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Experimental study of a two-stroke relaxation oscillator (TSO) has enabled to show that this electronic component has the same features as the so-called "memristor". So, we have used the memristor's direct current (DC) vM -iM characteristic for modeling the TSO's DC current-voltage characteristic. This led us to confirm on one hand, that the TSO is a memristor and, on the other hand to propose a new four-dimensional autonomous dynamical system allowing to describe experimentally observed phenomena such as the transition from a limit cycle to torus breakdown.

I. FROM TWO-STROKE OSCILLATOR TO TWO-STROKE MEMRISTOR

A. The Two-Stroke Relaxation Oscillator

In the beginning of the sixties, the French engineer, mathematician and physicist Philippe Le Corbeiller (for more details about his works and life, see Ginoux [START_REF] Ginoux | History of Nonlinear Oscillations Theory, Archimede[END_REF]) initiated the study of TSOs. He considered "several mathematical models of non-symmetrical oscillators, in which the energy stored in the generalized flywheel varies from a minimum to a maximum value and back again only once per period." He called these oscillators TSOs [START_REF] Corbeiller | Two-stroke oscillators[END_REF] and provided the following general nonlinear ordinary differential equation characterizing their oscillations: ẍ + F ( ẋ) + x = 0.

(

He named it Lord Rayleigh-type equation (LRT) in reference to the works Sir William Strutt, alias, Lord Rayleigh [START_REF] Strutt | On maintained vibrations[END_REF] on maintained vibrations and explained that the characteristic function F ( ẋ) is such that the equation (1) has a unique periodic solution, i.e., a Poincaré's limit cycle [4, p. 261]. In fact, as recalled by Ginoux [START_REF] Ginoux | History of Nonlinear Oscillations Theory, Archimede[END_REF], this characteristic function F ( ẋ) plays the role of a "negative resistance" the sign of which is alternating between positive and negative values such that the oscillations are self-sustained instead of being damped. Of course, the main difficulty in this problem lies in the modeling of such characteristic function. In his paper, Le Corbeiller [START_REF] Corbeiller | Two-stroke oscillators[END_REF] wrote that he "has tried out a number of functions, some with one, and some with two exponentials, which lead to two-stroke oscillators."

Less than ten years after, the American electronics scientist Donald L. Hester [START_REF] Hester | The nonlinear theory of a class of transistor oscillators[END_REF] published an article in which he showed that simplified versions of tuned-collector, tuned-base, and Hartley transistor oscillators are characterized by a nonlinear ordinary differential equation of the form:

ẍ -µ [ e a ẋ -κe (a+b) ẋ] + γ ẋ + x = 0, (2) 
where µ, κ, γ, a and b are positive constants and κ ≪ 1. Hester [START_REF] Hester | The nonlinear theory of a class of transistor oscillators[END_REF] used the Ebers-Moll large-signal model for bipolar junction transistors [START_REF] Ebers | Large signal behavior of junction transistors[END_REF]. So, the characteristic function of his LRT equation (2) read:

F ( ẋ) = -µ [ e a ẋ -κe (a+b) ẋ] + γ ẋ = -f ( ẋ) + γ ẋ. ( 3 
)
While using the classical D'Alembert transformation [START_REF] D'alembert | Suite des recherches sur le calcul intégral, quatrième partie : Méthodes pour intégrer quelques équations différentielles[END_REF], Hester's LRT equation ( 2) can be recast in its most general form as a two-dimensional dynamical system:

     dx dt = -y, dy dt = x + F ( ẋ) = x -γy -f (-y) . ( 4 
)
Following these seminal works and by setting γ = 0 in Eq. ( 4), Jelbart and Wechselberger [START_REF] Jelbart | Two-stroke relaxation oscillators[END_REF] recently proposed a model for the electronic two-stroke oscillator which can be written as follows:

     dx dt = -y, dy dt = x -R (y) , (5) 
where x and y denotes respectively dimensionless 'current' and 'voltage' and

R(y) = f (-y) = µ [ e -ay -κe -(a+b)y ] . ( 6 
)
The intersection of the nullclines of Eq. ( 5) defines the fixed points of the corresponding dynamical system. Moreover, the nullcline corresponding to the equation describing the time evolution of y(t) can be employed to define the characteristic function of the two-stroke oscillator : x = R(y) = f (-y) that has been plotted in Fig. 1 with the parameter values given in [START_REF] Jelbart | Two-stroke relaxation oscillators[END_REF], i.e. for (µ, κ, a, b) = (1, 10 -2 , 4, 6). 

B. The memristor

The missing two terminal circuit element,that is, the memristor, postulated fifty years ago by L.O. Chua was finally implemented in 2008 [START_REF] Strukhov | The missing memristor found[END_REF]. However, contrary to what one might think, it is not by experimenting, but by logical deduction that L. O. Chua was able to postulate the existence of a missing circuit element. In particular, in his now famous publication of 1971, L.O. Chua [START_REF] Chua | Memristor -The Missing Circuit Element[END_REF] considered the three basic building blocks of an electric circuit: the capacitor, the resistor and the inductor as well as the three laws linking the four fundamental circuit variables, namely, the electric current i, the voltage v, the charge q and the magnetic flux φ (see Fig. 2). Then, L.O. Chua [10, p. 507] explained that: ". . . by the axiomatic definition of the three classical circuits elements, namely, the resistor (defined by a relationship between v and i), the inductor (defined by a relationship between φ and i), and the capacitor (defined by a relationship between q and v). Only one relationship remains undefined, the relationship between φ and q." He thus concluded from the logical as well as axiomatic points of view, that it is necessary, for the sake of completeness, to postulate the existence of a fourth circuit element to which he gave the name memristor since it behaves like a nonlinear resistor with memory [START_REF] Ginoux | The Singing Arc: The Oldest Memristor?" Chaos, CNN, Memristors and Beyond, in Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua[END_REF]. Unlike the transistor that allows the current to flow or not, and so uses bits (0 or 1), the memristor has a variable resistance and can therefore take all the values between 0 and 1. Depending on the incoming signal and its previous state, the memristor adjusts its resistance to current and keep in memory its previous state, hence its name. In 2010, Muthuswamy & Chua [12, p. 1574] plotted the direct current (DC) v M -i M characteristic function of the memristor (see Fig. 3). 

v M = i M ( -1 + i 2 M (i M + α) 2 ) β. ( 7 
)
The comparison of the graphs reported in figures 1 and 3 clearly show that, apart for the meaning of the variables, translations and scale factors, they exhibit a similar dependence on the independent variables. Thus, the great similarity between the shape of such curves motivated us to adopt as characteristic function of the two-stroke oscillator (6) a functional form corresponding to that of the memristor in equation [START_REF] D'alembert | Suite des recherches sur le calcul intégral, quatrième partie : Méthodes pour intégrer quelques équations différentielles[END_REF]. Consequently, according to this rationale, we assume that the characteristic function x = R(y) of the two-stroke oscillator is described by a memristor's like direct current (DC). More precisely, we define:

x = R (y) = g (y) = y ( -1 + y 2 (y + a) 2 ) b (8)
where a, b are parameters to be determined from the experimental data. In our laboratory we already measured the electrical nonlinear voltage-current characteristic of the UJT (Unipolar Junction Transistor; for more details see Fig. 3b in Ref. [START_REF] Garbo | Delayed dynamics in an electronic relaxation oscillator[END_REF] where the V E -I E characteristic is shown and Fig. 8 in section IV of this manuscript where the schematic of the UJT relaxation oscillator is represented Then, the values of the parameters a and b were determined by fitting our experimental data with the characteristic defined in Eq. 8 and the result were: a = -0.0546778, b = 14.0334, with the coefficient of determination R 2 = 0.929789 indicating a quite good fit of the data [START_REF] Björck | Numerical Methods for Least Squares Problems[END_REF] C. Two-stroke relaxation memristor Thus, starting from the previous works of Le Corbeiller [2], Hester [START_REF] Hester | The nonlinear theory of a class of transistor oscillators[END_REF] and Jelbart and Wechselberger [START_REF] Jelbart | Two-stroke relaxation oscillators[END_REF] and by using the memristor characteristic function [START_REF] Jelbart | Two-stroke relaxation oscillators[END_REF], we designed the following two-stroke relaxation memristor model.

         dx dt = -y, dy dt = x -y ( -1 + y 2 (y + a) 2 ) b, (9) 
where x and y denotes respectively dimensionless 'voltage' and 'current' and a = -0.0546778 and b = 14.0334. The numerical integration of this dynamical system (9) was performed and the quantities -x and -y are plotted in Figs. 4a &4b. It appears that we obtain exactly the same results as Hester [START_REF] Hester | The nonlinear theory of a class of transistor oscillators[END_REF] and Jelbart and Wechselberger [START_REF] Jelbart | Two-stroke relaxation oscillators[END_REF].

II. CHAOTIC TWO-STROKE RELAXATION MEMRISTOR

Now we are in position to define our two-stroke relaxation oscillator by just performing the following transformations: a) changing symbolic representation of the dependent variables (x -→ y and y -→ x); b) reversing signs (x -→ -x and y -→ -y). With these changes the dynamical systems employed to define our two-stroke relaxation oscillator (9) reads:

         dx dt = y -x ( -1 + x 2 (x -a) 2 ) b = y -g (x) , dy dt = -x. ( 10 
)
It is worth noticing that, due to the symmetry properties of Eqs. 9, the above transformations produced only a change in the relative sign between the two terms in the denominator of the memristor characteristic function. The dimensionality of the above two-stroke relaxation oscillator model can be increased by adding an external sinusoidal driving term sin(ωt). This makes the system non-autonomous and chaotic instabilities can be easily foreseen by adjusting the forcing term. In addition, the equation describing the voltage variable can be slightly modified by adding other two terms accounting for specific features of UJT oscillator (see [START_REF] Ginoux | Torus Breakdown in a Uni Junction Memristor[END_REF] for additional details). Definitely, the second equation ( 10) is modified as it follows:

dy dt = A 0 -A 1 y -A 2 x + εωz, ( 11 
)
where z(t) is the solution of the harmonic oscillator, satisfying the initial conditions z(0)=0 and z(0)=1, described by the equations:

dz dt = u, du dt = -ω 2 z. ( 12 
)
This strategy, which represents a general way to introduce a coupling with another oscillator, was successfully applied for modeling the complex dynamics of a glow discharge Ne tube [START_REF] Pugliese | Complex dynamics of a dc glow discharge tube: Experimental modeling and stability diagrams[END_REF]. Thus, the continuous model for the UJT, i.e., for the two-stroke relaxation memristor can be rewritten as it follows:

dx dt = y -g (x) , dy dt = A 0 -A 1 y -A 2 x + εωz, dz dt = u, du dt = -ω 2 z. ( 13 
)
where: a = -0.0546778, b = 14.0334, A 0 = 0.01, A 1 = 0.7925, A 2 = 49.59 and ω = 2πν with ν = 0.2944. The adopted values of A 0 , A 1 , A 2 are from [START_REF] Ginoux | Torus Breakdown in a Uni Junction Memristor[END_REF] where they were also employed to describe another UJT model based on the analogies with the glow discharge in a Ne tube. In this relaxation oscillator it is physically plausible to introduce a parasitic inductive effect while for the UJT oscillator, this effect has been introduced as an "ad hoc" one to have two separate time scales.

III. STABILITY ANALYSIS

A. Fixed points

Fixed points are determined while using the classical nullclines method. Thus, by plugging y and z in the first equation of the dynamical system (13) we obtain, with this parameter set, the following unique real fixed point of this four-dimensional dynamical system:

I ( x * , y * = A 0 A 1 - A 2 A 1 x * , z * = 0, u * = 0 ) , ( 14 
)
where the expression of x * (too large to be explicitly written here) only depends A 0 and A 2 and not on the control parameter ε. Moreover, with this parameter set, x * ≪ 1 (x * ≈ 0.0002599). So, this fixed point is very near the origin.

B. Jacobian matrix

The Jacobian matrix of dynamical system (13) reads:

J =        -g ′ (x) 1 0 0 -A 2 -A 1 εω 0 0 0 0 1 0 0 -ω 2 0        (15) 
where

g ′ (x) = - a 2 b(a -3x) (a -x) 3 (16) 
By replacing the coordinate of the fixed point I (14) in the Jacobian matrix [START_REF] Ginoux | Torus Breakdown in a Uni Junction Memristor[END_REF] one obtains the following Cayley-Hamilton fourth degree eigenpolynomial:

( λ 2 + ω 2 ) [ λ 2 + (A 1 + g ′ (x)) λ + A 2 + A 1 g ′ (x) ] = 0. (17) 
Thus, it appears that the eigenpolynomial (17) has a pair of two complex conjugate eigenvalues λ 1,2 = ±iω which correspond to those of the harmonic oscillator and a pair of real eigenvalues:

λ 3,4 = 1 2 [ -(A 1 + g ′ (x)) ± √ ∆ ] (18) 
where

∆ = (A 1 -g ′ (x)) 2 -4A 2 (19) 
Since, with this parameter set x * ≪ 1, we have according to (16): g ′ (x * ) ≈ -b. So, ∆ > 0 and the real parts of all eigenvalues are strictly positive (8.93398, 4.30595). So, the fixed point I is unstable according to Lyapunov's theorem [START_REF] Lyapunov | The General Problem of the Stability of Motion[END_REF].

C. Bifurcation diagram

From equations 13 it follows that the dynamical properties of the forced TSO strongly depend on the amplitude (ε) and frequency (ω) of the harmonic forcing. Thus, in order to highlight how the changes of these control parameters impact the corresponding dynamics of the attractor we have built a bifurcation diagram (see Fig. 5). Moreover, for a more clear identification of the possible occurring dynamical regimes we have compared the phase portraits and Poincaré section plotted in Fig. 6 &7. Analysis of this bifurcation diagram shows that for ε = 0, the attractor is a limit cycle of period 1 (see Fig. 6a &7a). When 0 < ε < 0.46, the attractor becomes a "torus" and its trajectories are dense on the attractor (see Fig. 6b &7b). For 0.46 < ε < 0.463, the "torus" breaks down (see Fig. 6c &7c). For 0.463 < ε < 1.77, a limit cycle of period 2 appears. When 1.77 < ε < 1.94 a period doubling cascade occurs and leads to a chaotic attractor (see Fig. 6d &7d). Finally, for 1.94 < ε < 2.05 a reverse period doubling cascade occurs and limit cycle of period 2, 3 and 4 appears(see Fig. 6f &7f). In order to confirm this scenario, Lyapunov exponents have been computed in each case.

D. Numerical computation of the Lyapunov exponents

The algorithm developed by Sandri [START_REF] Sandri | Numerical Calculation of Lyapunov Exponents[END_REF] for Mathematica R ⃝ has been used to perform the numerical calculation of the Lyapunov characteristics exponents (LCE) of dynamical system (13) in each case. LCEs values have been computed within each considered interval (ε ∈ [0, 0.463] and [1.77, 2]). As an example, for ε = 0.4623, 1.92 and 2, the corresponding LCEs are (0, 0, -0.033, -78.53), (+0.043, 0, -0.037, -85.05) and (+0.042, 0, -9.26, -89.31), respectively. Then, following the works of Klein and Baier [START_REF] Klein | Hierachies of dynamical systems[END_REF], a classification of (autonomous) continuous-time attractors of dynamical system [START_REF] Garbo | Delayed dynamics in an electronic relaxation oscillator[END_REF] on the basis of their Lyapunov spectrum, together with their Hausdorff dimension is presented in Tab. 1. LCEs values have been also computed with the Lyapunov Exponents Toolbox (LET) developed by Siu for MatLab R ⃝ and involving the two algorithms proposed by Wolf et al. [START_REF] Wolf | Determining Lyapunov Exponents from a Time Series[END_REF] and Eckmann and Ruelle [START_REF] Eckmann | Ergodic Theory of Chaos and Strange Attractors[END_REF] (see https://fr.mathworks.com/matlabcentral/fileexchange/233-let). Results obtained by both algorithms are consistent. 

ε = 0 (0, -, -, -) Periodic Motion (Limit Cycle) D = 1 0 < ε < 0.463 (0, 0, -, -) 3-Torus D = 2 1.77 < ε < 2 (+, 0, -, -) 2-Chaos D = 3.0007

IV. EXPERIMENTAL MEASUREMENTS

The experimental set up of the driven UJT oscillator is reported in Fig. 8. The UJT is a 2N2646 -Motorola and it is connected from the emitter side E through the resistor R (12.68 kΩ) to the supply voltage V s fixed at 7.0(V ). The B2 base is connected to a modulated bias voltage having a dc value is fixed at V b = 4.8V . The B1 base is tied to ground through a resistor R L (56 Ω).The discharge current through the UJT is detected as a voltage signal on R L . The capacitor C has a value of 49.73 nF . According to [START_REF] Hasegawa | On Rational Phase-Locking Oscillations of a Simple Sawtooth Oscillator with UJT[END_REF] the period T exp of the "relaxation oscillator" can be approximated by the following formula:

T exp ∼ = RC log ( 1 1 -η exp ) , ( 20 
)
where η exp is the "intrinsic stand off ratio", typically in the range 0.4 -0.8. So, by considering the frequency of our relaxation oscillator (4742Hz), we can deduce from (20) η exp ≈ 0.28. Although this experimental value is a little bit outside the expected range, we can justify it by considering that this value is obtained when V s is set equal to V b while in our scheme these two values are different. We will discuss at the end of this section the possibility to introduce formally a similar relationship for the TSO model. The dynamics of the UJT relaxation oscillator has been tracked in real time by the Poincaré's sections implemented on the current signal on the load resistor R L . The apparatus for recording the Poincaré's sections include sample and hold circuits to memorize the peaks of the current signal I n as well as the same sequence delayed by one peak I n-1 . The two sequences are plotted in x -y configuration on a digital scope Tektronix TDS7104. The intrinsic oscillation frequency of the UJT oscillator was ν = 4742Hz and the frequency of the applied harmonic perturbation term was f = 2271Hz (just detuned of one hundred Hertz below ν/2). Together with the Poincaré's sections we plot the attractors in the x -y plane by means of another digital scope Tektronix. The plotted variables were the current through the resistor R L and the emitter potential V e . To build the image of the attractors the scale sensitivities were: horizontal scale 100mV /div; vertical scale 200mV /div. Instead, for the Poincaré's sections the sensitivities were: horizontal scale 100mV /div; vertical scale 200mV /div. Overall, the corresponding measurements are condensed in Fig. 9 and Fig. 10. In the first one, we report the dynamics emerging from the free running oscillation of the UJT oscillator (see Fig. 9a and9b). Then, the introduction of a sinusoidal forcing at frequency near half of the free running frequency leads to a quasi-periodic regime ( torus regime) characterized by closed loop Poincaré's section. As the amplitude of the perturbation is increased the torus surface enlarges and displays a folding as shown in Fig. 9c and9d. A further increase of the driving amplitude leads to phase locking regimes where the continuity of the Poincaré's section is lost. The phase locking regimes precede the torus breaking characterized by the presence of wrinkles. This dynamical feature is the one depicted Fig. 10a and10b. The underlying physical mechanism is competition between two frequencies, that is, the intrinsic relaxation frequency of the UJT oscillator and the driving frequency which tend to pull the intrinsic frequency towards the double of the driving frequency. This frequency pulling phenomenon is governed by the nonlinearities of the relaxation oscillator. This process is clearly evident when the amplitude of the driving term is increased (see Fig. 10c and10d) where a chaotic period two regime is signaled by a Poincaré's section with two not well defined points. Eventually, the dynamics becomes periodic (period two solution) after a bifurcation (see Fig. 10e and10f). A comparison with the numerical bifurcation diagram reveals that last one also shows the period doubling bifurcation sequence leading to a different chaotic regime. It is clear that this chaotic regime is more difficult to reach in the experiment where we have constraints related to the saturation of electronic components. Figures 10 represents the torus breaking and the successive transitions to a period two solution (Scale sensitivities as in Fig. 9). When the amplitude of the sinusoidal forcing term becomes equal to 800mV , we reach the frequency locking (Fig. 10a &b). Then, starting from 879mV the torus is breaking down (Fig. 10c &d). At 900mV we reach the competition regime (Fig. 10e &f). Then, a period two limit cycle appears at 1400mV (Fig. 10g &h).

Let us conclude this section providing an estimation of the typical value of the parameter η (here denoted η ty ) for the TSO model. We point out that the characteristic time scale of the UJT oscillator is given by RC [START_REF] Garbo | Delayed dynamics in an electronic relaxation oscillator[END_REF][START_REF] Hasegawa | On Rational Phase-Locking Oscillations of a Simple Sawtooth Oscillator with UJT[END_REF]. Therefore, a physical time scale can be introduced in the model by just rescaling the time in the TSO model according to t ′ = RCt. In this way the corresponding oscillation period of the model is given by T ty = RC1.702, where 1.702 is the dimensionless period of this nonlinear oscillator when ϵ = 0. We can formally define η ty as the value satisfying the equation T ty ∼ = RC log[1/(1 -η ty )]. This computation leads to η th ∼ = 0.8 which is in agreement with the expectations. 

V. CONCLUSIONS

The UJT relaxation oscillator circuit is a reliable one to generate self-sustained nonlinear oscillations and to observe the transition to chaos via quasiperiodicity(torus breakdown). Although such a system was widely studied, both experimentally and theoretically, at present we do not have a satisfactory theoretical model yet to describe its behavior. Two approaches were attempted to model it. The first one is based on the analogy with a glow discharge Ne tube. In this case, we have a continuous model resting on a parasitic inductance associated to the UJT. The second approach is based on a piece-wise linear model which accurately describes the quasiperiodic dynamics but not the transition to chaos unless a delayed term is introduced in the model. Considering the salient properties of the TSO and memristor, we propose a new continuous model able to describe the relevant features of the complex dynamics of the driven UJT oscillator.
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TABLE I :

 I Lyapunov characteristics exponents of dynamical system (13) for various values of ε. ε LCE spectrum Dynamics of the attractor Hausdorff dimension
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