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STATE-SPACE MODELLING OF DATA ON MARKED INDIVIDUALS

State-space models have recently been proposed as a convenient and flexible framework for specifying stochastic models for the dynamics of wild animal populations. Here we focus on the modelling of data on marked individuals which is * Manuscript frequently used in order to estimate demographic parameters while accounting for imperfect detectability. We show how usual models to deal with capture-recapture and ring-recovery data can be fruitfully written as state-space models. An illustration is given using real data and a Bayesian approach using MCMC methods is implemented to estimate the parameters. We give important future developments facilitated by the SSM formulation. Overall, the general state-space modelling framework is shown to have a great potential in population ecology modelling.

Introduction

The estimation of animal survival is essential in population biology to investigate population dynamics, with important applications in the understanding of ecological, evolutionary, conservation and management issues for wild populations [START_REF] Pollock | Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations -past, present, and future[END_REF][START_REF] Williams | Analysis and management of animal populations[END_REF]. While the time to event is known in medical, social or engineering sciences (death, marriage and failure respectively), models for estimating wild animal survival must incorporate nuisance parameters to account for incomplete detectability in monitoring individuals [START_REF] Schwarz | Estimating animal abundance: review III[END_REF]. Typically, individuals are captured, marked and can be resighted or recaptured (encountered thereafter) to construct encounter histories which consist of sequences of 1's and 0's according to whether a detection occurs or not. The likelihood for such data arises from products of multinomial distributions whose cell probabilities are complex functions of survival probabilities -parameters of primary interest -and encounter probabilities -nuisance parameters [START_REF] Cormack | Estimates of survival from the sighting of marked animals[END_REF][START_REF] Jolly | Explicit estimates from capture-recapture data with both death and immigration-stochastic model[END_REF]Seber, 1965 -CJS thereafter).

In this note, we show how the population process can be fruitfully disentangled, by distinguishing the underlying demographic process, i.e. the survival (as well as transitions between sites/states if needed), from its observation, i.e. the detectability. This leads us to consider a natural formulation for capture-recapture models using statespace models (SSMs). Our contribution is in line with a recent paper by Buckland et al. (2004) who have proposed to adopt SSMs as a convenient and flexible framework for specifying stochastic models for the dynamics of wild animal populations.

Thus far, SSMs have been mainly used for time series of animal counts [START_REF] De Valpine | Monte Carlo state-space likelihoods by weighted posterior kernel density estimation[END_REF][START_REF] Millar | Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling[END_REF] or animal locations (Anderson-Sprecher and Ledolter, 1991) to allow true but unobservable states (the population size or trajectory) to be inferred from observed but noisy data (see [START_REF] Clark | Hierarchical Bayes for structured, variable populations: From recapture data to life-history prediction[END_REF]Wang, 2006 for reviews). The novelty of our approach lies in the use of SSMs to fit capture-recapture models to encounter histories.

In Section 2, we discuss how to express the CJS model under the form of a SSM. The implementation details are provided, and real data are presented to compare parameter estimates as obtained using the standard product-multinomial and the SSM approaches.

In Section 3, the flexibility of the state-space modeling approach is demonstrated by considering two widely used alternative schemes for collecting data on marked animals.

Finally, Section 4 discusses important developments of capture-recapture models facilitated by the SSM formulation. We emphasize that this general framework has a great potential in population ecology modelling.

2 State-space modelling of capture-recapture data

We focus here on the CJS model for estimating animal survival based on capturerecapture data, as this model is widely used in the ecological and evolutionary litterature (e.g. [START_REF] Lebreton | Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies[END_REF].

Likelihood

We first define the observations and then the states of the system. We assume that n individuals are involved in the study with T encounter occasions. Let X i,t be the binary random variable taking values 1 if individual i is alive at time t and 0 if it is dead at time t. Let Y i,t be the binary random variable taking values 1 if individual i is encountered at time t and 0 otherwise. Note that we consider the encounter event as being physically captured or barely observed. The parameters involved in the likelihood are φ i,t , the probability that an animal i survives to time t + 1 given that it is alive at time t (t = 1, . . . , T -1), and p i,t the probability of detecting individual i at time t (t = 2, . . . , T ). Let finally e i be the occasion where individual i is encountered for the first time. A general state-space formulation of the CJS model is therefore given by:

Y i,t |X i,t ∼ Bernoulli(X i,t p i,t ), t > e i
(1)

X i,t+1 |X i,t ∼ Bernoulli(X i,t φ i,t ), t ≥ e i (2) 
where Equation (1) and Equation (2) are the observation and the state equations respectively. This formulation naturally separates the nuisance parameters (the encounter probabilities) from the parameters of actual interest i.e. the survival probabilities, the latter being involved exclusively in the state Equation (2). Such a clear distinction between a demographic process and its observation makes the description of a biological dynamic system much simpler and allows complex models to be fitted [START_REF] Pradel | Multievent: An extension of multistate capture-recapture models to uncertain states[END_REF][START_REF] Clark | Hierarchical Bayes for structured, variable populations: From recapture data to life-history prediction[END_REF]. We will refer to this formulation as the individual state-space CJS model (individual SSM CJS hereafter). The rationale behind the above formulation is as follows. We give the full details for the observation Equation (1) only, as a similar reasoning easily leads to Equation (2). If individual i is alive at time t, then it has prob-ability p i,t of being encountered and probability 1p i,t otherwise, which translates into

Y i,t is distributed as Bernoulli(p i,t ) given X i,t = 1. Now if individual i is dead at time t,
then it cannot be encountered, which translates into Y i,t is distributed as Bernoulli(0)

given X i,t = 0. Putting together those two pieces of reasoning, the distribution of the observation Y i,t conditional on the state X i,t is given by Equation (1).

Statistical inference then requires the likelihood of the state-space model specified above. Assuming independence of individuals, the likelihood is given by the product of all individual likelihood components. The likelihood component for individual i is the probability of the vector of observations Y T i = (Y i,e i , . . . , Y i,T ) which gathers the information set up to time T for this particular individual. The likelihood component corresponding to individual i is therefore given by (e.g. [START_REF] Harvey | Forecasting, structural time series models and the Kalman Filter[END_REF])

X i,0 , . . . , X i,T    T t=e i +1 [Y i,t |X i,t ][X i,t |X i,t-1 ]dX i,t    [X i,e i ]dX i,e i (3) 
where [X] denotes the distribution of X and X i,e i the initial state of individual i which is assumed to be alive. Because we deal with binary random vectors, we used the counting measure instead of the Lebesgue measure.

In its original formulation, the CJS makes important assumptions regarding individuals. First, all individuals share the same parameters, which means that the survival and detection probabilities depend on the time index only. In mathematical notation, we have φ it = φ t and p it = p t for all i = 1, . . . , n, so Equation (1) and Equation ( 2)

become X i,t+1 |X i,t ∼ Bernoulli(X i,t φ t ) and Y i,t |X i,t ∼ Bernoulli(X i,t p t ) respectively.
Second, the CJS model also assumes independence between individuals. By using simple relationships between Bernoulli and Binomial distributions, one can finally fruitfully formulates the original CJS model under the following state-space model:

Y t |X - t ∼ Bin(X - t , p t ) (4) X - t+1 |X + t ∼ Bin(X + t , φ t ) (5)
where X + t is the number of survivors of marked individuals from time t-1, X - t , plus the newly marked individuals at time t, and Y t is the total number of marked individuals encountered at time t. We will refer to this formulation as the population state-space CJS model (population SSM CJS hereafter). Interestingly, specifying the system under a state-space formulation now requires much less equations than the individual SSM CJS model, which may avoid the computational burden. Nevertheless, while the individual SSM CJS involves parameters for every single individual and sampling occasion, the population SSM CJS model makes the strong assumptions that all individuals behave the same as well as independently, which may be of little relevance from the biological point of view. To cope with this issue, in-between modelling can be achieved by considering age effects or groups classes in the population SSM model [START_REF] Lebreton | Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies[END_REF].

Finally, covariates can be incorporated in order to assess the effect of environment such as climate change, most conveniently by writing the relationship between the target probabilities and the predictors on the logit scale [START_REF] Pollock | The use of auxiliary variables in capture-recapture modelling: an overview[END_REF].

Implementation

Fitting capture-recapture models in a state-space framework is complicated due to the high-dimensional integral involved in the individual likelihood Equation (3). To circumvent this issue, several techniques have been proposed including Kalman filtering, Monte-Carlo particle filtering (such as sequential importance sampling) and MCMC (see [START_REF] Clark | Hierarchical Bayes for structured, variable populations: From recapture data to life-history prediction[END_REF][START_REF] Wang | On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models[END_REF] for reviews). Our objective here is not to discuss these different methods. For our purpose, we adopt the MCMC technique which is now widely used in biology [START_REF] Ellison | Bayesian inference in ecology[END_REF][START_REF] Clark | Why environmental scientists are becoming Bayesians[END_REF], in particular for estimating animal survival [START_REF] Schwarz | Estimating animal abundance: review III[END_REF]Brooks et al., 2000). Besides, this is to our knowledge the only methodology which comes with an efficient and flexible program to implement it, which, in our case, will allow biologists to easily and rapidly adopt our approach.

Illustration

We consider capture-recapture data on the European dipper (Cinclus cinclus) that were collected between 1981 and 1987 [START_REF] Lebreton | Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies[END_REF]. The data consists of marking and recaptures of 294 birds ringed as adults in eastern France. We applied standard maximum-likelihood estimation [START_REF] Lebreton | Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies[END_REF]) and MCMC techniques (Brooks et al. 2000) using the product-multinomial likelihood and the state-space likelihood of Equation ( 3) in combination with Equation (1) and Equation (2). We ran two overdispersed parallel MCMC chains to check whether convergence was reached [START_REF] Gelman | Inference and monitoring convergence[END_REF]. We used 10,000 iterations with 5,000 burned iterations for posterior summarization. We used uniform flat priors for both survival and detection probabilities. The simulations were performed using WinBUGS [START_REF] Spiegelhalter | WinBUGS user manual -Version 1[END_REF]. The R [START_REF] Ihaka | R: a language for data analysis and graphics[END_REF] package R2WinBUGS [START_REF] Sturtz | R2WinBUGS: a package for running Win-BUGS from R[END_REF] was used to call Win-BUGS and export results in R. This was especially helpful when converting the raw encounter histories into the appropriate format, generating initial values and calculate posterior modes. The programs are available in Appendix A. Posterior summaries for encounter and survival probabilities are given in Table 1, along with their posterior probability distributions that are displayed in Figure 1.

[Table 1 about here.]

[Figure 1 about here.]

Survival estimates were uniformally similar whatever the method used (Table 1). In particular, there is a clear decrease in survival 1982-1983 and 1983-1984, corresponding to a major flood during the breeding season in 1983 [START_REF] Lebreton | Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies[END_REF].

In contrast, posterior medians of detection probabilities using the CJS SSM approach are quite different from the classical maximum likelihood estimates, but more similar to the posterior medians obtained with the product-multinomial likelihood approach (Table 1). These discrepancies are no longer present when posterior modes are examined, as expected (recall that we use non-informative uniform distributions as priors for all parameters).

The last survival probability as well as the last detection probability are estimated with high variability (Table 1 and Figure 1). The fact that these two parameters cannot be separately estimated is not surprising since the CJS model is known to be parameter-redundant (Catchpole and Morgan, 1997). Also, the first survival probability and the first detection probability are weakly identifiable, due to the fact that very few individuals were marked at the first sampling occasion (approximately 7% of the full data set).

3 Further state-space modelling

Multistate capture-recapture models

Multistate capture-recapture models (Arnason, 1973;[START_REF] Schwarz | Estimating migration rates using tag-recovery data[END_REF]AS hereafter) are a natural generalization of the CJS model in that individuals can move between states, according to probabilities of transition between those states. States can be either geographical sites or states of categorical variables like reproductive status or size class [START_REF] Lebreton | Multistate recapture models: modelling incomplete individual histories[END_REF]. We provide here a state-space modelling formulation of the AS model [START_REF] Dupuis | Bayesian estimation of movement and survival probabilites from capture-recapture data[END_REF][START_REF] Newman | State-space modeling of animal movement and mortality with application to salmon[END_REF][START_REF] Clark | Hierarchical Bayes for structured, variable populations: From recapture data to life-history prediction[END_REF]. Without loss of generality, we consider 2 states. Let X i,t be the random state vector taking values

(1, 0, 0), (0, 1, 0) and (0, 0, 1) if, at time t, individual i is alive in state 1, 2 or dead respectively. Let Y i,t be the random observation vector taking values (1, 0, 0), (0, 1, 0) and (0, 0, 1) if, at time t, individual i is encountered in state 1, 2 or not encountered.

Parameters involved in the modelling include φ rs i,t , the probability that an animal i survives to time t + 1 given that it is alive at time t (t = 1, . . . , T -1) and makes the transition between state r and state s over the same interval (r, s = 1, 2), as well as p r i,t the probability of detecting individual i at time t in state r (t = 2, . . . , T , r = 1, 2). A state-space formulation for the multistate AS model is given by:

Y i,t |X i,t ∼ Multinomial         1, X i,t         p 1 i,t 0 1 -p 1 i,t 0 p 2 i,t 1 -p 2 i,t 0 0 1                 (6) 
X i,t+1 |X i,t ∼ Multinomial         1, X i,t         φ 11 i,t φ 12 i,t 1 -φ 11 i,t -φ 12 i,t φ 21 i,t φ 22 i,t 1 -φ 21 i,t -φ 22 i,t 0 0 1                 (7) 
where Equation ( 6) and Equation ( 7) are the observation and the state equations respectively. This formulation has similarities with that of [START_REF] Pradel | Multievent: An extension of multistate capture-recapture models to uncertain states[END_REF] who used hidden-Markov models to extend multistate models to cope with uncertainty in state assignment. Again, it should be noted that the state-space formulation allows the demographic parameters to be distinguished from the nuisance parameters. A similar reasoning to that adopted for the CJS model leads to Equations ( 6) and ( 7). As expected, Equation (6) and Equation ( 7) reduce to Equation (1) and Equation (2) if one considers a single state. Making similar assumptions as in the CJS model leads to the population AS SSM.

Ring-recovery models

The capture-recapture models presented above deals with apparent survival, which turns out to be true survival if emigration is negligeable. When marks of individuals (or individuals themselves) are actually recovered, true survival probabilities can be estimated using ring-recovery models (Brownie et al., 1985 

Y i,t |X i,t , X i,t-1 ∼ Bernoulli ((X i,t-1 -X i,t )λ i,t ) (8) X i,t+1 |X i,t ∼ Bernoulli(X i,t φ i,t ) (9) 
where Equation ( 8) and Equation ( 9) are the observation and the state equations respectively. While the state Equation ( 9) is the same as that in the individual SSM CJS, the observation Equation ( 8) deserves further explanation. If individual i, alive at time t, does not survive to time t + 1, then its mark has probability λ i,t of being recovered and probability 1λ i,t otherwise, which translates into Y i,t is distributed as Bernoulli(λ i,t ) given X i,t-1 = 1 and X i,t = 0 i.e. X i,t-1 -X i,t = 1. Now if individual i is in a given state (dead or alive) at time t and remains in this state till time t + 1, then its mark cannot be recovered, which translates into Y i,t is distributed as Bernoulli(0)

given X i,t-1 = 0 and X i,t = 0 or X i,t-1 = 1 and X i,t = 1 i.e. X i,t-1 -X i,t = 0. The distribution of the observation Y i,t conditional on the combination of states X i,t-1 -X i,t is thus given by Equation ( 8). Similar comments to that of previous sections can be made here as well. Finally, we note that because the probability distribution of the current observation does not only depend on the current state variable, the model defined by Equation ( 8) and Equation ( 9) does not exactly matches the definition of a state-space model but can be rewritten as such (see Appendix B).

Discussion

We have shown that, by separating the demographic process from its observation, CR models for estimating survival can be expressed as SSMs. In particular, the SSM formulation of the CJS model competes well with the standard method when applied to a real data set. Bearing this in mind, we see at least two further promising developments to our approach.

First, by scaling down from the population to the individual level while modelling the survival probabilities, random effects can readily be incorporated to cope with heterogeneity in the detection probability [START_REF] Huggins | A note on the difficulties associated with the analysis of capturerecapture experiments with heterogeneous capture probabilities[END_REF] and deal with a frailty in the survival probability [START_REF] Vaupel | Heterogeneity ruses -some surprising effects of selection on population dynamics[END_REF]. Second, the combination of various sources of information which has recently received a growing interest, (e.g. recovery and recapture data, [START_REF] Catchpole | Integrated recovery/recapture data analysis[END_REF]recovery and census data, Besbeas et al., 2002;Besbeas et al., 2003) can now be operated/conducted in a unique SSM framework and hence benefits from the corpus of related methods. Of particular importance, we are currently investigating the robust detection of density-dependence by accounting for error in the measurement of population size using the combination of census data and data on marked individuals.

Because most often, data collected in population dynamics studies give only a noisy output of the demographic process under investigation, the SSM framework provides a flexible and integrated framework for fitting a wide range of models which, with

widespread adoption, has the potential to advance significantly ecological statistics (Buckland et al., 2004;[START_REF] Thomas | A unified framework for modelling wildlife population dynamics[END_REF]. 
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  ; RR models hereafter). Let X i,t be the binary random variable taking values 1 if individual i is alive at time t and 0 if it is dead at time t. Let Y i,t be the binary random variable taking values 1 if mark of individual i is recovered at time t and 0 otherwise. The parameters involved in the likelihood are φ i,t , the probability that an animal i survives to time t + 1 given that it is alive at time t (t = 1, . . . , T -1), and λ i,t the probability of recovering the mark of individual i at time t (t = 2, . . . , T ). A general state-space formulation of the RR model is therefore given by:

Appendix A: WinBUGS code for fitting the CJS model using the SSM formulation

# State-space formulation of the Cormack-Jolly-Seber model # # observations = 0 (non-encountered) and 1 (encountered) # # states = 0 (dead) and 1 (alive) #

# Define the priors for survival phi and detectability p

} # fullfil the remaining cells with zeros for (j in 1:(e[i]-1))

{

# 'e' is the vector of first encounters ('n' components)

# 'data' is a matrix with dimensions 'nx' times 3 where # the first column gives the current individual (1,...,'n'), # the second column gives the current encounter occasion (1,...,'K'), # the third column gives the observation (= 1 if detection, = 0 otherwise) # corresponding to the current individual and current encounter occasion

] be a bivariate random vector where its two components are denoted Z 1 i,t and Z 2 i,t . Equation ( 8) becomes

and Equation ( 9) becomes

The system defined by Equation (10) and Equation ( 11) is a state-space model and it is equivalent to the model defined by Equation ( 8) and Equation ( 9).

Note that an alternative state-space formulation can be adopted using a multistate formulation of the RR model [START_REF] Lebreton | Competing events, mixtures of information and multistrata recapture models[END_REF] and Section 3.1. Table 1: Estimated survival and detection probabilities for the Dipper data using the CJS model and three different methods, the state-space model (SSM) using a Monte Carlo Markov Chain (MCMC) method, the product-multinomial model (PMM) using a MCMC method and the PMM using a maximum-likelihood (ML) method. The two first methods were implemented using program WinBUGS [START_REF] Spiegelhalter | WinBUGS user manual -Version 1[END_REF], while program M-SURGE [START_REF] Choquet | M-SURGE: new software specifically designed for multistate capture-recapture models[END_REF]