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Parameter Redundancy in Multistate Capture-Recapture Models
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Equipe Biométrie et Biologie des Populations, Centre d’Ecologie Fonctionnelle et Evolutive CNRS,
1919 route de Mende, 34293 Montpellier, FRANCE

Abstract

Multistate capture-recapture models are a powerful tool to address a variety of biological questions
concerning dispersal and/or individual variability in wild animal populations. However, biologically
meaningful models are often over-parameterized and consequently some parameters cannot be esti-
mated separately. Identifying which quantities are separately estimable is crucial for proper model
selection based upon likelihood tests or information criteria and for the interpretation of the estimates
obtained. We show how to investigate parameter redundancy in multistate capture-recapture models,
based on formal methods initially proposed by Catchpole and his associates for exponential family
distributions (Catchpole, Freeman and Morgan, 1996. Journal of the Royal Statistical Society Series B
58, 763-774). We apply their approach to three models of increasing complexity.

Key words: Capture-Recapture; Multistate Models; Parameter redundancy; Arnason-
Schwarz model; Heterogeneity of Capture; Combination of Information.

1. Introduction

Multistate capture-recapture models (ARNASON, 1973; SCHWARzZ et al., 1993; LEB-
RETON and PRADEL, 2002) are a natural generalization of the single state Cormack-
Jolly-Seber (CJS) model (CORMACK, 1964; JoLLy, 1965; SEBER, 1965) for the
estimation of survival probabilities (and possibly population size) using capture (or
resightings) of marked individuals (LEBRETON et al., 1999). In multistate models,
individuals can die, or survive and be captured as in single state models, but they
can also move between states, according to probabilities of transition between
states. States can be either geographical sites (multisite models) or states of cate-
gorical variables defined at the individual level, such as, e.g., reproductive state.
As a consequence, a great flexibility is reached in modeling biological phenomena
(NicHOLs and KENDALL, 1995; LEBRETON and PRADEL, 2002) and in addressing a
variety of biologically relevant questions. These questions concern for instance:

e Dispersal (states = geographical sites, Hestbeck et al., 1991)

e Trade-off between reproductive status and survival (states = reproducer/non-

reproducer, Nichols et al., 1994)
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e Rate of accession to reproduction (states = reproducer/non-reproducer, PRA-
DEL and LEBRETON, 1999; states = reproducer/non-reproducer together with
age-dependence, LEBRETON et al., 2003).

Moreover, both special cases of the basic time-dependent models obtained by
constraining parameters (BROWNIE et al., 1993), and generalizations, such as mod-
els with a memory of previous states occupied (BROWNIE et al., 1993) have been
proposed. LEBRETON etal. (2003) and LEBRETON and PRADEL (2002) describe
further generalizations, in particular age-dependent multistate models to estimate
recruitment and age-dependent dispersal. Implementation of these generalizations
has been made possible largely by the development of appropriate (White and
BUrNHAM, 1999; CHOQUET et al., 2003) and have greatly increased the biological
interest of multistate models, which appear as a natural tool for modeling complex
individual capture-histories (LEBRETON and PRADEL, 2002).

However, because the scalar parameters of single state models are replaced by
matrices of transition probabilities between states and the scalar recapture prob-
abilities by vectors of state-dependent recapture probabilities, multistate models
tend in general to have a large number of basic parameters. Moreover, the prob-
abilities of capture histories are more involved than in the single state case, with
sums of products of probabilities rather than just products. Such a likelihood tends
to behave like mixture models and may produce multiple maxima (LEBRETON and
PrRADEL, 2002). As another important consequence, multistate capture-recapture
models commonly present parameter redundancy problems (LEBRETON and PRA-
DEL, 2002). A model is said here to be parameter redundant, if its likelihood can
be expressed as a function of fewer functions of the parameters than the original
number of parameters (CATCHPOLE et al., 1996). This number of functions of the
parameters, of which unique maximum likelihood estimates can be obtained, will
be called for short the number of estimable parameters. Determining how many
and which functions of the original parameters are estimable is crucial in the inter-
pretation of estimates and in model selection (VIALLEFONT et al., 1998; BURNHAM
and ANDERSON, 1998).

Parameter redundancy is also present in models belonging to the CJS family
(LEBRETON et al., 1992), such as models with immediate trap dependence (PRADEL,
1993), or the standard time-dependent CJS model sensu stricto, in which the last
survival probability and the last recapture probability cannot be estimated sepa-
rately, only their product being estimable. As mentioned above, parameter redun-
dancy problems tend to be worse for multistate than for single state models, in
particular when age-dependence, that further increases the number of parameters,
is considered. Constraints on parameters, in the spirit of generalized linear models
(McCuLLAGH and NELDER, 1989) as commonly used for CJS models (LEBRETON
etal., 1992), make it possible to reach greater parsimony, i.e. fewer parameters,
and, at the same time to focus on biological relevance. However, reducing the
number of parameters starting from a model with complex redundancy problems
does not guarantee the absence of parameter redundancy in the final model.
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Clearly, a general approach is needed to address parameter redundancy problems
in multistate models (LEBRETON and PRADEL, 2002).

VIALLEFONT et al. (1998) proposed for single-state capture recapture models a
numerical approach based on the rank of the matrix of the second order deriva-
tives of the log-likelihood with respect to the parameters. A formal approach to
determine the number of estimable parameters has been proposed for the wide
class of exponential model family by Catchpole, Morgan and Freeman (CMF in
what follows) in a series of papers (1996, 1997, 1998 and 2001). The CMF ap-
proach is based on the symbolic calculation of the rank of a matrix of first order
derivatives of probabilities with respect to the parameters.

The purpose of this paper is to develop and provide general tools in order to
apply the CMF approach to multistate capture-recapture models. We first recall
general results about parameter redundancy and the CMF approach, and complete
them by some specific results (Section 2). Then we present general results on
time-dependent multistate capture-recapture models in relation with the CMF ap-
proach (Section 3). We develop three examples of increasing complexity:

e The Arnason-Schwarz model (ARNASON, 1973; SCHWARZ et al., 1993), which
is a straightforward generalization of the time-dependent CJS model. Its gen-
erality makes a good knowledge of estimable parameters crucial.

e A multistate model for mixtures of live recaptures and of dead recoveries
(LEBRETON et al., 1999).

e A multistate model presentation of a survival model with immediate trap de-
pendence (PRADEL, 1993).

The last two models can easily be generalized, and our purpose is to provide
general tools that can be used when building any particular model. To this effect,
following again the rationale in the CMF approach, we developed symbolic com-
putation code using software Maple. Besides the calculation of the number of
estimable parameters, which adapts the existing CMF approach, the symbolic cal-
culation of estimable functions of parameters is new. It could obviously be used
with success for single state capture-recapture models. The commented code for
our three examples is available at URL: ftp:/ftp.cefe.cnrs-mop.fr/biom/PRM.

2. The Catchpole, Morgan and Freeman (CMF) approach

Multistate models belong to the wide class of product-multinomial distributions
depending on a vector of parameters 6 € [0, 1]”. We denote as u,(0) the vector of
all multinomial probabilities, with the last probability of each multinomial skipped
to avoid unnecessary calculation (Catchpole and Morgan, 1997), and as n its di-
mension. The following developments can easily be extended to any distributions
belonging to the exponential family. A model is said to be parameter redundant if

W= (ty,... ,p,n)T can be expressed in terms of g, but not less than ¢, functions
B=(B,--- ,Bq)T called a minimal parameter set where ¢ < p. Clearly any one-
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to-one transformation of a minimal parameter set is another minimal parameter
set. The CMF approach consists of the following steps:
e Step 1: Form the vector of log-probabilities log (1(0)). The logarithm is used
here for convenience (CATCHPOLE and MORGAN, 1997).

e Step 2: Differentiate with respect to 0, i.e., obtain the n x p matrix A(0) with
01 ,
generic term A(0),; = %M’).
’ !

e Step 3: Determine the rank of A(6). The key result of the CMF approach is
that rank (A(0)), equals g(q < p), the dimension of f. Then, if the model is
not full rank, i.e., is parameter redundant:

e Step 4: Determine the d=p—gq linearly independent solutions
0;(0) = (a1 (0),...,0(0),...,0,;(0))" (j=1,...,d) of the equation

a(0)" A(0) =0 (1)
where a(0) forms a base of the left kernel (GoLuB and VAN LoAN, 1996) of
A(0).

e Step 5: Inspect the as. The positions of the s common zero entries corre-
spond to the components 6; of 6 which are separately estimable, i.e. the
indices [ for which ay,j(0) = 0 for all j. It remains to exhibit the ¢ — s com-
plex estimable functions of the ¢ = p — s parameters corresponding to non-
Zero entries in .

e Step 6: These functions f are obtained by solving the following system of d
linear first-order partial differential equations (PDEs)

$ o .
;aua—el—o,]—l,...,d, (2)

We propose to use symbolic calculus to solve such equations (CHEB-TERRAB and
VON BuLow, 1995), and will develop appropriate tools using software Maple.

A minimal parameter set [3 (CATCHPOLE and MORGAN, 1998) is made up of the
s parameters that are separately estimable and of the ¢ — s functions determined in
step 6. For instance for the CJS model with k capture occasions (e.g. LEBRETON
etal., 1992), there are p = 2k — 2 parameters, but only g = 2k — 3 are separately
estimable, ¢, ¢y, ..., Pp_2, 02,03, -+, Pk—1 (§ = 2k — 4) and the product ¢,_,px
(g — s = 1). The rank deficiency is equal to 1 (for a detailed treatment of the CJS
model, see CATCHPOLE et al., 2002).

The calculation of rank (A(0)) in step 3 can be made simpler by considering
the decomposition L(0) = D(0) A(0) B(0). If D(0) and B(0) are square matrices of
full rank, i.e., non-singular matrices, then rank (L(0)) = rank (A(0)) (GRAYBILL,
1969, th. 1.6.7 p.13). L(0) and A(0) are then said to be equivalent matrices
(GRAYBILL, 1969, p. 11). We recommend applying successive pre- and post-
multiplication by matrices D(0) and B(0) that remain full rank for any 6 to
make simple patterns appear in L(0). This novel approach is particularly useful
for distinguishing between essentially (V6, rank (A(0)) = ¢) or conditionally
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(30, rank (A(0™)) = ¢) full rank models (CATCHPOLE and MORGAN, 1997). A
model is essentially full rank when V0, rank (L(0)) = ¢ and conditionally full rank
otherwise. In some cases, L(0) can be made of constants which implies in a
straightforward way that its rank does not vary with 0. In the appendix, we pro-
vide the reader with an example.

In the CMF approach, the rank is obtained for a model at a given size, i.e., for
particular values of n and p. CATCHPOLE and MORGAN (1997, 2001) use extension
theorems to generalize a rank calculation for a model under a particular number of
capture occasions to the same model under an arbitrary number of capture occa-
sions. In the appendix, we develop the extension theorem needed for multistate
capture-recapture models.

3. Multistate models and the CMF approach

In time-dependent multistate CMR models, individuals move among successive
occasions (k possible occasions) between a discrete states (for 2 or more states).
The following standard notation (BROWNIE et al., 1993) is used:

®; is the a x a matrix of the survival/movement probabilities ¢;” between
times i and i+ 1 (1 <i<k—1) and from state r to s. To make further calcula-
tions simpler, the row and the column indices are the departure state and the arri-
val state, respectively.

P;j is the a x 1 vector of the probability of capture p; in state r at occasion j
2<j<h.

The time-dependent multistate CMR model described above has been proposed
by ARNASON (1973, see also SCHWARZ et al.,, 1993), it relies on the usual CMR
model assumption of independence and homogeneity of individuals (LEBRETON
etal. 1992). For a given occasion of marking, the number of individuals in the
various possible recapture histories follow multinomial distributions. The multi-
state m-array (BROWNIE et al., 1993) is a set of sufficient statistics (Table 1) that
cannot be reduced any further under this specific model.

Let m; be the vector of the numbers next recaptured over occasions
j=i+1,... kin states r = 1,...,qa, i.e. the row in the multistate m-array corre-
sponding to releases in state r at occasion i. Let r{ be the number never recap-
tured. Conditional on the number of individuals released at occasion i in state 7
say RI, (m!,r]) follows also a multinomial distribution. This well-known property
of time-dependent models results from the assumed independence of future and
past history for each individual. In particular R is made of newly marked and
already marked individuals. Accounting for redundancy in multinomial probabil-
ities, the probability corresponding to r{ can be dropped. As a consequence, the
probabilities that an individual last captured in state r at occasion i is recaptured
in state s at occasion j, Q7 can thus be used as w;(0) for applying the CMF

ii

approach (CATCHPOLE and MORGAN, 1997).
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Table 1

The multistate m-array (BROWNIE et al., 1993): a synthetic representation of the number of
individuals released in state r in year i and recaptured in state s in year j (a states and k

years)
year number year of recapture k number
of release released 2 3 ... never
recaptured

1 R] mipp mi3 mi k r

R2 min N my i r
k—1 Ry Mi—1 k Te—1
Ri(i=1,...,k—1) are ax1 vectors with elements R}; m;j(i=1,...k—1;
j=i+1,...,k) are a x a matrices with elements m:; ri(i=1,...,k—1) are a x 1 vec-

tors with elements 7/.

In block matrix notation, the matrix of these probabilities, arranged as in the
multistate m-array is (Brownie et al., 1993, Table 2):

CI)lD(Pz) (DlD(l — Pz) (I)zD(P3) . (I)lD(l — P2) . CI)k_lD(Pk)
o 0 ,D(Ps) ;
0 0 ;1 D(Py)

(3)
where D is the diagonal operator and 1 is a (a x 1) vector of ones.

The CMF approach proceeds then as follows:
e Step 1: Arrange the nonzero elements of € in a vector w of length

k(k —1)
2
@7

lar part of Q.
e Step 2: Obtain the derivative matrix A by formal differentiation:

k(k—1
1<i<p, 1§i§a2(2)

obtained in Maple by stacking the columns of the lower triangu-

0log .
Ay =2t 4
= g0, (4)

e Following steps 3—6, depending on the model under study, as examined in
the examples.

4. Example 1: the Arnason-Schwarz model

This model, described above (see Section 3), was introduced by ARNASON (1973)
and SCHWARZ et al. (1993). Let’s assume there are a = 2 states and k = 3 capture
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occasions. Then (3) becomes:

o1'py O1P3 (D1 (1 —ph) 3 + &P (1 —p2)d3")ph (1" (1 —ph) &) + 1> (1 — p3) $3°) p3

o- o'y 6P (07 (1 —ph) @) + O (1 —p3)ds' ) py (97 (1 —ph) &3 + 977 (1 — p3) 43°) p3
0 0 $3'p} oY’
0 0 ®3'p} 3P}

The derivative matrix with respect to 0 = (', b3, 12, ¢I%, da', Pt bi2,

22 1 2 1  ON\T ..
27P27P27P37P3) 18:

- -
@ 0 0 0
1
0 0 0 0
A(e) = 1 )
0 O — 0
P3
0 O 0 1
i 3

where only the two first and last terms of rows and columns are given.

The rank of A calculated using Maple (Step 3) is ¢ = 10. Hence, from the
original number of parameters p = 12, one gets the rank deficiency d = 2, the size
of the solution space of equation (1). Hence, to know which parameters — or func-
tions of the parameters — are estimable, one must solve (1) (Step 4). The 2 inde-
pendent solutions are:

11 21 r
ap = <07070707_—27__21a0a07170>
P3 P3

T (5)

12 22
Ay = <070707070707__227__2270707071>
b3 p3

Step 5, i.e., comparing with O the s = 6 zero entries shows that the elements of
the matrices ®; and P, are separately estimable. There are then g — s = 4 func-
tions of the ¢ = p — s = 6 parameters ¢;', 3", 32, §3%, pi, p3 that are also estim-
able. These functions are obtained by solving (step 6) the following system of
d =2 PDEs:

o ¢ o ¢ o

—= ———=0
11,1 21 1 1
op, p3  0dy p3  Ops (6)
12 22
o 9 O 9 O
12 .2 22 .2 2
oy p3 0y 3 Op3
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The solutions of (6) given by Maple are 2t?e 522— 6 parameters q> 21 %2, %2,

ph,p3 with the ¢ — s = 4 combinations ﬁ, : 2 Py p, d37p3, so that the likeli-

hood of the Arnason-Schwarz model can be Wntten down in terms of the elements

of the minimal parameter set B= 21 iz, %2, p%, p%,
21 22
12 2

1 T 12,(1)?1)%,(1)2 pg). The set of solutions that we expected by analogy with

2 P2
the single state case — namely the parameters q) ¢>1 ,pz,p2 with the

elements of the last occasion matrix product szD(Pg) — is also a solution of (6).
In other words, there exists a one-to-one transformation between these two mini-
mal parameter sets.

Note that in the [} re-parameterization, the Arnason-Schwarz model is only con-
ditionally full rank since, e.g., the constraints (1)“ = q>21 and ¢12 = q>22
cpl.“ = (1)121 = (|)12 = q>22 (G = 1,2) induce a rank deficiency of 1.

The results above apply to other parameterizations such as those decomposing
¢;” into survival probabilities and movement probabilities as ¢;” = siy;” where
s is a state and purely time dependent survival probability and ;"is the probabil-
ity of movement (or transition) from the state r at time i to the state s at i + 1
conditional on survival (HESTBECK et al., 1991). Accounting for the inherent redun-

a
dancy in parameters wherein ;" does not appear and is replaced by 1 — > y;”
s=1

SFET

the following quantities are separately estimable: si(1 —yi?),s3(1 —y}!), sty

$1vi%,py, 13 and sy(1 = w3®) p3, 5393 ' p3, 5,9°p3, 53(1 = v3') p3

The above is for a = 2 and k = 3. In Appendix 1, we show that the deficiency
is equal to a = 2 for the Arnason-Schwarz model whatever the number of occa-
sions of capture.

5. Example 2: multistate recapture models and mixtures of information

LEBRETON et al. (1999) show how to represent, as specific multistate models, mix-
tures of information such as live recapture and dead recoveries (BURNHAM, 1993).
Mixing different types of events is expected to improve the precision of survival
estimates (LEBRETON etal., 1995) and to permit access to parameters otherwise
non-estimable (LEBRETON et al., 1999). Applications of this type of models can be
found in FREDERIKSEN and BREGNBALLE (2000) for instance.

We represent a time-dependent mixture model with a = 3 states: state 1, observ-
able, with probability of capture p, is ‘Alive’; state 2, with probability of capture
A, is ‘Newly Dead’; state 3, non-observable, is ‘Dead’ (for further details, see
LEBRETON et al., 1999); letalso S be the survival probability. Consequently, the

2031633 Biom. Journal (7/2003) Art.: 0580/Gimenez 3B2 Bearb.: Sch.
SIGNA 18.7.2003 ges.Seiten 19 {p_1}bio/bio03_07/0580/bio0580u.3d

Literaturstellen: 41 <bibitem> nur fiir Literatur verwenden, keine Leerzeilen damit formatieren, die exakte Anzahl der Lit-
Stellen wird fiir SGML bendtigt



Accepted

Biometrical Journal 45 (2003) 7 9

matrices of transition and recapture probabilities are as follows:

S; 1-S 0
;=10 0 1|, i=1,...;k—1;
0o 0 1
pj
Pi= N, j=2,... k.
0

Let kK = 3 and let 6 = (51,52, A2, 7\3,p2,p3)T be the vector of parameters. Step 1
gives the matrix of probabilities:

(Sip2 (1=S)h 0 SipaSops SipaSods 07
0 0 0 0 0 0
- 0 0 0 0 _0 0 (7)
0 0 0 Sips Sl 0
0 0 0 0 0 0
L 0 0 0 0 0 0

where p, = 1 — py, etc. By considering only nonzero elements and working from
left to right along the rows of (7), Step 2 permits to write down the matrix of

derivatives:

r1/8 —1/5'1 1/8; 1/8, 0 0

0 0 1/S; —1/52 1/S, —1/52

0 1/A 0 0 0 0

A(6) = a (s)

0 0 0 1/hs 0 1/hs

1/p2 0 —1/?2 —1/?2 0 0

L O 0 1/p3 0 1/p3 0

Its rank deficiency d is 1 so that the difference with the previous example is that

the solution space of (1) is only one-dimensional. Solving (1) formally leads to

1-5 p3(S2—1)

a=|0, ,0,1,0, ———
( A3 Sahs

rately estimable (Step 3). Since the number of zero entries s is 3, there remains

q — s = 2 estimable combinations of p — s = 3 parameters, S»,A3, and p3Z (Step

). Hence, parameters Si,A;, and p, are sepa-

5). These are obtained by solving the single PDE (Step 6):

o 15,
AV E

O3

of
Op3

Of ps($2—1)

Sohs

=0.

Finally, the estimable quantities are: Sy, A, p2, A3(1 — S2), Sops.
For ring-recovery data, the constraints A; = A are known to make all parameters

©)

estimable (FREEMAN and MORGAN, 1992). By applying the approach above, we
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checked that, when recoveries are mixed with recaptures, constraining the recovery
rate to be constant makes S, and p3 estimable. In addition, this constrained model
is essentially full rank (as defined in Section 2) as shown by a procedure summar-
ized in Appendix 2. We considered a fixed number of occasions for this example.
However, following an approach similar to the one developed in Appendix 1 (see
also CATCHPOLE and MORGAN, 1997), it can be easily shown that, for any k > 3,
this model remains of full rank.

6. Example 3: Markovian trap-dependence

Heterogeneity of capture can result in a negative bias in estimates of survival
(CAROTHERS, 1973, 1979). PRADEL (1993) shows how to handle an immediate
trap-effect on capture — a particular kind of capture heterogeneity (SANDLAND and
KirkwooD, 1981) — by considering a different capture probability depending upon
whether an animal was caught on the previous occasion. Following Pradel’s nota-
tion, we will denote (¢,,p,*,,) a model that allows trap-effects in different years.

By considering an unobservable state for non-capture at the previous occasion,
these models may be rewritten in a straightforward way in a multistate framework.
Indeed one can check easily that the likelihood of the model (¢,,p,*, ) is equal to
the likelihood of a multistate model with:

— q)tp;k d)t(l—p;k)} :{1:|
P=lom ai-p)] 7o

where p; and p, are the capture probabilities at time 7 + 1 for an individual caught
at the previous occasion ¢ or not, respectively. PRADEL (1993) points out critical
parameter redundancy problems for this model. We are now able to investigate
formally the parameter-redundancy in the presence of trap-dependence.

Model (¢,,p,s,) with interaction between time and trap-effect
Assume k = 6, for the model(¢,,p,*,,), the matrix of probabilities is obtained
through Step 1:

Pr(1=p)dops 0 Oy (1=p3) o1 =p3)spa 0 (1 =p3)y(1=p3) d3(1 =pa) bups O (1= p3) by (1 = p3) b3 (1 = pa) (1 = ps) Psps
0 0 0

0 0 0 0
¢2P§ 0 ¢:(1*P§)¢3P4 0 ¢:(1*P§)¢3(1 = Pa) Gups 0 ¢z(1*l’3k) P3(1 = pa) dy(1 = ps) dspe
0 0 0 0 0 0 0
0 0 %Pj 0 Ps3(1 —pi) dups 0 (1 —pi) bu(l = ps) §sps
0 0 0 0 0 0 0
0 0 0 0 ‘1’4[’;‘ 0 Py (1 —p5) Psps
0 0 0 0 0 0 0
0 0 0 0 0 0 Pdspé
0 0 0 0 0 0 0

If the lines and columns corresponding to the non-observable state are deleted,
one thus obtains exactly the same elementary probabilities as in the single state
formulation of this model. Taking derivatives with respect to
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0= (q)l,(Pza¢3a¢4aq)s,P;P3aP§7P4»P1<aPS»P?aPG,Pz)T, Step 2 leads to matrix A

k(k—1
with dimensions (3k — 4) x % :
SRR -
— — 0 0
¢ P
1
— 0 0
$,
1
0 0 - — 0
Do
1
0 0 - 0 —
L Do |

with rank equal to 12. The vector solution to (1) has no zero entries (s = 0), and
so none of the original parameters is separately estimable. Indeed with Maple e.g.,
one can easily verify that in order to find the solution space of equation (1), a
system of d = 2 PDEs has to be solved, the solutions of which reduce to the

Table 2
The notations used in Imbert (1999)

up=¢,_pi,i=3,...,k Probability of surviving from occasion i — 1 to occasion i and
being captured at occasion i+ 1 given that the individual has
not been captured at occasion i and has been released at occa-

sion i — 1.

=@, phi=2,....k Probability of surviving from occasion i — 1 to occasion i and
being captured at occasion i+ 1 given that the individual has
been captured at occasion i and has been released at occasion
i—1.

v=0¢,_,(1—p),i=3,...,k Probability of surviving from occasion i — 1 to occasion i and
not being captured at occasion i+ 1 given that the individual
has not been captured at occasion i and has been released at
occasion i — 1.

w,=¢,_ (1 —p)),i=2,... .k Probability of surviving from occasion i — 1 to occasion i and
not being captured at occasion i+ 1 given that the individual
has been captured at occasion i and has been released at occa-
sion i — 1.

O; = u; + vy + viPviuipp + ... Probability of being seen again at occasion i or later given that

+ ViV - ViU, =3,k the individual has not been seen at occasion i — 1.

di— U i—3 k Probability of being seen for the first time at occasion i given

LS T that the individual will be seen later.
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g = 12 functions proposed by Imbert (1999):

/ ’ ’ ’ T
/ ' ' / / U263 U364 U465 U566
B(e) = MZ,M3,M4,M5,M6,1 ’

)
uy 1

— /71_ /71_ /7d337d447d55>
u3 I/l4 Lt5

The notations used in IMBERT (1999) are synthesized in Table 2.

To make parameters estimable, PRADEL (1993) considered constrained models,
including one with an additive effect of time and of last capture on the probability
of recapture. In the following, we examine parameter redundancy for two forms of
this additive model, both with k = 5, with a logit (PRADEL, 1993) and a log link
function (SANDLAND and KIRKWOOD, 1981), respectively.

Additive time and trap-effects on a logit scale
Step 1 is similar to the model (¢,,p,*,, ), excepted that the elementary probabil-
ities have to be expressed in the new parameterization:

exp (a;)
1 +exp (a;)

exp (a; +m)
1 +exp(a,+m)’

*_
=

p t=2,...,k and p;= t=3,...,k

where m (the trap-effect) and the a;s are parameters to be estimated. Step 2 re-

quires the derivative matrix of Q with respect to 0 = (¢, by, O3, Gy, a2,
T

a3, ay,as,m)

r 1 1 1
¢T1 ¢Tl ¢T] ﬁ 0 0 0 0 0
L L L L L L 0 0
o3 2 o5 3 ¢ ¢,
1 1 1 1 1 1
’ ‘ s s ’ 2 Y Y s
— 1 1 1 1
0 0 0 o 0 0 ® 0 o o
h(ay +m) —h(—ay —m) —h(—ay —m) —h(—ay —m) 0 0 0 0 0 0
0 h(az) —h(—az) —h(—as3) h(az +m) —h(—az —m) —h(—az —m) 0 0 0
0 0 h(as) —h(—ay) 0 h(as) —h(—ay) h(as +m) —h(—as —m) 0
0 0 0 h(as) 0 0 h(as) 0 h(as) h(as + m)
Lh(a +m) —h(—ay —m) —h(—ay —m) —h(—ax —m) h(az +m) —h(—a3 —m) —h(—az —m) h(as+m) —h(—as—m) h(as+m) ]

where h(ay) = , etc. The rank of A is 9 so that all the original param-

1
1 + exp(ay)
eters are separately estimable. Moreover, following both the simplification ap-
proach we advocate in Section 2 (see also Appendix 2) and using the relation

Vx € R h(x)+h(—x) =1

one can check that this model is essentially full rank (see Appendix 2).

Additive time and trap-effects on a log scale
The new parameterization is:

pi=exp(a,+m), t=2,....k and p, =exp(a), t=3,...,k,
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Step 2 leads to the derivative matrix:

r1 1 1 1 ]
— — — — 0 0 0 0 0 0
b, ol ol ol
1 1 1 1 1 1
— — - = — 0 0 0
P, P, P, P, P, P,
1 1 1 1 1 1
0 0 - — 0 — - - = 0
Ps3 P3 P3 P3 b3 P3
1 1 1 1
A(0)=1 o 0 0 — 0 0 — 0 — —
Py Py Py Py
1 glaa+m) glaa+m) glaa+m) 0 0 0 0 0 0
0 1 g(as) g(as) 1 glas+m) glas+m) 0 0 0
0 0 1 glas) 0 1 glas) 1 glag+m) 0
0 0 0 1 0 0 1 0 1 1
L1 glaa+m) glax+m) glaa+m) 1 glas+m) glaz+m) 1 glag+m) 1 ]

where g(a3) = , etc. Following Step 3, the rank of A is 8, resulting in

1 —exp (a3)
a rank deficiency d=1. TStep 4 gives the solution to (1) as:
1
OLZ(O,O,O,I,O,O,O,—,O)
Py

By comparing with O, it comes that ¢, $,, §5,a2,a3,a4 and m are separately
estimable (Step 5). Then, in Step 6, the following PDE has to be solved:

L _ and solutions are B = (¢, b, by, a2, a3, s, m, as + log ()"
To sum up, if the logit-link function is considered, the model with additive time
and trap-dependence is full rank, while the log-link results in a rank deficiency.
VIALLEFONT (1995) has noticed such a phenomenon for the CJS model with two
groups. She demonstrated that this model was full rank if and only if the link
function was not the logarithm or any linear function of the logarithm.
One can prove by induction (as for Example 1 and 2) that, for any greater k,

parameter-redundancy for models (¢, p,x,,), (O, Prog(r+m)) and (P, Piogit(r+m)) is
similar to that found here (e.g. IMBERT, 1999 for the last model).

7. Discussion

Our results confirm that the CMF approach is quite efficient to check formally for
parameter redundancy in product-multinomial models. With the Arnason-Schwarz
model, a straightforward generalization of the well known CJS model to several
states, the estimable parameters are analogous to those of the single state case. In
what follows, we discuss in sequence:

e The application of our approach to more complex models;

e The interest of automatic determination of the estimable parameters;
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e The interest of extension theorems;

e The usefulness of our approach when a model is applied to a particular data-

set.

Little adjustments are needed to make the same approach valid for more com-
plex capture-recapture models. Instances of such cases concern models for several
groups (e.g. male and female) (CATCHPOLE et al., 2002) and age-dependent multi-
state models (CATCHPOLE et al., 1995). Indeed, all such models remain in the wide
class of product-multinomial models to which all our results apply. More general
models for mixtures of information with non-observable states can be treated in
the same way. In this framework, models with immediate trap-dependence or to
handle temporary emigration (KENDALL and NicHOLS, 2002) can be treated as mul-
tistate models and then parameter redundancy can be checked. The link function is
then critical in determining the number of estimable parameters.

Obviously, in some cases such as the CJS model, estimable parameters that are
solutions to partial differential equations could be found by visual inspection of
the matrix of recapture probabilities. However this ad hoc method quickly be-
comes impractical, especially for multistate models. On the contrary, the use of
symbolic calculus software makes it possible to solve system of PDEs in a rigor-
ous way and thus provides, in an automatic and reliable fashion, functions of the
original parameters which are estimable. The reliability of this approach, based
upon symbolic calculations, appears quite good for all the cases treated even if
sampling occasions are added or data are missing.

On the one hand, although the CMF approach as generalized here applies to a
problem of fixed size, extension results (Appendix 1) make it easy to obtain gen-
eral results on parameter redundancy independent of the number of occasions.

On the other hand, missing data can result in making a full rank model param-
eter redundant (CATCHPOLE and MORGAN, 2001). The present approach still holds
provided some adjustments are applied in the matrix of probabilities (CATCHPOLE
etal., 2002): the probabilities corresponding to the missing data in the m-array
have to be removed and the last probabilities for individuals never seen again
initially skipped (see Section 3) have to be taken into account to obtain multi-
nomials. This procedure has been applied (Gimenez and Choquet, unpublished
results) to an example using a multistate study recently published (SCOFIELD et al.,
2001). We provide the corresponding Maple code needed to check for parameter
redundancy in presence of missing data at URL: ftp://ftp.cefe.cnrs-mop.fr/biom/
PRM.

Besides, there may exist full rank models that can have for some data sets i.e.
for certain values of the vector of parameters, a rank deficiency in the matrix of
derivatives resulting in a likelihood surfaces with a flat ridge, i.e. non-unique
MLEs (CATCHPOLE and MORGAN, 1997). In this paper, we give a simple manner
to distinguish between these conditionally full rank models and essentially full
rank models nevertheless the method gives only a sufficient condition that a model
is essentially full rank.
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In the near future, we hope to be able to implement the approach presented
here in software for fitting capture-recapture models. This would allow practi-
tioners to handle parameter redundancy in multistate models in an automatic way.

Appendix 1: Extension result for the Arnason-Schwarz model

Consider the Arnason-Schwarz model with & =3 capture occasions and a = 2

states where we have the vector of parameters 0 = (¢1', b1, ¢1%, d3, pl, p3,

él, q>2 , p3, p3) If we work through the nonzero elements of the matrix
of probablhtles Q (see (3)), the row rank of the standardized derivative matrix
(CatcHPOLE and MORGAN, 2001) is 10 based on symbolic computation with

Maple. Moreover there are two linearly independent solutions to equation (1),
a; = (0,0,0,0,0,0,—1,—1,0,0,1,0)" and a, = (0,0,0,0,0,0,0,0,—1,—1,0,1)".

Thus for k = 3 and a = 2 the Arnason Schwarz model has deficiency 2. There are
6 separately estimable parameters ¢i', ¢3!, d1%, 3% p) and p3 corresponding to
the same positions of the zeros 1n o4 and ocz and 2 other estimable combinations
of parameters q>§1, q>2 ,ps and p3. We now prove by induction that, for
any study with k£ > 3 capture occasions, the two only nonzero solutions to (1) are

6(k—2) ! 6(k—2) !
—— X ——
=\0,0,...,0,-1,-1,0,0,1,0/ and ot = \0,0,...,0,0,0,—1,—1,0,1/ .

When the study is extended by one year the probability matrix €2 gains one col-
umn of block matrices W with W; = H ®;D(Pj;1),1 <i < k. Following CATCH-
POLE and MORGAN (2001, p. 595), we partltlon 0 in (6V,0?)) with

6(1):( il7 q)l 7p27p27"' k 1 k 17¢ (bk l’pk’pk) ’
T
0 = ( ’lcl’ e q)k 7pk+17pk+1>
and o**! = (a,B) in a similar way. Then (1) becomes
OLk-‘t-lTAkJrl _ [O( ﬁ ] |:AO )Bf:| [ TAk TX+ ﬁTB] (Al)

The matrix B is obtained by differentiating vec (W) with respect to the compo-
nents of 0and by using Maple, B has row rank equal to 4. Therefore, it can be
easily seen that the space spanned by the rows of B is the row space of the matrix

1 0 0 0
0 1 0 0 .
C= 0 0 1 0 where the points stand for non-useful components
0 0 0 1
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for our purpose. Then, in order that at AT = 0, (AD) requires that a’ AF = 0,
which by the induction hypothesis implies that o=of or a=o0f or
o= (0,...,0)" with dimensions 6(k — 1) x 1. But if o = o or o = af, one can
easily check that a’X is equal to a row vector of the form (...,0,0, ...,0,0) or
a different vector of the same form (0,0, ...,0,0, ...) which both clearly do not
belong to the row space of C, and consequently [ofAg, alX —|—ﬁTB] has no
solution. Hence, the only two solutions to (Al) are a = (0,... ,O)T and
B=(-1,-1,0,0,1,0)" or f = (0,0,—-1,-1,0,1)".

In the preceding demonstration, the number of states was assumed to be 2.
However it may be proved little by little that for any study with k& > 3 capture
occasions and a > 2 states, the rank deficiency is a and the a solutions to (1)
are:

(k—2)a(a+1) a(a—1) T
k —
ak=10...0,-1,...,-1,0,...,0,1,0,...,0 | ,
——_— — ——
a a
(k—2)a(a+1) a r
X — ———
ak=10..0,0...,0"1,...,-1,0,...,0,0,1,....,0 | ,...,
—— —— N —’
a a(a—2) a
(k—2)a(a+1) a T
k —— ——~
ak=10,...0,0,...,0°1,...,-1,00,...,1
—— ———
a(a—1) a

Hence, there are (k —2)a(a + 1) separately estimable parameters and a? estim-
able elements of @D (Pyy1).

Appendix 2: Distinguishing between essentially and conditionally full rank models

2a: The model for mixtures of information is shown to be essentially of full rank.
The proof consists in four steps of simplification of the matrix A(0) up to an
integer matrix L(0) of full rank. Each step labelled i is equivalent to a pre-multi-
plication of A(0) by a non singular matrix DY (0).

Step 1:
518, 0 0 0 O S =S Sl S 0 0
0 $S% 0 0 0 0 o0 S =S S -5
phV=]1 0 o » 0 o0f|=LY=DpWa@®)=]l0 1 0o 1 o0 1
0 0 0 ppr O pp 0 —-p» —p» 0 O
0 0O 0 0 p;3 0 0 1 0 1 0
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Step 2:
1 0 00 0 SS =S S S 00
0 1/ 1 0 -5/, 0 1 0 0 0 0
pDP=]0 0 10 0 =L@ =pALH =190 1 0 1 0 1
0 0 01 0 pp 0 —pr —pp 00O
0 0 00 1 0 0 1 0 10
Step 3
/8, Si/S¢ 0 0 0 1 0 1 1 00
0 1 00 0 01 o0 0 0 0
D= 0 -1 10 0|=L8=D9@=(0 0 0 1 01
0 0 010 p2 0 —pp —p» 0 O
0 0 0 0 1 0 0 1 0 10
Step 4:
1 00 00 1 01100
01 000 01 0000
DY=10 01 0 0|l=L=D1®=]01 01 0 1
pp, 00 1 0 1 00000
0 00 01 001010

2b: Concerning the trap dependence model, the integer matrix L(0) of full rank is
displayed without the several steps of pre-multiplication of A(0) by non-singular
matrices.

~
I
SO OO, OO OO
SO OoO—~R OO OO~
SO, OO OO O
O~ OO oo oo
— o O, OO o ~Oo
SO~ OO OO —O
O = OO OO O —~O
—_ o, OO 0o ~=OoOO0o
SO — OO OO~ OO
eleoloBeoNel =l =N
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