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Abstract5

In monomorphic species, determination of sex from behavior is prone to errors.6

Ignoring this fact renders problematic the estimation of sex-specific parameters.7

We develop capture-recapture survival models that account for uncertainty in the8

assessment of sex. There is a legitimate concern that some parameters may not9

be identifiable in these models. We examine parameter redundancy for four basic10

models with survival and encounter probabilities constant or time-dependent. We11

further develop a more refined and more appropriate model for an Audouin’s gull12

data set where four distinct behavioral clues have been used. We examine how useful13

it is to incorporate the least reliable of the clues and the genetic determination of14

sex available for only a handful of individuals. We finally discuss the implications15

of our findings for the design of field studies as well as further directions of research.16
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1 Introduction18

Sex differences in survival, dispersal or movement may have important consequences in19

demography, mating and parental investment patterns (Breitwisch, 1989; Gowaty, 1993),20

even for species where the two sexes have very similar body size and appearance. Thus,21

a modern study in ecology cannot ignore a priori this factor. However, naming the sex22

of an individual may be particularly tricky for monomorphic species observed in the23

field. Often the field biologist will rely on behavior to distinguish males from females.24

Some behavioral clues like position during copulation are thought to be quite reliable25

but other clues like the relative body size in a pair not so much and yet the latter type26

are easier to gather. With this kind of approach, it is thus not rare that an animal27

which has once been recorded as a male is later referred to as a female. Confidence in28

the correct determination of sex will progressively increase with repeated and consistent29

observations and, eventually, it may be decided that there is no reasonable doubt about30

the true sex of a particular individual. However, this does not hold for animals seen only31

a few times and for those with a contradictory record of given sex. A natural tendency for32

studying nonetheless sex-specific parameters is then to consider the sole individuals for33

which the sex has been determined with reasonable certainty. However, this approach has34

shortcomings, especially when the aim of the study is survival. First, it may represent35

a huge waste of data. For instance, in the field study that has motivated this paper,36

approximately 80% of the individuals had never been sexed and would thus be discarded.37

Second, to be sexed with reasonable certainty an individual must often have gone through38

several observations and hence have survived meanwhile. Then, estimation of survival39

based on the subsample of known-sex individuals will inevitably be biased high. Another40

possibility is to segregate the animals into three groups: males, females and unknown-41

sex individuals. The survival of the unknown-sex individuals can then be constrained42

to be a weighted average of the survivals of males and females (Oro and Pradel, 2000)43

with the weights reflecting the proportions of males and females among the unknown.44

However, these weights are not easy to determine as the relative proportions will depend45

on the sex-ratio but also on the relative catchability of males and females and on the46
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ability to identify the sex, which may differ between males and females. Thus, while this47

second method is preferable, it is still imperfect and anyway does not make full use of48

the information available.49

We know of one example where sex uncertainty was directly incorporated in a survival50

analysis (Conroy et al., 1999). This study dealt with serins Serinus serinus, a species51

which is monomorphic only at the juvenile stage. A biometrical measure (wing length)52

was used to predict the sex of the captured juveniles and an initial state ’predicted male’53

or ’predicted female’ was then assigned to each bird on this basis. If they were ever seen54

again, their true sex was then determined and they were assigned the new state ’known55

male’ or ’known female’. This procedure allowed the estimation of transition probabilities56

between the ’predicted sexes’ and the ’known sexes’ and thus the incorporation of the57

never recaptured juveniles in the analysis. In this way, survival could be estimated without58

bias. This model was cast within the framework of multistate capture-recapture models59

(Arnason, 1972, 1973; Schwarz et al., 1993). Unfortunately, this approach does not work60

for species which remain monomorphic all their life and this is why we had to develop61

specific models. We present here a general solution to the problem of sex uncertainty62

by introducing explicitly probabilities of errors. In essence, as compared to previous63

approaches, instead of summarizing the data previous to the analysis, we model the very64

process of sex identification.65

This work was motivated by the demographic study of an Audouin’s gull Larus au-66

douinii colony at the Ebro Delta (Spain) (e.g. Oro and Pradel, 2000; Cam et al., 2004)67

where the birds are sexed upon observation according to four criteria (see Oro et al.,68

1999, for details): position during copulation, begging food during courtship, courtship69

feeding and relative body size (the males being on average slightly heavier than the fe-70

males, see Oro, 1998; Genovart et al., 2003a); or not sexed at all. The information can71

be coded as three basic events: ”the animal is judged to be a male”, ”the animal is72

judged to be a female”, ”no judgment is issued”. As this scheme should be relevant to73

many studies, we start (section 2) by developing a set of four general models that extend74

the Cormack-Jolly-Seber capture-recapture model and constant-parameter versions of it75
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(Cormack, 1964; Jolly, 1965, 1982; Seber, 1965) to uncertainty in sex assignment. These76

models incorporate probabilities of judgement and probabilities of error and can be fur-77

ther developed if needed. They are described in subsection 2.1. Because of the additional78

parameters involved, there is a legitimate concern that not all parameters may be iden-79

tifiable. In subsection 2.2, we set off to study redundancy by the method of Catchpole,80

Morgan and Freeman (1997; 1998). The models of subsection 2.1 do not account for likely81

differences in probability of error with each of the four criteria used in the Audouin’s gull82

study, nor do they incorporate such peculiarity of this study as a trend over time in the83

attempt to identify the sex of the birds. In the next section 3, we construct a more refined84

and more specialized model, suited to our data. At the same time, we assess the effect85

of dealing or not dealing with different pieces of information: is it useful to gather the86

least reliable clue? Should genetic sexing be developed? The last section is a discussion87

of the interest of this kind of models and of the implications of our findings in terms of88

field work.89

2 Four basic models90

2.1 Description91

The typical data are presented in Fig. 1. There, the true sex of every single individual is92

unknown. To write the probability of a given encounter history h, we start by conditioning93

on the first capture event—as is usual in capture-recapture (CR)—and then apply the94

law of total probabilities:95

P (h) = P (f)P (h|f) + P (m)P (h|m).96

Thus, P (f) and P (m) are the sex proportions among the unmarked captured, and P (h|f)97

and P (h|m) are the conditional probabilities of h for a female and a male respectively.98

We need the following parameters:99

1. Traditional CR parameters100

• φm, φf sex-specific survival rates101
4
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Figure 1: Excerpt from the Audouin’s gull data coded according to three criteria:

1=judged male; 2=judged female; 3=no judgement made. #{h} is the number of in-

dividuals having encounter history h. The data set has 4025 individuals spread among

917 encounter histories over 10 years of study.

• pm, pf sex-specific encounter rates102

2. New parameters103

• µ, proportion of males in the population104

• em, ef sex-specific probabilities to judge the sex of an individual105

• xm, xf sex-specific probabilities to issue the correct judgement.106

It is now possible to write out P (m) as pmµ

pmµ+pf (1−µ)
(P (f) = 1 − P (m)). As for the

conditional probabilities, let us write them for h = 1 3 2. If this relates to a male, it

has been sexed the first time (probability em) correctly (probability xm). It has then

survived to occasion 2 (probability φm), when it was encountered (probability pm), but

not sexed (probability 1 − em). It survived again (φm), was encountered at occasion

3 (pm), and sexed (em) incorrectly (1 − xm). All put together, we obtain P (h|m) =

emxmφmpm(1 − em)φmpmem(1 − xm). In a similar way, we would get P (h|f) = ef (1 −
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xf )φfpf (1 − ef )φfpfefxf . The complete probability for this encounter history is thus

P (h) =
pmµ

pmµ + pf (1 − µ)
emxmφmpm(1 − em)φmpmem(1 − xm)

+
pf (1 − µ)

pmµ + pf (1 − µ)
ef (1 − xf )φfpf (1 − ef )φfpfefxf . (1)

The probability of each individual encounter history will be obtained in this way and107

hence the likelihood of the entire data set which, assuming independence of fates, is the108

product of them. With #h denoting the number of animals with encounter history h, the109

likelihood can be written in compact form:110

L =
∏

h

P (h)#{h}.111

Maximum Likelihood Estimators (MLE) are derived by maximizing L as a function of the112

different parameters. These estimators are known to have excellent statistical properties113

such as being asymptotically unbiased and this is the approach to parameter estimation114

retained in leading CR software. However, because the current models do not fall in the115

category of existing models, we could not take advantage of this feature and wrote our116

own maximizing programs in MATLAB (Hanselman and Littlefield, 2000).117

2.2 Parameter redundancy118

The aim of this subsection is to study the impact of the introduction of sex uncertainty119

on parameter identifiability. As one can easily realize by browsing through the exten-120

sive capture-recapture literature, the number of traditional CR models in use is virtually121

unlimited as new models can be created by changing the kind of effects considered on122

each type of parameters. For instance, parameters may be constant over time or time-123

dependent; they may vary by sex, age... It is thus impossible to tell in advance which124

parameters are or are not identifiable in each possible model. However, it is useful to have125

some general guidance as to where problems are likely to occur. In traditional CR, the126

fully time-dependent Cormack-Jolly-Seber model (CJS) plays this role. In this model, it127

is known that survival over the last time interval is confounded with encounter probabil-128

ity at the last occasion and it is a general feature of the fully time-dependent CR models129
6



that the last interval is critical. This problem disappears if survival or encounter para-130

meters are hold constant. The introduction of sex uncertainty may well add new general131

identifiability problems. The minimal generalization of the CJS model consists in having132

the survival and encounter parameters, the ’traditional’ parameters of subsection 2.1,133

still time-dependent and in considering that all of the ’new’ parameters are constant over134

time. In this subsection, we examine whether this model is parameter-redundant. We135

also examine the three models derived by holding survival or encounter probabilities or136

both constant over time. In the following, we denote the four models considered by their137

sole variable part, i.e. (φt∗s, pt∗s), (φt∗s, ps), (φs, pt∗s), (φs, ps) where s stands for sex and138

t for time.139

Catchpole, Morgan and Freeman (1997; 1998) have developed a formal method (here-140

after the CMF method) for studying parameter redundancy in models belonging to the ex-141

ponential family of probability distributions. This method can be applied to the multino-142

mial distribution of animals over the observable encounter histories. It indicates which143

parameters are directly identifiable and provides identifiable functions of the redundant144

parameters (see Catchpole and Morgan (1997) and Catchpole et al. (1998) for details).145

All the calculations being formal, we carried them out with MAPLE. Because the number146

of capture histories 4k − 1 increases rapidly with the number of time steps k, we could147

apply the procedure only for k = 3, but this is sufficient as the results obtained are easily148

demonstrated to hold in general.149

A first conclusion (see Table 1) is that improving the realism of the models by adding150

new constant nuisance parameters to account for sex uncertainty does not restrict the151

ability to estimate the parameters of interest, i.e. the survival probabilities. Indeed, the152

only restriction we observe in the estimation of survival relates to the fully time-dependent153

model and this restriction is the same that was already present in the corresponding fully154

time-dependent CJS model. Actually, the new model improves over the CJS model ap-155

plied to each sex separately in allowing the estimation of the ratio of survivals of males156

and females at the last occasion; we believe that this result is due to the assumption of a157

constant sex-ratio in the population. The other case of parameter redundancy concerns158
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Table 1: Identification of estimable quantities in 4 models incorporating probabilities of

error. Superscripts are for time steps. Only 3 occasions were considered. φ2 and p3 are

thus the last survival and last encounter parameters respectively.

Model #par Model rank non estimable parameters estimable functions

(φs, ps) 9 9 none —

(φt∗s, ps) 11 11 none —

(φs, pt∗s) 13 12 p1
m, p1

f

p1

f

p1
m

(φt∗s, pt∗s) 15 13 p1
m, p3

m, p1
f , p

3
f , φ

2
m, φ2

f

p1

f

p1
m

,
φ2

f

φ2
m

, φ2
mp3

m, φ2
fp

3
f

the initial encounter probabilities, p1
m and p1

f (absent from the CJS model). When en-159

counter probabilities are time-dependent (models (φt∗s, pt∗s) and (φs, pt∗s)), only the ratio160

p1

f

p1
m

i.e. the relative catchability of males and females at the initial occasion is estimable.161

This is easily understood from the likelihood. The initial encounter probabilities appear162

in it only in the terms P (m) and P (f), and there only through their ratio. For instance,163

P (m) can be rewritten164

P (m) =
pmµ

pmµ + pf (1 − µ)
=

µ

µ +
pf

pm
(1 − µ)

.165

166

2.3 Dual solutions167

A redundant parameter is also one that can take all of a continuous range of values168

while the likelihood remains at its maximum. For a given data set, this can be seen169

by drawing the profile likelihood curve, i.e. the curve of the maximum value that the170

likelihood can assume for each value of the parameter under scrutiny: for a redundant171

parameter, the profile likelihood presents a characteristically flat area at its top. The172

shape of the profile likelihood is interesting more generally. For instance, when the profile173

likelihood decreases rapidly away from the optimal value of the parameter, this parameter174

is estimable with great precision. Away from its maximum, the profile likelihood may175
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exhibit local maxima. If one of these happens to be exactly on the same level as the176

’absolute’ maximum, then this is an instance of non-identifiability without redundancy:177

two entirely different values of the parameter maximize the likelihood equally well but178

not the values in-between. This situation cannot be detected by the CMF method. Thus,179

we examined the profile likelihood curves of the model with traditional parameters hold180

constant (φs, ps) applied to the Audouin’s gull data already mentioned (Fig. 1). The181

parameters were maintained within range by logit transformations. Instead of drawing182

the profile likelihoods, we actually drew the profile deviances (D = −2 log L) and hence183

observed the minima rather than the maxima (Fig. 2).184

A striking feature of model (φs, ps) is the existence for each scalar parameter of two185

distinct values where the deviance is minimized. These values organize into two sets which186

represent two alternative solutions. This result is in fact data-independent and holds as187

well for the three other models of this section: (φt∗s, pt∗s), (φt∗s, ps) and (φs, pt∗s) (see the188

appendix for a theoretical demonstration). The deep reason for this fundamental duality189

comes down to this: given that the true sex of any individual is never known, it is equally190

acceptable, from the model point of view, to consider that an animal estimated many191

times to be, say, a male is indeed a male and that most judgments were correct, or that192

it is a female and most judgments were wrong. Yet, one solution produces probabilities193

of error above 50%, which is probably not acceptable from the practitioner’s point of194

view. More precisely, one solution is derived from the other by exchanging the survival,195

encounter and judgment probabilities of males and females, replacing xm with 1−xf and196

xf with 1− xm and finally reversing the sex-ratio (see Appendix). As a consequence, the197

profile deviance curves of sex-specific parameters are the same for males and females. In198

the case of the Audouin’s gull data, they present two close minima (Fig. 2). The profile199

deviance curve of the proportion of males is symmetrical around 0.5 with two minima,200

which happen to be very distant with our data, at 0.14 and 0.86, and, incidentally, utterly201

unrealistic form a biological point of view.202
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Figure 2: Profile-deviance curves of the parameters of model (φs, ps) applied to the Au-

douin’s gull data set. For each parameter, the deviance (y-axis) presents two distinct

minima. The curves for p, φ and e are the same for males and females.
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Table 2: Maximum-likelihood estimates for each of the four models. For time-dependent

parameters, the median is given. Each model has also a dual solution with probabilities

of errors >50%.

Model

encounter

probability

(p)

survival

(φ)

probability

of judgment

(e)

probability

to be right

(x)

proportion

of males

(µ)

m f m f m f m f (m)

(φs, ps) 0.61 0.72 0.88 0.95 0.02 0.79 0.53 0.56 0.86

(φt∗s, ps) 0.60 0.72 0.89 0.97 0.02 0.79 0.53 0.56 0.87

(φs, pt∗s) 0.61 0.74 0.87 0.95 0.02 0.79 0.53 0.56 0.88

(φt∗s, pt∗s) 0.61 0.76 0.86 0.97 0.02 0.79 0.53 0.56 0.88

3 A more realistic model for the Audouin’s gull data203

The four models introduced in the previous section, fitted to the Audouin’s gull data,204

produce very unreasonable if similar estimates: very high proportions of males that are205

almost never judged and probabilities of error close to 50‘% (Table 2). This is not entirely206

surprising given that they do not incorporate several known important features of the207

study. In this section, we exemplify the flexibility of our approach by building a more208

realistic model incorporating our knowledge of the biology and of the way the field work209

had been conducted.210

To start, there was no good reason to believe that the error attached to each of the211

4 criteria used (copulation, begging food, courtship feeding and relative body size) was212

the same. Copulation for instance was suspected to be the most reliable and relative213

body size, the most error-prone. We thus decided to distinguish the different criteria and214

recoded the data accordingly (see Table 3). All along the study, sex determination has215

been a secondary activity but it has been conducted on stringent criteria. This is reflected216

in the very few obvious mistakes (sexing is consistent over time for a given individual),217

but the roughly 80% of never-sexed individuals in the data set. Yet, during the course of218
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Table 3: Codes used to take into account the unequal reliability of each of the 4 criteria

used to assess the sex of Audouin’s gulls upon observation at the Ebro delta colony

(Spain).

judged from to be not judged

m f

copulation 1 5 9

begging food 2 6

courtship feeding 3 7

body size 4 8

the study, sexing has gained ground; especially the criterion ’relative body size’, initially219

used very sparingly, has become more common by the end of the study. These features220

were incorporated in a model denoted (φs, pt, µ, eT , m4T , m1, m2, x1, x2, x3, x4) with221

the following characteristics:222

• pt, encounter probability: time but not sex-dependent.223

• φs, survival rate: possibly sex-dependent but constant over time.224

• µ, proportion of males: held constant.225

• eT : logit-linear trend over time (T ) in the attempt to judge the sex (e). Note that226

because birds are always judged by pair, we put no sex-dependency on e.227

• m4T : logit-linear trend over time (T ) in the frequency of use of the criterion ’relative228

body size’ (m4) among the instances when a judgment was issued.229

• m1: frequency of use of the criterion ’copulation’ among the behavioural criteria230

(i.e. excluding ’body size’): held constant.231

• m2 and m3: same as m1 for ’begging food’ and ’courtship feeding’ respectively (one232

of m1, m2 or m3 is redundant).233

• xi: probability to be right when using criterion i (i = 1, . . . 4): held constant.234
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This model has 23 parameters including 1 intercept and 1 slope for e and 1 intercept and235

1 slope for m4 and 10 capture probabilities.236

Additionally, a very few birds (24) had been sexed genetically (Genovart et al.,237

2003a,b). We fitted the previous model using (analysis A) and not using (analysis B)238

this limited information. When we used it, P (m) in the capture history of the genetically239

sexed individuals was set to 1 or 0 as appropriate. On the other hand, we considered the240

effects of not using the presumably less reliable criterion, ’body size’. To do that, the241

corresponding observations were recoded as a ’no judgment’ observation. When doing242

this latter analysis (analysis C), the genetic determination of sex was not used. Thus,243

we have a gradient of decreasing amount of information from analysis A to analysis C244

(Table 4).245

All three analyses yield estimates in agreement with what is known of the biology of246

the species. For instance, survival estimates are very close to those estimated previously247

by CR in the study site (e.g. Oro et al., 1999; Cam et al., 2004). We also note that,248

as anticipated, body size is the least reliable clue but the copulation criterion does not249

come out as the obvious best method. The results with and without genetical information250

are very similar (first 2 columns of Table 4). However, the known sex of only 24 birds251

suffices to break the tie between the dual solutions: while analyses B and C still have252

two solutions (only the reasonable one is presented in Table 4), analysis A has just one,253

as can be seen on the profile deviance curves relative to the proportion of males (Fig. 3).254

In other, not shown models, where sex-ratio is initially not identifiable, the additional255

information brought about by the 24 birds renders this and other parameters identifiable.256

As for the criterion ’body size’, even though mistakes are made on average once in every257

10 judgments and only 15.70% of the judgments made use this criterion, dropping it258

results in a disproportionate loss of precision (compare the standard errors in the last two259

columns of Table 4).260
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Table 4: Results of model (φs, pt, µ, eT , m4T , m1, m2, x1, x2, x3, x4) applied to

the Audouin’s gull data set with different amount of information. Analysis A uses all 4

criteria and the genetic determination of the sex of 24 birds; Analyses B and C do not use

the genetic determination of sex; Analysis C does not use the judgments based on body

size. Standard errors are given between parentheses. With less information (from left to

right), precision decreases. For analyses B and C, we have retained the dual solution that

yields proportions of error <50%.

Analysis A B C

proportion of males 0.53 (0.027) 0.53 (0.029) 0.55 (0.034)

female survival 0.91 (0.013) 0.91 (0.014) 0.93 (0.024)

male survival 0.86 (0.013) 0.86 (0.014) 0.84 (0.025)

error copulation 0.06 (0.041) 0.06 (0.041) 0.08 (0.055)

error begging food 0.05 (0.029) 0.06 (0.031) 0.09 (0.077)

error courtship feeding 0.00 (0.161) 0.00 (0.155) 0.00 (0.286)

error body size 0.11 (0.064) 0.09 (0.074) NA

14



32140

32160

32180

32200

32220

32240

32260

32280

0 0.2 0.4 0.6 0.8 1

proportion of males

de
via

nc
e

Figure 3: Improvement in the shape of the deviance brought about by a limited amount

of external information shown on the profile deviance of model (φs, pt, µ, eT , m4T , m1,

m2, x1, x2, x3, x4) applied to the Audouin’s gull data set and relative to the proportion

of males µ. The genetic sexing of 24 individuals renders the profile deviance steeper at

its bottom where it retains just one minimum (Analysis A; continuous line) as compared

to when the genetic information is not used (Analysis B; dotted line). There is a narrow

ridge between the 2 dual solutions in Analysis B.
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4 Discussion261

A main concern when we started building these models was the risk of parameter redun-262

dancy. The models would have been useless if no parameter of interest was estimable.263

This fear had been voiced in particular by Nichols et al. (2004) when they examined264

the restricted situation where the sex is not always assessed but, if so, without error.265

Our results show on the contrary that it is quite possible to run models incorporating266

probabilities of error and nonetheless gain knowledge about such important biological267

parameters as survival rates. Although these models have in general two mathematical268

solutions, one is so unreasonable that it should not be difficult to sort out which one is269

to be retained.270

A more serious difficulty is numerical. These models, and more generally the mul-271

tievent models (Pradel, 2005) to which they belong—but also the now classical multi-272

state models—present local minima to which the optimization algorithm occasionally273

converges. The profile deviance curves may help diagnose the problem and improved274

algorithms may be sought (see, in particular, section 6.2 in Choquet et al., 2005), but it275

is also possible to guard against local minima by augmenting the information available.276

Often, such information already exists, but could not be exploited in the traditional CR277

models. One of the major aims of the newly developed models was indeed to alleviate278

and valorize the field work by comprehending and exploiting a wider range of data.279

In this paper, we have examined two ways of gathering additional information: us-280

ing less efficient clues and sexing genetically some animals. Genetic sexing is of course281

paramount for the determination of sex, but for practical reasons it cannot usually be282

performed on every single individual. In our example, genetically sexing very few birds283

proved sufficient to greatly improve the shape of the deviance and hence the efficiency of284

the optimization algorithm. We also observed that it eliminated the wrong one of the two285

dual solutions. Finally, genetic sexing occasionally rendered identifiable new parameters286

in parameter-redundant models. It should also be noticed that genetic sexing is only one287

approach to specifying the a priori probability to be a male, P (m), for some individu-288

als. Other, not necessarily 0 − 1 predictors of sex frequently available in old studies, like289
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biometrical measures, can be incorporated in the model in the same way (P (m) can be290

set to some intermediate value between 0 and 1). This approach of incorporating exter-291

nal information has been used by Fujiwara and Caswell (2002) although in a way that,292

past the first encounter, may not be correct: the conditioning in their stage-assignment293

matrix, P (stage|measure), is the reverse of what is needed, P (measure|stage), in the294

calculation of the likelihood (see Pradel, 2005, for a formal demonstration). As for the295

use of less efficient clues, our example proved that they may be valuable beyond what296

seems at first sight attainable based on their frequency of use and efficiency (percentage297

of error). We thus encourage people to gather such clues especially if they are not time298

consuming (e.g. Redman et al., 2002). After three or four visits, it will always be possible299

to assess the quality of the prospective clues as well as the improvement brought about300

by such and such identification method in terms of gained precision. If different methods301

for sex identification are in competition, it is then possible to decide objectively, from the302

informed assessment of their relative costs and benefits, which ones to favor and which303

ones to discard.304

References305

Arnason, A. N. 1972. Parameter estimates from mark-recapture experiments on two306

populations subject to migration and death. Researches on Population Ecology 13:97–307

113.308

Arnason, A. N. 1973. The estimation of population size, migration rates and survival in309

a stratified population. Researches on Population Ecology 15:1–8.310

Breitwisch, R. 1989. Mortality patterns, sex ratios, and parental investment in monoga-311

mous birds. Current Ornithology 6:1–50.312

Cam, E., D. Oro, R. Pradel, and J. Jimenez. 2004. Assessment of hypotheses about313

dispersal in a long-lived seabird using multistate capture-recapture models. Journal of314

Animal Ecology 73:723–736.315

17



Catchpole, E., B. J. Morgan, and S. Freeman. 1998. Estimation in parameter-redundant316

models. Biometrika 85:462–8.317

Catchpole, E. A. and B. J. T. Morgan. 1997. Detecting parameter redundancy. Biometrika318

84:187–196.319

Choquet, R., A.-M. Reboulet, R. Pradel, O. Gimenez, and J.-D. Lebreton, 2005. M-320

SURGE 1.8 User’s manual. Mimeographed document, CEFE UMR CNRS 5175.321

Conroy, M. J., J. C. Senar, J. E. Hines, and J. Domenech. 1999. Development and appli-322

cation of a mark-recapture model incorporating predicted sex and transitory behaviour.323

Bird Study 46:62–73.324

Cormack, R. M. 1964. Estimates of survival from the sighting of marked animals. Bio-325

metrika 51:429–438.326

Fujiwara, M. and H. Caswell. 2002. Estimating population projection matrices from327

multi-stage mark-recapture data. Ecology 83:3257–65.328

Genovart, M., D. Oro, and F. Bonhomme. 2003a. Genetic and morphological differenti-329

ation between the two largest breeding colonies of audouin’s gull larus audouinii. Ibis330

145:448–456.331

Genovart, M., D. Oro, X. Ruiz, R. Griffiths, P. Monaghan, and R. G. Nager. 2003b.332

Seasonal changes in brood sex composition in audouin’s gulls. Condor 105:783–790.333

Gowaty, P. A. 1993. Differential dispersal, local resource competition, and sex ratio334

variation in birds. American Naturalist 141:263–280.335

Hanselman, D. and B. R. Littlefield. 2000. Mastering MATLAB 6. Prentice Hall,336

Englewood Cliffs, New Jersey, USA.337

Jolly, G. 1982. Mark-recapture models with parameters constant in time. Biometrics338

38:301–21.339

18



Jolly, G. M. 1965. Explicit estimates from capture-recapture data with both death and340

immigration-stochastic model. Biometrika 52:225–247.341

Nichols, J. D., W. L. Kendall, J. E. Hines, and J. A. Spendelow. 2004. Estimation of sex-342

specific survival from capture-recapture data when sex is not always known. Ecology343

85:3192–3201.344

Oro, D., 1998. Audouin’s gull account. Pages 47–61 in M. Ogilvie, editor. The birds of345

western palearctic. Oxford University Press, Oxford, UK.346

Oro, D. and R. Pradel. 2000. Determinants of local recruitment in a growing colony of347

audouin’s gull. Journal of Animal Ecology 69:119–32.348

Oro, D., R. Pradel, and J.-D. Lebreton. 1999. Food availability and nest predation349

influence life history traits in audouin’s gull, larus audouinii. Oecologia 118:438–45.350

Pradel, R. 2005. Multievent: an extension of multistate capture-recapture models to351

uncertain states. Biometrics 61:442–447.352

Redman, K. K., S. Lewis, R. Griffiths, S. Wanless, and K. C. Hamer. 2002. Sexing353

northern gannets from DNA, morphology and behavior. Waterbirds 25:230–234.354

Schwarz, C. J., J. F. Schweigert, and A. Arnason. 1993. Estimating migration rates using355

tag-recovery data. Biometrics 49:177–193.356

Seber, G. A. F. 1965. A note on the multiple-recapture census. Biometrika 52:249–259.357

Appendix358

The aim of this appendix is to establish the existence of two distinct dual solutions to359

the maximization of the likelihood of model (φs, ps) presented in subsection 2.1, as well360

as some related properties of its profile deviance curves. Why this happens is rooted in361

the law of total probabilities applied to an arbitrary encounter history h.362

P (h) = P (f)P (h|f) + P (m)P (h|m)363
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In this formula, the conditional probability P (h|f) is a function of the sole parameters364

φf , pf , ef , xf . This function depends on the particular encounter history h. Let write365

P (h|f) = gh(φf , pf , ef , xf ). (2)366

The probability of the same history conditional on the animal being this time a male367

is obtained by using the male parameters instead of the female ones. However, when a368

judgment was right for a female, it is wrong for a male (and vice-versa) so that xf should369

be replaced with 1 − xm (see the example of section 2.1 leading to equation 1 if this is370

not immediately clear). Thus,371

P (h|m) = gh(φm, pm, em, 1 − xm). (3)372

The unconditional probabilities P (m) and P (f) are respectively373

pmµ

pmµ + pf (1 − µ)
and

pf (1 − µ)

pmµ + pf (1 − µ)
. (4)374

The transformation Θ: [0, 1]9 −→ [0, 1]9375

(θ1, . . . θ9) 7→ (θ2, θ1, θ4, θ3, 1 − θ5, θ7, θ6, 1 − θ9, 1 − θ8)376

plays a key role. We first establish377

Lemma 1. The probability of any encounter history, seen as a function of the parameter378

vector (φm, φf , pm, pf , µ, em, ef , xm, xf ), is invariant under Θ.379

∀h, P (h) ◦ Θ = P (h)380

Proof. When the parameters are changed in the following way:381

(φm, φf , pm, pf , µ, em, ef , xm, xf )
Θ

7−→ (φf , φm, pf , pm, 1 − µ, ef , em, 1 − xf , 1 − xm),382
383

P (f) becomes
pmµ

pmµ + pf (1 − µ)
= P (m); [from (4)]384

P (m) becomes
pf (1 − µ)

pmµ + pf (1 − µ)
= P (f); [from (4)]385

P (h|f) becomes gh(φm, pm, em, 1 − xm) = P (h|m); [from (2) and (3)]386

P (h|m) becomes gh(φf , pf , ef , xf ) = P (h|f); [from (2) and (3)]387
388

so that, eventually, P (h) itself is unchanged.389
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A consequence of this lemma is that the likelihood and the deviance are equally un-390

changed under Θ. Consequently, if the parameter vector (φ̂m, φ̂f , p̂m, p̂f , µ̂, êm, êf , x̂m, x̂f )391

maximizes the likelihood, its transform by Θ, (φ̂f , φ̂m, p̂f , p̂m, 1− µ̂, êf , êm, 1− x̂f , 1− x̂m),392

maximizes it too. Hence, the theorem:393

Theorem 1. The likelihood of model (φs, ps) is maximized at two generally distinct points394

one of which is the transform of the other by the unipotent mapping Θ.395

We now examine some ensuing properties of the profile deviance curves. Let D be396

the deviance of model (φs, ps). D : [0, 1]9 −→ [0, +∞], is a function of the 9 probability397

parameters: φm, φf , pm, pf , µ, em, ef , xm, xf , which has the property that D ◦ Θ = D. If398

Ea
i =

{

θ ∈ [0, 1]9, θi = a
}

,399

the profile deviance function for parameter i is400

Pi(a)
def
= min

Ea
i

D = min
Ea

i

(D ◦ Θ) = min
Θ(Ea

i )
D.401

Given that:402

Θ(Ea
1 ) = Ea

2 , Θ(Ea
2 ) = Ea

1 ,403

Θ(Ea
3 ) = Ea

4 , Θ(Ea
4 ) = Ea

3 ,404

Θ(Ea
5 ) = E1−a

5 ,405

Θ(Ea
6 ) = Ea

7 , Θ(Ea
7 ) = Ea

6 ,406

Θ(Ea
8 ) = E1−a

9 , Θ(Ea
9 ) = E1−a

8 ,407
408

then,409

P1(a) = min
Ea

2

D = P2(a),410

P3(a) = min
Ea

4

D = P4(a),411

P5(a) = min
E1−a

5

D = P5(1 − a),412

P6(a) = min
Ea

7

D = P7(a),413

P8(a) = min
E1−a

9

D = P9(1 − a).414

415
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Thus, the profile deviances of the survival (parameters 1 and 2), encounter (parameters 3416

and 4) and judgment probabilities (parameters 6 and 7) are the same for both sexes. The417

profile deviance of the probability of error for the males (parameter 8) is the symmetrical418

with respect to a=0.5 of that for the females (parameter 9), and the profile deviance419

curve of the proportion of males (parameter 5) is symmetrical with respect to a=0.5.420
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