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Abstract
21

State-space models have recently been proposed as a convenient and flexible22

framework for specifying stochastic models for the dynamics of wild animal pop-23

ulations. Here we focus on the modelling of data on marked individuals which is24
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frequently used in order to estimate demographic parameters while accounting for1

imperfect detectability. We show how usual models to deal with capture-recapture2

and ring-recovery data can be fruitfully written as state-space models. An illus-3

tration is given using real data and a Bayesian approach using MCMC methods is4

implemented to estimate the parameters. We give important future developments5

facilitated by the SSM formulation. Overall, the general state-space modelling6

framework is shown to have a great potential in population ecology modelling.7

1 Introduction8

The estimation of animal survival is essential in population biology to investigate pop-9

ulation dynamics, with important applications in the understanding of ecological, evo-10

lutionary, conservation and management issues for wild populations (Pollock, 1991;11

Williams et al., 2002). While the time to event is known in medical, social or engi-12

neering sciences (death, marriage and failure respectively), models for estimating wild13

animal survival must incorporate nuisance parameters to account for incomplete de-14

tectability in monitoring individuals (Schwarz et Seber, 1999). Typically, individuals15

are captured, marked and can be resighted or recaptured (encountered thereafter) to16

construct encounter histories which consist of sequences of 1’s and 0’s according to17

whether a detection occurs or not. The likelihood for such data arises from products18

of multinomial distributions whose cell probabilities are complex functions of survival19

probabilities - parameters of primary interest - and encounter probabilities - nuisance20

parameters (Cormack, 1964; Jolly, 1965; Seber, 1965 - CJS thereafter).21

In this note, we show how the population process can be fruitfully disentangled,22

by distinguishing the underlying demographic process, i.e. the survival (as well as23

transitions between sites/states if needed), from its observation, i.e. the detectability.24

2



This leads us to consider a natural formulation for capture-recapture models using state-1

space models (SSMs). Our contribution is in line with a recent paper by Buckland et2

al. (2004) who have proposed to adopt SSMs as a convenient and flexible framework3

for specifying stochastic models for the dynamics of wild animal populations.4

Thus far, SSMs have been mainly used for time series of animal counts (de Valpine,5

2004; Millar and Meyer, 2000) or animal locations (Anderson-Sprecher and Ledolter,6

1991) to allow true but unobservable states (the population size or trajectory) to be7

inferred from observed but noisy data (see Clark et al., 2005 and Wang, 2006 for8

reviews). The novelty of our approach lies in the use of SSMs to fit capture-recapture9

models to encounter histories.10

In Section 2, we discuss how to express the CJS model under the form of a SSM. The11

implementation details are provided, and real data are presented to compare parameter12

estimates as obtained using the standard product-multinomial and the SSM approaches.13

In Section 3, the flexibility of the state-space modeling approach is demonstrated by14

considering two widely used alternative schemes for collecting data on marked animals.15

Finally, Section 4 discusses important developments of capture-recapture models facil-16

itated by the SSM formulation. We emphasize that this general framework has a great17

potential in population ecology modelling.18

2 State-space modelling of capture-recapture data19

We focus here on the CJS model for estimating animal survival based on capture-20

recapture data, as this model is widely used in the ecological and evolutionary litterature21

(e.g. Lebreton et al., 1992).22
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2.1 Likelihood1

We first define the observations and then the states of the system. We assume that2

n individuals are involved in the study with T encounter occasions. Let Xi,t be the3

binary random variable taking values 1 if individual i is alive at time t and 0 if it is4

dead at time t. Let Yi,t be the binary random variable taking values 1 if individual i is5

encountered at time t and 0 otherwise. Note that we consider the encounter event as6

being physically captured or barely observed. The parameters involved in the likelihood7

are φi,t, the probability that an animal i survives to time t + 1 given that it is alive8

at time t (t = 1, . . . , T − 1), and pi,t the probability of detecting individual i at time t9

(t = 2, . . . , T ). Let finally ei be the occasion where individual i is encountered for the10

first time. A general state-space formulation of the CJS model is therefore given by:11

Yi,t|Xi,t ∼ Bernoulli(Xi,tpi,t), t > ei (1)12

Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφi,t), t ≥ ei (2)13

where Equation (1) and Equation (2) are the observation and the state equations re-14

spectively. This formulation naturally separates the nuisance parameters (the encounter15

probabilities) from the parameters of actual interest i.e. the survival probabilities, the16

latter being involved exclusively in the state Equation (2). Such a clear distinction be-17

tween a demographic process and its observation makes the description of a biological18

dynamic system much simpler and allows complex models to be fitted (Pradel, 2005;19

Clark et al., 2005). We will refer to this formulation as the individual state-space CJS20

model (individual SSM CJS hereafter). The rationale behind the above formulation is21

as follows. We give the full details for the observation Equation (1) only, as a similar22

reasoning easily leads to Equation (2). If individual i is alive at time t, then it has prob-23
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ability pi,t of being encountered and probability 1−pi,t otherwise, which translates into1

Yi,t is distributed as Bernoulli(pi,t) given Xi,t = 1. Now if individual i is dead at time t,2

then it cannot be encountered, which translates into Yi,t is distributed as Bernoulli(0)3

given Xi,t = 0. Putting together those two pieces of reasoning, the distribution of the4

observation Yi,t conditional on the state Xi,t is given by Equation (1).5

Statistical inference then requires the likelihood of the state-space model specified6

above. Assuming independence of individuals, the likelihood is given by the product7

of all individual likelihood components. The likelihood component for individual i is8

the probability of the vector of observations YT
i = (Yi,ei

, . . . , Yi,T ) which gathers the9

information set up to time T for this particular individual. The likelihood component10

corresponding to individual i is therefore given by (e.g. Harvey, 1989)11

∫

Xi,0

, . . . ,

∫

Xi,T







T
∏

t=ei+1

[Yi,t|Xi,t][Xi,t|Xi,t−1]dXi,t







[Xi,ei
]dXi,ei

(3)
12

where [X] denotes the distribution of X and Xi,ei
the initial state of individual i which13

is assumed to be alive. Because we deal with binary random vectors, we used the14

counting measure instead of the Lebesgue measure.15

In its original formulation, the CJS makes important assumptions regarding indi-16

viduals. First, all individuals share the same parameters, which means that the survival17

and detection probabilities depend on the time index only. In mathematical notation,18

we have φit = φt and pit = pt for all i = 1, . . . , n, so Equation (1) and Equation (2)19

become Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφt) and Yi,t|Xi,t ∼ Bernoulli(Xi,tpt) respectively.20

Second, the CJS model also assumes independence between individuals. By using sim-21

ple relationships between Bernoulli and Binomial distributions, one can finally fruitfully22
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formulates the original CJS model under the following state-space model:1

Yt|X
−

t ∼ Bin(X−

t , pt) (4)2

X−

t+1|X
+

t ∼ Bin(X+

t , φt) (5)3

where X+
t is the number of survivors of marked individuals from time t−1, X−

t , plus the4

newly marked individuals at time t, and Yt is the total number of marked individuals en-5

countered at time t. We will refer to this formulation as the population state-space CJS6

model (population SSM CJS hereafter). Interestingly, specifying the system under a7

state-space formulation now requires much less equations than the individual SSM CJS8

model, which may avoid the computational burden. Nevertheless, while the individual9

SSM CJS involves parameters for every single individual and sampling occasion, the10

population SSM CJS model makes the strong assumptions that all individuals behave11

the same as well as independently, which may be of little relevance from the biological12

point of view. To cope with this issue, in-between modelling can be achieved by consid-13

ering age effects or groups classes in the population SSM model (Lebreton et al., 1992).14

Finally, covariates can be incorporated in order to assess the effect of environment such15

as climate change, most conveniently by writing the relationship between the target16

probabilities and the predictors on the logit scale (Pollock, 2002).17

2.2 Implementation18

Fitting capture-recapture models in a state-space framework is complicated due to19

the high-dimensional integral involved in the individual likelihood Equation (3). To20

circumvent this issue, several techniques have been proposed including Kalman filtering,21

Monte-Carlo particle filtering (such as sequential importance sampling) and MCMC (see22
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Clark et al., 2005 and Wang, 2006 for reviews). Our objective here is not to discuss1

these different methods. For our purpose, we adopt the MCMC technique which is now2

widely used in biology (Ellison, 2004; Clark, 2005), in particular for estimating animal3

survival (Seber et Schwarz, 1999; Brooks et al., 2000). Besides, this is to our knowledge4

the only methodology which comes with an efficient and flexible program to implement5

it, which, in our case, will allow biologists to easily and rapidly adopt our approach.6

2.3 Illustration7

We consider capture-recapture data on the European dipper (Cinclus cinclus) that were8

collected between 1981 and 1987 (Lebreton et al., 1992). The data consists of marking9

and recaptures of 294 birds ringed as adults in eastern France. We applied standard10

maximum-likelihood estimation (Lebreton et al. 1992) and MCMC techniques (Brooks11

et al. 2000) using the product-multinomial likelihood and the state-space likelihood of12

Equation (3) in combination with Equation (1) and Equation (2). We ran two overdis-13

persed parallel MCMC chains to check whether convergence was reached (Gelman,14

1996). We used 10,000 iterations with 5,000 burned iterations for posterior summariza-15

tion. We used uniform flat priors for both survival and detection probabilities. The16

simulations were performed using WinBUGS (Spiegelhalter et al., 2003). The R (Ihaka17

and Gentleman, 1996) package R2WinBUGS (Sturtz et al., 2005) was used to call Win-18

BUGS and export results in R. This was especially helpful when converting the raw19

encounter histories into the appropriate format, generating initial values and calculate20

posterior modes. The programs are available in Appendix A. Posterior summaries for21

encounter and survival probabilities are given in Table 1, along with their posterior22

probability distributions that are displayed in Figure 1.23

[Table 1 about here.]24
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[Figure 1 about here.]1

Survival estimates were uniformally similar whatever the method used (Table 1). In2

particular, there is a clear decrease in survival 1982-1983 and 1983-1984, corresponding3

to a major flood during the breeding season in 1983 (Lebreton et al., 1992).4

In contrast, posterior medians of detection probabilities using the CJS SSM ap-5

proach are quite different from the classical maximum likelihood estimates, but more6

similar to the posterior medians obtained with the product-multinomial likelihood ap-7

proach (Table 1). These discrepancies are no longer present when posterior modes8

are examined, as expected (recall that we use non-informative uniform distributions as9

priors for all parameters).10

The last survival probability as well as the last detection probability are estimated11

with high variability (Table 1 and Figure 1). The fact that these two parameters12

cannot be separately estimated is not surprising since the CJS model is known to be13

parameter-redundant (Catchpole and Morgan, 1997). Also, the first survival probability14

and the first detection probability are weakly identifiable, due to the fact that very few15

individuals were marked at the first sampling occasion (approximately 7% of the full16

data set).17

3 Further state-space modelling18

3.1 Multistate capture-recapture models19

Multistate capture-recapture models (Arnason, 1973; Schwarz et al., 1993; AS hereafter)20

are a natural generalization of the CJS model in that individuals can move between21

states, according to probabilities of transition between those states. States can be either22

geographical sites or states of categorical variables like reproductive status or size class23
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(Lebreton and Pradel, 2002). We provide here a state-space modelling formulation1

of the AS model (Dupuis, 1995; Newman, 1998; Clark et al., 2005). Without loss of2

generality, we consider 2 states. Let Xi,t be the random state vector taking values3

(1, 0, 0), (0, 1, 0) and (0, 0, 1) if, at time t, individual i is alive in state 1, 2 or dead4

respectively. Let Yi,t be the random observation vector taking values (1, 0, 0), (0, 1, 0)5

and (0, 0, 1) if, at time t, individual i is encountered in state 1, 2 or not encountered.6

Parameters involved in the modelling include φrs
i,t, the probability that an animal i7

survives to time t + 1 given that it is alive at time t (t = 1, . . . , T − 1) and makes the8

transition between state r and state s over the same interval (r, s = 1, 2), as well as pr
i,t9

the probability of detecting individual i at time t in state r (t = 2, . . . , T , r = 1, 2). A10

state-space formulation for the multistate AS model is given by:11

Yi,t|Xi,t ∼ Multinomial

















1, Xi,t

















p1
i,t 0 1 − p1

i,t

0 p2
i,t 1 − p2

i,t

0 0 1

































(6)

12

Xi,t+1|Xi,t ∼ Multinomial

















1, Xi,t

















φ11
i,t φ12

i,t 1 − φ11
i,t − φ12

i,t

φ21
i,t φ22

i,t 1 − φ21
i,t − φ22

i,t

0 0 1

































(7)

13

where Equation (6) and Equation (7) are the observation and the state equations14

respectively. This formulation has similarities with that of Pradel (2005) who used15

hidden-Markov models to extend multistate models to cope with uncertainty in state16

assignment. Again, it should be noted that the state-space formulation allows the de-17

mographic parameters to be distinguished from the nuisance parameters. A similar18

reasoning to that adopted for the CJS model leads to Equations (6) and (7). As ex-19

pected, Equation (6) and Equation (7) reduce to Equation (1) and Equation (2) if one20

9



considers a single state. Making similar assumptions as in the CJS model leads to the1

population AS SSM.2

3.2 Ring-recovery models3

The capture-recapture models presented above deals with apparent survival, which4

turns out to be true survival if emigration is negligeable. When marks of individuals5

(or individuals themselves) are actually recovered, true survival probabilities can be6

estimated using ring-recovery models (Brownie et al., 1985; RR models hereafter). Let7

Xi,t be the binary random variable taking values 1 if individual i is alive at time t and8

0 if it is dead at time t. Let Yi,t be the binary random variable taking values 1 if mark9

of individual i is recovered at time t and 0 otherwise. The parameters involved in the10

likelihood are φi,t, the probability that an animal i survives to time t + 1 given that11

it is alive at time t (t = 1, . . . , T − 1), and λi,t the probability of recovering the mark12

of individual i at time t (t = 2, . . . , T ). A general state-space formulation of the RR13

model is therefore given by:14

Yi,t|Xi,t, Xi,t−1 ∼ Bernoulli ((Xi,t−1 − Xi,t)λi,t) (8)15

Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφi,t) (9)16

where Equation (8) and Equation (9) are the observation and the state equations re-17

spectively. While the state Equation (9) is the same as that in the individual SSM18

CJS, the observation Equation (8) deserves further explanation. If individual i, alive19

at time t, does not survive to time t + 1, then its mark has probability λi,t of being20

recovered and probability 1 − λi,t otherwise, which translates into Yi,t is distributed as21

Bernoulli(λi,t) given Xi,t−1 = 1 and Xi,t = 0 i.e. Xi,t−1 − Xi,t = 1. Now if individual i22
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is in a given state (dead or alive) at time t and remains in this state till time t+1, then1

its mark cannot be recovered, which translates into Yi,t is distributed as Bernoulli(0)2

given Xi,t−1 = 0 and Xi,t = 0 or Xi,t−1 = 1 and Xi,t = 1 i.e. Xi,t−1 −Xi,t = 0. The dis-3

tribution of the observation Yi,t conditional on the combination of states Xi,t−1 −Xi,t is4

thus given by Equation (8). Similar comments to that of previous sections can be made5

here as well. Finally, we note that because the probability distribution of the current6

observation does not only depend on the current state variable, the model defined by7

Equation (8) and Equation (9) does not exactly matches the definition of a state-space8

model but can be rewritten as such (see Appendix B).9

4 Discussion10

We have shown that, by separating the demographic process from its observation, CR11

models for estimating survival can be expressed as SSMs. In particular, the SSM12

formulation of the CJS model competes well with the standard method when applied to13

a real data set. Bearing this in mind, we see at least two further promising developments14

to our approach.15

First, by scaling down from the population to the individual level while modelling16

the survival probabilities, random effects can readily be incorporated to cope with17

heterogeneity in the detection probability (Huggins, 2001) and deal with a frailty in18

the survival probability (Vaupel and Yashin, 1985). Second, the combination of various19

sources of information which has recently received a growing interest, (e.g. recovery20

and recapture data, Catchpole et al., 1998; recovery and census data, Besbeas et al.,21

2002; Besbeas et al., 2003) can now be operated/conducted in a unique SSM framework22

and hence benefits from the corpus of related methods. Of particular importance, we23
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are currently investigating the robust detection of density-dependence by accounting1

for error in the measurement of population size using the combination of census data2

and data on marked individuals.3

Because most often, data collected in population dynamics studies give only a noisy4

output of the demographic process under investigation, the SSM framework provides5

a flexible and integrated framework for fitting a wide range of models which, with6

widespread adoption, has the potential to advance significantly ecological statistics7

(Buckland et al., 2004; Thomas et al., 2005).8
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Appendix A: WinBUGS code for fitting the CJS19

model using the SSM formulation20

#############################################################21

# MODEL #22

# State-space formulation of the Cormack-Jolly-Seber model #23

16



# observations = 0 (non-encountered) and 1 (encountered) #1

# states = 0 (dead) and 1 (alive) #2

#############################################################3

model4

{5

# Define the priors for survival phi and detectability p6

p[1] <- 17

phi[1] <- 18

for (j in 2:K)9

{10

phi[j] ~ dbeta(1,1)11

p[j] ~ dbeta(1,1)12

}13

# Define the SYSTEM PROCESS14

for (i in 1:n)15

{16

# if first capture17

PrX[i,e[i]] <- 1 # Pr(alive | first capture) = 118

X[i,e[i]+1] ~ dbern(PrX[i,e[i]]) # alive (a 1 is generated with certainty)19

PrO[i,e[i]] <- X[i,e[i]+1] # detection probability at initial detection is 100%20

# otherwise21

for (j in (e[i]+1):K)22

{23

PrX[i,j] <- phi[j] * X[i,j]24

X[i,j+1] ~ dbern(PrX[i,j])25

17



PrO[i,j] <- p[j] * X[i,j+1]1

}2

# fullfil the remaining cells with zeros3

for (j in 1:(e[i]-1))4

{5

PrX[i,j] <- 06

X[i,j] <- 17

PrO[i,j] <- 08

}9

}10

# Define the OBSERVATION PROCESS11

for (h in 1:nx)12

{13

data[h,3] ~ dbern(PrO[data[h,1],data[h,2]])14

}15

}16

#######################################################################17

# DATA18

# ’K’ is the number of encounter occasions19

# ’n’ is the number of individuals20

# ’nx’ is ’K’ times ’n’21

# ’e’ is the vector of first encounters (’n’ components)22

# ’data’ is a matrix with dimensions ’nx’ times 3 where23

# the first column gives the current individual (1,...,’n’),24

# the second column gives the current encounter occasion (1,...,’K’),25
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# the third column gives the observation (= 1 if detection, = 0 otherwise)1

# corresponding to the current individual and current encounter occasion2

#######################################################################3

Appendix B4

Let Zi,t = [Xi,t−1, Xi,t] be a bivariate random vector where its two components are5

denoted Z1
i,t and Z2

i,t. Equation (8) becomes6

Yi,t|Zi,t ∼ Bernoulli
(

(Z1

i,t − Z2

i,t)λi,t

)

(10)7

and Equation (9) becomes8

Zi,t+1|Zi,t =















(

Z1
i,t+1|Zi,t

)

= Z2
i,t

Z2
i,t+1|Zi,t ∼ Bernoulli(Z2

i,tφi,t).
(11)

9

The system defined by Equation (10) and Equation (11) is a state-space model and it10

is equivalent to the model defined by Equation (8) and Equation (9).11

Note that an alternative state-space formulation can be adopted using a multistate12

formulation of the RR model (Lebreton et al., 1999) and Section 3.1.13
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Figure 1: Posterior distributions for the survival and detection probabilities for the

Dipper data using the CJS model applied to the Dipper data set as estimated by the

state-space model and MCMC methods.
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Table 1: Estimated survival and detection probabilities for the Dipper data using the
CJS model and three different methods, the state-space model (SSM) using a Monte
Carlo Markov Chain (MCMC) method, the product-multinomial model (PMM) using
a MCMC method and the PMM using a maximum-likelihood (ML) method. The two
first methods were implemented using program WinBUGS (Spiegelhalter et al., 2003),
while program M-SURGE (Choquet et al., 2004) was used to implement the last one.

SSM using MCMC PMM using MCMC PMM using ML
Parameter Posterior median/mode (SD) Posterior median/mode (SD) MLE (SE)

φ1 0.721/0.722 (0.132) 0.723/0.693 (0.132) 0.718 (0.156)
φ2 0.448/0.456 (0.071) 0.448/0.460 (0.071) 0.435 (0.069)
φ3 0.480/0.493 (0.060) 0.480/0.476 (0.061) 0.478 (0.060)
φ4 0.628/0.624 (0.061) 0.627/0.616 (0.060) 0.626 (0.059)
φ5 0.602/0.601 (0.057) 0.602/0.607 (0.057) 0.599 (0.056)
φ6 0.713/0.640 (0.142) 0.720/0.628 (0.143) - (-)∗

p2 0.671/0.658 (0.134) 0.670/0.691 (0.134) 0.696 (0.166)
p3 0.883/0.918 (0.083) 0.883/0.904 (0.083) 0.923 (0.073)
p4 0.888/0.914 (0.063) 0.889/0.912 (0.063) 0.913 (0.058)
p5 0.882/0.885 (0.057) 0.883/0.904 (0.057) 0.901 (0.054)
p6 0.913/0.920 (0.052) 0.912/0.935 (0.051) 0.932 (0.046)
p7 0.735/0.724 (0.142) 0.727/0.648 (0.143) - (-)∗

∗ Non-identifiability detected.
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