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1. Assessing the strength of density-dependence is crucial to understand population dynamics, but its estimation is difficult. Because estimates of population size and demographic parameters usually include errors due to imperfect detection, estimations of the strength of density-dependence will be biased if obtained with conventional methods which in addition lack statistical power to detect density-dependence.

2. We propose a Bayesian integrated population model that combines different sources of demographic information (capture-recapture, population counts, and data on reproductive success) into a single model to study density-dependence. The model allows assessing the effect of density both on the population growth rate and on the demographic parameters while accounting for imperfect detection. We studied the performance of this model by simulation and illustrate its use with a case study on red-backed shrikes Lanius collurio.

3. Our simulation results showed that the strength of density-dependence is identifiable and estimated with good precision. The strength of density-dependence was estimated with higher precision when the integrated population model was used than when a conventional regression model, which ignores the observation error, was applied. As expected, the conventional regression model tended to overestimate density-dependence at the population and to underestimate density-dependence at the demographic level. The analysis of the red-backed shrike data revealed negative density-dependence at the population level most likely mediated by a density-dependent decline in adult survival.

4. This work highlights the potential of integrated population models in assessing densitydependence and its practical application in population studies.

Introduction

Factors that regulate population size are broadly classified into density-independent (stochastic) and density-dependent (deterministic) factors (Williams, Nichols & Conroy 2002, page 136).

Density-independent factors (e.g. weather) affect all individuals in a population in the same way regardless of population density. In contrast, the effects of density-dependent factors intensify as the population density increases. Depending on their effect, they can be differentiated as negative and positive density-dependent processes. Negative effects of density-dependence occur if a demographic rate decreases as density increases, whereas positive effects occur when both increase [START_REF] Sinclair | Density dependence, stochasticity, compensation and predator regulation[END_REF]. Intraspecific competition for resources (e.g. food, nest site) and predation are the main drivers of negative density-dependence [START_REF] Newton | Population Limitation in Birds[END_REF][START_REF] Gunnarsson | Experimental evidence for density-dependent survival in mallard (Anas platyrhynchos) ducklings[END_REF], whereas a low chance to find mates at low population density is a typical mechanism resulting in positive, or inverse, density-dependence (Allee effect) [START_REF] Saether | Life history variation, population processes and priorities in species conservation: towards a reunion of research paradigms[END_REF][START_REF] Courchamp | Inverse density dependence and the Allee effect[END_REF][START_REF] Morris | Measuring the Allee effect: Positive density dependence in small mammals[END_REF]. The two mechanisms can operate within the same population at different periods of time, depending on current density [START_REF] Courchamp | Inverse density dependence and the Allee effect[END_REF].

In order to understand better how populations are regulated, the effect of density on different age or stage classes should be quantified. Knowledge of density-dependence is also crucial in practical applications such as conservation or harvest regulations [START_REF] Hanski | Random walks in a metapopulation: How much density dependence is necessary for long-term persistence[END_REF][START_REF] Sinclair | Density dependence, stochasticity, compensation and predator regulation[END_REF][START_REF] Drake | Density-dependent demographic variation determines extinction rate of experimental populations[END_REF]. Many studies have used long-term time series data to estimate the strength of density-dependence [START_REF] Dennis | Density-dependence in time-series observations of natural populations: estimation and testing[END_REF][START_REF] Lande | Estimating density dependence in time-series of agestructured populations[END_REF]. The main principle is to study whether there is a negative relationship between population growth rate and population size. An important limitation of this approach is that it needs the assumption of a population census, i.e., a complete enumeration without errors in the counts. If an observation error is present and not accounted for, it inflates the type I error and misleadingly indicates the presence of density-dependence [START_REF] Shenk | Sampling variance effects on detecting density dependence from temporal trends in natural populations[END_REF][START_REF] Freckleton | Census error and the detection of density dependence[END_REF][START_REF] Knape | Estimability of density dependence in models of time series data[END_REF][START_REF] Lebreton | Assessing density dependence: Where are we left? Modeling Demographic Processes in Marked Populations[END_REF]. More recently, state-space models have been used to reduce or remove bias in parameters or functional forms of density relationships resulting from observation error [START_REF] De Valpine | Fitting population models incorporating process noise and observation error[END_REF][START_REF] Jamieson | Density dependence in North American ducks[END_REF][START_REF] Dennis | Estimating density dependence, process noise, and observation error[END_REF]. However, estimates are unbiased only if the observation error is relatively small [START_REF] Knape | Estimability of density dependence in models of time series data[END_REF]. A further limitation is that the analysis of population counts only reveals the effect of density at the population level and, consequently, the demographic mechanisms causing densitydependence remain unknown. Some studies have used long-term data to assess the impact of density on demographic parameters by regressing estimates of demographic parameters on population counts [START_REF] Coulson | The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species[END_REF][START_REF] Saether | Population dynamical consequences of climate change for a small temperate songbird[END_REF][START_REF] Barker | Measuring density dependence in survival from mark-recapture data[END_REF][START_REF] Paradis | Exploring density-dependent relationships in demographic parameters in populations of birds at large spatial scale[END_REF][START_REF] Barbraud | Climate and density shape population dynamics of a marine top predator[END_REF][START_REF] Tavecchia | Density-dependent parameters and demographic equilibrium in open populations[END_REF]. To get unbiased estimates of the strength of density-dependence this approach requires estimates of demographic rates and population counts that are not subject to observation errors. If there are observation errors (either on the demographic rates and/or on the population counts), the test for densitydependence will suffer from a lack of statistical power [START_REF] Lebreton | Assessing density dependence: Where are we left? Modeling Demographic Processes in Marked Populations[END_REF]. Recently, Schofield, [START_REF] Schofield | Flexible hierarchical mark-recapture modeling for open populations using WinBUGS[END_REF] applied the Jolly-Seber model to mark-recapture data to estimate the strength of density-dependence on survival. Using this model, estimates of survival and of population sizes are obtained while accounting for imperfect detection, and thus the power to detect density-dependence is maximized.

Despite the development of different methods for studying density-dependence, there are currently no approaches to assess the effect of density on all demographic parameters simultaneously while accounting for observation error. This is a drawback because the full demographic mechanisms of density-dependent population regulation cannot rigorously be studied.

Here we propose the use of a Bayesian integrated population model to study densitydependence in a coherent fashion. Integrated population models combine different sources of demographic data into a single model and provide estimates of all demographic parameters and population size with improved precision and that are free of observation error [START_REF] Besbeas | Integrating mark-recapturerecovery and census data to estimate animal abundance and demographic parameters[END_REF][START_REF] Brooks | A Bayesian approach to combining animal abundance and demographic data[END_REF][START_REF] Schaub | Use of integrated modeling to enhance estimates of population dynamics obtained from limited data[END_REF]Abadi et al. 2010a). Parameters that are unidentifiable from a single source can be estimated with these models [e.g. fecundity [START_REF] Besbeas | Integrating mark-recapturerecovery and census data to estimate animal abundance and demographic parameters[END_REF]; immigration rate (Abadi et al. 2010b)]. These models also are very appealing and powerful when the sample size is small (Abadi et al. 2010a). So far, integrated population models have been successfully used to estimate key demographic parameters from single-site demographic data [START_REF] Brooks | A Bayesian approach to combining animal abundance and demographic data[END_REF][START_REF] Schaub | Use of integrated modeling to enhance estimates of population dynamics obtained from limited data[END_REF][START_REF] King | Identifying and diagnosing population declines: a Bayesian assessment of lapwings in the UK[END_REF]Véran & Lebreton 2008;[START_REF] Reynolds | Integrated data analysis in the presence of emigration and mark loss[END_REF]Abadi et al. 2010b) as well as from multi-site data [START_REF] Borysiewicz | An integrated analysis of multisite recruitment, mark-recapture-recovery and multisite census data[END_REF][START_REF] Péron | Studying dispersal at the landscape scale: efficient combination of population surveys and capture-recapture data[END_REF][START_REF] Mccrea | Multi-Site Integrated Population Modelling[END_REF] and their performance has been investigated using simulations [START_REF] Besbeas | Completing the ecological Jigsaw. Modeling Demographic Processes in Marked Populations[END_REF]Abadi et al. 2010a).

The model we propose for studying density-dependence potentially has several advantages. Firstly, because integrated population models involve the use of state-space models for the population counts, it is possible to assess density-dependence based on estimates of population indices corrected for random observation errors rather than on the population counts including errors, which avoids the confounding effect of observation errors. Secondly, because demographic parameters (e.g. age-specific survival, fecundity) are estimated, it allows a test of densitydependence for them, and thus the demographic mechanisms of density-dependent population regulation can be identified. It also allows assessing density-dependence at the population level using the derived population growth rate. Thirdly, combined analysis of demographic data results in improved precision of estimates, which is expected to increase the statistical power to detect density-dependence.

We conducted simulations to examine the performance of integrated population model in estimating the strength of density-dependence under different magnitudes of observation error. We illustrate the method using a data set on a population of red-backed shrikes Lanius collurio.

Previous studies have shown that the studied shrike population is regulated by density at the level of the population [START_REF] Pasinelli | Impact of density and environmental factors on population fluctuations in a migratory passerine[END_REF], but that neither survival nor fecundity were a function of local density (Schaub, Jakober & Stauber in press). The latter study was performed with conventional methods which are expected to have lower power than the integrated analysis. Our objective here was to evaluate whether density-dependence at the level of the demographic rates could be identified using the new proposed model.

Methods

We present first the integrated population model to estimate the strength of density-dependence, and then describe the simulation set up and the procedure to generate the data sets. Finally, we describe the case study and how the model is implemented in the Bayesian framework. We were motivated by a short-lived bird species from which we sampled capture-recapture and reproductive success data, as well as annual population counts. However, the estimation of density-dependence using the integrated population model is not restricted to this life history type and these data sets, other life histories and data sets could also be modelled by adaptations of the underlying population and observation models.

Modelling density-dependence in the integrated population model

Integrated population models first require the formulation of the likelihood for the available demographic data sets. Detailed discussion of this likelihood formulation is provided in Abadi et al. (2010a). In summary, we used the standard Cormack-Jolly-Seber model (CJS; [START_REF] Lebreton | Modelling survival and testing biological hypotheses using marked animals -A unified approach with case-studies[END_REF] for the capture-recapture data. We assumed the number of individual encounter histories summarized in the m-array (m) follows a multinomial distribution with parameters that are functions of age-specific apparent survival ( jv  , ad  ) and recapture probabilities (p). jv  denotes the probability that a newborn individual survives and becomes a yearling (1 year old) and ad  denotes the survival probability of yearlings and adults (older than 1 year). We denoted the likelihood for this model by cr

L ( | , , )

jv ad  mp . For the data on reproductive output, we assumed that the number of offspring produced per female (J) is Poisson distributed whose parameter is the product of fecundity (f) and the number of females recorded to produce young (R). Fecundity (i.e.

the number of newborns per adult females) of both yearlings and adults is assumed to be the same.

The likelihood for this model is denoted by L rp (J, R  f).

To describe the population counts we use a state-space model, which consists of a process and an observation model [START_REF] Besbeas | Integrating mark-recapturerecovery and census data to estimate animal abundance and demographic parameters[END_REF]. The process model describes the evolution of the underlying population sizes over time, thus it determines the link between the demographic rates and population size. Let N 1,t denote the number of 1 year old individuals in year t, N 2+,t denote the number of individuals older than 1 year in year t, and N t = N 1,t + N 2+,t , denote the total population size in year t. We assume that N 1,t+1 is generated by a Poisson process, as N 1,t+1 only takes a value between 0 (if no recruitment occurs) and ∞ (if recruitment is massive). The parameter of the Poisson process is the product of fecundity, juvenile survival and population size in year t. The sex ratio of newborn is assumed to be even and therefore we divide f by 2, and thus,

, 1, 1 ) ~Po( ( ) 2 t t jv t t f NN   eqn 1.
We further assume that N 2+,t+1 is generated by a Binomial process, as N 2+,t+1 only takes a value between 0 (if no individual survives) and the total population size a year before (if all survive). Thus, 2 , 1 , ~( , )

t t ad t N Bin N   eqn 2.
The observation model links the population counts (i.e. the number of detected and counted female breeders, denoted by y t ) to the latent population sizes (N t ). We then assume

y t ~ N(N t , 2 y  ) eqn 3
where the variance 2 y  quantifies the observation error. The likelihood for the state-space model is given by the product of the likelihood of the process and observation models, sy L ( | , , ) A simulation study by Abadi et al. (2010a) that combined and analyzed completely dependent data of capture-recapture, population counts, and reproductive success showed that the violation of the independence assumption only had a negligible effect on the precision of parameter estimates. We assume that this is true also in the present study.

jv ad  Nf  L ob (y  N,  2 
All demographic parameters and population sizes appear in the likelihood of the integrated models as shown in eqn 4. This offers the possibility to model density-dependence of the demographic rates within a single model. We modelled the recapture probability with a random year parameter and assessed the effect of density on both survival probabilities and fecundity, , , * , 2 01 logit( )= ~(0, )

jv jv t jv t jv t t N N           eqn 5 , , * 2 , 23 logit( ) = ~(0, ) ad ad ad tt ad t t N N           eqn 6 * 2 5 4 log( ) = ~(0, ) t t t t f f f N fN       eqn 7
where * t N is the standardized population size (i.e., * () () We calculated this regression outside the integrated population model, because we did not want to induce any constraints on the density-dependence at the population level, since densitydependence at the population level is always the result of density-dependent variation of demographic rates.

tt t t N mean N N sd N   ), t N = 1,t N + 2, t N  is the
We also estimated the strength of density-dependence, ignoring the observation error, by regressing demographic rates estimated with single data analysis (i.e. survival probabilities from capture-recapture data estimated with the CJS model, and fecundity estimated from data on reproductive success with a Poisson regression model) on standardised population counts. The relationships between demographic parameters and population counts were similar with eqns 5-8, but here we used the population counts * t y rather than * t N and the population growth rate was calculated as  obs,t = y t+1 /y t and modelled as a function of * t y .

Simulation study

Using simulations we evaluated the identifiability of the estimates of the strength of densitydependence () and assessed their precision at varying levels of observation error under the integrated population model developed above. We also evaluated the effect of ignoring the observation error on the estimates of density-dependence obtained by regressing demographic rates on population counts.

A. Individual-based simulation of the data

The way we conducted simulations is analogous to that described in Abadi et al. (2010a). It consists of creating a population by simulating fates of individuals, sampling demographic data from this population, and analyzing these data with the developed integrated population model.

These steps are repeated several times and point estimates stored, serving the base to evaluate the performance of the model.

To create the population, we mimic a short-lived bird species and the development of the population sizes from one year to another is described by eqns 1 and 2. We specified the relationship between demographic parameters and the actual population size in year t as If the population size (N) increases by 10 individuals, the slope coefficients can be interpreted as the expected change in juvenile survival odds ratio to be exp(-0.5); in adult survival odds ratio to be exp(-0.2); and in fecundity to be exp(-0.1), indicating a negative effect of density on demographic parameters. The simulation parameters in eqns 9-11 were chosen in such a way that they result in reasonable demographic rates for a short lived bird species at the population size of about 50.

Next, we created the life history of individuals in the population for 20 years. To start the creation of the population, we set the initial population size at 40 individuals. We then specified the actual probabilities of survival and fecundity applying eqns 9-11 under consideration of the actual population size. For each individual alive in the population it was then simulated whether it survived for another year, how many juveniles it produced, and how many of the juveniles survived. The sum of the number of yearlings and surviving adults gives then the population size in the following year, and we specified the demographic rates for this following year. This was repeated for 20 years. Information about the state of an individual (dead, alive, in which age group it is given alive) and the number of offspring it has produced were stored. To avoid transition effects of the initial conditions we only used the last 10 years of the simulated data sets.

Once we created the population, the next step was to sample individuals for the different studies. We independently selected 1000 individuals at random from the population to be available for capture-recapture and reproductive success data sampling. To create the capture-recapture histories and reproductive success data based on individuals subject to each study, we set the initial capture probability at 0.90 and 0.50 for juveniles and adults (1 year and older), respectively, and the recapture probability at 0.50. The probability to detect and record reproductive success was set at 0.90. All these capture/recapture and detection probabilities were assumed to be constant across time. To create the population counts in each year, we used a binomial distribution with parameters actual population size in the given year (N t ) and detection probability (P s ). The detection probability was assumed to be constant over time. We considered two scenarios, one with detection probabilities of female breeders of 0.50, and one with 0.90. The lower detection probability corresponds to a large observation error in the population counts. This is because the variance of binomial sampling (i.e. NP s (1-P s )) is largest with P s =0.50. Our sampling procedures did not result in completely independent data sets as some individuals that were involved in either capture-recapture or reproductive success data sampling also had a chance to be included in the population counts. We simulated 500 data sets and analyzed them using the proposed integrated population models.

B. Case study

We was about 50 pairs. For the analysis we assumed an even sex ratio and only considered capturerecapture data of females. The goal was to estimate the strength of density-dependence at the population level and of the demographic rates to assess 1) whether the population is regulated by density, and 2) if so, through which demographic mechanisms.

Because the studied red-backed shrike population is geographically open, we had to extend the integrated population model to include immigration (Abadi et al. 2010b). Therefore, we modified the state-space model (eqns 1-3) as follows: the number of 1 year old individuals N 1,t+1 followed a Poisson process with 1, 1 , ~Po( ( ) ) 2

t t t jv t f NN   eqn 12
The number of immigrants N im,t+1 was modelled with a Poisson distribution as ,1 ()

im t t t N Po N   : eqn 13
where the immigration rate t  is defined as the number of female immigrants of age 1 year or older in year t+1 per breeding females in the previous year N t .

The number of at least 2 years old surviving individuals followed a binomial process with , 1 , ~( , )

ad t t ad t N Bin N   eqn 14
The total number of individuals in year t is given by 1, , ,

t t ad t im t N N N N    .
For the observation equation, we assumed a normal distribution, hence y t the annual number of counted breeding females in year t distributed as a N(N t , 2 y  ) .

To estimate the strength of density-dependence on the demographic parameters as well as the population growth rate, we fitted the models specified in eqns 5-8. We also modelled immigration rate with a random year parameter, but did not impose density-dependence on it.

Further, the recapture probability (p) was modelled time-dependent where time was treated as random. Beside the model that includes density dependence for the demographic parameters, we also fitted a model without density-dependence (i.e. 1 3 5 0       in eqns 5-7), in order to get unconstrained annual estimates of the demographic parameters.

C. Bayesian analysis of the model Simulation study

Our simulation study clearly showed that the strength of density-dependence in the demographic rates as well as in the population growth rate was identifiable with the integrated population model regardless of the magnitudes of observation error we considered, indicated by smooth posterior densities with a clear peak (Figs 1 &2). If the parameters were not identifiable, we would have expected a posterior density that is similar to the specified prior distribution [START_REF] Gimenez | Weak identifiability in models for markrecapture-recovery data[END_REF]). The widths of the posterior distributions resulting from the integrated population model were narrower when the observation error was small compared to when it was large. This indicates that the precision of the density-dependence estimator declines with increasing observation error of the population counts. In general, the strength of density-dependence was estimated with more precision at the population level than at the demographic level, indicated by a narrow width of the posterior distributions (Figs 1 & 2).

Estimates of the strength of density-dependence obtained from the integrated population model were generally more precise compared to that of the regression analysis. This was particularly evident for adult survival (Figs 1 & 2). As expected, the estimates of strength of density-dependence in the demographic parameters were slightly shifted towards zero when the observation error was large and not accounted for. However, this effect was not very strong. The model which ignores the observation error yielded stronger and slightly less precise estimates of density-dependence at the population level in comparison to the integrated population model (Figs

1 & 2).

Case study

Since there is no established goodness-of-fit test of the complete integrated population model available, we tested the goodness-of-fit just for the capture-recapture model using contingency tables (Pradel et al. 2005) via program U-CARE [START_REF] Choquet | U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data[END_REF]): there was no sign of lack of fit ( 2 59  = 42.75, P = 0.94). Based on the integrated population model without density- dependence, the annual estimates of age-specific survival, fecundity and population growth rate tended to decline with increasing population size in red-backed shrikes (Fig. 3), suggesting density-dependence in these demographic parameters and at the population level. We then explicitly estimated the strength of density-dependence in the demographic parameters and in the population growth rate using the integrated population model with density-dependence. The estimated linear relationships between demographic rates as well as population growth rate (on the transformed scale) and population size are shown in Fig. 3. The posterior distributions of the strength of density-dependence were wide for juvenile survival and fecundity, and more pointed for adult survival and population growth. As expected, the posterior means of the strengths of density-dependence were negative in all parameters (Fig. 4). The posterior probability that the estimated effect of density were negative was high for population growth (0.960), followed by adult survival (0.792), fecundity (0.598) and juvenile survival (0.559). Thus, there was clear evidence of a density-dependent population regulation at the level of the population that was more likely due to adult survival, than due to juvenile survival or fecundity.

Discussion

Density-dependence is an important ecological concept and understanding how it operates is crucial in conservation, harvesting and for accurate demographic projections [START_REF] Sinclair | Density dependence, stochasticity, compensation and predator regulation[END_REF][START_REF] Lande | Estimating density dependence in time-series of agestructured populations[END_REF]. In this paper we provide a framework for studying density-dependence using a Bayesian integrated population model. A key advantage of this unifying framework is that it allows estimating strength of density-dependence both at the demographic and population level while accounting for observation error and, consequently, the demographic mechanism causing density-dependent population regulation can be identified. In contrast, most existing techniques for demographic rates is weak, all demographic rates work jointly, and thus the effect at the population level magnifies. Second, the red-backed shrike population is geographically open, and immigration is substantial (mean (sd): 0.545 (0.036)). It is well possible that immigration is regulated by density, i.e., few individuals immigrate in years where the number of survivors and local recruits is high, and vice-versa. Yet, immigration is a parameter in our integrated population model that is estimated without having explicit data (Abadi et al. 2010), and for such parameters it appears that the strength of density-dependence cannot be estimated (i.e., it is not an identifiable parameter of the model). To evaluate for which demographic parameter density-dependence is important, we computed the probability that the strength of density-dependence is negative and use this as a testing criterion. Alternatively, one could also apply model selection for the same purpose. The set of models could then include models that impose density-dependence in some demographic parameters only. Yet, model selection in Bayesian hierarchical models is not an easy task [START_REF] Link | Model weights and the foundations of multimodel inference[END_REF][START_REF] Millar | Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes' factors[END_REF]).

In our simulation as well as in the case study we expressed density in terms of population size. Since the study area associated with the red-backed shrike population remained the same over time, the use of population size as a measure of density was justified. However, it is important to note that the influence of density on biological processes can be overlooked due to an inappropriate measure of density (Williams et al. 2002;[START_REF] Barker | Measuring density dependence in survival from mark-recapture data[END_REF]. Moreover, the main driving force for density-dependence is often competition for resources and not space. Ideally, one would therefore model the strength of density-dependence not with population size, but with the available resources per individual. Our model could be extended in this way if an estimate of resource availability could be obtained.

The goals of our simulation were mainly on the assessment of the identifiability of the estimates of strength of density-dependence and on the evaluation of the effect of observation error. We specified a short study period (i.e., 10 years), thus conditions where the estimation of density-dependence were difficult. Yet, the model was able to estimate density-dependence with good precision in this set-up. We could further examine the performance of the model in different directions. For instance, we could set up a simulation varying the strength of density-dependence and also the length of the study period. The ability to detect density-dependence often increases with long time series data [START_REF] Brook | Strength of evidence for density dependence in abundance time series of 1198 species[END_REF]. In our simulation study, we focused on the common kind of observation error (i.e. non-detection or false-negative error). One might further evaluate the performance of the model considering other kinds of observation error such as falsepositive errors occur.

The integrated population model is very flexible to include different shapes of densitydependence. Here we used the density-dependence model of the Ricker type for population growth rate [START_REF] Dennis | Density-dependence in time-series observations of natural populations: estimation and testing[END_REF], but specifying other density-dependence models which are discussed in the literature (e.g. [START_REF] Dennis | Density-dependence in time-series observations of natural populations: estimation and testing[END_REF][START_REF] Jamieson | Density dependence in North American ducks[END_REF]) is straightforward.

Moreover, some studies have shown that the effect can be non-linear in the parameters [START_REF] Paradis | Exploring density-dependent relationships in demographic parameters in populations of birds at large spatial scale[END_REF][START_REF] Saether | Pattern of variation in avian population growth rates[END_REF][START_REF] Tavecchia | Density-dependent parameters and demographic equilibrium in open populations[END_REF]. The integrated population model could also be extended to assess non-linear density-dependence, for instance by using penalized splines [START_REF] Gimenez | Semiparametric regression in capture-recapture modelling[END_REF]). In the present study, we looked at the direct effect of density but it is possible that density-dependence can affect demographic parameters and population growth rate with time lag [START_REF] Paradis | Exploring density-dependent relationships in demographic parameters in populations of birds at large spatial scale[END_REF]. Our model can easily be extended to study delayed densitydependence.

Overall, our model provides an improved statistical tool over current methods for estimating density-dependence. We believe it has great potential in conservation, management and ecology. 

  y ). The likelihood of the complete integrated population model is obtained as the product of the likelihoods of all three data sources under the assumption of independence,

  population size in year t , and the  2 are the temporal variances of the demographic parameters as well as of recapture probability. The goal is to estimate the regression coefficients (, ) and the magnitude of temporal variability ( 2 ). The slope coefficients ( 1 ,  3 ,  5 ) estimate the strength of density-dependence on juvenile survival, adult survival and fecundity, respectively. For the recapture probability, which is a nuisance parameter, we assumed a random year effect, the strength of density-dependence on the population growth rate (i.e. at the level of the population). This was done by first calculating the population growth rate ( t = N t+1 /N t ), and then regressing the growth rate on population size as

  used 26 years of demographic data of red-backed shrikes collected from 1981-2006 in southwestern Germany near Göppingen (4839'N, 947'E) to illustrate the method. The red-backed shrike is a medium-sized (~30g) migratory passerine living in agricultural landscapes during the breeding season (Glutz von Blotzheim & Bauer 1993). The study area has a size of about 18 km 2 and mostly consists of meadows and pastures with interspersed orchards and hedgerows (for a more detailed description see Jakober & Stauber 1987). During numerous visits we localised each year the nests of nearly all breeding pairs, recorded the number of fledglings of each nest (n = 3580 fledglings from 1242 nests) and ringed the nestlings at an age of about 8 days (n = 3598). Territorial adults were caught with clap or mist nets and ringed with individual colour rings (n = 513 females). Each spring we visited the study area almost daily to resight colour-marked individuals. The population size varied between 35 and 71 observed breeding pairs, the mean size

Fig. 4 .

 4 Fig. 4. Posterior distributions of the estimated strength of density-dependence on juvenile survival
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All the models were fitted within the Bayesian framework, specifying non-informative priors in order to reflect limited knowledge about the parameters. Specifically, we assigned a N(0, 100) distribution on the regression coefficients ( and  ). A N(100, 100) distribution truncated to positive values was assigned for age specific initial population sizes, and a U(0, 10) distribution for the temporal standard deviations of demographic parameters. To assess convergence of the Markov chain Monte Carlo (MCMC) algorithm to the stationary distribution, we randomly chose a single simulated data set and run three chains, each with different initial values, of 20000 iterations with a burn-in of 15000 iterations. The R [START_REF] Brooks | General methods for monitoring convergence of iterative simulation[END_REF] values were less than 1.1 for all parameters, suggesting convergence. We therefore run a single chain of 30000 MCMC iterations with a burn-in of 20000 thinning every 10 th observation in order to compute the posterior summary statistics. Using this setting, the analysis of one data set took approximately 50 minutes (on a 3.3 GHz processor, 2 GB RAM PC). For the case study, we first run three chains of 20000 iterations with a burn-in of 10000 to check whether convergence was reached. Since convergence was obtained (all the R values < 1.02), we run a single chain of length 100000, discarded the first 50000 as burn-in and thinned every 10 th observation. The run time to analyse the red-backed shrike data set was approximately 5 days (on a 3.3 GHz processor, 2 GB RAM PC). The posterior summary statistics were then computed based on 5000 samples. We used the R software version 2.9.1 (R Development Core Team 2008) to simulate the data and the analyses were done using the WinBUGS software calling it from R through the package R2WinBUGS [START_REF] Sturtz | R2WinBUGS: A package for running WinBUGS from R[END_REF]. The R and WinBUGS codes for the density-dependence model of the red-backed shrike data are provided in Appendix S1 in Supporting Information.

Results

testing density-dependence rely on time series data and do not account for observation error, or focus either on the effect of density on population growth rate or on a single demographic parameter only.

Using simulations, we showed that integrated population models provide estimates of the effect of population size on demographic parameters as well as on population growth rate with good precision. The parameters estimating the strength of density-dependence were identifiable with our model regardless of the magnitudes of observation error we considered. As expected, the estimates were slightly more precise when the observation error was small than large. Our simulation study also highlight that ignoring observation error had differential impact on the estimators of the strength of density-dependence at the population than at the demographic level.

The conventional regression model tended to estimate stronger density-dependence at the population than at the demographic level. These results are in agreement with previous findings (e.g. [START_REF] Shenk | Sampling variance effects on detecting density dependence from temporal trends in natural populations[END_REF][START_REF] Freckleton | Census error and the detection of density dependence[END_REF][START_REF] Lebreton | Assessing density dependence: Where are we left? Modeling Demographic Processes in Marked Populations[END_REF].

We also illustrated the application of the method using demographic data from a geographically open red-backed shrike population. We found strong support of densitydependence for the population growth rate. Of the considered demographic parameters, only adult survival was likely to be regulated by density-dependence, while juvenile survival and fecundity were hardly impacted by breeding density. Using the same data analysed with regression analyses with population counts uncorrected for observation error, Schaub et al. (in press) did not find support of density-dependence for survival and fecundity. With the application of the integrated population model the power to detect density-dependence increases (see simulations), which is the reason why we now found support of density-dependence operating on adult survival. One may wonder how there can be strong density-dependence for population growth and only relatively weak density-dependence for the demographic rates. First, even if density-dependence for the Williams, B.K., Nichols, J.D. & Conroy, M.J. ( 2002) Analysis and management of animal populations. Academic Press, San Diego, USA.
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