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Abstract

Structural theories often consider constraints on the stresses, creating a par-

tition into active and fixed components. Sophisticated nonlinear material

models are usually described in 3D-continuum form. A reformulation of the

material models is then necessary in order to enforce the constraint on the rel-

evant stress components. In this paper, a new strain-rate independent return

mapping algorithm is developed in order to deal with arbitrary partitions of

the stresses considering general associative elasto-plastic material models.

The developed algorithm works directly with the active stress and strain

components, satisfying the constraints on the relevant stresses components

at each integration point of each element and yielding optimal computational

efficiency and memory costs. The tangent operator is obtain in closed-form,

providing quadratic convergence to the local iterative process. A comparison

of the proposed approach to a previously developed algorithm is made to

highlight its properties.
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1. Introduction

Most structural theories adopt the hypothesis that only certain compo-

nents of the general 3D stresses are active, that is, they directly depends on

the associated strains. The remaining components are assumed to be fixed.

In truss and cable theories [2], for example, usually the axial stress is active

while the others stresses are set to zero. In the 2D and 3D Timoshenko’s

beam theory [16], the cross-section axial and shear stresses represent the ac-

tive components, while in the shell theory [17] the normal stresses in the

direction of the shell’s thickness is set to zero. The nonlinear elasto-plastic

behavior of complex materials is usually described in a 3D-continuum form

and so the material models must be reformulated in order to take into account

the constraints on stress components.

In a finite element context, return mapping algorithms are used to inte-

grate the material constitutive relations between two consecutive time steps

of a incremental procedure. These algorithms follow a strain-driven approach

where, for each integration-point of each element, the strains (computed from

the nodal degrees of freedom) and plastic history (stored at the integrate-

point) are used to obtain the stresses, the tangent operator and the updated

plastic variables. Many authors have proposed return mapping algorithms

for specific partitions of the stresses [6, 10, 14, 19, 21] or specific material

models [1, 3, 4, 9, 11]. The return mapping algorithm proposed by Klinkel

and Govindjee [7] differs from the others in the sense that a general parti-
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tion of the stresses into active and fixed components is considered. In the

present work, a new version of this algorithm is developed aiming to optimize

memory cost and computational efficiency.

The development of return mapping algorithms has been an active field

of research in the last decades. Jetteur [5] and Simo and Taylor [21] devel-

oped return-mapping algorithms for elasto-plasticity in plane stress analysis.

Simo and Govindjee [19] found an exact closed-form solution for plane stress

elasto-visco-plasticity. Simo [18] studied algorithms in multiplicative plastic-

ity. Ohno et al. [14] developed a implicit integration algorithm applicable to

both plane stress and 3D stress states. Mánik [13] proposed a vector/matrix

notation for return-mapping algorithm for advanced yield functions. Meng

et al. [12] studied a return mapping algorithm in principal space for general

isotropic elasto-plasticity with multi-surface plasticity.

In the present paper, a new return mapping algorithm is developed. The

main originalities of the present contribution are:

• A return mapping algorithm capable of handling general partitions of

the complete 3D stresses for arbitrary yield functions, while perform-

ing operations only on the active components of the stress and strain

vectors. The remaining quantities can be optionally obtained as a by-

product;

• A bit-mask implementation of the proposed algorithm, yielding advan-

tageous computational properties such as low memory cost and high

efficiency comparable to return mapping algorithms designed for spe-

cific stress partitions while maintaining a general formulation that can

be applied to any structural model;
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• Explicit algorithmic tangent operator in closed-form, providing qua-

dratic convergence to the local iterative process.

The paper is structured as follows. In Section 2, the classical elasto-plastic

material model with combined isotropic and kinematic hardening used in

this work is introduced. In Section 3, the proposed return mapping algo-

rithm is presented and compared against the standard approach in terms of

computational efficiency and memory cost. Section 4 presents a number of

numerical applications, highlighting the accuracy and efficiency of the pro-

posed method. Finally, in Section 5, some conclusions and suggestions for

future works are given. For completeness, the expressions for some classical

yield surface equations, gradients and hessians are included in Appendix A.

2. Material model

Structural theories often consider that only certain stress components are

relevant in the mechanical behavior of the load bearing elements, due to their

shapes, support conditions and applied loads (Tab. 1). Truss elements, for

example, are mainly designed with respect to the axial forces that in turn

generate axial stresses (σxx). In 3D beam elements, axial (σxx) and shear

(τxy and τxz) stresses are generated by the section resultants. In plane-stress

elements, only the in-plane stress components (σxx, σyy and τxy) are usually

considered.

In the general case, the complete 3D stress vector σ can be partitioned

into active σa and fixed σz components. The active stress components have

na entries, while the fixed stress components have nz entries. For most struc-

tural theories, the fixed stress components σz are identically zero. However,
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Model σxx σyy σzz τxy τxz τyz na nz

Truss X 7 7 7 7 7 1 5

2D Beam X 7 7 X 7 7 2 4

3D Beam X 7 7 X X 7 3 3

Shell X X 7 X X X 5 1

Plane-stress X X 7 X 7 7 3 3

3D Solid X X X X X X 6 0

Table 1: Active and null stress components for different structural models.

to make our developments as general as possible, in the present they are as-

sumed to have a constant (possibly non-zero) value σz = σz. This allows, for

example, the modeling of super-imposed hydro-static stress states or confine-

ment stresses in reinforced concrete. The corresponding strain components,

extracted from the full 3D strain vector ε are εa and εz, respectively. It’s

noteworthy that the strain components εz are not identically fixed, but can

be later computed via the fixed value condition on the stress components σz.

For instance, the partition of the stresses and strains into active and fixed

components for the 3D beam model are (Tab. 1):

σa =
{
σxx τxy τxz

}
(1)

σz =
{
σyy σzz τyz

}
(2)

εa =
{
εxx γxy γxz

}
(3)

εz =
{
εyy εzz γyz

}
(4)

In this work, only small strain elasto-plastic material behavior is con-

sidered. The total strains (εa and εz) can therefore be split additivily into
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elastic (εea and εez) and plastic (εpa and εpz) parts:

εa = εea + εpa (5)

εz = εez + εpz (6)

Considering that the material presents a linear response in the elastic

regime, the complete 3D stress vector σ can be related to the complete 3D

elastic strain vector εe via the elastic stiffness tensor C as:

σ = Cεe (7)

The elastic constitutive relation can be written in terms of the active σa

and fixed σz stress components as:

σa = Caaε
e
a + Cazε

e
z (8)

σz = Czaε
e
a + Czzε

e
z (9)

The sub-tensors Caa, Caz, Cza and Czz are created from the complete

3D elastic stiffness tensor C by extracting the associated rows and columns.

It’s noteworthy that, as the elastic stiffness tensor C has a full rank, the

sub-tensors Caa and Czz are inversible for any partition of active and fixed

stress components. Therefore, given the elastic active strains εea and the fixed

stress σz components, the elastic fixed strains εez can be obtained from Eq.

(9) as:

εez = C−1
zz (σz −Czaε

e
a) (10)

Combining Eqs. (8) and (10), the active stress σa and strain εa compo-

nents can be directly related as:

σa = Caε
e
a + σr (11)
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where:

σr = CazC
−1
zz σz (12)

Ca = Caa −CazC
−1
zz Cza (13)

The combined active elastic stiffness tensor Ca expression in Eq. (13)

involves a matrix inversion of size (nz × nz) and two matrix multiplications

of size (na × nz) per (nz × nz) per (nz × na). For structural models where

na is small (e.g. truss and beams), this operations can be computationally

expensive. The combined active elastic stiffness tensor Ca can be obtained

in a more efficient way via the elastic flexibility tensor D = C−1, relating the

elastic strains εe to the stresses σ.

Analogously to the stresses in Eqs. (8) and (9), the elastic constitutive

relation can be written in terms of the elastic active εea and fixed εez strain

components as:

εea = Daaσa + Dazσz (14)

εez = Dzaσa + Dzzσz (15)

Solving Eq. (14) for the active stress components σa, the combined active

elastic stiffness tensor Ca can be obtained by simply inverting the (na × na)

sub-tensor Daa:

Ca = D−1
aa (16)

The stress limit is represented via a yield surface f(σa,σz,q, λ) with kine-

matic hardening (back-stress) q and isotropic hardening λ. The elastic do-

main is characterized by stress states in which f(σa,σz,q, λ) < 0, while the
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plastic domain is characterized by stress states in which f(σa,σz,q, λ) = 0.

Stress states in which f(σa,σz,q, λ) > 0 are inadmissible and don’t represent

a physical configuration. The yield surface has a fixed shape f ∗(σa − q,σz)

that is translated via the kinematic hardening variable q and scales accord-

ing to the isotropic hardening λ via a yield stress function σy(λ). The yield

surface equation can then be written in a general form as:

f(σa,σz,q, λ) = f ∗(σa − q,σz)− σy(λ) ≤ 0 (17)

The yield surface’s gradients ga(σa,σz,q) and gz(σa,σz,q), with respect

to the active σa and fixed σz stress components respectively, can be defined

as:

ga(σa,σz,q) =
∂f ∗(σa − q,σz)

∂σa

(18)

gz(σa,σz,q) =
∂f ∗(σa − q,σz)

∂σz

(19)

The yield surface hessian Ha(σa,σz,q) and plastic modulus Kp(λ) are

used in the return-mapping algorithm of Sec. 3 and can be defined as:

Kp(λ) =
∂σy(λ)

∂λ
(20)

Ha(σa,σz,q) =
∂2f ∗(σa − q,σz)

∂σa∂σa

(21)

In the present work, an associative flow rule is adopted, and so, the time

evolution of the plastic deformations εpa and εpz can then be described via the

yield surface gradients ga(σa,σz,q) and gz(σa,σz,q) as:

ε̇pa = λ̇ga(σa,σz,q) (22)

ε̇pz = λ̇gz(σa,σz,q) (23)
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The back-stress evolution is also described via an associative flow rule:

q̇ = λ̇Uga(σa,σz,q) (24)

where U is the kinematic hardening modulus.

Finally, the model is complemented with the following Khun-Tucker con-

sistency conditions:

λ̇ ≥ 0 (25)

λ̇f(σa,σz,q, λ) = 0 (26)

The first consistency condition (Eq. 25) implies that the isotropic hard-

ening λ increases monotonically. The second condition (Eq. 26) implies that,

while in the elastic domain (f(σa,σz,q, λ) < 0) the isotropic hardening is

constant (λ̇ = 0). However, in the plastic domain (f(σa,σz,q, λ) = 0), the

plastic state can evolve (λ̇ > 0).

3. Return mapping algorithm

In a traditional finite element analysis, at each time-step tn+1, the total

active strains εa,n+1, at each integration-point of each element, are com-

puted from the nodal displacements. For such strain-driven approach, a

return-mapping algorithm is necessary to obtain the active stresses σa,n+1,

tangent operator Πa,n+1 = ∂σa,n+1/∂εa,n+1 and plastic state (εpa,n+1, qn+1

and λn+1) using the isotropic elasto-plastic material model described in Sec.

2. The active stress σa,n+1 and tangent modulus Πa,n+1 can then be used to

compute the elements internal force vector and tangent stiffness matrix. In

this Section, the standard method, proposed by Klinkel and Govindjee [7],
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is first reviewed in Sec. 3.1 for later comparison with the proposed method,

presented in sec. 3.2. The computational time and memory cost of the

two approaches are investigated, clearly highlighting the advantages of the

proposed method.

3.1. Standard method

Many researchers have proposed return-mapping algorithms for specific

structural models, mostly focusing on uni-dimensional (truss) and plane-

stress formulations. The return-mapping algorithm proposed by Klinkel and

Govindjee [7], referred here as standard method, considers a general partition

of the stresses (σa and σz) and, therefore, is ideal for comparison with the

methodology developed in the present work.

In the standard method, the active plastic strain components εpa,n, kine-

matic hardening qn and isotropic hardening λn at the previous time step n

are stored at each integration-point, together with the fixed total εz,n and

plastic εpz,n strain components. The total active strain components εa,n+1 at

the integration-point in the current time step tn+1 are computed from the

nodal displacements and the fixed stresses are considered null (σz = 0).

At first, the current total fixed strain components are set equal to the pre-

vious step (ε0z,n+1 = εz,n). Then, an iterative process starts in order to fulfill

the elasto-plastic constitutive equations and the fixed (null) stress condition

simultaneously. At iteration k, the fixed total and plastic strain components

(εkz,n+1 and εp,kz,n+1) are combined with the active total and plastic strain com-

ponents (εa,n+1 and εpa,n+1) to form the 3D total and plastic strain vector

(εkn+1 and εp,kn+1). A complete 3D return mapping algorithm is used to deter-

mine the 3D stresses σk
n+1 and tangent modulus Πk

n+1 = ∂σn+1/∂εn+1 that
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satisfies the elasto-plastic model. Then, the fixed stresses components σk
z,n+1

are extracted from the 3D stress vector σk
n+1 and the condition ‖σk

z,n+1‖ < tol

is checked for a given tolerance tol. If the fixed stress components σk
z,n+1 are

sufficiently small the iterative process stops, otherwise the fixed strain com-

ponents εz,n+1 are updated as:

εk+1
z,n+1 = εkz,n+1 −

(
Πk

zz,n+1

)−1
σk

z,n+1 (27)

When the algorithm converges, the active elasto-plastic tangent operator

Πa,n+1 can be computed as:

Πa,n+1 = Πaa,n+1 −Πaz,n+1Π
−1
zz,n+1Πza,n+1 (28)

where Πk
aa,n+1, Πk

az,n+1, Πk
za,n+1 and Πzz,n+1 are the sub-tensors obtained

by extracting the rows and columns relative to the active and fixed stress

components form the complete 3D tangent operator Πn+1 = ∂σn+1/∂εn+1.

A flowchart of the standard method is shown in Fig. 1. A main draw-

back of the standard method is that, not only the fixed total εz and plastic εpz

strain components must be computed, but they must also be stored at each

integration-point. This considerably increases the required memory usage,

considering that the values at the previous tn and current tn+1 time steps

must be stored (in order to return to an equilibrium configuration if conver-

gence fails) and specially for structural models where nz ≥ na. The memory

usage per integration-point (for a machine with 8 bytes float point precision)

is shown in Tab. 2.

Another important drawback of the standard method is the required com-

putational time. In order to achieve convergence, a complete 3D return
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mapping algorithm must be called multiple times. For elasto-plastic ma-

terial models with linear hardening behavior, convergence can be achieved

instantaneously if further loading on a plastic branch, while there may be

several structural level iterations, but for strongly nonlinear plastic behavior

more iterations may be required even at the local level. Moreover, the re-

peated operations of assembly and extraction of the active and fixed strain

and stress components can be considerably time consuming.

No

Stored at Gauss-point

Computed at element

Setup Combine 3D

Return mapping 3D

Extract 3D

Check

Yes

Tangent operator

Eq. (33) 

Update strains

Eq. (32)

Figure 1: Flowchart of the standard return mapping algorithm.

3.2. Proposed method

The proposed method focus on working (storing and performing opera-

tions) only on the active part of the stress σa and strain εa vectors. Therefore,

it’s important to identify and extract the active components in an efficient

way. Bit-wise operations are among the fastest procedures a central pro-

cessing unit (CPU) can perform [8, 15]. In terms of the implementation
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Model εpa εz εpz q λ Total

Truss 16 80 80 16 16 208 bytes

2D Beam 32 64 64 32 16 208 bytes

3D Beam 48 48 48 48 16 208 bytes

Shell 80 16 16 80 16 208 bytes

Plane-stress 48 48 48 48 16 208 bytes

3D Solid 96 0 0 96 16 208 bytes

Table 2: Standard algorithm memory cost per integration-point for different structural

models.

procedure, optimal efficiency and memory cost are achieved in the present

work by storing the active stress components via a bit-mask format (Tab. 3).

A single byte variable is stored for each element type. In this format, each

bit represents a power of 2, and the presence of a stress type is obtained by

simply checking whether a bit is set or not in the bit mask. Bit operations

are usually intrinsic routines/functions of most programming languages and

are thoroughly optimized in order to achieve minimal computational time.

The active and fixed stresses, strains and stiffness components can then be

efficiently extracted from their complete 3D counterparts. Moreover, specific

stress components can be obtained from the active σa and fixed σz stress

vectors by checking the position of a bit on the bit-mask.

For example, a 3D beam model has active stresses σa = {σxx, τxy, τxz}. If

the complete 3D stresses are ordered as σ = {σxx, σyy, σzz, τxy, τxz, τyz}, the

indexes of the active stresses are {0, 3, 4} (index count starts at 0) and the

desired bit-mask will be 20 + 23 + 24 = 0b011001 = 25. In a computation,
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Model τyz τxz τxy σzz σyy σxx bit-mask

Truss 0 0 0 0 0 1 1

2D Beam 0 0 1 0 0 1 9

3D Beam 0 1 1 0 0 1 25

Shell 1 1 1 0 1 1 59

Plane-stress 0 0 1 0 1 1 11

3D Solid 1 1 1 1 1 1 63

Table 3: Bit-mask representation of the active stress components for different structural

models.

if the stress component σyy (with index 1) is required, its isolated bit-mask

(0b000010) is compared to the structural model bit-mask (0b011001) via a

bit-wise AND operation [15] resulting in a null bit-mask (0b000000). The

stress component σyy then belongs to the fixed stress vector σz, with in-

versed bit-mask (0b100110). When the stress component τxy is required,

again its isolated bit-mask (0b001000) is compared with the structural model

bit-mask, now resulting in a non-null bit-mask (0b001000). In both cases,

a bit-wise COUNT operation [15] is performed to identify the index of the

stress component with respect to the respective stress vector and finally the

entry of the stress vector in the obtained index is returned. It’s worthy re-

inforcing that bit-wise operations are extremely fast, rendering a reduced

computational time to the return mapping routine when compared to the

manipulation of the full 3D vectors with six components.

In the present work, the Euler backward method is used to integrate the
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associative flow rule relations (Eqs. 22 and 24):

εpa,n+1 = εpa,n + ∆λn+1ga,n+1 (29)

qn+1 = qn + ∆λn+1Uga,n+1 (30)

where ga,n+1 = ga (σa,n+1,σz,qn+1) and ∆λn+1 = λn+1 − λn is the finite

increment of the isotropic hardening state variable between the time steps tn

and tn+1.

Initially, the plastic state is frozen (λ0n+1 = λn implying that q0
n+1 = qn

and εp,0a,n+1 = εpa,n) in a elastic predictor step. The trial active stresses σ0
a,n+1

can then be computed form Eq. (11) as:

σ0
a,n+1 = Ca

(
εa,n+1 − εpa,n

)
+ σr (31)

If the elastic predictor state is admissible, i.e. f(σ0
a,n+1,σz,q

0
n+1, λ

0
n+1) ≤

0, the elasto-plastic tangent operator is simply set to the elastic tangent

operator, i.e. Πa,n+1 = Ca and the return mapping algorithm reaches its end.

Otherwise, the isotropic hardening λn+1, the kinematic hardening qn+1 and

the active stresses σa,n+1 must be adjusted so that the resulting stress state

falls on the yield surface. The resulting nonlinear system of equations can be

obtained combining Eqs. (11), (29) and (30) and recalling the consistency

condition in Eq. (26):

fn+1 = 0 (32)

hn+1 = qn − qn+1 + ∆λn+1Uga,n+1 = 0 (33)

rn+1 = σ0
n+1 − σn+1 −∆λn+1Caga,n+1 = 0 (34)

where hn+1 and rn+1 are the residual back-stress and stress, respectively.
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The Newton-Raphson method is then applied to find the desired stress

state. Taking the derivative of Eqs. (32) and (34) with respect to λn+1, qn+1

and σa,n+1 at iteration k, provides the plastic corrector as:

fk
n+1 + gk

a,n+1 ·
(
δσk

n+1 − δqk
n+1

)
−Kk

p,n+1δλ
k
n+1 = 0 (35)

hk
n+1 −

(
I + ∆λkn+1UHk

a,n+1

)
δqk

n+1 + ∆λkn+1UHk
a,n+1δσ

k
a,n+1+

Ugk
a,n+1δλ

k
n+1 = 0 (36)

rkn+1 −
(
I + ∆λkn+1CaH

k
a,n+1

)
δσk

a,n+1 + ∆λkn+1CaH
k
a,n+1δq

k
n+1−

Cag
k
a,n+1δλ

k
n+1 = 0 (37)

where:

δλkn+1 = λk+1
n+1 − λkn+1 (38)

δqk
n+1 = qk+1

n+1 − qk
n+1 (39)

δσk
n+1 = σk+1

n+1 − σk
n+1 (40)

Solving Eq. (36) for the kinematic hardening update δqk
n+1, we have:

δqk
n+1 = Vk

n+1

[
hk
n+1 + U

(
∆λkn+1H

k
a,n+1δσ

k
a,n+1 + gk

a,n+1δλ
k
n+1

)]
(41)

where:

Vk
n+1 =

(
I + ∆λkn+1UHk

a,n+1

)−1
(42)

Combining Eqs. (37) and (41), the active stress update δσk
a,n+1 can be

obtained as:

δσk
a,n+1 = Dk

n+1

(
zk
n+1 −CaQ

k
n+1g

k
a,n+1δλ

k
n+1

)
(43)
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where:

Qk
n+1 = I−∆λkn+1UHk

a,n+1V
k
n+1 (44)

Dk
n+1 =

(
I + ∆λkn+1CaH

k
a,n+1Q

k
n+1

)−1
(45)

zk
n+1 = rkn+1 + ∆λkn+1CaH

k
a,n+1V

k
n+1h

k
n+1 (46)

Finally, the isotropic hardening update δλkn+1 can be obtained combining

Eqs. (35), (41) and (43):

δλkn+1 =
fk
n+1 + gk

a,n+1 ·
(
Dk

n+1z
k
n+1 −Vk

n+1h
k
n+1

)

Kk
p,n+1 + gk

a,n+1 ·
(
Qk

n+1D
k
n+1CaQk

n+1 + UVk
n+1

)
gk
a,n+1

(47)

The active stresses σa,n+1, kinematic hardening qk
n+1 and the isotropic

hardening λn+1 can be updated via Eqs. (38)-(40). The absolute value of

the yield equation |fn+1| and the norms of the residual stress ‖rn+1‖ and

back-stress ‖hn+1‖ are then checked against a given tolerance tol. Once this

iterative process converges, the exact elasto-plastic tangent operator Πa,n+1

can be computed, providing quadratic convergence to the local iterative pro-

cess. From the consistency condition (Eq. 26), the increment of the yield

function fn+1 (Eq. 17) must be null:

dfn+1 = ga,n+1 · (dσa,n+1 − dqn+1)−Kp,n+1dλn+1 = 0 (48)

Taking the infinitesimal increment of the finite evolution-rule at the cur-

rent time step tn+1 in Eq. (30) gives:

dqn+1 = ∆λn+1UHa,n+1 (dσa,n+1 − dqn+1) + Uga,n+1dλn+1 (49)

The infinitesimal increment of the kinematic hardening dqn+1 can then

be obtained as:

dqn+1 = UVn+1 (∆λn+1Ha,n+1dσa,n+1 + ga,n+1dλn+1) (50)
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where:

Vn+1 = (I + ∆λn+1UHa,n+1)
−1 (51)

Taking the infinitesimal increment of the elasto-plastic constitutive rela-

tion at the current time step tn+1 in Eq. (11) and recalling Eq. (29), we

have:

dσa,n+1 = Ca [dεa,n+1 −∆λn+1Ha,n+1 (dσa,n+1 − dqn+1)− ga,n+1dλn+1]

(52)

The infinitesimal increment of the active stresses dσa,n+1 can then be

obtained as:

dσa,n+1 = Dn+1 (Cadεa,n+1 −CaQn+1ga,n+1dλn+1) (53)

where:

Qn+1 = I−∆λn+1UHa,n+1Vn+1 (54)

Dn+1 = (I + ∆λn+1CaHa,n+1Qn+1)
−1 (55)

The hardening infinitesimal increment dλn+1 can then be obtained com-

bining Eqs. (48), (50) and (53) as:

dλn+1 =
ga,n+1 ·Qn+1Dn+1Cadεa,n+1

Bn+1

(56)

where:

Bn+1 = Kp,n+1 + ga,n+1 · (Qn+1Dn+1CaQn+1 + UVn+1) ga,n+1 (57)

Finally, replacing dλn+1 from Eq. (56) in Eq. (53), the active stress

infinitesimal increment dσa,n+1 can be directly related to the active total

18



strain infinitesimal increment dεa,n+1 as:

dσa,n+1 = Πa,n+1dεa,n+1 (58)

where the exact elasto-plastic tangent operator Πa,n+1 is given in closed-form

by:

Πa,n+1 = Dn+1Ca −
(Dn+1CaQn+1ga,n+1)⊗ (Dn+1CaQn+1ga,n+1)

Bn+1

(59)

The fixed strains can be optionally computed for post-processing. The

elastic fixed strains εez,n+1 can be obtained from Eq. (10) provided the elastic

active strains εea,n+1 = εa,n+1 − εpa,n+1. The total fixed strains can be com-

puted as εz,n+1 = εez,n+1 + εpz,n+1, where the plastic fixed strains εpz,n+1 are

updated via the discrete form of the flow-rule Eq. (23) as:

εpz,n+1 = εpz,n + ∆λn+1gz,n+1 (60)

A flowchart of the proposed method is shown in Fig. 2. As described

above, with the proposed method only the active plastic strains εpa, the

kinematic hardening qn+1 and the isotropic hardening are stored at each

integration-point. This considerably reduces the memory cost when com-

pared to the standard method. The memory usage per integration-point

with the proposed method is shown in Tab. 4. The memory cost reduction

between the two methods is illustrated for different structural models in Fig.

3. As expected, the memory cost reduction is larger for structural models

with na small, as only the required quantities are stored at the integration-

points; showing that the proposed method is as efficient as return mapping
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algorithms designed to specific stress states, while maintaining its flexibility

through a general approach.

Another important feature of the proposed method is its computational

efficiency. In order to achieve convergence, only one return mapping loop is

executed, involving uniquely with the active stress and strain components.

As it will be shown in the numerical examples of Sec. 4, this considerably

reduces the required computational time. Aligned with the implemented

bit-mask tools for fast extraction and manipulation of the required stress

components, the proposed method yields a fast algorithm for general stresses

states.

No

Computed at element

Yes

Tangent operator

Eq. (64) 

Check

Update stresses

Eq. (48)

Update hardening

Eq. (52)

No

Yes
Tangent operator

 
Elastic predictor

Stored at Gauss-point

Update back-stresses

Eq. (46)

Check

Figure 2: Flowchart of the proposed return mapping algorithm.

The extension of the proposed algorithm for finite strains can be achieved

straightforwardly. The elastic constitutive relations must then be modified
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Model εpa q λ Total Relative

Truss 16 16 16 48 bytes 23.08%

2D Beam 32 32 16 80 bytes 38.46%

3D Beam 48 48 16 112 bytes 53.85%

Shell 80 80 16 176 bytes 84.62%

Plane-stress 48 48 16 112 bytes 53.85%

3D Solid 96 96 16 208 bytes 100.00%

Table 4: Proposed algorithm memory cost per integration-point for different structural

models.
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Figure 3: Memory cost comparison between the standard and proposed algorithms for

different structural models.

accordingly and the strains must be split in a multiplicative manner. The

methodology proposed by Simo [18] can be used to transform the plastic

model via a group of special transformations, achieving an additive split of

the strains and finally using the proposed return mapping algorithm.
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4. Numerical examples

In this section, the proposed algorithm is validated with respect to dif-

ferent structural models and yield surfaces, in order to highlight the general

potential of the proposed formulation. Accuracy and computational cost are

studied with respect to the standard algorithm, highlighting the advantages

of the proposed method. For reference, both the standard and proposed

algorithms were implemented using the C++ programming language [22].

Special care was taken to minimize overhead and perform memory alloca-

tion and data setup at initialization so that only the computational time

of the return mapping routines was measured. The relative computational

time between the two algorithms should be approximately the same for any

machine. In this work, the numerical analyses were performed in a Dell Pre-

cision 5540 with 64 GB of RAM memory and processor Intel Core I9-9880H

(2.30 GHz). Also, to minimize the influence of system applications running

in the background, all analysis were performed in a single core.

In all examples, the stress-strain curves were computed with 102 steps.

In order to evaluate the computational time, in a single test, the curves are

constructed 105 times, summing up to 107 calls of the used return mapping

routine. The average value of 10 tests is then used to evaluate the perfor-

mance of the adopted method. As the proposed algorithm depends only

on the strains computed and the data stored at each integration-point, the

FE discretization has no influence on the computational efficiency or on the

memory cost of the return mapping routine.
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4.1. Truss

In this first example, the von Mises material model (Appendix A.1) is

used with a integration-point in uni-axial stress state (σa = {σxx}), com-

monly assumed in truss and cable finite element formulations. This sim-

ple example is used to illustrate how the proposed algorithm can be used

for low-order structural models while maintaining its performance. It can

be easily shown that, in this case, the tangent operator of Eq. (59) re-

duces to the tangent modulus used in uni-dimensional plasticity [20], i.e.

Πa,n+1 = E(Kp + U)/(E + Kp + U). The numerical analysis was performed

for a steel with elastic modulus E = 200 GPa and Poisson’s ratio ν = 0.30.

A linear hardening law was adopted, i.e. σy(λ) = σ0 + Kpλ with σ0 =

400 MPa. The algorithm was tested in perfect plasticity (Kp = 0), hardening

(Kp = E) and softening (Kp = −E/3) with no kinematic hardening (U = 0).

The analysis was carried out incrementing the axial strain until εxx = 2E/σ0.

The results with the two algorithms match exactly as shown in Fig. 4. The

average computational times for the standard and proposed algorithms were

36.4 s and 4.69 s, respectively, showing that the proposed method was 7.76

times faster than the standard method.

The case where the fixed stresses σz are non-zero, with σyy = σzz = σz, is

considered next in order to illustrate the capabilities of the proposed formula-

tion. The results obtained with the proposed algorithm and the closed-form

solution [20] for different values of σz are shown in Fig. 5, where an exact

match is observed.
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Figure 4: Uni-axial stress-strain relation obtained with the standard algorithm (SA) and

proposed algorithm (PA).
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Figure 5: Uni-axial stress-strain relation with non-zero fixed stresses obtained with the

proposed algorithm (PA) and closed-form solution [20].

4.2. 2D Beam

In the next example, the Drucker-Prager material model (Appendix A.2)

is used with a integration-point in a 2D shear stress state (σa = {σxx, τxy}),
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commonly assumed in 2D Timoshenko’s beam finite element formulations.

The numerical analysis was performed for a concrete with elastic modulus

E = 40 GPa, Poisson’s ratio ν = 0.25, compressive strength σc = 30 MPa

and tension strength σt = 3 MPa.

The analysis was carried out incrementing the axial strain until εxx =

2E/σc and taking γxy = βεxx for different values of the parameter β within

the interval [0 : 4]. The results for perfect plasticity (Kp = 0 and U = 0) are

shown in Fig. 6, where the standard and proposed methods provide an exact

match. The average computational times for the standard and proposed

algorithms were 119.0 s and 13.3 s, respectively, showing that the proposed

method was 8.95 times faster than the standard method.
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Figure 6: 2D beam stress-strain relation obtained with the standard algorithm (SA) and

proposed algorithm.

4.3. 3D Beam

In the next example, the Bresler-Pister material model (Appendix A.3) is

used with a integration-point in a 3D shear stress state (σa = {σxx, τxy, τxz}),
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commonly assumed in 3D Timoshenko’s and Bernoulli’s beam finite element

formulations. The numerical analysis was performed for a concrete with

elastic modulus E = 40 GPa, Poisson’s ratio ν = 0.25, compressive strength

σc = 30 MPa, tension strength σt = 3 MPa and bi-axial compressive strength

σb = 40 MPa.

The analysis was carried out incrementing the axial strain until εxx =

2E/σc and taking γxy = γxz = βεxx for different values of the parameter β

within the interval [0 : 4]. The results for perfect plasticity (Kp = 0 and

U = 0) are shown in Fig. 7, where the standard and proposed methods

provide an exact match. The average computational times for the standard

and proposed algorithms were 208.0 s and 19.9 s, respectively, showing that

in this case the proposed method was 10.45 times faster than the standard

method.
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Figure 7: 3D beam stress-strain relation obtained with the standard algorithm (SA) and

proposed algorithm.
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4.4. Plane-stress

In the next example, a square plate with circular hole (Fig. 8) is studied.

The system is under plane-stress, with active stresses σa = {σxx, σyy, τxy}.
The plate is made of steel and the von Mises material model is adopted

with elastic modulus E = 200 GPa, Poisson’s ratio ν = 0.30 and yield stress

σ0 = 400 MPa. The square has size a = 2.00 m, the inner circle has a radius

r = 0.50 m and the plate thickness is t = 1.00 cm. The plate bottom edge is

fixed in the vertical direction, while the top edge is subjected to an uniformly

distributed load.

The integration-point where plastic deformations first appears is selected

for comparison. The active components of the deformation history of this

integration-point are used as input for the algorithm. The results for isotropic

plasticity (Kp = 2 GPa and U = 0) are shown in Fig. 9, where the stan-

dard and proposed methods provide an exact match. For completeness, the

projection algorithm of Simo and Taylor [21] was also used to compare the

results, providing an excellent match as well. The average computational

times for the standard and proposed algorithms were 51.8 s and 8.04 s, re-

spectively, showing that in this case the proposed method was 6.44 times

faster than the standard method.

5. Conclusions

In this paper, a new return mapping algorithm that considers a general

partition of the 3D stresses into active and fixed components for arbitrary

yield functions is developed. The algorithm operates exclusively on the active

stress and strain components, yielding a low memory cost and high compu-
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Figure 8: Square with circular under plane-stress loading.
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Figure 9: Plane-stress stress-strain relation obtained with the standard algorithm (SA),

proposed algorithm (PA) and projection method (PM).

tational efficiency. The exact tangent operator is obtained in closed-form,

providing quadratic convergence to the local iterative process. A compar-

ison with the standard approach shows its performance gains (in terms of
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memory and computational time), while maintaining the general format of

the formulation. Numerical examples demonstrate the applicability of the

proposed method for different structural models.

A bit-mask format is used to store the active stress types and perform op-

erations (extraction and update) of the relative strain and stress components.

This approach yields an optimal memory cost and simultaneously allows to

obtain the stress tensors (yield function, gradient and hessian) required in

the return mapping algorithm with minimal computational time.

In a future work, a modification of the algorithm to deal with finite strains

can be envisioned. As proposed by Simo [18], a group of special transforma-

tions can be applied so that traditional algorithms with additive split can

be used. Damage models can also be added to the present return mapping

algorithm by modification the constitutive relations accordingly.
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Appendix A. Yield surface gradients and hessians

In this appendix, the yield surface equation, gradient and hessian for the

von Mises, Drucker-Prager and Bresler-Pister material models are presented

for completeness.

Appendix A.1. von Mises

The von Mises material model [1] is usually applied to metals and con-

siders that only the deviatoric part of the stresses generates plastic strains.

The yield surface equation is given by:

f(σ) =
√

3J2(σ)− σy(λ) (A.1)

where the second deviatoric invariant J2 is defined as:

J2(σ) =
(σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2

6
+ τ 2xy + τ 2xz + τ 2yz

(A.2)

The term σv =
√

3J2(σ) is referred as equivalent stress. The yield surface

gradient can be computed as:

g(σ) =
∂σv
∂σ

=
1

σv





σxx − (σyy + σzz) /2

σyy − (σxx + σzz) /2

σzz − (σxx + σyy) /2

3τxy

3τxz

3τyz





(A.3)
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Finally, the surface hessian is given by:

H(σ) =
∂2σv
∂σ∂σ

=
1

σv




1 −1/2 −1/2 0 0 0

−1/2 1 −1/2 0 0 0

−1/2 −1/2 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 3 0




− 1

σ2
v

∂σv
∂σ
⊗ ∂σv
∂σ

(A.4)

Appendix A.2. Drucker-Prager

The Drucker-Prager material model [1] is usually applied to fragile ma-

terials, e.g. rock and concrete. The yield surface equation depends not only

on the second deviatoric invariant J2 but also on the first stress invariant I1

(hydrostatic pressure):

f(σ) =
√

3J2(σ)− A−BI1(σ) (A.5)

where:

I1(σ) = σxx + σyy + σzz (A.6)

The elastic limits are distinct in tension σt and compression σc and the

yield surface has a cap in tension. The parameters A and B can obtained as:

A =
2σtσc
σc + σt

(A.7)

B =
σt − σc
σc + σt

(A.8)

The yield surface gradient can be computed as:

g(σ) =
∂σv
∂σ
−B∂I1

∂σ
(A.9)
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where:

∂I1
∂σ

=
{

1 1 1 0 0 0
}T

(A.10)

Finally, the yield surface hessian is given by:

H(σ) =
∂2σv
∂σ∂σ

(A.11)

Appendix A.3. Bresler-Pister

The Bresler-Pister material model [3] is an extension of the Drucker-

Prager yield surface, including a cap in compression as well. The yield surface

equation is given by:

f(σ) =
√

3J2(σ)− A−BI1(σ)− CI21 (σ) (A.12)

The parameters A, B and C can be related to the elastic limits in uni-axial

tension σt and compression σc and bi-axial compression σb as:

A =
σcσbσt(σt + 8σb − 3σc)

(σt + σc)(σt + 2σb)(2σb − σc)
(A.13)

C =
3σbσt − σbσc − 2σcσt

(σt + σc)(σt + 2σb)(2σb − σc)
(A.14)

B =
(σt − σc)[4σ2

b + σcσt − σb(σc + σt)]

(σt + σc)(σt + 2σb)(2σb − σc)
(A.15)

The yield surface gradient can be computed as:

g(σ) =
∂σv
∂σ
− (B + 2CI1)

∂I1
∂σ

(A.16)

Finally, the yield surface hessian is given by:

H(σ) =
∂2σv
∂σ∂σ

− 2C
∂I1
∂σ
⊗ ∂I1
∂σ

(A.17)

35



Credit Author Statement

Category 1
Conception and design of study: M. V. B. Santana
Acquisition of data: M. V. B. Santana, P. Keo
Analysis and/or interpretation of data: M. V. B. Santana
Category 2
Drafting the manuscript: M. V. B. Santana
Revising the manuscript critically for important intellectual content: M. V.
B. Santana, M. Hjiaj
Category 3
Approval of the version of the manuscript to be published: M. V. B. Santana,
P. Keo, M. Hjiaj

37



Declaration of Competing Interests

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

38




