−9.26,−89.31), respec-
tively. Then, following the works of Klein and Baier [19], a classification of (autonomous) continuous-time attractors
of dynamical system (13) on the basis of their Lyapunov spectrum, together with their Hausdorff dimension is pre-
sented in Tab. 1. LCEs values have been also computed with the Lyapunov Exponents Toolbox (LET) developed by
Siu for MatLab R⃝ and involving the two algorithms proposed by Wolf et al. [20] and Eckmann and Ruelle [21] (see
https://fr.mathworks.com/matlabcentral/fileexchange/233-let). Results obtained by both algorithms are consistent.

TABLE I: Lyapunov characteristics exponents of dynamical system (13) for various values of ε.

ε LCE spectrum Dynamics of the attractor Hausdorff dimension

ε = 0 (0,−,−,−) Periodic Motion (Limit Cycle) D = 1

0 < ε < 0.463 (0, 0,−,−) 3-Torus D = 2

1.77 < ε < 2 (+, 0,−,−) 2-Chaos D = 3.0007

IV. EXPERIMENTAL MEASUREMENTS

The experimental set up of the driven UJT oscillator is reported in Fig. 8. The UJT is a 2N2646 - Motorola and
it is connected from the emitter side E through the resistor R (12.68 kΩ) to the supply voltage Vs fixed at 7.0(V ).
The B2 base is connected to a modulated bias voltage having a dc value is fixed at Vb = 4.8V . The B1 base is tied
to ground through a resistor RL (56 Ω).The discharge current through the UJT is detected as a voltage signal on
RL. The capacitor C has a value of 49.73 nF . According to [22] the period Texp of the “relaxation oscillator” can be
approximated by the following formula:

Texp
∼= RC log

(
1

1− ηexp

)
, (20)

where ηexp is the “intrinsic stand off ratio”, typically in the range 0.4 − 0.8. So, by considering the frequency of
our relaxation oscillator (4742Hz), we can deduce from (20) ηexp ≈ 0.28. Although this experimental value is a little
bit outside the expected range, we can justify it by considering that this value is obtained when Vs is set equal to
Vb while in our scheme these two values are different. We will discuss at the end of this section the possibility to
introduce formally a similar relationship for the TSO model.
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(a) (b)

(c) (d)

FIG. 5: Bifurcation diagram ymax as function of ε.

The dynamics of the UJT relaxation oscillator has been tracked in real time by the Poincaré’s sections implemented
on the current signal on the load resistor RL. The apparatus for recording the Poincaré’s sections include sample
and hold circuits to memorize the peaks of the current signal In as well as the same sequence delayed by one peak
In−1. The two sequences are plotted in x − y configuration on a digital scope Tektronix TDS7104. The intrinsic
oscillation frequency of the UJT oscillator was ν = 4742Hz and the frequency of the applied harmonic perturbation
term was f = 2271Hz (just detuned of one hundred Hertz below ν/2). Together with the Poincaré’s sections we plot
the attractors in the x− y plane by means of another digital scope Tektronix. The plotted variables were the current
through the resistor RL and the emitter potential Ve. To build the image of the attractors the scale sensitivities
were: horizontal scale 100mV/div; vertical scale 200mV/div. Instead, for the Poincaré’s sections the sensitivities
were: horizontal scale 100mV/div; vertical scale 200mV/div. Overall, the corresponding measurements are condensed
in Fig. 9 and Fig. 10. In the first one, we report the dynamics emerging from the free running oscillation of the UJT
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(a) ε = 0 (b) ε = 0.4

(c) ε = 0.4623 (d) ε = 0.5

(e) ε = 1.92 (f) ε = 2

FIG. 6: Poincaré section of the chaotic two-stroke relaxation memristor (13) in the (x, y, z)-space for various values ε.
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(a) ε = 0 (b) ε = 0.4

(c) ε = 0.4623 (d) ε = 0.5

(e) ε = 1.92 (f) ε = 2

FIG. 7: Phase portraits of the chaotic two-stroke relaxation memristor (13) in the (x, y)-plane for various values ε.



11

FIG. 8: Circuit diagram of the experimental setup.

oscillator (see Fig. 9a and 9b). Then, the introduction of a sinusoidal forcing at frequency near half of the free running
frequency leads to a quasi-periodic regime ( torus regime) characterized by closed loop Poincaré’s section. As the
amplitude of the perturbation is increased the torus surface enlarges and displays a folding as shown in Fig. 9c and
9d. A further increase of the driving amplitude leads to phase locking regimes where the continuity of the Poincaré’s
section is lost. The phase locking regimes precede the torus breaking characterized by the presence of wrinkles. This
dynamical feature is the one depicted Fig. 10a and 10b. The underlying physical mechanism is competition between
two frequencies, that is, the intrinsic relaxation frequency of the UJT oscillator and the driving frequency which tend
to pull the intrinsic frequency towards the double of the driving frequency. This frequency pulling phenomenon is
governed by the nonlinearities of the relaxation oscillator. This process is clearly evident when the amplitude of the
driving term is increased (see Fig. 10c and 10d) where a chaotic period two regime is signaled by a Poincaré’s section
with two not well defined points. Eventually, the dynamics becomes periodic (period two solution) after a bifurcation
(see Fig. 10e and 10f). A comparison with the numerical bifurcation diagram reveals that last one also shows the
period doubling bifurcation sequence leading to a different chaotic regime. It is clear that this chaotic regime is more
difficult to reach in the experiment where we have constraints related to the saturation of electronic components.

Figures 10 represents the torus breaking and the successive transitions to a period two solution (Scale sensitivities
as in Fig.9). When the amplitude of the sinusoidal forcing term becomes equal to 800mV , we reach the frequency
locking (Fig.10a & b). Then, starting from 879mV the torus is breaking down (Fig. 10c & d). At 900mV we reach
the competition regime (Fig. 10e & f). Then, a period two limit cycle appears at 1400mV (Fig. 10g & h).

Let us conclude this section providing an estimation of the typical value of the parameter η (here denoted ηty)
for the TSO model. We point out that the characteristic time scale of the UJT oscillator is given by RC [13, 22].
Therefore, a physical time scale can be introduced in the model by just rescaling the time in the TSO model according
to t′ = RCt. In this way the corresponding oscillation period of the model is given by Tty = RC1.702, where 1.702 is
the dimensionless period of this nonlinear oscillator when ϵ = 0. We can formally define ηty as the value satisfying the
equation Tty

∼= RC log[1/(1− ηty)]. This computation leads to ηth ∼= 0.8 which is in agreement with the expectations.
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(a) 0mV limit cycle (b) 0mV

(c) 250mV birth of the torus (d) 250mV

(e) 450mV torus (f) 450mV

(g) 650mV torus (h) 650mV

FIG. 9: Experimental attractors in the x− y plane (left panels) and corresponding Poincaré’s sections (right panels).



13

(a) 800mV frequency locking (b) 800mV

(c) 897mV torus breaking (d) 897mV

(e) 900mV competition regime (f) 900mV

(g) 1400mV period two limit cycle (h) 1400mV

FIG. 10: Torus breaking and successive transitions to a period two solution.
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V. CONCLUSIONS

The UJT relaxation oscillator circuit is a reliable one to generate self-sustained nonlinear oscillations and to observe
the transition to chaos via quasiperiodicity(torus breakdown). Although such a system was widely studied, both
experimentally and theoretically, at present we do not have a satisfactory theoretical model yet to describe its behavior.
Two approaches were attempted to model it. The first one is based on the analogy with a glow discharge Ne tube. In
this case, we have a continuous model resting on a parasitic inductance associated to the UJT. The second approach
is based on a piece-wise linear model which accurately describes the quasiperiodic dynamics but not the transition to
chaos unless a delayed term is introduced in the model. Considering the salient properties of the TSO and memristor,
we propose a new continuous model able to describe the relevant features of the complex dynamics of the driven UJT
oscillator.
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