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The IMplicit Pressure Explicit Saturation (IMPES) method is a prevalent way to simulate 
multiphase flows in porous media. The numerical stability of this sequential method 
implies limitations on the time step, which may depend on the flow regime studied. 
In this note, three stability criteria related to the IMPES method, that differ in their 
construction on the observed variables, are compared on homogeneous and heterogeneous 
configurations for different two-phase flow regimes (viscous/capillary/gravitational). This 
highlights that there is no single optimal criterion always ensuring stability and efficiency. 
For capillary dominated flows, the Todd’s condition is the most efficient one, while the 
standard Coat condition should be preferred for viscous flows. When gravity effects are 
present, Coat’s condition must be restricted, but remains more efficient than the Todd’s 
condition.

r é s u m é

L’IMplicit Pressure Explicit Saturation method (IMPES) est l’une des principales méthodes pour 
traiter les cas d’écoulements multiphasiques en milieu poreux. La stabilité numérique de 
cette méthode séquentielle implique des contraintes différentes sur le pas de temps selon 
le régime d’écoulement étudié. Dans cette note, les trois principaux critères de stabilité liés 
à l’IMPES sont testés sur des milieux homogènes et hétérogènes pour différents régimes 
(visqueux/capillaire/gravitaire). Cette étude montre qu’aucun critère optimal, réunissant 
stabilité et efficacité, ne se dégage. Pour les écoulements capillaires, la condition de Todd 
est la plus efficace, tandis que la condition standard de Coats est préférable pour les 
écoulements visqueux. Quand les effets gravitaires sont pris en compte, la condition de 
Coats doit être restreinte, mais demeure plus efficace que celle de Todd.
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1. Introduction

Among the possible numerical methods used to simulate two-phase flow in porous media [1–3], the IMplicit Pressure 
Explicit Saturation (IMPES) method remains in use today [4,5]. This sequential algorithm, originally proposed by Sheldon 
[6], has the advantage to substantially reduce the size of the linear systems to solve, compared to a fully implicit method. 
In return, the method is limited by important numerical stability restrictions on the size of the time step. Hybrid methods, 
Adaptive Implicit Methods (AIM), have also been proposed and treat implicitly unknowns in regions with high throughput 
ratio [7].

The numerical instabilities are due to the non-linear effects involved in two-phase flow in porous media and mainly 
related to capillary pressure and relative permeability laws. The explicit resolution of saturation requires the linearization 
of capillary and permeability laws, which could lead to numerical instability. This can lead to erroneous calculations of the 
saturation field and, in the worst cases, to the end of the simulation (the computed saturation is out of the limits). The 
various laws and their complexity make stability even harder to predict, and therefore different stability criteria have been 
proposed and studied. Todd [8] has first derived a condition based on averaged spatial and temporal saturation variations, 
which provides an increasing/decreasing factor for the time step. Coats [9], through a proper Von Neumann analysis, has 
derived a CFL criteria based on mobility related terms, fluxes, and capillary pressure. One can also use the classical CFL [10]
condition to ensure stability. Other stability studies have been conducted focusing on upstream scheme [11], on switching 
criteria for AIM [7,12], or on extension to compositional and black-oil models [13]. Even if Coats’ stability criterion is 
commonly used, it may be very restrictive in certain circumstances and is therefore not necessarily the optimum choice. To 
our knowledge, there is no study in the literature comparing these different stability criteria to highlight their effectiveness 
for different porous media viscous flow regimes involving, or not, capillary and gravitational effects.

This need for numerical stability is all the more important as two-phase flows in porous media are often subject to 
physical instabilities. This class of instabilities can be caused by various configurations such as counter current flows and 
layered flows or by properties of the studied system (mobility ratio, viscosity ratio, permeability distribution). The most 
commonly known and studied instability is the viscous fingering phenomenon [14]. When one is interested in simulating 
this kind of physical instability, the numerical stability should be ensured to avoid the perturbation of the system by a 
numerical artifact.

In a recent work [15], the IMPES method has been implemented and developed in the open-source framework Open-
FOAM [16,17]. This open-source implementation has been successfully employed in various fields, such as two-phase flow 
in structured bed packing [18] and waste management [19].

The scope of the paper is the performance benchmark of existing criteria taken from the literature. A methodology is 
set up to compare their efficiency in terms of computational cost (number of linear solver iterations) for various cases. This 
study has been designed for helping IMPES users that struggle with stability issues in choosing the most suited criteria 
for their simulation. Its ambition is not to develop a new criterion, but to gather user experiences on different configu-
ration with different criteria. We proposed to cross-compare Todd’s, Coats’ and classical Courant–Friedrichs–Lewy’s criteria 
listed above, for different flow regimes (viscous/capillary/gravitational) and for homogeneous and heterogeneous permeabil-
ity fields without singularities (e.g., no wellbore model).

This note is organized in two parts. In the first one, two-phase flow equations for porous media are described, detailing 
the IMPES algorithm and presenting the three stability numbers investigated. We introduce the mathematical formulation 
of the different criteria, stating which phenomena are included in the theoretical form. In the second part, numerical ex-
periments are performed to explore the different stability conditions on three classical configurations, and define their 
efficiency.

2. Two-phase flow and stability numbers

2.1. Mathematical model

Two-phase flows under investigation are assumed incompressible, viscous and isothermal. The wetting and non-wetting 
phases are respectively denoted “w” and “n”. The mass conservation equation for each phase reads

φ
∂ Sw

∂t
+ ∇ · uw = qw

−φ
∂ Sw

∂t
+ ∇ · un = qn (1)

with the obvious relationship

Sw + Sn = 1 (2)

In these equations, Sα refers to saturation, φ is porosity, qα is the mass source/sink term, and uα denotes the superficial 
velocity for each phase α. The latter are slow enough to be modeled by generalized Darcy’s laws [20],



uw = −K ·λw (∇pn − ρwg − ∇pc)

un = −K · λn (∇pn − ρng) (3)

where K is the permeability tensor intrinsic to the porous material, ρα is the fluid density and g the gravitational ac-
celeration. The capillary pressure, pc, i.e. the pressure difference between both phases, depends on saturation [21], and 
reads:

pc (Sw) = pn − pw (4)

The mobility λα is defined as

λα =
(

kr,α(Sw)

μα

)
α=w,n

(5)

where μα is the fluid viscosity and kr,α is the relative permeability function.
Many models exist in the literature to represent capillary pressure and relative permeabilities according to the saturation 

value [21–25]. In the present study, the well-established Brooks and Corey model [23] is used. With such a model, capillary 
pressure, pc, and relative permeabilities, kr,α , read

pc (Sw) = pc,0 S
− 1

m
e

kr,n (Sw) = kr,nmax (1 − Se)
3m+2

m (6)

kr,w (Sw) = kr,wmax Se
3m+2

m

where pc,0, kr,nmax and kr,wmax are model parameters and the pore-size index, m, is a characteristic number of the porous 
medium considered: small for large range pore-size distribution, large for relatively uniform pore-size distribution. The 
reduced saturation,

Se =
(

Sw − Sw,irr

1 − Sw,irr − Sn,res

)
(7)

represents that amount of wetting phase that can flow. It depends on the irreducible wetting saturation, Sw,irr and the 
residual non-wetting saturation, Sn,res.

2.2. IMPES algorithm

The chosen unknowns for the numerical implementation are the pressure of the non-wetting phase and the saturation of 
the wetting phase (pn, Sw). The saturation Sw is governed by the wetting phase mass conservation Eq. (1) and the pressure 
pn satisfies the global mass conservation,

∇ · (−K · λt∇pn) − ∇ · (K · � (ρw − ρn) · g − K · �p′
c∇Sw

) = qt (8)

where λt = λw + λn is the total mobility, qt = qw + qn is the total sink/source term and � = 2λwλn
λw+λn

is the harmonic average 
of mobilities. The first derivative of capillary pressure with respect to the wetting phase saturation Sw is introduced as |p′

c|.
The IMPES solution algorithm consists in solving implicitly the pressure equation (8) and explicitly the saturation equa-

tion (1). The details of the implemented algorithm can be found in a previous work [15]. In the following simulations, 
a first-order upwind interpolation is used for mobility-related terms and a backward Euler scheme is adopted for time 
discretization.

The linear solver used in the experiment is a conjugate gradient solver with a diagonal incomplete Cholesky precon-
ditioner. It is a commonly used pair when dealing with symmetric matrices. A generalized geometric–algebraic multi-grid 
solver might be an appropriate alternative for solving this equation over large domains. As the cases treated in the next 
section remain simple in terms of number of cells and considering that the solver’s efficiency is not in the scope of this 
work, the choice of such a preconditioner–solver pair is not disadvantageous.

2.3. Stability criteria

In this section, the three tested CFL conditions ensuring the stability of IMPES simulations are described: namely the 
classic Courant number condition (Co), the Todd’s derived number condition (T ) and the Coats’ derived number condition 
(C ). For each criterion, a time-step factor F , which gives the increase or decrease in the time-step size during the simulation, 
is defined.



2.3.1. Classic Courant number condition (Co)
This condition limits the Courant number of each phase α by a user-defined value, Comax:

Co = 1

2
max

i,α

⎛
⎜⎝

∑
faces⊂i

|qα, f |
V i

�t

⎞
⎟⎠ < Comax i = 1, Ncells (9)

This Courant number is a direct adaptation of the classical one extended to two-phase flows [10]. It involves the sum of 
absolute values of fluxes in phase α through every face of cell i (term 

∑
faces⊂i

|qα, f |) and the volume V i of the cell i. It is 

designed to ensure the stability of the hyperbolic saturation equation. The time-step factor F is defined as:

F = Comax

Co
(10)

2.3.2. Todd’s number condition (T)
The first stability criterion dedicated to the IMPES algorithm [8] has been derived taking into account the discretized 

form of the pressure and saturation equations. It leads to a constraint on the time step, split into two time-step restrictions, 
according to whether capillary pressure pc or relative permeabilities kr is (are) considered:

�t ≤ min
i

[
�t pc,i,�tkr ,i

]
i = 1, Ncells (11)

The capillary restriction on the time step can be expressed as

�tpc,i ≤ φV i∣∣p′
c
∣∣ ∑

faces⊂i

(
T f �

) i = 1, Ncells (12)

where T f = (K A/�x) is the transmissivity of face f , whose area is noted A and whose distance to the cell center is noted 
�x. Harmonic interpolation of K is chosen for computing transmissivity T f . Equation (12), reformulated as a CFL condition, 
reads:

C F LTodd,pc = �tpc,i

∣∣p′
c

∣∣ ∑
faces⊂i

(
T f �

)
φV i

< C F LTodd,max, i = 1, Ncells (13)

which introduces a user-defined upper limit C F LTodd,max.
The relative permeability restriction, formulated in terms of inter-cell fluxes, reads

�tkr ,i ≤ φV i

f ′
w,i

( ∑
faces⊂i

|q f |
) i = 1, Ncells (14)

with f ′
w the derivative of the fractional flow fw = λw

λt
with respect to the saturation of the wetting phase Sw and q f the 

total flux through face f . In terms of spatial and temporal saturation variation, a time step ratio can be used, with the 1/2
factor depending on the chosen spatial discretization scheme (e.g., here 1-pt upwind in 1D):

T = �tn+1
kr

�tn
kr

= 1

2

1
Ncells

∑
i
|�i,i+1 Sw|

max
i

(|�t Sw|) i = 1, Ncells (15)

Here, equation (15) defines directly a time step factor referred to in the following as T number. The symbol �i,i+1 Sw stands 
for the difference between two neighboring cells and �t Sw is the saturation difference between n and n − 1 time states. 
The time-step factor F includes both parts, capillary pressure and relative permeability, and is defined as:

F = min(T ,
C F LTodd,max

C F LTodd,pc
) (16)

2.3.3. Coats’ number condition (C)
More recently, starting from inequality (12) and (14) using Neumann’s stability analysis, a new stability number C has 

been developed [9]:

C = max
f

[
�t

φV

(
λn

λ λ

∣∣qw, f
∣∣λ′

w − λw

λ λ

∣∣qn, f
∣∣λ′

n + (
T f �

)(∣∣∣p′
c, f

∣∣∣))]
≤ Cmax f = 1, Nfaces (17)
i| f t w t n



Fig. 1. Time-step evolution law.

where Cmax is a user-defined limit. V i| f and p′
c, f are respectively the linear interpolated values of the neighbor cell’s volume 

and derivative of capillary pressure with respect to wetting phase saturation Sw. The C number includes all considered 
phenomena (gravity and capillarity) and their spatial variations to better spot local effects that could result in instability. 
The time-step factor F is defined as:

F = Cmax

C
(18)

It can be noted that if capillary and gravity effects are neglected, Coats’ (C ) and Todd’s (T ) conditions reduce to the 
same theoretical stability restriction. This is in agreement with other analyses [7,13]. However, in practice, Todd’s number 
is computed from saturation variations, while Coat’s one is computed from fluxes. This may result in large differences in 
terms of time-step computations, as observed in the Buckley–Leverett experiments.

2.4. Time-step increasing factor management

In order to improve stability and avoid large changes, the time step is computed as

�tn+1 = min (min (F ,1 + 0.1F ) ,1.2)�tn (19)

where F is the timestep factor defined for each stability number (Courant’s, Coats’ or Todd’s). This approach is inherited 
from classical OpenFOAM solvers [16]. It limits the maximal increase to 20%, and reduces the increase between ∼ 11 and 
20%, as shown in Fig. 1. Note that this heuristic management mainly occurs at the beginning of the simulations, when 
saturation and pressure gradients are important. During the simulations, the variation of stability numbers is small between 
time iterations, and the upper bound of 1.10% is rarely reached.

3. Numerical experiments

In order to highlight the differences between the above stability criteria, simulations on well-known test cases are 
performed. We first consider a classical Buckley–Leverett experiment (viscous and gravitational regimes), then a 1D capillary 
rise experiment (capillary regime), and finally the 2D heterogeneous case (considering the three flow regimes) from [26]. 
Without other mentions, simulations are run with kr,wmax = 1 and kr,nmax = 1. Saturation limits are set with Sw,irr = Sn,res =
0.001. Brooks and Corey’s m parameter is equal to m = 5. To assess the efficiency of stability criteria, the accumulated 
linear solver iterations, the computational effort required, are plotted as a function of the physical time of the simulated 
phenomenon. Indeed, the sole time step size data cannot render if the resolution is more or less time consuming. Some 
criteria can return a bigger time step, which makes it harder to solve the system for the linear solver. That is why the 
accumulated sum of the linear solver iterations is chosen. It provides a better idea of whether the system is fast or long to 
solve whatever the size of the time step, because linear solver iterations are directly proportional to the CPU time needed 
to invert the matrices.

Throughout the cases, ratio between viscous flux 	μ , gravitational flux 	g and capillary flux 	pc is given if relevant. 
The total flux 	t resulting from the pressure equation (8) is considered to be decomposed as

	t = 	μ + 	g + 	pc (20)

highlighting the competition of the different phenomena driving the flow.

3.1. Buckley–Leverett experiments

The wetting phase is injected at |uinj| = 10−5 m·s−1 in the same direction as gravity acceleration with an absolute 
scalar permeability K = 10−11 m2. The gradient of capillary pressure is assumed to be null. Depending on the regime, 



Fig. 2. Evolution of the accumulated linear solver iterations for the one-dimensional Buckley–Leverett experiment using the different stability criteria T , C
and Co: (a,b) all stability criteria and (c,d) focusing C and Co criteria.

a semi-analytical solution can be calculated to predict the velocity and shape of the saturation front. This test highlights the 
relative permeability contribution to instability. In the gravitational case, the gravitational flux 	g is 20 times greater than 
the viscous flux 	μ . The gravitational effects will set the front velocity.

Figs. 2(a)–2(b) show the accumulated linear solver iterations necessary to reach the final physical time and highlight that 
the T factor is clearly too restrictive for the Buckley–Leverett case and requires between 10 and 50 times more iterations. 
Equation (15) gives too restrictive time steps for 1D cases as mentioned in [8]. The criteria Co and C methods have similar 
time steps (Figs. 2(c)–2(d)) and involve almost the same computation time. However, we should note that contrary to the C
factor, the Co method is case-dependent in the setting of its upper bound Comax and, therefore, several tests were necessary 
to get the optimized value.

3.2. Capillary–gravity equilibrium experiment

In order to test the capillary pressure contribution for the different criteria, we perform simulations on a 1D vertical 
domain, whose lower half is filled with water (viscosity μw = 10−3 Pa·s and density ρw = 1000 kg·m−3). The upper half is 
filled with air (viscosity μw = 1.76 10−5 Pa·s and density ρn = 1 kg·m−3). The capillary pressure parameter, pc,0 = 1000 Pa, 
has been tuned to balance gravity forces for this set of parameters. At the beginning of the simulation, the flow is mainly 
capillary-dominated, due to high saturation gradients until the equilibrium state between capillary and gravity forces is 
reached. In this configuration, the T -based method efficiency is close to that of the Co-based method (1.2 times faster), 
while the C method is 60 times slower, with an upper bound Cmax = 1 (see Fig. 3).

The maximum stable values of parameters Comax and Cmax for the tested cases and the related maximum time-step 
size reached during the simulations are reported in Table 1. It can be noticed that the Coats’ criteria still ensure a stable 
simulation with values above the standard value (Cmax = 1) as observed in [9,27]. For the gravitational Buckley–Leverett 
experiment, the saturation front is very sharp and leads to a very restrictive maximum allowed time step of similar size with 
Co criteria. The same remark can be derived from the accumulated time steps in Fig. 2(c). For capillary–gravity equilibrium 
simulation, even though the maximal value of upper bound Cmax is very high, the allowed time step is very restrictive. In 
such a configuration, Co and T criteria seem more appropriate.



Fig. 3. Evolution of the accumulated linear solver iterations for the capillary rise configuration.

Table 1
Limits for Comax and Cmax parameters and maximum time step allowed on Buckley–Leverett and 
capillary rise cases.

Comax Cmax �tCo,max(s) �tC,max(s) �tT ,max(s)

Non-gravitational Buckley–Leverett 0.15 1.19 37.49 65.25 0.18
Gravitational Buckley–Leverett 0.08 2.06 20 20.293 0.084
Capillary–gravity equilibrium 0.005 7.00 149.48 14.156 379.2

Fig. 4. Gas saturation field 2D SPE 10 case for the (top) non-gravitational, (middle) gravitational, and (bottom) capillary regimes.

3.3. SPE 10: 2D heterogeneous case

SPE 10th comparative solution project [26] proposed a two-dimensional heterogeneous permeability field more realistic 
than the academic cases previously used. The different stability numbers are tested out in non-gravitational, gravitational, 
and capillary regime. Phase densities and viscosities are given by the authors (ρgas = 1 and ρoil = 700 kg·m−3, μgas = 10−5

and μoil = 10−3 Pa·s). Relative permeabilities and capillary pressure follow a Brooks and Corey law with coefficient m = 5. 
The case is an injection–production scenario: the gas is injected at the left side of the domain, oil and gas are produced 
at the right side. Without gravity (Fig. 4, top), the gas injected pushes the oil towards the production wellbore, while 
including gravity effects (Fig. 4, middle), oil and gas segregate because of the density difference, and gas overlays the oil 
present. Capillary effects, taken into account with pc,0 = 0.1 bar, tend to smooth saturation values. In order to have an easily 
readable representation of the prescribed domain, an aspect ratio of 0.2:2 is adopted. The accuracy of the numerical results 
are ensured by considering a L2-norm error with Comax = 5 · 10−4 case as a reference. The configurations tested present a 
maximal relative error below 0.5%. Knowing that the discretization scheme is used in 2D, the T prefactor should be set to 
0.25. However, the gravitational case is more challenging regarding stability, and T prefactor should be reduced in order to 
ensure the stability of the simulation as mentioned in [8]. In the gravitational case, the gravitational flux 	g is 100 times 
greater than the viscous flux 	μ and, in capillary-dominated case, 	pc is 500 times greater than 	μ .



Fig. 5. Evolution of the accumulated linear solver iterations for the SPE 10 2D.

Fig. 6. Uniform and non-uniform C number distribution in the gravitational regime.

Fig. 7. Evolution of the accumulated linear solver iterations for the SPE 10 2D in the capillary–gravity regime.

The C and T methods lead to similar computation times in the non-gravitational case (cf. Fig. 5(a)), while Co leads to a 
simulation 2.2 times slower.

In the gravitational case, the criterion Co leads to the fastest resolution (reported in Fig. 5(b)), more than two times 
faster than the C criteria. This case illustrates what has been observed before in [9,27]. The C number could be either 
uniformly distributed throughout the domain and reaches its limit value only in one point (cf. Fig. 6(a)) or has a more 
non-uniform distribution with intermediate values and several points at the maximum value (cf. Fig. 6(b)). In the first case, 
the stability is critical and C provides a good approximation of a suitable time step to keep the simulation stable. In the 
second configuration, one can notice that C is too restrictive, and stability is still ensured for values beyond C = 1. Due to 
this change in repartition, C requires almost eight more linear solver iterations to solve the problem. The T method behaves 
slightly better with a 1.75 times faster simulation.

Similarly to the one-dimensional test cases, the capillary-driven case using the C number is the most complex in terms 
of stability and efficiency because it leads to unnecessary small time steps. This is also the case for Co-driven simulations 
because it requires to impose very a low maximum limit (here 10−2). Regarding efficiency, T is the best criterion, as 
previously observed (Fig. 5(c)). Comparing the efficiency for this configuration, T is 4.25 times faster than Co and 6 times 
faster than C .

In the case where both capillary and gravitational effects are present, the T and C criteria lead to similar performances, 
while the Co produces a two-fold slower simulation (see Fig. 7).



Table 2
Limits for Comax and Cmax parameters and maximum time step allowed for the 
Buckley–Leverett and capillary rise cases.

Comax Cmax �tCo,max(s) �tC,max(s) �tT ,max(s)

Non-gravitational 0.01 2.11 2445.3 27736 53290
Gravitational 0.01 0.56 2197 4925 7618
Capillary 0.01 3.63 2316 8583 49777
Capillary–gravity 0.003 0.36 667 1244 2512

As for the homogeneous porous medium, the maximum stable values of criteria C and Co are gathered in Table 2. These 
results highlight that Coats’ number C allows the use of time steps from 2 to 10 times larger than those obtained with 
Co-driven simulations. The non-gravitational cross-flow exhibits Cmax larger than the similar Buckley–Leverett experiment 
(2.11 instead of 1.19), which can be explained because of the non-uniform distribution of the maximum values of the 
criterion, as shown in Fig. 6. This configuration also occurs in capillary-dominated cases. When gravitational effects are 
included, with or without capillary effects, Cmax = 1 is no longer stable and should be reduced. Nevertheless, the latter 
criterion remains more efficient than the Co-driven simulation. The non-gravitational configuration is reported to be stable 
with a value of Cmax = 2.0 in [9].

For the challenging 2D cases that include gravity forces, Todd’s criterion T has to be tuned to ensure stability. A prefactor 
δ is introduced as suggested in [8]. The values of this factor are respectively δ = 1/16 for the gravity-driven case and δ = 1/32

for the capillary–gravity case.

4. Conclusion

IMPES algorithm and its sequential structure still represent an interesting alternative to coupled approaches when treat-
ing problems with a challenging number of grid cells as required by highly detailed models. However, due to the specific 
form of conservative equations, the derivation of stability criterion more adapted than classic CFL condition is needed. Sev-
eral contributions have tried to define more adapted saturation and pressure variation criteria [8], and on-going studies 
exist in the literature addressing this issue [9].

In this study, these various criteria have been compared with the classical Courant number in various conditions leading 
to the following observations. For homogeneous cases, the C method with limit set to Cmax = 1 will ensure stability in every 
configuration. For 2D heterogeneous cases, the C method faces two configurations:

– when the saturation front is diffuse, which is the case for capillary- or viscosity-dominated flows, it is safe to use a 
limit as Cmax = 1. However, it can be noted that the T method offers an interesting alternative, leading to a stable 
and fastest simulation. An alternative approach in the capillary-dominated cases is to switch to an implicit formulation, 
which suffers less from the loss of efficiency;

– when the saturation front is sharp, which is the case for gravity and capillary–gravity cases, phases are segregated 
and users have to limit the criterion to Cmax = 0.25, in order to keep the simulations stable. In the capillary–gravity 
configuration, the T method leads to similar performances as the C-method.

Even if Co-driven simulations can give better results in some cases, it remains a condition too dependent on the considered 
case. Comax limit to be imposed for ensuring stability can differ by a factor of 1000 and makes this criterion unreliable. 
Following this work, it would be relevant to perform such a benchmark on the compressible formulation of IMPES or 
three-phase flows to confirm or invalidate the observations made in the frame of this study.
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