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ABSTRACT 

 

The impact of the ongoing rapid climate change on natural systems is a major issue for human 

societies. An important challenge for ecologists is to identify the climatic factors that drive 

temporal variation in demographic parameters, and, ultimately, the dynamics of natural 

populations. The analysis of long-term monitoring data at the individual scale is often the 

only available approach to estimate reliably demographic parameters of vertebrate 

populations. We review statistical procedures used in these analyses to study links between 

climatic factors and survival variation in vertebrate populations. 

We evaluated the efficiency of various statistical procedures from an analysis of 

survival in a population of white stork, Ciconia ciconia, a simulation study and a critical 

review of 78 papers published in the ecological literature. We identified six potential 

methodological problems: (i) the use of statistical models that are not well-suited to the 

analysis of long-term monitoring data collected at the individual scale; (ii) low ratios of 

number of statistical units to number of candidate climatic covariates; (iii) collinearity among 

candidate climatic covariates; (iv) the use of statistics, to assess statistical support for climatic 

covariates effects, that deal poorly with unexplained variation in survival; (v) spurious 

detection of effects due to the co-occurrence of trends in survival and the climatic covariate 

time series; and (vi) assessment of the magnitude of climatic effects on survival using 

measures that cannot be compared across case studies. The critical review of the ecological 

literature revealed that five of these six methodological problems were often poorly tackled. 

As a consequence we concluded that many of these studies generated hypotheses but only few 

did provided solid evidence for impacts of climatic factors on survival or reliable measures of 

the magnitude of such impacts. 
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We provide practical advice to solve efficiently most of the methodological problems 

identified. The only frequent issue that still lacks a straightforward solution was the low ratio 

of the number of statistical units to the number of candidate climatic covariates. In the 

perspective of increasing this ratio and therefore of producing more robust analyses of the 

links between climate and demography, we suggest leads to improve the procedures for 

designing field protocols and selecting a set of candidate climatic covariates. Finally, we 

present recent statistical methods with potential interest for assessing the impact of climatic 

factors on demographic parameters. 

 

Key words: Bayesian modelling, birds, capture-mark-recapture, demography, effect size, 

information theory, statistics, mortality, mammals, null hypothesis testing, weather. 
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 I. INTRODUCTION 

 The modifications of natural systems induced by the ongoing climate change is a 

major issue for human societies (Easterling et al., 2000; Clark et al., 2001; Hulme, 2005; 

King, 2005; Schlesinger, 2006; IPCC, 2007). Empirical investigations of the influences of 

climate change during the 20th Century on extinction rates (Thomas et al., 2004; Thomas, 

Franco & Hill, 2006), range shifts (Harrington, Woiwod & Sparks, 1999; Parmesan & Yohe, 

2003; Hays, Richardson & Robinson, 2005; Thomas et al., 2006), population dynamics 

(Balmford, Green & Jenkins, 2003; Forsman & Mönkkönen, 2003) and ecosystem 

functioning ( Smith et al., 1999; Doran et al., 2002; Peñuelas, Filella & Comas, 2002; Hays et 

al., 2005) have developed rapidly over the last 10 years and have revealed important impacts 

on natural systems (Walther et al., 2002; Parmesan & Yohe, 2003; Böhning-Gaese & 

Lemoine, 2004; Hays et al., 2005; Parmesan, 2006). 

Under realistic socio-economic scenarios, global warming will go on, possibly at a 

faster pace, at least until the end of the 21st Century and will result in dramatic changes in all 

regional climates (Easterling et al., 2000; IPCC, 2007). A major challenge for ecologists is the 

development of models to predict the resulting changes in species ranges and extinction risks 

(Clark et al., 2001; Hulme, 2005; Sutherland, 2006; Jetz, Wilcove & Dobson, 2007). Until 

now, most predictive models have relied on a phenomenological (i.e. non-mechanistic) 

approach where the future range of a species is defined as the area(s) where climatic 

conditions in the future, as predicted by climate models, are similar to those prevailing in the 

current range of the species (Peterson et al., 2002; Thomas et al., 2004; Guisan & Thuiller, 

2005; Hartley, Harris & Lester, 2006). However, models that explicitly integrate the processes 

through which climate influences population dynamics would be much more informative 

(Sæther, Sutherland & Engen, 2004; Hulme, 2005; Sutherland, 2006). Process-based models 

have already been developed for predicting the future state of the vegetation component in 
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terrestrial ecosystems (Kleidon & Mooney, 2000; Chuine & Beaubien, 2001; Guisan & 

Thuiller, 2005; Moorcroft, 2006). To our knowledge there has yet been no attempt to build 

range prediction models based on processes for vertebrate species. A prerequisite for their 

development is to achieve an understanding of the influence of climatic factors on temporal 

variation of the demographic parameters underlying population dynamics (Coulson et al., 

2001; Jenouvrier, Barbraud & Weimerskirch, 2003; Dunn, 2004; Møller & Merilä, 2004; 

Sæther et al., 2004; Ludwig et al. 2006; Sutherland, 2006). 

Long-term monitoring data collected at the individual scale, mainly using capture-

mark-recapture (CMR) sampling either of live (Clobert, Lebreton & Allainé, 1987; Lebreton 

et al., 1992; Sandercock, 2006) or dead individuals (Brownie et al., 1985), contain 

information on most demographic parameters: survival (Lebreton et al., 1992), transitions 

among reproductive states (Nichols, 1994; Viallefont, Cooke & Lebreton, 1995; Cam et al., 

1998), dispersal rates among study sites (Arnason, 1973; Brownie et al., 1993; Schwarz, 

Schweigert & Arnason, 1993), recruitment rate of new breeders into a population (Clobert et 

al., 1994; Pradel, 1996; Pradel & Lebreton, 1999, Nichols et al., 2000), and frequency of 

reproduction in species with intermittent breeding (Cam et al., 1998). Analysis of such data is 

an efficient, and often the only available, approach to estimate reliably demographic 

parameters in free-living animal populations (Nichols, 1992). 

The aim of the present work is to review statistical procedures to address the impact of 

variation in climatic factors on survival of vertebrates through the analysis of monitoring data 

collected at the individual scale. We specifically focus on procedures aiming at (i) detecting 

relationships between patterns of temporal variation in survival and in climatic covariates; 

(ii). evaluating the chance that such relationships result from pure coincidence or from 

genuine impacts of climatic factors on survival (i.e. evaluating statistical support); (iii) 

evaluating the impact of temporal variation in climatic factors on survival in the time period 
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covered by the empirical data in hand (i.e. evaluating effect sizes). The statistical tools 

involved are regression-like models that in their basic form are routinely employed in 

ecological and evolutionary studies (Mitchell-Olds & Shaw, 1987; Sokal & Rohlf, 1995). 

However, their correct use is context-dependent. Relating variation in survival estimated from 

CMR data to variation in climatic factors implies avoiding a number of pitfalls that arise from 

the characteristics of these two types of data. Beyond the description of the procedures we 

thus aim to identify potential problems encountered in studies of climate impacts on survival 

and to provide practical advice to solve efficiently these problems.  

We first present the objectives pursued in studies assessing the link between survival 

and climatic factors in vertebrate populations. Second, we summarize the properties of CMR 

and climatic data that must be carefully considered in order to carry out robust statistical 

analyses. Third, we present the main types of regression models and associated statistics that 

can be used to explore reliably the relationships between climatic factors and survival. In this 

section, results obtained from a simulation study are used to evaluate the performance of 

alternative procedures to assess statistical support. Fourth, we provide advice both for 

designing field protocols to collect survival data and for selecting sets of candidate climatic 

covariates. Finally, we present existing but seldom applied or recent statistical methods with 

potential interest for assessing the impact of climate change on demographic parameters.  

Throughout the paper, the revisitation of an investigation by Kanyamibwa et al. (1990) 

of the relationship between climatic factors and adult survival of white storks Ciconia ciconia 

breeding in Baden-Württemberg (Germany), and a critical review of 78 papers published from 

1985 to 2006 included in ecological journals referenced in Current Contents are used for 

illustrative purposes. These papers that address, through analyses of monitoring data at the 

individual scale, the influence of climatic factors on the survival of any age class in free-

ranging vertebrate were gathered from our personal bibliographical databases, and in the 
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course of our routine survey of the literature. Although this survey of the ecological literature 

is neither exhaustive nor based on rigorous bibliographical methods; it certainly constitutes a 

large and representative sample of the articles treating our focal subject. We evaluated this 

reviewed literature globally, and referred to particular studies only when they illustrated 

proper use of statistical methods. The 78 reviewed papers are listed in Appendix 1 which 

summarizes the evaluation for each paper of potential pitfalls in the analysis. We hereafter 

refer to this set of reviewed papers as ESR (i.e. ecological studies reviewed). In all the ESR, 

as well as in all the analyses presented, correlations between climatic factors and survival 

were addressed. However, the methodological problems identified and the advice expressed 

here are relevant to investigations of relationships between climatic factors and any 

demographic parameter that can be estimated through the analysis of monitoring data 

collected at the individual scale. 

 

II. OBECTIVES OF INVESTIGATIONS OF CLIMATIC IMPACTS ON 

VERTEBRATE SURVIVAL 

In the present paper, we focus on the statistical modelling of monitoring data at the 

individual scale that aims ultimately at describing in the form of mathematical models the 

mechanisms through which climatic and other environmental and intrinsic factors generate 

temporal variation in survival in a focal vertebrate population (Burnham & Anderson, 2002; 

Ginzburg & Jensen, 2004; Johnson & Omland, 2004; Hobbs & Hilborn, 2006; Stephens, 

Buskirk & del Rio, 2007). Such mathematical models can then be used to evaluate the relative 

importance of these various factors as drivers of temporal variation in survival and to predict 

the impacts of changes in the distribution (mean and variance) of these factors on survival. 

However, the possibility of reaching these objectives depends to a large extent on the quantity 



10 

 

and quality of the information available on the processes generating temporal variation in 

survival prior to the initiation of the statistical analysis. 

In roughly half of the 78 ESR, prior knowledge of the study system seemed good 

enough for the investigators to define a priori a limited set (i.e. less than five) of 

environmental (including climatic) candidate covariates that included the main drivers of 

temporal variation in survival (i.e. at least one of the models considered turned out to account 

for most of the variation in survival). In such situations, it is possible to evaluate the relative 

weight of evidence in the data for a limited number of models depicting a priori well-founded 

competing hypotheses about the processes through which temporal variation in climatic 

factors and other drivers induce temporal variation in survival (Burnham & Anderson, 2002; 

Johnson & Omland, 2004; Hobbs & Hilborn, 2006; Stephens et al., 2007). Furthermore, it is 

possible to assess the relative importance of various drivers of variation in survival and to 

build predictive models with methods that account for uncertainty about processes when more 

than one model is strongly supported by the data (Burnham & Anderson 2002; Hobbs & 

Hilborn, 2006; Johnson & Omland, 2004; Stephens et al., 2007). We will not focus on this 

type of situation because the relevant concepts and procedures have recently been described in 

detail (see Burnham & Anderson, 2002 for a full treatment). 

In the case of white storks breeding in Baden-Württemberg, little prior information is 

available on the processes generating temporal variation in survival. For instance, the causes 

of death are unknown, and so are the time of year when the highest mortality occurs and the 

relative importance of alternative food resources and climatic factors likely to influence the 

availability of these resources. Prior knowledge is limited to a series of demographic patterns 

reported in this and other Western European white stork populations. Like all Western 

European white stork populations, the studied population has declined sharply from the 1960s 

to the 1990s (Kanyamibwa et al., 1990). These declines have motivated investigations of the 
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relative impact of climate variation in the wintering areas and on the breeding grounds on 

white stork population dynamics (Kanyamibwa et al., 1990; Schaub, Kania & Köppen, 2005; 

Sæther et al., 2006). While the white stork population collapsed, the Sahel region experienced 

severe droughts (Grist & Nicholson, 2001). As for several other bird species wintering in 

Western Africa (Cavé, 1983; Peach, Baillie & Underhill, 1991; Cowley & Siriwardena, 

2005), a relationship between rainfall in the Sahel and adult survival of white storks has been 

detected (Kanyamibwa et al., 1990; Barbraud, Barbraud & Barbraud, 1999). Furthermore, 

indications have also been obtained that local climate in breeding areas could influence the 

demography of Western European white stork populations (Schaub et al., 2005; Sæther et al., 

2006). Based on this limited knowledge, many climatic factors can be considered as potential 

covariates of adult survival of storks. In addition, the shape of the relationship linking these 

potential climatic covariates to survival remains to be identified. Although most studies 

focused on linear relationships, quadratic relationships could occur if white storks perform 

best under average climatic conditions. The white stork survival is an exploratory analysis in 

which a set of potentially influential covariates is considered rather than a study that would 

allow challenging cautiously designed research hypotheses on the processes (including 

climatic forcing) that generate temporal variation in survival (Anderson & Burnham, 2002; 

Robinson & Wainer, 2002; Guthery et al., 2005; Stephens et al., 2005; Stephens et al., 2007). 

Our proximate aims are thus to detect relationships between patterns of temporal variation in 

survival and in candidate climatic covariates; to evaluate the chance that such relationships 

result from pure coincidence or from genuine impacts of climatic factors on survival (i.e. to 

evaluate statistical support); and to quantify, under the hypothesis of genuine effects, the 

impact of temporal variation in climatic factors on survival within the time period covered by 

the available data (i.e. to assess the potential biological significance). Ultimately, this type of 

study can help to generate hypotheses on the processes underlying the influence of climatic 
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factors on survival (Robinson & Wainer, 2002; Guthery et al., 2005; Stephens et al., 2005; 

Stephens et al., 2007). However, further evaluation of these hypotheses would imply either 

specifically designed experiments or analyses of independent data sets (Robinson & Wainer, 

2002; Roback & Askins, 2005; Link & Barker, 2006). In roughly half of the 78 ESR the 

investigators could not restrict the set of potential drivers of temporal variation in survival to 

less than five candidate covariates and/or failed to define a model that accounted for most of 

the temporal variation in survival. In the present paper, we emphasize the numerous and often 

poorly addressed issues arising in such exploratory studies. However, most of these issues are 

also relevant to situations where prior knowledge of the study system is good enough for 

confronting competing hypotheses about processes. 

 

III. DATA CHARACTERISTICS 

 (1) Survival estimated from encounter histories 

In a minority of the ESR (five out of 78), the field protocol consisted of nearly continuous 

monitoring of individuals by radio-tracking, and the information used in the analysis was the 

date of death. We will not present the statistical models for the analysis of such data but refer 

the reader to the excellent overview of the models and procedures for analysing continuous 

individual monitoring data provided in Murray (2006). In the majority (73 out of 78) of the 

ESR as well as in the Baden-Württemberg white stork population, one encounter history for 

each individual summarized the outcome (detected/not detected) of discrete capture 

occasions. Survival of white storks was thus estimated using specific statistical methods 

(hereafter referred to as CMR methods) in which the likelihood of the encounter histories of 

321 individuals ringed as chicks and resighted at least once as adults was expressed as a 

function of survival and detection probabilities (Lebreton et al., 1992; Nichols, 1992; 

Williams, Nichols & Conroy, 2002; Sandercock, 2006). This type of model must be used 
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whenever the probability of detection of marked individuals is lower than 1. Statistical 

procedures that do not account for the probability that a marked individual remains 

undetected were used in only seven out of the 65 ESR relying on the analysis of CMR data. 

Since survival is not measured directly in CMR studies, the value of a given survival 

probability is almost never known with certainty (survival estimates and associated 

confidence intervals for the white storks are displayed in Fig. 1) and the precision with which 

it is estimated has to be accounted for when investigating the factors underlying its variation 

(Clobert & Lebreton, 1985). In only nine of the 78 ESR, was the precision of survival 

estimates ignored. Furthermore, survival and/or detection probabilities can vary among the 

individuals sampled. Heterogeneity among individuals in survival and/or detection 

probabilities can lead to biased survival estimates (Carothers, 1973, 1979; Buckland, 1982; 

Prévot-Julliard, Lebreton & Pradel, 1998; Pledger, Pollock & Norris, 2003). For instance, 

heterogeneity in detection probability can lead to underestimated survival, especially towards 

the end of the time series (Carothers, 1973, 1979) and can thus generate spurious temporal 

trends in survival estimates (Devineau, Choquet & Lebreton, 2006). It is thus important to 

address heterogeneity among individuals, in particular with goodness-of-fit tests (see below), 

and, if necessary, to account for such heterogeneity when assessing the impact of climatic 

factors on survival. 

As in all ESR reviewed, the white stork data were obtained from observations rather 

than from a strict experimental design. As a consequence, factors that might influence 

survival, but whose impacts are not considered worth investigating, could not be randomised 

or kept constant. Given these uncontrolled conditions, observed variation in survival estimates 

might come from the influence of multiple factors, some unsuspected by the investigator 

(Burnham & Anderson, 2002; Schwarz, 2002).  
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As in most of the ESR (63 out of 78), the time interval between two successive 

encounter occasions was one year in the stork study, so that any variation in survival at finer 

time scales could not be measured (but see Lahti et al., 1998; Lima et al., 2001; Conroy, 

Senar & Domènech, 2002; Lima, Merrit & Bozinovic, 2002; Piper, 2002; Tavecchia et al., 

2002; Barbraud & Weimerskirch, 2003; Sendor & Simon, 2003; Hallet et al., 2004; Schaefer 

et al., 2006 for protocols on vertebrates permitting investigations at seasonal scales). Then, 

the number of points available to plot survival against climatic factors (i.e. the number of 

statistical units) is usually the number of years of monitoring. The white stork data set 

covered 16 years and thereby provided 16 estimates of annual survival (Fig. 1). Only six of 

the 78 ESR covered more than 30 years and thus provided ≥ 30 estimates of annual survival 

(Catchpole et al., 1999; Peach, Siriwardena & Gregory, 1999; Perdeck, Visser & Van Balen, 

2000; Grosbois & Thompson, 2005; Jenouvrier, Barbraud & Weimerskirch, 2005a; Altwegg 

et al., 2006). An important limitation when investigating relationships between survival and 

climatic factors is thus the usually small number of years.  

 

 (2) Climatic covariates 

Local climate is expected to exert a strong, relatively direct influence on survival in wild 

populations (Newton, 1998). Numerous covariates such as temperature, air pressure, 

humidity, cloudiness, precipitation, wind direction and speed are needed for a thorough 

description of local climate. Furthermore several distinct critical periods and seasonal or 

monthly covariates may be relevant (Clobert & Lebreton, 1985; Newton, Wyllie & Rothery, 

1992; Franklin et al., 2000; Cowley & Siriwardena, 2005; Brouwer et al., 2006; Grosbois et 

al., 2006; Nevoux & Barbraud, 2006) and local climatic factors in distinct geographic 

locations are important for migratory or highly mobile populations (e.g. Møller & Szep, 2005; 

Schaub et al., 2005). Hence, assessing the relationship between local climate and survival 
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requires considering large sets of covariates (e.g. Hallett et al., 2004; Catchpole et al., 1999; 

Grosbois et al., 2006; Kéry, Madsen & Lebreton, 2006). Accordingly five or more candidate 

climatic covariates were considered in 22 out of the 78 ESR. The white stork example also 

illustrates the issue of having to deal with many candidate covariates. Based on results 

reported in the literature (Kanyamibwa et al., 1990; Barbraud et al., 1999; Schaub et al., 

2005; Sæther et al., 2006), two geographic locations (the wintering and the breeding areas) 

and three periods of year (the wintering, the pre-breeding, and the breeding periods) have to 

be considered for a complete investigation of the influence of climatic factors on adult 

survival of white storks. Moreover, the wintering area (defined by the location of recoveries 

of dead white storks; Kanyamibwa et al., 1990) covers a wide area (10°N-17°N 15°W-10°E) 

so that rainfall obtained from 15 weather stations needs to be considered. Finally, whereas 

rainfall is likely to be the most influential climatic factor in the Sahel area, we could not 

identify a priori the climatic covariate that was likely to be the most influential in the 

breeding area. As a consequence our initial set of covariates included 15 time series of rainfall 

for the Sahel region (see Table 1 for a list of the corresponding weather stations), two series 

(one for the pre-breeding period: March to May; and one for the breeding period: June to 

August) for rainfall in the breeding area (i.e. 6°50’-9°50’ E / 46°50’-48°50’N) and two series 

for temperature in the breeding area.  

Teleconnection (i.e. remote connection) indices capture large spatial-scale patterns in 

climatic factors that result from global atmospheric and oceanic circulation phenomena 

(Hurrell, 1995; Holmgren et al., 2001;Ottersen et al., 2001; Stenseth et al., 2002, 2003). They 

are increasingly used in ecological studies as integrative proxies for local climate. 

Teleconnection indices have been considered as candidate covariates in 21 of the 78 ESR 

(Appendix 1). Such indices are correlated with numerous local climatic covariates over large 

geographic areas, although in different ways for different sites. Teleconnection indices are 
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often noisy representations of the actual causal factors (Almaraz & Amat, 2004), as also are 

local climatic covariates when they influence survival indirectly, e.g. through resource 

availability (Montevecchi & Myers, 1997; Sæther, 1997; Durant, Anker-Nilssen & Stenseth, 

2003). To deal with the large uncertainty about which climatic factor was likely to be the 

most influential on breeding grounds for white stork survival, we included the pre-breeding 

season (i.e. March through May) and the breeding seasons (i.e. June through August) north 

Atlantic oscillation (NAO) in the set of candidate covariates. We also included December 

through March NAO (hereafter referred to as WNAO) because, with its large geographic 

coverage and its integrative nature, it was likely to reflect the climatic conditions encountered 

during the return trip from the wintering grounds.  

Although interdependency among candidate climatic covariates is to be expected, it is 

not systematically addressed in ecological studies. It has indeed been investigated in only 19 

of the 62 ESR where several climatic covariates have been considered. In more than half of 

these studies, relationships among covariates have been detected (e.g. Clobert & Lebreton, 

1985; Newton et al., 1992; Catchpole et al., 1999, 2000; Loison, Jullien & Menaut, 1999; 

Franklin et al., 2000; Loison et al., 2002; Tavecchia et al., 2002; Grosbois et al., 2006; 

Jenouvrier, Barbraud & Weimerskirch, 2006; Kéry et al., 2006; Traylor & Alisauskas, 2006). 

In the white stork study case, we detected substantial correlations among rainfall records from 

the different meteorological stations in the Sahel region [Pearson correlation coefficient (r): 

mean for 105 pairs of rainfall time series: 0.34, for 24 out of 105 pairs r >0.50] suggesting 

that the mechanisms that drive interannual fluctuations of rainfall operate at large spatial 

scales. Furthermore, the three factors reflecting climatic conditions during both pre-breeding 

and breeding periods in the white stork study were intercorrelated (Table 2). Such correlations 

among distinct local climatic covariates in a same location reflect to some extent the 
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occurrence of different types of weather (e.g. in the white stork study: warm, dry and high 

NAO versus cold, wet and low NAO). 

At this stage of the white stork study, we are confronted with a typical situation in 

empirical studies of climate influences on demography in free-ranging vertebrate populations. 

Limited knowledge of the system did not allow us to identify a limited set of candidate 

climatic factors, so we were left with 22 different covariates, some of which were strongly 

intercorrelated. Using the whole set of candidate covariates cannot be recommended for two 

reasons. First, the large number of covariates (J = 22) raises the classical multiple test 

problem leading to an inflated probability of detecting spurious correlations (Type I error) 

(Garcia, 2004; Rice, 1989; Roback & Askins, 2005). Second, the interdependence among 

explanatory covariates (hereafter referred to as multi-collinearity) is known to hamper model 

selection, parameter estimation, and the interpretation of results in regression analyses 

(Draper & Smith, 1981, pp. 327-332; Graham, 2003; Neter et al., 1996). Several measures 

exist to assess the degree to which multi-collinearity affects parameter estimates (Neter et al., 

1996), and once the problem has been detected a strategy is required to cope properly with 

this issue. It is possible to address simultaneously the multiple test and the multi-collinearity 

issues by building packages combining several intercorrelated climatic variables. Such 

integrative measures have been used in few of the ESR. However, whenever this has been 

done, the detection and the quantification of the impacts of climatic fluctuation on survival 

have been thoroughly achieved (see e.g. Gaillard et al., 1997; Jorgenson et al., 1997; Singer et 

al., 1997; Loison & Langvatn, 1998; Loison et al., 1999; Garel et al., 2004; Grosbois et al., 

2006; Gunnarsson et al., 2006; Jenouvrier et al., 2006; Kéry et al., 2006; Traylor & 

Alisauskas, 2006). For the white stork survival analysis, we combined intercorrelated climatic 

variables by performing three distinct Principal Component Analyses (PCA), one on the 15 

Sahel rainfall time series, one on the three climatic factors for the pre-breeding season and 
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one on the three climatic factors for the breeding season. Principal Components (PC) are 

uncorrelated linear combinations of the original covariates that can be interpreted as synthetic 

climatic covariates (Draper & Smith, 1981, pp. 327-332; Graham, 2003). Here, we retained 

the first and second PCs for Sahel rainfall which accounted for 42% and 12% of the variation 

recorded at the 15 stations, respectively; and the first PC for the pre-breeding and breeding 

seasons, which accounted for 66 and 68 % of the variation in the corresponding original 

climatic covariates. The first Sahel rainfall PC was positively correlated with rainfall for all 

the stations considered but the two southernmost ones, while the second PC was correlated 

positively with rainfall in the two southernmost stations (Fig. 2A). Although the second PC 

accounted for a relatively low fraction of total variation in the Sahel rainfall series, we 

retained it for rainfall in the two southernmost Sahel stations to be represented in the set of 

candidate climatic covariates. Indeed, when using PCA-derived indices, variables that could 

be of biological importance may not be well accounted for by the first component (i.e. the 

component that contribute the most to total variation). It is thus important to select candidate 

covariates among PCs not only based on their contribution to total variation but also in such a 

way that all original covariates are well represented in the set of candidate covariates. The two 

PCs derived from the analysis of the Sahel rainfall series will hereafter be referred to as 

CNSRF (central and northern Sahel rainfall) and SSRF (southern Sahel rainfall), respectively. 

The PCs retained for the pre-breeding season and breeding seasons both correlated positively 

with temperature and NAO and negatively with rainfall (Fig. 2B, C). These two PCs thus 

reflected the occurrence in the breeding area of years with warm and dry local conditions 

associated with high NAO and of years with cold and wet conditions associated with low 

NAO. They will hereafter be referred to as PBSC (pre-breeding season climate) and BSC 

(breeding season climate). In this example, PCA applied to a large set of interdependent 

variables generated few easily interpretable and uncorrelated integrative covariates (Table 2; 
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Fig. 2). Non-weighted sums or averages over sets of climatic variables have sometimes been 

used in ecological studies as synthetic climatic covariates (e.g. Gunnarsson et al., 2006). 

However, unlike PCA, such procedures do not generate a set of independent (uncorrelated) 

synthetic covariates. Furthermore, as illustrated with the white stork example, PCA allows 

combining variables of different nature (here temperature, rainfall and NAO; Fig. 2B, C) that 

would be difficult to sum or average otherwise. We thus advocate using PCA analyses as a 

more efficient way of combining climatic variables than simply summing or averaging them.  

A last characteristic of climatic variables that deserves caution and that results from 

natural patterns of variability as well as from greenhouse effect forcing is that they often 

present marked linear or quadratic temporal trends over time series covering a few decades 

within the 20th Century (Stenseth et al., 2003). Such trends have been addressed in only 12 

out of the 78 ESR and detected in at least four of these (e.g. Kanyamibwa et al., 1990; 

Grosbois & Thompson, 2005; Chamaillé-Jammes et al., 2006; Nevoux & Barbraud, 2006). 

Within the set of candidate climatic covariates retained as potentially influencing white stork 

survival, CNSRF showed a marked decreasing trend over the study period (Table 3, Fig. 3).  

 

IV. PROCEDURES FOR ASSESSING THE POTENTIAL IMPACT OF CLIMATIC 

FACTORS ON SURVIVAL 

Once a set of candidate covariates has been defined, the investigation of temporal variation in 

survival and of the factors underlying it can be initiated. In a first step, structural models, i.e. 

models that do not include any external covariate, are explored with the aim of defining one 

or a few reference models that describe satisfactorily temporal variation in survival without 

any hypothesis about the factors underlying it. These reference models can be used to 

quantify temporal variation in survival. Furthermore, the models considered in subsequent 

steps of the analysis will be evaluated against the reference models. In a second step, ultra-



20 

 

structural models where variation in survival is related to climatic drivers are built. Finally, 

both the structural reference models and the ultra-structural models including covariate effects 

are used to identify the climatic factors that potentially influence survival and to quantify their 

potential impact. Two important, complementary criteria are involved in this final step of the 

analysis: the statistical support for an effect of a climatic factor on survival and the estimated 

magnitude of this effect (Yoccoz, 1991; Nakagawa & Cuthill, 2007). Below, we use the white 

stork survival analysis and a simulation study to describe and evaluate the models, procedures 

and statistics involved in each of these three steps. 

 

 (1) Defining structural reference models 

The first step in investigating variation in survival of white storks involved selecting a 

structural model as parsimonious as possible and still providing an adequate description of the 

pattern of temporal variation in survival. The appropriate CMR methods are now well-known 

(Lebreton et al., 1992; Williams et al., 2002; Sandercock, 2006). Furthermore, these methods 

are implemented in user-friendly programs such as MARK (White & Burnham, 1999) and M-

SURGE (Choquet et al., 2004). As a consequence, methods applied for building CMR models 

in ecological studies are most often correct (this was the case in 65 of the 73 ESR where CMR 

data were analysed). We thus provide a minimal description of these methods below and refer 

readers to Lebreton et al. (1992), Williams et al. (2002), and Sandercock (2006) for more 

details. Observed numbers of all possible individual histories are assumed to be observations 

from multinomial distributions with cell probabilities depending on survival and detection 

parameters (denoted   and p, respectively). A model is defined that relates, via a link 

function denoted f, the variation in survival and detection parameters to variation in 

categorical factors and/or continuous covariates. Once a model has been defined, survival and 

detection parameters are estimated by maximizing the likelihood under the constraints 
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imposed by this model. Let us denote this likelihood dataIML _~ where ~  represents the 

vector of parameters in the model, and IM_data the individual monitoring data. Reliable 

inference can be drawn from a model only if a number of assumptions of homogeneity within 

and among encounter histories are verified (Lebreton et al., 1992). Goodness-of-fit tests 

(hereafter referred to as GOF tests) implemented in programs such as MARK (White & 

Burnham, 1999) and U-CARE (Choquet et al., 2005) allow checking that these assumptions are 

met. Along with each model comes its relative deviance: dataIMLDev _log2 ~ ; an 

important statistic that measures the discrepancy between the predictions of the model and the 

observations. The lower the Dev, the lower the discrepancy. Other useful statistics are the 

Akaike Information Criterion (AIC = Dev+2K where K is the number of estimable parameters 

in the model, and its variants (i.e. AICc, QAIC and QAICc; Burnham & Anderson, 2002). AIC 

is used in the information theoretic approach to quantify the adequacy of a model in terms of 

an optimal compromise between prediction bias and parameter uncertainty (Burnham & 

Anderson, 2002, p. 62; see below). The lower the AIC of a model, the better the compromise. 

Using the methods briefly presented above, we defined a starting model to describe 

variation in white stork survival and detection probability that was general enough for the 

assumptions underlying CMR models to be met (Lebreton et al., 1992). We chose the logit 

link function because it ensures obtaining survival estimates in the interval [0; 1]. The 

Cormack-Jolly-Seber model [ (Ft ); p(Ft); see Table 4 for a description] including fully time-

dependent survival and recapture probabilities (Lebreton et al., 1992) did not significantly 

depart from the assumptions underlying CMR models (χ2
42 = 38.2, P = 0.64). This model was 

thus used as a starting point (Tables 4, 5). Then, using AICc (i.e. the small-sample-corrected 

version of the AIC), this starting model was compared to models where recapture probability 

and/or survival were constant [p(Fcst) or  (Fcst)] and to models where survival varied through 
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time according to a linear or a quadratic trend [hereafter denoted as  (FT ) and  (FT_q ); 

Tables 4, 5]. The model including constant recapture probability and time-dependent survival 

had the lowest AICc (model  (Ft ); p(Fcst); Table 5, Fig. 1). In all subsequent models 

recapture probability was therefore kept constant and the model where survival was time-

dependent (model Ft) was subsequently used as a reference model. Models  (FT ); p(Fcst ) and 

 (FT_q ); p(Fcst ) had relatively large AICc as compared to that of model  (Ft ); p(Fcst ). This 

indicates that survival of white storks did not show any clear linear or quadratic trend over 

time. In the reference model Ft, time appears as a fixed effect in the sense that a distinct 

parameter ai is estimated for each time interval. This type of fixed time effect model was the 

most often employed in the ESR to characterize temporal variation in survival (66 out of 78 

studies). Alternatively, in a less often used type of model (12 out of the 78 studies), time was 

treated as a random effect i  (model denoted as Rt; Table 4), which is assumed to follow a 

normal distribution on a logit scale with mean 0 and variance 
2 (e.g. Milner, Elston & 

Albon, 1999; Franklin et al., 2000; Loison et al., 2002; Harris et al., 2005; Jenouvrier et al., 

2005a, 2006; Sandvik et al., 2005; Schaub et al., 2005). The parameters of interest are now 

the mean of f(ϕi): a; and the temporal process variance in f(ϕi):
2 (Gould & Nichols, 1998; 

Burnham & White, 2002). The estimates â  and 
2̂  can be obtained using procedures for 

building Generalized Linear Mixed Models (GLMM) in a frequentist framework (McCullagh 

& Nelder, 1989; Gould & Nichols, 1998; Burnham & White, 2002). Alternatively, estimates 

can also be derived using a Bayesian framework where survival for a given interval is 

explicitly considered as a realization of a random process (Barry et al., 2003; Link & Barker, 

2004; Gimenez et al., 2008). None of the ESR used this last option. 
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(2) Building models relating survival to climatic factors 

In nine of the 78 ESR, survival estimates from structural CMR models such as model Ft were 

treated as quantities known with certainty and used in linear regression models to assess 

relationships with climatic covariates. Such a procedure, that consists in doing statistics on 

statistics, is misleading because it fails to account adequately for the sampling variability of 

the survival estimates (Clobert & Lebreton, 1985; Link & Barker, 2004). A better and actually 

much more often used approach is to build and fit ultrastructural CMR models relating 

variation in survival to that of climatic or other continuous covariates. Two types of model 

can be fitted. Fixed-effects models of type Fco (Table 4) are the most often used (68 out of 78 

ESR). In such models, f(ϕi) in the time interval i is related to the value xi of the climatic 

covariate x. Two (or three for quadratic relationships) parameters denoted a, b (and c) are 

required in model Fco to describe the relationship between survival and the climatic covariate 

x. In model Fco, it is implicitly assumed that survival variation over time is entirely 

determined by the variation observed in the climatic covariate. In a less often used alternative 

to model Fco (11 out of 78 ESR), this assumption is relaxed and time variation in f(ϕi) not 

accounted for by the fixed effect of the climatic covariate x is accounted for by a random 

effect i  (model Rco; Table 4) which follows a normal distribution N(0,
2 ) (e.g. Franklin et 

al., 2000; Gauthier et al., 2001; Loison et al., 2002; Altwegg et al., 2003, 2006; Schaub et al., 

2005; Sandvik et al., 2005). 
2  is the residual process variance reflecting variation over time 

in f(ϕi) that is not accounted for by the relationship with the climatic covariate. As for the 

random-effects model Rt, the estimates â , b̂ , ĉ and 
2̂  can either be approximated using a 

frequentist framework (Gould & Nichols, 1998; Mc-Culloch & Searle, 2001) or derived in a 

Bayesian framework (Brooks et al., 2002; Barry et al., 2003; Link & Barker, 2004; Gimenez 

et al., 2008). However, the Bayesian technique is still underused in ecological studies (none 

of the 78 ESR). 
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In our analysis of white stork survival, we built and fitted all models of type Fco and 

Rco including only the linear or the quadratic effect of one of the five candidate climatic 

covariates at a time. Each candidate covariate was standardized so that the mean and variance 

over its time series were set to 0 and 1, respectively. We used the program MARK (White & 

Burnham, 1999) to fit all models required but the models built in a Bayesian framework, 

which were implemented using Markov chain Monte Carlo (MCMC) methods with program 

WinBUGS (Spiegelhalter et al., 2002; see Appendix 2 for details). Note that program M-

SURGE (Choquet et al., 2004) could also be used. Parameter estimates obtained in the white 

stork survival analysis for the models introduced above are displayed in Table 6. 

 

(3) Measuring statistical support for the effect of climatic factors 

In studies of climate impacts on vertebrate survival, the identification of factors that might 

noticeably influence survival is most often undertaken based on various measures of statistical 

support (i.e. probabilities involving the data in hand and hypotheses). This was the case in 73 

of the 78 ESR. In the five remaining studies the identification of potentially influential 

covariates has been undertaken on the grounds of estimated effect sizes. Two inferential 

approaches have so far been adopted in the ecological literature to assess statistical support: 

null hypothesis testing (in 40 out of 73 studies) and information theory (in 33 out of 73 

studies). Bayesian inference provides a third approach that has great potential but has been 

applied in none of the 78 ESR. These approaches differ with respect to the probabilities that 

are considered in order to identify influential climatic covariates. However, irrespective of the 

chosen approach, the objective pursued is always to maximize the probability of identifying 

covariates that actually exert a genuine influence on survival (i.e. to maximize statistical 

power) while minimizing the probability of concluding that a covariate influences survival 

when it actually has no effect (i.e. minimizing type I error). In what follows we present, for 
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each of the three approaches, the underlying conceptual framework and their application. 

Then we present the results of a simulation study where the performance of these distinct 

approaches in terms of maximization of the statistical power and minimization of type I error 

is evaluated. 

 

(a) The null hypothesis testing approach 

(i) Conceptual framework  

In the null hypothesis testing approach (hereafter referred to as the NHT approach), a so-

called null hypothesis (hereafter referred to as H0) is first defined. This hypothesis stipulates 

that the focal climatic covariate has no effect on survival. Then, the value of a test statistic of 

known distribution under H0 is computed for the data in hand. The probability under H0 of a 

data set yielding a value of the test statistic as extreme as or more extreme than the one 

obtained with the data in hand is computed from the known distribution of the test statistics. 

This probability corresponds to the probability of the data in hand or of even more extreme 

events if the null hypothesis is true. It is referred to as the observed P-value, and is compared 

to a predefined threshold (referred to as the α-level), usually set at 0.05. If the observed P-

value is lower than the α-level, the null hypothesis that the focal climatic covariate has no 

influence on survival is rejected with the probability that this hypothesis is indeed correct 

being equal to α. Although it is conceptually incorrect to do so (e.g. Cohen, 1994; Anderson, 

Burnham & Thompson, 2000), this outcome is always interpreted in ecological studies as tacit 

support for the alternative hypothesis that the focal climatic covariate influences survival. If 

the observed P-value is higher than the α-level, no conclusion can be drawn. The pitfalls 

associated with the application of this procedure have been the subject of extensive 

discussions and we refer readers to the literature for presentations of these issues [e.g. 

Yoccoz, 1991; Cohen, 1994; Anderson et al., 2000; Johnson, 2002; Robinson & Wainer, 
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2002; Stephens et al., 2005; Hobbs & Hilborn, 2006; a list of more than 400 references can 

also be found at http://warnercnr.colostate.edu/~anderson/thompson1.html (accessed 18 

February 2008)]. 

 

(ii) Setting the α-level 

In almost all of the 40 ESR studies using the NHT, no α-level was explicitly determined a 

priori. Most often, observed P-values were confronted to a conventional interpretation scale: 

it was usually considered that P>0.1 indicates non significant effects; 0.1> P>0.05 indicates 

nearly significant effects; 0.05> P>0.01 significant effects and P<0.01 highly significant 

effects. This approach stems from the initial conception of the NHT procedure as an 

exploratory tool (Stephens et al., 2007; Robinson & Wainer, 2002; Garcia, 2004; Roback & 

Askins, 2005). Relying on mere convention for the interpretation of the outcome of a null 

hypothesis test is not a major drawback as long as one considers that truly solid knowledge 

comes from repeated confirmation from numerous studies. From this point of view, the 

objective pursued in the NHT approach is to decide whether or not further experiments 

intending at falsifying the null hypothesis are worth undertaking. However, as pointed out by 

many authors (e.g. Yoccoz, 1991; Anderson et al., 2000), the explicit definition of an α-level 

is necessary for a rigorous application of the NHT and deserves careful consideration, even in 

exploratory contexts. The conclusion of a null hypothesis test is extremely sensitive to the 

choice of the α-level. The decision regarding the value to which it is set is consequently 

crucial (Field et al., 2004). The probability of a type I error and the statistical power (i.e. the 

probability of rejecting H0 when it is indeed false) are linked by a trade-off. As a 

consequence, setting α to an extremely low value and thereby insuring an extremely low risk 

of making type I errors results in decreasing considerably the statistical power for detecting 

genuine climatic effects. Furthermore, the power for detecting a genuine climatic effect of a 
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given magnitude decreases as the size of the sample (usually the number of study years in 

analyses of climate impact on survival of vertebrates) decreases. Small sample sizes (i.e. low 

number of study years) should thus motivate researchers to set α to a relatively large value 

(Yoccoz, 1991; Lebreton et al., 1992; Field et al., 2004). Finally, in exploratory and 

descriptive studies, achieving a relatively high power should be considered as more important 

than keeping at a low level the risk of concluding mistakenly that a covariate influences 

survival. After all, exploratory analyses aim at generating working hypotheses that should 

anyway be later evaluated, either experimentally or based on the analysis of independent 

empirical data, for a robust conclusion to be drawn (Robinson & Wainer, 2002; Roback & 

Askins, 2005; Link & Barker, 2006). So it is not of prime importance that all hypotheses 

generated in an exploratory analysis get strong statistical support. Given the low sample size 

in the white stork data set and the exploratory character of the study, we thus set α to 0.20 

instead of the conventional level of 0.05. 

 

(iii) The multiple test issue 

In 49 of the 78 ESR, several candidate climatic variables were considered. When a dependent 

variable such as survival is subjected to a series of null hypothesis tests each of which intends 

at detecting the effect of a distinct climatic covariate, the probability of erroneously rejecting 

at least one null hypothesis exceeds the α-level and increases as the number of tests increases 

(Rice, 1989). Although this inflation of type I error and the procedures to prevent it are well 

known (Moran, 2003; Garcia, 2004; Roback & Askins, 2005), such procedures have been 

applied in only two of the 49 ESR considering several candidate covariates (Jenouvrier et al., 

2003; Hallet et al., 2004). The issue has been mentioned but not dealt with in an additional six 

ESR (Clobert et al., 1988; Newton et al., 1992; Catchpole et al., 2000; Jones, Hunter & 

Robertson, 2002; Grosbois et al., 2006; Møller & Szep, 2005). In these studies the authors 
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mentioned that due to the absence of correction for multiple tests the climate impacts detected 

should be considered with caution.  

In the analysis of white stork survival we applied the procedure that sets at the α-level 

the expected proportion of erroneously rejected null hypotheses among all the rejected null 

hypotheses (i.e. it controls the false discovery rate; Benjamini & Hochberg, 1995). We chose 

this procedure rather than the well-known sequential Bonferroni approach because it incurs a 

less dramatic loss of statistical power (Moran, 2003; Garcia, 2004; Roback & Askins, 2005). 

As proposed by Wright (1992) we corrected the observed P-values and compared these 

corrected values to 0.20, the α-level we chose.  

 

(iv) Test statistics derived from fixed-effects models  

When, as in the white stork survival analysis, model Ft satisfactorily fits the data, statistical 

support for the effect of a covariate can be assessed by comparing deviances among fixed-

effects models Fcst, Fco, Ft [see Lebreton et al. (1992) for situations where model Ft shows 

lack of fit]. The likelihood ratio test (LRT) allows assessing the fit of the covariate model 

relative to that of the time-dependent model: 

)()(/ tcotco FDevFDevLRT 
                                             

(1) 

tcoLRT /  tests the null hypothesis of absence of variation in survival over time unexplained by 

the effect of the climatic covariate in Fco. It follows asymptotically under H0 a chi-squared 

distribution with n-J degrees of freedom where n is the number of survival estimates obtained 

from model Ft and J the number of parameters required to describe the relationship between 

survival and the focal climatic covariate. Whatever the covariate and shape considered, 

residual unexplained variation was detected by tcoLRT /  in the white stork survival analysis 

(Table 7) 
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Had the examination of tcoLRT /  revealed the absence of residual unexplained variation 

in a model of type Fco, LRT between that model and the constant model Fcst could have been 

used to assess the statistical support for the effect of the climatic covariate in Fco (Lebreton et 

al., 1992): 

)()(/ cocstcocst FDevFDevLRT 
                                        

(2) 

cocstLRT /  tests the null hypothesis H0 that the climatic covariate in Fco has no effect on 

survival. It follows asymptotically under H0 a chi-squared distribution with J-1 degrees of 

freedom. 

In the analysis of stork survival, the presence of residual unexplained variation in 

survival after accounting for the effects of climatic covariates prevented us from using this 

statistic. Instead, the assessment of the fit of the covariate model relative to that of both the 

constant and the time-dependent models was required (Skalski, Hoffmann & Smith, 1993; 

Skalski, 1996). The method used to derive this statistic is referred to as ANODEV by analogy 

to ANOVA. The statistics tcocstFtest // : 
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


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)()(
ˆ  is an estimate of variance inflation in model Fco, tests the null 

hypothesis H0 that the climatic covariate in Fco has no effect on survival. It follows under H0 a 

Fisher-Snedecor distribution with J-1 and n-J degrees of freedom. Using the statistics 

tcocstFtest //  in the white stork survival analysis and applying the procedure proposed by 

Benjamini & Hochberg (1995) for dealing with the multiple tests issue, none of the null 

hypotheses could be rejected at the false discovery rate of 20% (Table 7). 

In 16 of the 40 ESR using the NHT approach, no residual temporal variation in 

survival was detected, so that cocstLRT /  or tcocstFtest //  could indifferently be used to assess the 
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statistical support for the covariates in model Fco. In the 24 other studies, residual variation 

was either detected (five instances) or not investigated (19 instances) so that tcocstFtest //  

would have been required to assess the statistical support for the covariates in model Fco. In 

five of these 24 studies, cocstLRT /  was used instead, which can lead to a high probability of 

selecting spurious effects (Skalski et al., 1993; Skalski, 1996). 

 

(v) Test statistics derived from mixed-effects models 

Although it is uncommon to do so (this option was adopted in only one out of the 78 ESR; 

Milner et al. 1999), the statistical support for the linear effect of a climatic covariate can be 

assessed using the mixed-effects model of type Rco: b̂ , the normally distributed estimator of 

the slope of the relationship with the climatic covariate and, )ˆ(b


, its estimated standard error 

can be used to build a test statistic under Wald’s procedure (Mc-Culloch & Searle, 2001, p. 

24). The statistic: 
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tests the null hypothesis H0: b = 0. It follows under H0 a Fisher-Snedecor distribution with 1 

and n-2 degrees of freedom (Mc-Culloch & Searle, 2001, p. 24). Note that the square root of 

W(Rco) follows under H0  a Student’s t-distribution with n-2 degrees of freedom. Using the 

statistics W(Rco) and applying the Benjamini & Hochberg’s procedure, none of the null 

hypotheses of absence of linear relationships could be rejected at the false discovery rate of 

20% in the white stork survival analysis (Table 7). Unfortunately, we could not apply the 

same procedure for quadratic relationships because a statistical tool is lacking to assess the 

statistical support for a quadratic relationship between survival and a climatic covariate from a 

mixed-effects model of type Rco.  
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(b) Information-theoretic approach 

(i) Conceptual framework 

While the NHT approach focuses on the evaluation of dichotomous hypotheses, the 

information-theoretic approach (hereafter referred to as the IT approach) allows simultaneous 

comparisons of a multitude of models within an a priori defined candidate set (Burnham & 

Anderson, 2002). Several criteria are available for ranking models in the IT approach (Link & 

Barker, 2006; Buckland, Burnham & Augustin, 1997). The Akaike Information Criterion 

(AIC = Dev+2K where K is the number of estimable parameters in the model, see Burnham & 

Anderson, 2002) assumes that ‘truth’ is high-dimensional and thus impossible to depict with a 

mathematical model (Anderson & Burnham, 2002), which is pertinent in the context of 

demographic studies in free-ranging vertebrate populations. Indeed, AIC has been used in all 

of the 33 ESR using the IT approach. AIC allows ranking competing models by measuring the 

quality of a model in terms of an optimal compromise between prediction bias and parameter 

uncertainty, or, equivalently, between underfitting and overfitting (Burnham & Anderson, 

2002, p. 62). The lower the AIC of a model is, the closer to optimality is this compromise, and 

the better is the approximation provided by the model of the high-dimensional reality 

(Burnham & Anderson, 2002, p. 62). Differences in AIC among models are usually used as 

criteria for model selection. Accordingly, these statistics have been used to identify 

potentially influential climatic covariates in 30 out of the 33 ESR using the IT approach. A 

simple and widely used rule of thumb has been proposed by Burnham & Anderson (2002, pp. 

70-72) and allows interpreting the difference in AIC between two models in terms of relative 

support in the data for each of these two models. If two models differ by less than two AIC 

points, they can be considered as getting roughly identical support from the data. On the other 

hand, the lower AIC model can be considered as clearly better supported by the data when the 

AIC difference is greater than two points. Although this rule of thumb is somewhat arbitrary, 
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it has been shown to perform satisfactorily for model and covariate selection (Richards, 2005) 

and it has been used in most of the ESR using AIC differences (20 out of 30 ESR; the 10 other 

studies used minimum AIC as a covariate selection criterion). We thus applied this criterion 

for the identification of potentially influential climatic covariates in the white stork survival 

analysis (see below). 

Another useful statistic derived from AIC, introduced by Buckland et al. (1997) and 

evaluated by Richards (2005) and Link & Barker (2006) is the AIC weight of a model (see 

also Burnham & Anderson, 2002, p. 75). It quantifies the strength of evidence in the data for 

that model relatively to that of all the other models in the candidate set (i.e. the sum of 

weights over a set of candidate models is 1). It is proportional to the probability of the model 

given the data. It is consequently considered as useful, especially for producing multi-model 

inferences that account for model selection uncertainty. It can also been used to evaluate the 

evidence ratio of two alternative models. Although AIC weights were provided for illustrative 

purposes in some of the studies we reviewed, they have so far rarely been used as a decisive 

criterion for the identification of potentially influential climatic covariates in studies of 

survival in vertebrate populations (only three out of the 33 ESR using the IT approach; Piper, 

2002; Barbraud & Weimerskirch, 2003; Traylor & Alisauskas, 2006). Furthermore their 

performances for model selection are in need of evaluation (e.g. Richards, 2005; Link & 

Barker, 2006). We thus did not use AIC weights as decisive criteria for the identification of 

potentially influential climatic covariates in the white stork survival analysis. However, we 

computed the evidence ratio relative to the constant survival model Fcst for each candidate 

covariate model considered. 

 

(ii) Criteria for identifying influential climatic factors 
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As in most of the ESR using the IT approach, we considered the effect of a focal climatic 

covariate on white stork survival as statistically supported when the model Fco was at least as 

well supported as the general model Ft and better supported than the baseline model Fcst 

(Anderson & Burnham, 2002; Burnham & Anderson, 2002; Guthery et al., 2005). Assuming 

that two models can be considered as differently supported by the data when their AIC differs 

by more than two points (see above), we considered that the effect of the climatic covariate 

included in the model Fco was statistically supported if Δco/cst < -2 and Δco/t ≤ 2 where Δco/cst = 

AICc(Fco) –AICc(Fcst) and Δco/t = AICc(Fco)–AICc(Ft). Furthermore, we considered that 

quadratic effects were statistically supported when the inclusion of the quadratic term to a 

model including the linear term for the same candidate covariate resulted in a drop in AICc of 

at least two points. Applying these criteria in the white stork example resulted in concluding 

that the linear effect of CNSRF and the quadratic effect of PBSC were statistically supported 

(Table 7).  

 

(c)Bayesian approach 

(i) Conceptual framework 

While the classical approach assumes that the parameters are fixed and have unknown values 

to be estimated, Bayesian inference relies on the a posteriori distribution of the parameters. 

This distribution is obtained via the Bayes’ theorem, through a process updating the a priori 

distribution of the parameters, using the information in the data, which is summarized by the 

likelihood. The prior distribution captures the expert’s knowledge about the system before 

collecting data. If there is no strong prior information on the parameters, vague priors are 

usually assigned to the parameters, such as uniform distributions between 0 and 1 for 

probabilities. Because mark-recapture models often have many parameters, the joint posterior 

distribution is high-dimensional and cannot be easily displayed. Therefore we need to 
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summarize this information under the form of interpretable point estimates (posterior means 

or medians) and uncertainty intervals (credibility intervals). This process involves calculating 

multi-dimensional integrals, which is circumvented by using Markov chain Monte Carlo 

(MCMC) simulations. This class of algorithms is based on building a Markov chain with 

stationary distribution equal to the posterior distribution of interest. Once the chain has 

converged, its realisations can be regarded as a dependent sample from the posterior 

distribution, and standard Monte Carlo integration can be carried out to obtain numerical 

summaries of focal parameters.  

The development of the MCMC machinery along with the availability of powerful 

personal computers has led to an increasing number of Bayesian applications in ecology 

(Ellison, 2004; Clark, 2005; McCarthy, 2007), the analysis of mark-recapture data making no 

exception (Link & Barker, 2004; Gimenez et al., 2008). Besides, flexible and reliable 

software applications are now available allowing relatively easy implementation of complex 

models. Here we use the program WinBUGS (Spiegelhalter et al., 2002), which implements 

up-to-date and powerful MCMC algorithms. It is freely available at http://www.mrc-

bsu.cam.ac.uk/bugs/.  

 

(ii) Criteria for identifying influential climatic factors 

The issue of model selection in a Bayesian framework is not easy to deal with. There is a 

myriad of procedures, and none of them seems to be as consensual as NHT and IT are in the 

population ecology literature. Several methods produce a value for each candidate model to 

be compared among a set of pre-selected models [Bayes factor – Kass & Raftery, 1995; mean 

square predictive error – e.g. Ghosh & Norris, 2005; deviance information criterion (DIC) – 

Spiegelhalter et al., 2002; Bayesian information criterion (BIC) – e.g. Link & Barker, 2006]. 

These methods are popular but are sometimes difficult to implement due to theoretical and 
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computational difficulties (Gelman et al., 2003). Recently, extensions of standard MCMC 

algorithms have been developed, which perform an automatic exploration of the model space 

(Gibbs variable selection – George & McCulloch, 1993; Reversible Jump MCMC – Green, 

1995). One may feel uneasy about exploring hundreds of potential models as it might look 

like data dredging, but in the case of variable selection, we have found that Reversible Jump 

MCMC in particular is relevant to determine the best combination of covariates (Gimenez et 

al., 2008). Interestingly, these methods can all be implemented in WinBUGS, pending some 

effort though.  

Given so many procedures, the issue of choosing the right method is of particular 

concern for the user, e.g. the biologist (Gimenez, 2008). This open question would deserve a 

proper treatment in itself and is therefore beyond the scope of this paper. Besides, none of the 

ESR has used a Bayesian model selection method. For the white stork survival analysis, we 

based our conclusions on the statistical support for climatic covariate effects on the 

examination of the 95% credible interval of the parameters involved. Note that Bayesian 

credible intervals and frequentist confidence intervals are inherently different and may lead to 

contrasting conclusions (McCarthy, 2007). A 95% credible interval provides a 0.95 

probability that the true value of the parameter is within that interval, whereas a 95% 

confidence interval gives, if the sampling is repeated many times, a proportion equal to 0.95 

of confidence intervals built from each sample that contain the true value of the parameter. 

We considered a linear effect of a climatic covariate upon white stork survival as statistically 

supported when 0 was outside the 95% credible interval of the posterior mean of the slope of 

the relationship. We considered the quadratic effect as statistically supported when the 95% 

credible region of posterior means of the slopes of linear and quadratic terms did not include 

[0; 0]. Using these criteria resulted in concluding that the linear effect of CNSRF and the 

quadratic effect of PBSC were statistically supported (Table 7; Fig. 4). 
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(d) Detecting influential climatic factors in the presence of temporal trends 

The situation where survival time series show a trend over time deserves further comment. In 

order to address linear or quadratic trends in survival time series, it is necessary to build 

models of the type FT or FT_q, respectively (Table 4). Investigation of trends can then be 

undertaken with the statistics introduced above to assess the statistical support for the effect of 

a covariate (e.g. Ftests or AIC differences). As already mentioned in Section IV.1, neither a 

linear nor a quadratic trend were detected in the white stork survival time series (the P-values 

associated with Ftestcst/T/t and Ftestcst/T_q/t were 0.59 and 0.33, respectively, and, ΔT/t and ΔT_q/t 

were equal to 7.64 and 6.03, respectively; see also Table 5). Furthermore, it is difficult to 

evaluate how often survival time series of vertebrates show temporal trends because these are 

not systematically addressed (only 17 out of the 78 ESR). Let us nonetheless consider a 

situation where, for instance, a linear trend is detected (see e.g. Newton et al., 1992; Grosbois 

& Thompson, 2005; Kéry et al., 2006). In such a situation a relationship between survival and 

a climatic covariate can be detected only because this covariate also exhibits a linear trend 

over time. Such a relationship, that results solely from the co-occurrence of a trend, is 

particularly likely spurious for two reasons. First, the trend in the time series of survival can 

be an artefact resulting from the presence of heterogeneity in the survival and/or the detection 

parameters  (Carothers, 1973, 1979; Buckland, 1982; Pledger et al., 2003; Devineau et al., 

2006). Second, assuming that the survival time series shows a genuine trend, it is difficult to 

rule out the possibility that this trend results from a relationship with some overlooked causal 

factor that would also exhibit a trend, rather than from a causal relationship with the focal 

climatic covariate (see Coulson, 2001, for an example on density dependence). Our advice, 

when the survival time series and the focal climatic covariate both show a trend is to test 

whether the climatic covariate considered accounts for a significant fraction of the variation in 
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survival about the trend. This can be done using the residual regression technique (Graham, 

2003). The first step is to remove the temporal trend from the climate covariate x. Let us refer 

to this de-trended covariate as xd. The value of xd at each date i can be worked out as 

)ˆˆ(, iiid Txx   ; where ̂  and ̂  are the estimates, obtained from a linear regression 

model, of the parameters of the relationship between the climatic covariate xi and a linear 

trend Ti. In a second step the following model is built:  

  idii xbTbaf ,21  : model FT+dco                                    (5) 

FtestT/T+dco/t allows testing the null hypothesis H0: b2  = 0. This null hypothesis states 

that there is no relationship between the variation in survival about a trend and the variation in 

the climatic covariate about a trend. Under an IT approach, the evidence for such a 

relationship should be obtained by examining ΔT+dco/T and ΔT+dco/t. 

Exploration of the relationship between the variation in survival and the variation of a 

climatic covariate in presence of a trend has been undertaken in only three of the ESR 

(Newton et al., 1992; Grosbois & Thompson, 2005; Kéry et al., 2006). In two of these 

studies, the authors concluded that the effect of a time-varying covariate could not be 

differentiated from that of a simple trend (Newton et al., 1992; Grosbois & Thompson, 2005). 

Because in most ESR the presence of temporal trends in the survival and climatic covariates 

was simply not addressed, it is difficult to assess how often effects of climatic factors could 

have been detected because of the co-occurrence of trends in survival and in the candidate 

climatic covariates. We believe that this issue should be examined on a more systematic basis 

in the future.  

 

(4) Performances of distinct statistical approaches for detecting potentially influential 

climatic factors from statistical support: a simulation study  
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Different conclusions as to which climatic covariates influenced white stork survival were 

reached when different statistical procedures were used. Such a discrepancy could be 

expected for at least two reasons. First, in only one of the statistical approaches (i.e. the NHT) 

was a procedure for controlling the false discovery rate applied. Not surprisingly, because 

procedures that control type I error incur a decrease of statistical power (Moran, 2003; Garcia, 

2004; Roback & Askins, 2005), none of the candidate climatic covariates could be considered 

as potentially influential according to the NHT procedure. By contrast, two climatic 

covariates were detected as potentially influential when the IT or the Bayesian approaches 

were adopted. However, with the latter approaches, the risk of type I error was not controlled 

and might be high when large numbers of candidate covariates are considered (Burnham & 

Anderson, 2002, pp. 37-43, 244-248; Stephens et al. 2005). Second, as stated above, the 

concepts underlying statistical support differed among the procedures used (Stephens et al., 

2005; Hobbs & Hilborn, 2006; Stephens et al., 2007). In the NHT, influential climatic 

covariates are identified based on the probability of the data or of more extreme data if the 

null hypothesis of no climatic influence on survival is true. In the Bayesian approach, 

influential climatic covariates are identified by examination of the posterior distribution of the 

parameters describing the relationship between survival and climatic covariates. With the IT 

approach, influential climatic covariates are detected based on an evaluation of the relative 

quality of the approximation of the complex reality provided by models. Although these 

conceptual differences are understood, no clear guideline has yet emerged about which 

paradigm is better adapted to a given case study. Below, we present the results of a simulation 

study where the performance of these distinct approaches is evaluated in terms of 

maximization of the statistical power and minimization of type I error. In order to rule out the 

multiple test issue, the influence of only one virtual climatic covariate was included in this 

simulation study.  
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(a) Methods  

We addressed two characteristics of statistical criteria introduced above for detecting 

potentially influential covariates. These characteristics were the probability of considering as 

statistically supported an effect that does not exist (test level or type I error in the NHT 

approach), and the probability of considering as statistically supported an effect that does 

exist (test power in the NHT approach; it is also the complement to one of type II error). For 

each of 36 possible scenarios of variation in survival over years, we simulated 500 CMR data 

sets with 17 capture occasions and 50 newly marked individuals released at each occasion 

(these features were comparable to those of the white stork data). The scenarios differed with 

respect to the slope, b, of the linear relationship between survival (on a logit scale) and a 

virtual climatic covariate in which values over the 16 time intervals were drawn from a 

normal distribution with a mean of 0 and a variance of 1 (a distinct set of values was drawn 

for each simulated data set). Six values of b were considered ranging from 0 (no influence of 

the covariate) to 0.5. This range was centred on the estimate of b obtained in the white stork 

example for the linear effect of CNSRF (≈ 0.25). Translated in terms of the size of the effect, 

the maximum value considered for the slope (b = 0.5) generated, for a decrease in the virtual 

climatic covariate by one and two standard deviation units, a reduction in survival odd ratio of 

about 40% and 60%, respectively. The scenarios also differed with respect to the residual 

process temporal variance in survival (
2  of model Rco) that ranged from 0 (no residual 

process variance) to 0.3. This range was similar to that used by Burnham & White (2002) 

introducing random-effects models for the analysis of survival and included the estimate of 

2  obtained in the white stork survival analysis (≈ 0.1). Furthermore, it covered the range of 

process temporal variance of adult and juvenile survival reported for birds (Sæther & Bakke, 

2000) and for large mammals (Gaillard & Yoccoz, 2003). The data sets were generated under 

the hypothesis of constant recapture probability (p = 0.9 as estimated in the white stork 
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analysis). The computation of survival used to simulate a data set was performed in two steps: 

the 16 survival values given by the linear relationship with the virtual climatic covariate were 

first computed; random numbers drawn from a normal distribution with a mean of 0 and a 

variance 
2  were then added to each of these 16 survival values. For each of the 500 CMR 

data sets generated, models Fcst, Fco, Ft were fitted by maximum likelihood and Rco was fitted 

using the method of moments (Burnham & White, 2002) and a Bayesian approach. Although 

the maximum likelihood method (Lebreton et al., 1992) and the method of moments 

(Burnham & White, 2002) are available on standard softwares such as MARK, we 

implemented them in Matlab® to allow looping over the 500 simulated data sets. Coherence 

between estimates obtained using Matlab® with those obtained using MARK was checked for 

the white stork data set. We used the software WinBUGS (Spiegelhalter et al., 2002) to 

implement the Bayesian approach (MCMC method) for building model Rco (see Appendix 2 

for details) by calling it from software R through the package R2WinBUGS (Sturtz, Ligges & 

Gelman, 2005). Priors and likelihood are specified within WinBUGS, while managing the 

simulated data, setting initial values, and post-processing the results appears easier in practice 

using R. The results obtained on the 500 simulated data with fixed-, random- and mixed-

effects models were then used to estimate the distribution of the various statistics used to 

assess the statistical support for an effect of a virtual climatic covariate for each of the 36 

scenarios. For tests, the α-level was set at 0.05, the most commonly used value in the 

ecological literature  

 

(b) Results  

Using either Ftestcst/co/t or LRTcst/co according to whether significant residual variation was 

detected or not, the probability of detecting spurious effects of climatic covariates was close 

to the α-level (= 0.05) for most levels of residual process variance, 
2 , although it slightly 
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exceeded it for intermediate levels (P = 0.08, 0.07 and 0.06 for 
2 = 0.03, 0.05 and 0.1, 

respectively; line in Table 8A with b = 0). In this respect, the systematic use of Ftestcst/co/t 

instead of using it only when residual process variance was detected ensured that the 

probability of detecting spurious effects of climatic covariates never exceeded the α-level 

(line in Table 8B with b = 0). However, the probabilities of detecting genuine effects of 

climatic covariates were slightly higher when the procedure involving the use of either 

Ftestcst/co/t or LRTcst/co was preferred over the systematic use of Ftestcst/co/t. 

The statistical performance of W(Rco) derived from estimates obtained from a mixed-

effects model built using the method of moments were very similar to those of Ftestcst/co/t 

(Table 8C). 

The Bayesian procedure presented the advantage that probabilities of detecting 

genuine effects of climatic covariates were high relative to that achieved with other 

approaches. However an important drawback was that probabilities of detecting spurious 

effects were high especially for high process variance (Table 8D where b = 0 and 
2 > 0.01).  

The IT approach was best adapted to situations where the level of residual process 

variance was low. In these situations, the probabilities of detecting spurious and genuine 

effects of climatic covariates were relatively low and high, respectively (columns in Table 8E 

where 
2 < 0.03). However, the IT approach performed poorly when the residual process 

variance was high: the probabilities of detecting spurious and genuine effects were then 

relatively high and low, respectively (columns in Table 8E where 
2 > 0.01). 

 

(c) Conclusions  

The simulation study has shown that all procedures perform well (i.e. incur low probabilities 

of retaining spurious effects and provide relatively high probabilities of detecting genuine 

effects) in situations where the unexplained process variance 
2  is low. Such situations are 
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likely to occur when variation in survival is low and/or when prior knowledge on the study 

population is good enough for defining models including climatic factors that account for 

most of the temporal variation observed in survival. However, as in the white stork example, 

data are usually collected in wild populations in which survival is most likely influenced by 

multiple factors (Burnham & Anderson, 2002; Schwarz, 2002). In this context, relatively 

large variation in survival is expected, and the definition of a model accounting for most of 

the temporal variation in survival through relationships with climatic or other covariates 

cannot always be achieved. For instance, residual variation in survival after the effect of 

climatic covariates had been accounted for was detected in 15 of the 53 ESR in which it was 

addressed. The results of the simulation study showed that in such situations the NHT 

approach provides statistics such as Ftestcst/co/t and W(Rco) that allow testing effects of climatic 

covariates with reasonable statistical power and limited risks of retaining spurious effects. 

Such statistics were used in four of the 15 studies mentioned above while in 10 other studies, 

the IT approach was used to assess the statistical support for climatic covariates. The results 

of our simulation study suggest that comparison among fixed-effects models using the IT 

procedure is inefficient in such situations. In our understanding this poor performance of the 

IT approach makes sense. When variation in survival is large and prior knowledge on the 

study population is limited, there is a risk that among the set of candidate models that relate 

variation in survival to variation in climatic factors none describes the data satisfactorily 

(Burnham & Anderson, 2002, p. 62, pp. 310-317; Guthery et al., 2005; Stephens et al., 2005; 

Hobbs & Hilborn, 2006). In such situations the only candidate model describing satisfactorily 

survival variation will often be a structural model with many parameters, such as model Ft, 

that brings little insight into the ecological factors underlying survival variation (Burnham & 

Anderson, 2002, pp. 328-330). Still, according to model selection criteria such as AIC, Ft will 

often outperform models including effects of climatic factors that account for a fraction of the 
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observed variation in survival, but that fail to account for most of it. In such situations AIC 

comparison among fixed-effects models is thus not an efficient procedure for identifying 

effects of climatic covariates (Anderson & Burnham, 2002; Burnham & Anderson, 2002, pp. 

328-330; Stephens et al., 2005).  

With a relatively large estimate of the unexplained process variance, 
2 , around 0.1, 

the white stork example perfectly illustrates the situation in which the hypothesis testing 

approach was best adapted and the statistics Ftestcst/co/t or W(Rco) should be used. Using these 

statistics and applying the correction for multiple tests, none of the relationships considered 

was statistically supported (Table 7). 

 

(5) Measuring the magnitude of the effects of climatic factors 

To our knowledge, no survey of statistical power in demographic studies of vertebrate 

populations has so far been undertaken. However, this has been done in the field of 

behavioural ecology by Jennions & Møller (2003) who concluded that statistical power was 

low in a large majority of studies. Because empirical studies of climate impacts on vertebrate 

survival, as illustrated by the analysis of white stork survival, are almost always characterized 

by low sample sizes, poor prior knowledge of the underlying processes, and high variability, 

we can confidently claim that the statistical power to detect effects of climatic factors should 

often be dramatically low. This is especially true when, as in the application of the NHT 

paradigm on the white stork survival analysis, one applies procedures that control the risk of 

type I error. For this reason, we suggest that in the context of exploratory analyses the 

estimated magnitude of an effect could be used as the decisive criterion for identifying within 

a set of candidate climatic factors those that might influence survival (Yoccoz, 1991; 

Nakagawa & Cuthill, 2007; Stephens et al., 2007). Statistical support should nonetheless be 

provided along with estimated magnitude as an indication of the confidence in the effect of 
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the covariate being genuine, but not as a decisive criterion. Conversely, when, as is almost 

always the case in ecological studies, statistical support is used as a decisive criterion to 

identify potentially influential covariates, the magnitude of their potential effect should 

always be estimated and presented because it is the proper measure of their potential 

biological importance (Yoccoz, 1991; Nakagawa & Cuthill, 2007). 

When measuring such a magnitude, one has to keep in mind that climate impacts on 

survival in a given species should ideally be addressed at large spatial scales in order to 

document its potential geographic variation (Newton et al., 1992; Gaillard et al., 1997; Loison 

et al., 1999; Tavecchia et al., 2002; Parmesan & Yohe, 2003; Altwegg et al., 2005; Harris et 

al., 2005; Schaub et al., 2005; Grosbois et al., 2006). It could also be useful to conduct 

analyses of climate impacts across species in order to identify specific characteristics (life 

history, habitat type, diet type, etc……) that modulate the magnitude of climate impacts on 

survival (see e.g. Jenouvrier et al., 2005a; Sandvik et al., 2005). In these respects, meta-

analyses combining results obtained in specific studies of one population of a single species 

are extremely valuable (Arnqvist & Wooster, 1995; Parmesan & Yohe, 2003; Sæther et al., 

2003, 2006; Both et al., 2004). This approach is more efficient if standardization of the 

measures of climate impacts on ecological processes is achieved across specific studies 

(Parmesan & Yohe, 2003. Nakagawa & Cuthill, 2007). It is thus important to choose 

measures of the impacts of climatic factors that can be compared across studies. Below we 

present several types of statistics that reflect to some extent the magnitude of the impact of 

climatic factors and discuss their usefulness for studies extended at the multi-population or 

inter-specific scale. 

 

(a) Fraction of temporal variation accounted for by climatic factors 
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The most common way of characterizing the impact of a covariate in linear regressions is the 

fraction of the dependent variable accounted for by its effect (Nakagawa & Cuthill, 2007). It 

quantifies the relative importance of the focal covariate as compared to other drivers in 

generating variation in the dependent variable. This type of standardised effect size measure 

was used for evaluating the impact of climatic covariates on survival in roughly half of the 

ESR (i.e. 41 out of 78). Procedures to derive this type of statistic from CMR models have 

been developed. The most often used statistic is derived from fixed-effects models (Skalski, 

1996):  

R²_Dev=
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A much less often used statistic can be derived from models Rco and Rt that contain random 

effects (but see e.g. Franklin et al., 2000; Gauthier et al., 2001; Loison et al., 2002; Altwegg 

et al., 2003, 2006; Schaub et al., 2005; Sandvik et al., 2005):  
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R²_Dev and R²_Var can be viewed as equivalents of the coefficient of determination, i.e. the 

proportion of deviance and variance explained, respectively. Using these statistics as a 

covariate selection criterion in the white stork survival data, we considered that covariates for 

which R²_Dev or R²_Var exceeded 0.20, implying that these were likely to account for more 

than 20% of temporal variation in survival, could be considered as potentially influential. We 

computed the statistics R²_Dev and R²_Var for the linear and quadratic relationships between 

white stork survival and the five candidate climatic covariates (Fig. 5). The linear and 

quadratic effects of CNSRF and the quadratic effect of PBSC accounted for more than 20% of 

the variation according to both statistics and were thus considered as influential (Fig. 5). 

However, the inclusion of the quadratic term for the effect of CNSRF did not result in a 

substantial increase of the fraction of temporal variation accounted for as compared to a linear 
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effect only (Fig. 5). Accordingly we considered the linear relationship with CNSRF and the 

quadratic relationship with PBSC as the only supported effects. This conclusion had to be 

attenuated because the risk of type I error exceeded 20% for both relationships (see above; 

and Table 7). Examination of the figures obtained for the ten relationships considered 

revealed that R²_Dev was lower than R²_Var for relationships accounting for a large fraction 

of the variation (Fig. 5). This was expected because R²_Dev expresses the amount of temporal 

process variance in survival accounted for by the relationship with the climatic covariate 

relative to a variance quantity that includes sampling variance in addition to total temporal 

process variance. In this respect, it is better to use R²_Var because it expresses the amount of 

temporal process variance in survival accounted for by the relationship with the climatic 

covariate relative to the total temporal process variance only. However, R²_Var was lower 

than R²_Dev, and was actually often negative for relationships accounting for a small fraction 

of the variation (Fig. 5). As already noticed by e.g. Altwegg et al. (2003), R²_Var evaluated 

from models built with the method of the moments was not a satisfactory measure of 

magnitude for small effects. Although the method of the moments is well founded 

(McCullagh & Nelder, 1989; Gould & Nichols, 1998; Burnham & White, 2002), its 

performance in the analysis of empirical data is still debated. For the time being, we believe 

that it is preferable to use R²_Dev especially for evaluating the magnitude of small effects.  

It is not clear whether coefficients of determination can or cannot be compared safely 

among case studies considering different populations of a species or even populations of 

different species (Nakagawa & Cuthill, 2007). Actually, coefficients of determination often 

suffer from substantial biases, especially when they are obtained from multiple regression 

models with many predictors. Although unbiased estimates have been developed for linear 

regressions (Nakagawa & Cuthill, 2007), no equivalent statistics has to our knowledge yet 

been proposed in the context of CMR models. Furthermore, one drawback of coefficients of 
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determination is that no method has so far been proposed to determine their standard error in 

the context of CMR models. No confidence interval can thus be obtained for them. For this 

reason, whenever the size of an effect is evaluated with R²_Var or R²_Dev, a measure of the 

statistical support for the existence of this effect should also be provided. 

 

(b) Slopes  

Estimates of the parameters describing the relationship between survival and climatic factors 

can be considered as un-standardised effect size statistics. They allow assessing differences in 

survival between extreme values of climatic factors, and are thus useful measures of the 

absolute magnitude of their effects. This type of effect size measure was provided in almost 

all the ESR. Parameter estimates for the logit-linear and –quadratic relationship between 

white stork survival and CNSRF and PBSC, respectively, are displayed in Table 6. Note that 

we included in Table 6 only the relationships that were statistically supported. It could be 

preferable to provide parameter estimates for all the relationships examined in the analysis 

(i.e. ten relationships in the white stork survival example). Actually, in the perspective of 

undertaking robust meta-analyses, parameter estimates of relationships that are weakly 

supported on the grounds of statistical significance should ideally be provided in tables of 

results (Jennions & Møller, 2002).  

In the white stork example, the point estimates of the parameters describing the 

relationship between survival and climatic factors (the intercepts: â ; and the slopes b̂  and ĉ  

for the linear and quadratic terms, respectively) did not differ according to the type of model 

used (Fco or Rco; Table 6). However, the confidence intervals for the parameter estimates 

obtained from the model Fco were narrow as compared to those obtained from model Rco 

(Table 6). Indeed, the standard errors of the slope estimates obtained from the fixed-effects 

model Fco are underestimated when a large residual temporal variation remains (i.e. when the 
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model Fco shows a lack of fit). In these situations the standard errors of the slope estimates 

should be multiplied by the scale parameter estimate 
Jn

FDevFDev
c tco






)()(
ˆ , and 

confidence intervals should be based on a student distribution with n-J degrees of freedom 

rather than on the normal distribution (Lebreton et al., 1992). Accordingly the discrepancy 

among slope estimate standard errors vanished after correction by the scale parameter ĉ  

(Table 6). If appropriate scaling is applied to the standard errors of estimates obtained from 

fixed-effects models when needed (i.e. when there is residual unexplained variation), these 

then compare well with the estimates of slopes and associated standard errors obtained from 

mixed-effects models (Breslow, 1990). However, appropriate correction of standard errors 

was applied in only two of the 15 ESR where residual temporal variation was detected 

(Julliard et al., 1999; Milner et al., 1999).  

The estimates of the parameters describing the relationship between survival and 

climatic factors can differ widely according to the link function chosen for the survival and to 

the possible transformations that can be applied to the focal climatic covariate before entering 

it in the regression model. The choice of the link function conditions the shape of the 

modelled response of survival to variation in the climatic covariate (Lebreton et al., 1992; 

Skalski et al., 1993). In order to figure out clearly the type of relationship modelled with 

different link functions one has to determine how a change of δ units in the climatic covariate 

translates into survival variation. With the identity function, a δ units change in the climatic 

covariate has an additive effect equal to bδ on survival (Draper & Smith, 1981). Using a logit 

scale for survival, a δ units change in the climatic covariate has a multiplicative effect equal to 

the exp(bδ) on the odds ratio of survival (Hosmer & Lemeshow, 1989). Using the log-log link 

function, so that survival is expressed as instantaneous mortality rate, a δ units change in the 

climatic covariate has an additive effect equal to the exp(bδ) on the instantaneous mortality 
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rate (Cox & Oakes, 1984). Finally with the log link function, often used in CMR data when 

the length of time intervals vary, a δ units change in the climatic covariate has a multiplicative 

effect equal to exp(bδ) on survival (McCullagh & Nelder, 1989). Whatever the practical or 

biological reasons involved in the choice of a link function, it is thus clear that slope estimates 

obtained with different link functions cannot be easily compared. 

The value obtained for the slope of the relationship between survival and a climatic 

covariate is also sensitive to possible transformations that can be applied to the climatic 

covariate before including it in the regression model. The climatic covariate can be included 

in the regression model as such. The slope then expresses the change in )(f  expected when 

the climatic covariate changes by one unit. In that case the interpretation of the slope is 

straightforward. The climatic covariate can also be centred and standardized, as was done in 

the white stork survival analysis. The variation in the climatic covariate is then expressed in 

terms of anomaly relative to the pattern of variability observed in the time series and the slope 

of the relationship with )(f , sometimes referred to as the standardized slope, expresses the 

change in )(f expected when the climatic covariate changes by one standard deviation unit. 

Provided that the same link function f is used, the slope of the relationship expressed in terms 

of variation in )(f per standard deviation unit of the climatic covariate presents the important 

advantage of allowing comparisons of the magnitude of the impact of distinct climatic factors 

such as temperature and precipitation on survival. It can also be useful to compare the 

magnitude of the impact of climatic factors across case studies. However, such comparisons 

can be drawn only within a type of relationship. For instance, although CNSRF and PBSC 

have been standardized, comparing the slope of the linear relationship between survival and 

CNSRF with the slope for the linear term of the quadratic relationship between survival and 

PBSC makes no sense. It would then often be difficult to compare slope estimates obtained 

from distinct study cases.  
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(c) Measures of magnitude for comparative studies 

In an outstanding review of effect size statistics, Nakagawa & Cuthill (2007) argue that 

standardized effect size statistics or the information necessary to derive such statistics should 

be provided in any biological study because meta-analyses are needed in order to test many 

ecological and/or evolutionary theories as well as to evaluate the generality of findings from 

small-scale studies (Arnqvist & Wooster, 1995). Nakagawa & Cuthill (2007) point out that 

the correlation coefficient, that measures the strength of association between two variables, is 

the standardized effect size used in the standard statistical models for meta-analyses when the 

dependent and independent variables are continuous. Indeed, the correlation coefficient seems 

to be a more robust standardized effect size statistic than the coefficient of determination or 

the standardised slope. It is striking that attempts at obtaining estimates of the correlation 

coefficient in the context of CMR models could be found in none of the papers from the 

ecological or the biostatistical literature that we reviewed. We believe that this is a major gap 

in CMR modelling techniques. However, Nakagawa & Cuthill (2007) also provide a 

comprehensive overview of the links existing among the various effect size measures and list 

the equations that allow converting one measure of effect size into another. It is not yet clear 

to us whether or not these equations apply in the context of CMR models. However we 

believe that published empirical studies of climatic impact on the survival of vertebrates 

should systematically report slope estimates with standard errors that account for all the 

sources of over-dispersion (see above), variances in the time series of the covariates, estimates 

of the process temporal variance in survival probability (with their standard errors and/or 

confidence or credible intervals), and estimates of the coefficients of determination, so that 

proper standardized effect size statistics for meta-analyses could be easily derived a 

posteriori. 



51 

 

 

(6) Impact of climatic factors on white stork survival: conclusions  

The exploratory analysis of white stork survival has generated two hypotheses on the 

influence of climatic factors. The correlation pattern examined suggests that Baden-

Würtemberg white storks could be sensitive to rainfall in their wintering ground and to 

climatic conditions in their breeding grounds from their arrival there back from wintering to 

the onset of the breeding period. White storks may survive poorly in years when rainfall is 

low in the Sahel region (Fig. 6) and in years when extreme climatic conditions (either, high 

NAO, high temperature and low rainfall, or, low NAO, low temperature and high rainfall) 

occur in the breeding area during the pre-breeding season (Fig. 6). Furthermore, assuming that 

these climatic factors exert a genuine influence on survival, the magnitude of their impact is 

likely to be large. Each could account for up to 30% of the temporal variation in survival (Fig. 

5). However the risk of these preliminary conclusions being false exceeded 20% (Table 7), a 

high level as compared to the standard of 5% usually retained in ecological studies. This 

situation of detection of potentially strong effects associated with low confidence for these 

effects being genuine was a consequence of the high number of candidate climatic factors 

initially considered as potentially influential which, in turn, stemmed from poor prior 

knowledge of the study system. The next step in the investigation of the impact of climatic 

factors on Baden-Würtemberg white storks would be to challenge these hypotheses. So 

additional CMR data covering a different time window have to be gathered and used for 

evaluating hypotheses. Initiating longitudinal monitoring of physiological and/or behavioural 

traits and of the abundance of important food resources would also be necessary in order to 

uncover the mechanisms through which Sahel rainfall and climatic conditions in the breeding 

grounds affect survival of white stork. 
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V. DISCUSSION 

In Table 9 we summarize the points developed in earlier sections of this paper. We listed the 

specificities of climatic covariates and survival estimates derived from analyses of long-term 

data collected at the individual scale. We also listed the implications of these specificities for 

the analysis of the impact of climate on survival, advice for avoiding the resulting pitfalls, and 

the frequency with which these pitfalls were poorly dealt with in the ESR. Although we 

presented procedures to attenuate some of the problems identified (Table 9 and see Section 

III), we believe that these problems are partly inherent to the observational nature of the 

studies we focus on. Below we first point out the limits of observational studies. We then 

provide recommendations and point to future research directions that could produce stronger 

inference from empirical studies on climatic impacts on vertebrate survival. Robustness 

improvement in most of the ESR undoubtedly implies an increase in the number of statistical 

units and/or a reduction in the number of candidate climatic covariates (Table 9.B). This can 

be achieved mainly at three stages of a study: field protocol design, selection of the data sets 

used for documenting survival variations and selection of the climatic covariates. Furthermore 

better exploitation of existing statistical tools would result in stronger inference. 

 

 (1) The limits of observational studies of impacts of climatic factors on vertebrate 

survival  

The most rigorous conception for acquiring scientific knowledge is the strong inference 

procedure (Quinn & Dunham, 1983). This procedure first implies that a theory concerning the 

processes that generate a particular pattern in natural systems has to be evaluated. One or 

several experiments should be designed, with possible outcomes that allow users to exclude 

unequivocally one or several of the stipulated hypotheses. The experiment should then be 

carried out. The statistical procedure used in order to evaluate the outcome of the experiment 
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is the NHT, which allows falsifying a hypothesis of interest. Application of the strong 

inference procedure brings about deductive inference that can be considered as true. 

The strong inference procedure can usually not be applied in the context of the studies 

reviewed here, and more generally of ecological studies (Quinn & Dunham, 1983; Guthery et 

al., 2005). First, alternatives regarding which climatic factor should influence survival and 

what impacts they are expected to exert do not stem from sound ecological theory. Instead, 

empirical observations and basic knowledge from research fields such as physiology or 

ethology strongly suggest that climatic factors are amongst the numerous factors (e.g. density 

dependence, resource availability, biotic interactions with competitors and predators) that 

influence survival in free-ranging populations. Second, experiments allowing the rejection of 

the hypothesis that a given climatic factor influences survival in a population are often 

unfeasible. Third, the data used in the type of studies we reviewed were most often not 

collected for the specific purpose of studying the processes through which climatic factors 

influence survival. These are often survey data that are primarily collected for the purpose of 

documenting variation in survival and that serve secondarily for exploring the relative 

importance of a series of putative factors in generating this variation. Finally, the strong 

inference approach hardly applies in studies of biological systems because these systems are 

so complex that the putative processes structuring them and driving their dynamics cannot be 

reduced to a series of dichotomous mutually exclusive alternatives.  

Observational studies of climate impacts on survival can thus only bring about 

inductive inference. Inductive inference produces more or less strong support for processes 

that presumably influence the focal ecological phenomenon, but is never sufficient to validate 

or invalidate them (Quinn & Dunham, 1983; Robinson & Wainer, 2002; Roback & Askins, 

2005; Link & Barker, 2006). For instance, in the correlative studies considered herein, the 

detection of a relationship between a climatic factor and survival cannot be considered as a 
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demonstration of a direct influence of this climatic factor on demography. It can indeed reflect 

an indirect influence of the climatic factor implying a chain of causation, or even the direct or 

indirect influence of a confounding factor (especially, as mentioned above, in situations where 

a detected relationship results solely from the co-occurrence of trends in the survival and 

climatic factor time series). Although this type of study constitutes a major step towards 

reaching the ultimate goals of identifying the processes through which climate influences 

survival, it does not allow doing so as such. 

The strength of the conclusions obtained in an investigation of a scientific question 

through inductive inference depends to a large extent on the number of competing hypotheses 

that are necessary to represent the whole range of putative processes (Burnham & Anderson 

2002; Johnson & Omland, 2004; Hobbs & Hilborn, 2006; Stephens et al., 2007) and on the 

number of parameters that are necessary to depict each of these competing hypotheses with a 

mathematical model (Ginzburg & Jensen, 2004). These characteristics depend in turn to a 

large extent on the quantity and quality of prior knowledge about the focal ecological system. 

When prior knowledge of the system is good, the number of competing hypotheses and the 

main drivers of the focal ecological phenomenon under each of the competing hypotheses are 

well identified a priori. The IT procedure can then be used to obtain relatively strong but still 

inductive inference about processes (Anderson & Burnham, 2002; Burnham & Anderson, 

2002; Ginzburg & Jensen, 2004; Johnson & Omland, 2004; Hobbs & Hilborn, 2006; Stephens 

et al., 2007). When prior knowledge is poor, too many hypotheses are necessary in order to 

cover the full range of competing putative processes (Anderson & Burnham, 2002; Robinson 

& Wainer, 2002; Guthery et al. 2005; Stephens et al., 2005, 2007), some of which imply far 

too many possible drivers for the focal ecological phenomenon (Ginzburg & Jensen, 2004). 

We believe that this was the case in most of the empirical studies of impacts of climatic 
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factors on vertebrate survival we reviewed (Table 9.B; 9.D) as well as in our investigation of 

variation in white stork survival.  

In such situations, it is necessary to admit that the study aims at generating hypotheses 

regarding the climatic covariates that potentially have an impact on survival and that further 

evaluation of these hypotheses would imply either experiments specifically designed or 

analyses of independent data sets (Robinson & Wainer, 2002; Roback & Askins, 2005; Link 

& Barker, 2006). The IT approach seems at first sight well adapted for such exploratory 

studies because it relies on probabilities that the hypotheses of interest are true given the data 

in hand. However, Burnham & Anderson (2002) and our simulation study suggest that the IT 

approach entails high and uncontrolled risks of spurious findings in exploratory situations 

(Table 9.D). On the other hand, many authors consider that the NHT approach suffers from 

severe flaws that severely limit its potential for producing strong inductive inference (e.g. 

Yoccoz, 1991; Cohen, 1994; Johnson, 2002; Robinson & Wainer, 2002; Hobbs & Hilborn, 

2006; Stephens et al., 2007) With the NHT approach, the actual hypothesis of interest that a 

focal climatic covariate influences survival, is accepted in the sense that its complement (the 

null hypothesis) is rejected. This approach thus does not focus explicitly on the hypothesis of 

interest. Furthermore, what is evaluated is the probability with which the data in hand or more 

extreme data could have been obtained if the null hypothesis were true, rather than the 

probability that the null hypothesis is true given the data in hand. However, the results of our 

simulation study suggest that hypothesis testing can be useful in exploratory analyses 

(Guthery et al. 2005; Robinson & Wainer, 2002; Stephens et al., 2005), especially if effect 

size statistics are provided along with measures of statistical significance (Yoccoz, 1991). 
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(2) Improvement of the balance between the number of statistical units and the number 

of candidate climatic factors  

(a) Field protocol design 

In 63 of the 78 ESR, CMR protocols consisted of one session per year taking place during the 

breeding season of the focal species. The inter-annual time scale is a natural one, especially in 

the highly seasonal environments of temperate zones where most long-term demographic 

monitoring programs are maintained, because one time unit matches the complete seasonal 

cycle that constrains the pace of vital activities of any organism. However, the inter-annual 

time scale does not allow to infer directly from survival estimates the time of year when most 

mortality occurs and, as a consequence, when environmental conditions (including climatic 

conditions) are particularly critical. In the few ESR where several sessions per year have been 

carried out (Singer et al., 1997; Julliard et al., 1999; Hoyle, Pople & Toop, 2001; Conroy et 

al., 2002; Piper, 2002; Tavecchia et al., 2002; Barbraud & Weimerskirch, 2003; Garel et al., 

2004; Hallet et al., 2004; Schaefer et al., 2006), a scale was added to the characterization of 

temporal variation in survival. The first advantage was an increase in the number of statistical 

units available for documenting temporal variation in survival. A second advantage was that 

critical periods within a year could be identified more precisely and the number of candidate 

climatic covariates could be considerably reduced.  

 

(b) Selection of data sets used for documenting survival variation 

CMR protocols most often focus on a single population or even a single sub-population of the 

focal species. In only eight ESR were CMR data from several populations analysed 

simultaneously (Newton et al., 1992; Gaillard et al., 1997; Loison et al., 1999; Tavecchia et 

al., 2002; Altwegg et al., 2005; Harris et al., 2005; Schaub et al., 2005; Grosbois et al., 2006). 
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Addressing the impact of climatic factors on survival with such multi-population data sets is 

particularly valuable for two reasons. First, the number of statistical units available for 

documenting temporal variation in survival is increased: indeed, the detection of correlations 

of survival with the same climatic factor in several populations of a given species is very 

convincing evidence that this factor has an impact on survival (e.g. Newton et al., 1992; 

Gaillard et al., 1997; Tavecchia et al., 2002; Harris et al., 2005; Schaub et al., 2005; Grosbois 

et al., 2006). Second, using multi-population data sets allows investigators to document 

geographic variation in influences of climatic factors and to make predictions about the 

impact of various climate change scenarios in terms of changes in species abundance over the 

entire distribution range. Although logistic problems usually prevent one research team from 

simultaneously monitoring several populations of the same species in distant locations, there 

is undoubtedly a large number of seabirds, passerines, small mammals and large herbivores 

for which multi-population CMR data sets could be assembled through collaborations among 

researchers. Such collaborations have already been established for landbirds (Sæther et al., 

2003, 2006; Both et al., 2004; Schaub et al., 2005; Grosbois et al., 2006), and seabirds (Harris 

et al., 2005), and the results obtained illustrate the potential of such approaches for 

documenting geographical variation in the impact of climatic factors. This type of approach 

will hopefully develop in the near future. Moreover, the analysis of multiple population data 

sets allows investigators to assess both the magnitude of co-variation (i.e. of synchrony over 

time) in survival of different populations and the role of climatic factors in generating co-

variation in survival among populations (Schaub et al., 2005; Sæther et al., 2006). The most 

direct way to get estimates of the process covariance among survival estimates from several 

populations involves variants of mixed-effects models which are currently being developed. 
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(c) Selection of a set of climatic factors 

The definition of a relatively small set of non-redundant candidate climatic covariates is 

probably the most problematic issue (Table 9.B; 9C). The number of candidate covariates 

depends to a large extent on the level of uncertainty with which the mechanisms through 

which climate influences survival are known. In some rare instances, eco-physiological and/or 

behavioural studies have provided sufficient information on these mechanisms so this 

uncertainty is low (e.g. in large herbivore species: Sæther, 1997; Gaillard, Festa-Bianchet & 

Yoccoz, 1998). However, the investigator often has to deal with a poor knowledge of such 

mechanisms. In these situations defining a small set of potentially relevant candidate climatic 

covariates can be extremely difficult for several reasons. As mentioned previously, 

monitoring programs at the individual level are most often carried out at the inter-annual time 

scale so that critical times of the year cannot be determined directly. Furthermore, climatic 

covariates can influence survival with time lags. For example, the effect of climatic 

conditions experienced in early stages of life can persist for many years (Albon, Clutton-

Brock & Guinness, 1987; Gaillard et al., 1997). In the case of resident populations of low-

mobility species, the geographic area where the potentially critical climatic covariates have to 

be measured is most often restricted and well defined. However, in other instances, the 

definition of this geographic area is less straightforward. Examples include long-distance 

migratory species (Sillett, Holmes & Sherry, 2000; Møller & Szep, 2005; Stokke et al., 2005; 

Sæther et al., 2006), and highly mobile species such as pelagic seabirds relying on resources 

that are themselves highly mobile (Barbraud & Weimerskirch, 2005; Grosbois & Thompson, 

2005; Crespin et al., 2006; Nevoux & Barbraud, 2006; Votier et al., 2005). Finally, local 

climate can influence survival indirectly through variation in abundance of food (Frederiksen 

et al., 2004; Sandvik et al., 2005). The complexity of climate influences on survival in such 



59 

 

cases generally hampers identification of a small set of potentially relevant climatic 

covariates. 

Selecting all local climatic covariates that are potentially relevant when uncertainty 

about the mechanisms is important often results in too large a set of candidate covariates. 

When this option is nonetheless preferred, we strongly advise against the inclusion of several 

highly correlated covariates in the set of candidate covariates. We believe that using local 

weather packages (obtained for instance from multivariate analyses such as PCA) is a 

powerful way of achieving a reasonable balance between relevance and parsimony during the 

stage of selection of candidate climatic covariates (Loison et al., 1999; Grosbois et al., 2006; 

Jenouvrier et al., 2006; Kéry et al., 2006; Traylor & Alisauskas, 2006 among the papers 

reviewed here and Moss, Oswald & Baines, 2001; Sirabella et al., 2001; Beaugrand & Reid, 

2003; Forsman & Mönkkönen, 2003; for other types of demographic studies). Collaborations 

with climatologists could facilitate defining such local weather packages. 

Another way to deal with high levels of uncertainty about which local climatic 

covariates could influence survival involves using large-scale teleconnection indices such as 

NAO or the southern oscillation index (Holmgren et al., 2001; Ottersen et al., 2001; Stenseth 

et al., 2003). However, large-scale teleconnection indices are likely to influence survival 

through a complex causal pathway. The teleconnection index is then just a surrogate or proxy 

for an unknown variable that is supposed to influence survival directly (Almaraz & Amat, 

2004) and the detection of a relationship between it and survival brings about little 

information on the mechanisms through which climatic factors influence demography. 

 

(3) Better exploitation of statistical tools 

(a) A priori power analyses 
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In the ESR the power to detect effects of climatic factors was not assessed before the 

investigation of potentially influential factors. Yet, the procedures for evaluating a priori 

statistical power in CMR analyses have been described and applied in few studies (Lebreton 

et al., 1992; Devineau et al., 2006). We believe that a priori power evaluation would provide 

important information for setting the α-level when the NHT procedure is used and for 

defining a reasonable size for the set of candidate covariates (i.e. a size with which covariate 

effects can be evaluated with reasonable power when corrections for multiple tests are 

applied). However, one important change in current practice is required before power 

analyses can be undertaken. In none of the ESR were precise alternative hypotheses explicitly 

formulated. Instead, it was implicitly assumed that the alternative hypotheses were just the 

counterpart of the null hypotheses (the parameters of the relationships between survival and 

the focal climate covariate are different from zero or, equivalently, the fraction of the 

temporal variation in adult survival accounted for by the effect of the focal climate covariate 

is more than zero). We believe that the formulation of precise alternative hypotheses would 

contribute to obtaining more robust analyses. It would allow evaluation of statistical power 

and more meaningful conclusions (Field et al., 2004; Devineau et al., 2006).  

 

(b) Integrated modelling 

Combining several sources of information on survival can greatly reduce estimation 

uncertainties and thereby increase statistical power for detecting climatic effects. Integrated 

modelling tools are currently being developed to draw inferences based on the simultaneous 

analysis of different types of data. Attempts at evaluating the influence of climatic factors on 

survival using integrated modelling of live recaptures and dead recoveries have already been 

performed (Catchpole et al., 2000; Blums et al., 2002; Altwegg et al., 2003; Schaub et al., 

2005). In its most elaborate version such integrated modelling could combine monitoring data 
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at the population and individual levels for building statistical models with a structure that 

includes explicit descriptions of the link between demographic parameters and population 

dynamics. Such integrated models certainly have a great potential for investigating the 

influence of climate change on population dynamics (Besbeas, Freeman & Morgan, 2005). 

They are currently being developed but have seldom been used so far for evaluating the 

influence of climatic factors on survival and population dynamics (but see Besbeas et al., 

2002). 

 

(c) Cross validation 

Two important components need to be evaluated for assessing the validity of a statistical 

model. Internal validity is the ability of the model to describe the variation in the focal 

dependent variable in the population where, and over the time period when, the data used to 

build the model have been collected. External validity is the ability to predict variation in the 

dependent variable in other populations and/or over other time periods where and when the 

same processes are supposedly acting.  

An important risk incurred when exploring the potential influence on survival of many 

climatic factors by analysing short time series is that of coming up with a model performing 

well in terms of internal validity but poorly in terms of external validity. This risk further 

increases when the multiple test issue is ignored. For these reasons, we believe that although 

the statistical models produced in many of the ESR represent valuable hypotheses, their 

external validity still needs to be evaluated before they can be used for the ultimate aim of 

predicting survival under future climatic conditions.  

In our opinion, the best approach to evaluate the external validity of a model obtained 

from the analysis of data collected in a given population over a given time period, is to assess 

its predictive performance on a data set collected in a different population and over a distinct 
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time period. We thus believe that undertaking multi-population and multi-species 

investigations is the best approach to produce predictive models with high external validity. 

However, generating hypotheses and evaluating their external validity simultaneously on a 

single data set is to a certain extent possible with cross-validation procedures. Such 

procedures, where the data set is iteratively split into a fitting and a validation subset, have 

been used in investigations of climatic impacts in time series of abundance (e.g. Turchin, 

2003; Corani & Gatto, 2007) and for producing predictive models of species distribution 

ranges through the analysis of climatic niches (e.g. Broennimann et al., 2007, Dormann et al., 

2008). Although it has to our knowledge never been applied in empirical studies of impacts of 

climatic factors on survival of vertebrate populations, cross validation would clearly improve 

the robustness of the results obtained in such studies. 

 

(d) Tools for addressing complex causal pathways 

While the regression models presented here are efficient tools for detecting correlations, they 

hardly provide information on the type (direct or indirect) of the relationships detected, nor 

account for relationships among explanatory covariates. Modelling tools have recently been 

introduced in the field of ecology (e.g. structural equation modelling; Bollen, 1989) to state 

explicitly through flow charts the existence of relationships among explanatory environmental 

covariates and the type (direct or indirect) of relationship linking survival to the explanatory 

environmental covariates (Graham, 2003; see Almaraz & Amat, 2004 for an application in the 

field of population biology). Adaptation of this type of modelling tool to the analysis of 

temporal variation in survival is desirable. It could be used to infer complex causal pathways 

linking survival to several inter-related climatic and biotic covariates. This type of complex 

pathway is suspected to underlie relationships between survival of pelagic seabirds and 

fluctuation of large-scale climatic indices (Jenouvrier et al., 2005b; Sandvik et al., 2005). 
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Furthermore, from a methodological point of view, the application of this type of modelling 

tool would to some extent tackle the multi-collinearity issue (Graham, 2003).  

Complex causal pathways also imply that a candidate climatic covariate may not be the 

actual causal factor but may nonetheless reflect imperfectly temporal variation in this causal 

factor because it is causally connected to it. This is obvious when large-scale integrative 

climatic indices such as the NAO are considered in the set of covariates. In this context, 

regression models that integrate explicitly measurement errors in predictors could be useful. 

Such models have already been used in the field of population biology (e.g. Solow, 1998; 

Almaraz & Amat, 2004) and in the CMR context to study density-dependence (Barker, 

Fletcher & Scofield, 2002). To our knowledge they have never been applied in the context of 

investigation of the relationship between climate and survival. 

Lastly, causal pathways can generate non-linear relationships among climate indices 

(Mysterud et al., 2001; Lima et al., 2002). The recent development of non-parametric models 

in a statistical framework adapted to the analysis of monitoring data at the individual level 

now allows investigators to model with maximum flexibility such non-linear relationships 

(Gimenez et al., 2006). 

 

(e) Multi-model inference 

In the ESR, the IT procedure was often chosen as a statistical framework. However, it was 

used as a tool for identifying among a set of climatic factors those that might noticeably 

influence survival. As discussed above, we believe that the IT procedure is not superior to the 

NHT procedure when used for such exploratory investigations. On the other hand, when prior 

knowledge of the system is good enough for building a limited number of relevant models, 

the IT procedure offers interesting possibilities. In particular, AIC weights can be used to 

draw inductive inference, such as the estimation of the impact of a climatic factor, from 
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several models (Buckland et al., 1997). Such multi-model inference is extremely valuable 

because it accounts for uncertainty in model selection. However, the possibility offered by the 

IT procedure to draw multi-model inference has been exploited in only two of the 78 ESR 

(Beauplet et al., 2005; Traylor & Alisauskas, 2006; see also Hartley et al., 2006; Dormann et 

al., 2008 for the inclusion of model selection uncertainty in inferences on biodiversity and 

species ranges). 

 

f) IT selection criterion for models including random effects 

Our evaluation of the performances of statistical procedures for identifying influential 

climatic factors suggests that the IT procedure does not perform well in situations where prior 

knowledge of the system is poor. In our opinion such a poor performance arises from the 

impossibility of defining a model that explains most of the temporal variation in survival 

through relationships with biologically relevant predictors. We suggest that introducing in the 

set of candidate models mixed effect models of the type of Rt and Rco that account 

parsimoniously for unexplained process variation would most likely improve the statistical 

performance of the IT approach when prior knowledge is poor (Burnham & Anderson, 2002, 

pp. 310-317). Although methods for deriving AIC for CMR models including random effects 

have been proposed (Burnham & White, 2002; Vaida & Blanchard, 2005), their efficiency has 

so far received little evaluation and they have to our knowledge never been applied in 

analyses of field CMR data. Procedures based on AIC comparisons within sets of candidate 

models including fixed- and mixed-effects models have undoubtedly great potential for 

addressing the impact of climatic factors on survival.  

 

(g) Incorporation of prior knowledge 
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In a CMR context, the possibility of incorporating prior knowledge of the system in the 

analysis has rarely been exploited (but see McCarthy & Masters, 2005), and never with the 

aim to demonstrate the impact of climatic factors on demographic parameters. In the white 

stork example, the positive effect on survival of rainfall at wintering sites was demonstrated 

several times in the literature, whereas that of climatic conditions at breeding sites was 

unknown prior to this study. One way of incorporating this prior information would be to 

assign a positive distribution to the regression parameter representing the impact of rainfall on 

survival, and a vague prior such as a normal distribution with large variance for the parameter 

standing for the impact of climatic conditions at breeding sites which was poorly documented 

prior to this analysis. By doing so, the use of information in the data will be focused on 

investigating a potential effect of climatic conditions at breeding sites. 

 

VI. CONCLUSIONS 

(1) Although a noticeably large number of ecological studies have detected impacts of 

climatic factors on survival in populations of vertebrates, many of these results should be 

considered with caution.  

(2) We identified three statistical problems that were often quite poorly dealt with in the 78 

case studies we reviewed (Table 9). First, the evidence for impact of climatic factors on 

survival has been obtained from analyses where multiple correlated climatic covariates were 

considered without tackling the multiple test and multi-collinearity problems (Table 9.B; 9.C). 

Second, in the studies where large variation in survival was observed, and where climatic and 

other time-varying covariates did not account for most of this variation, statistical support for 

the effect of climatic covariates was often assessed using statistics that poorly accounted for 

unexplained variation (Table 9.D). Finally most of the studies we reviewed did not address 

the potential co-occurrence of temporal trends in the survival and climatic covariates despite 
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such co-occurrence easily resulting in spurious detections of climate effects (Table 9.E). We 

suggest that the two last issues are relatively easy to deal with because data can simply be re-

analysed using more robust statistical methods such as those reviewed here.  

(3) In our opinion, the most problematic issue is the low ratio between the number of 

statistical units available for documenting time variation in survival and the number of 

climatic covariates considered as potentially influential (Table 9.B). Indeed, we believe that 

this issue is inherent to observational studies where prior knowledge of the system is too poor 

for a limited set of potential drivers of survival to be defined. More robust results could be 

obtained by improving procedures used at early stages of investigations (e.g. field protocol 

design allowing investigations at infra-annual scales and selection of multi-population data 

sets) as well as at the final stage of data analysis (i.e. better exploitation of the possibilities 

offered by existing statistical tools).  

(4) We are convinced that major findings regarding the influence of climatic factors on 

demographic processes, on the dynamics of distribution ranges or on the structure of 

communities can be expected from investigations at multi-population and multi-specific 

levels. 

(5) We urge population ecologists to consider our recommendations because results obtained 

in investigations of demographic processes in single populations and species can be integrated 

in meta-analyses or used as pieces of prior knowledge for other investigations only if they are 

obtained with robust and standardized statistical methods. 
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VIII. APPENDICES 

 

(1) Case studies where climate impacts on survival of vertebrates have been addressed using capture-mark-recapture data (papers from 1985 to 

2006 from journals referenced in Current Contents). Fcst, Ft, Fco, Ft, FT, FT_q, Rt, Rco are different types of CMR models for describing survival 

(Table 4). LRTx/y, Δx/y, Ftestx/y/z, W(Rco) are statistics to assess statistical support (Table 7 and Sections IV.1-IV.3). R²_Dev, R²_Var are effect size 

statistics (Sections IV.5). GOF: Goodness of fit test. CI: confidence interval. 
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1 Tundra vole 

Microtus 

oeconomus 

Norway 4y 1   Ft (NT) LR on survival 

estimates derived 

from a LGR 

NT F-LR  Pearson 

correlation 

coefficient 

 

2 Red deer 

Cervus elaphus 

Isle of Rum 

Scotland 

10 y ≥2 

(1) 

 N Ft or Fcst 

depending on 

sex and age 

(LRTcst/t) 

LR on the rate of 

number known 

alive at t+1 among 

those seen at t. 

NT F-LR N   
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3 Asp viper 

Vipera aspis 

Switzerland 14 y 3  Y Fcst (Δcst/t) CMR NS (Δcst/t) Δcst/co N   

4 Barn owl Tito 

alba 

Switzerland 12 y 3 (1)  N Ft (Δcst/t) CMR S (Δco/t) Δco/t 

Δcst/co 

UC (based 

on R²) 

N R²_Dev 

R²_Var 

 

5 Barn owl Tito 

alba 

Switzerland 68 y 1   Ft  (Δcst/t) CMR S (Δco/t) Ftestcst/co/t  R²_Var  

6 Emperor 

penguin 

Aptenodytes 

forsteri 

Terre Adélie 

(Antarctica) 

19 y 3   N Ft (LRTcst/t) CMR NS (LRTco/t) LRTco/t N R²_Var  

7 Blue petrel 

Halobaena 

caerulea 

Kerguelen 

archipelago 

12 y 2 (1) Y Y Ft (Δcst/t) CMR NS (Δco/t) AIC weights 

Δcst/co 

 

N R²_Dev 

R²_Var 

 

8 Blue petrel 

Halobaena 

caerulea 

Kerguelen 

archipelago 

10 y 1 (1)  N Ft (Δcst/t) CMR NS (Δco/t) Δco/t 

Δcst/co 

 

N R²_Dev  

9 Snow petrel 

Pagodroma 

nivea 

Terre Adélie 16 y 24  N Ft (LRTcst/t) CMR NS (LRTco/t) LRTcst/co N R²_Dev  

10 Subantarctic fur 

seal 

Arctocephalus 

tropicalis 

Amsterdam 

island 

6 y 1   Fcst  (Δcst/t) or Ft 

(NT) depending 

on age  

Depending on age, 

CMR or Spearman 

rank correlation on 

estimates derived 

from age class size 

and survival 

estimates  

NS (Δcst/t) or 

NT depending 

on age 

Spearman 

rank 

correlation 

test 

 Spearman 

rank 

correlation 

coefficient 

 

11 Cassin’s auklet 
Ptychoramphus 

aleuticus 

Triangle and 

Frederick’s 

islands 

(British 

Columbia) 

5 y 1 Y  Fcst  (Δcst/t) CMR NS (Δcst/t) Δcst/co    

12 Three duck 

species 

Latvia 17-21 y 1   Fcst or Ft 

depending on 

CMR NS (Δco/t) Δcst/co 

Δco/t 
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species (Δcst/t)  UC in one 

species 

(Δcst/co= -

0.72) 

13 Northern red-

backed vole 
Clethrionomys 

rutilus 

Yukon 

(Canada) 

10 y >1(>

1) 

 N Ft (NT) LR on survival 

estimates derived 

from population 

size estimates 

NT F-LR N R²_LR  

14 Seychelles 

warbler 

Acrocephalus 

sechellensis 

Cousin 

Island 

(Seychelles) 

18 y 5 (1)  N Ft (Δcst/t) CMR S (Δco/t) Δcst/co 

Δco/t 

N  C 

15 Common lizard 

Lacerta 

vivipara 

France 13 y 3  Y Ft  or Fcst (Δcst/t) 

depending on 

sex  

CMR NS (Δco/t) Δcst/co  

Δco/t  

N  S 

C 

16 Soay sheep 

Ovis aries 

St Kilda 

(Scotland) 

10 y 4 (1) Y Y Ft (Δcst/t) CMR S (Δco/t) Δco/t 

Δcst/co 

UC (based 

on 

uncorrected 

CI) 

M   

17 Lapwing 
Vanellus 

vanellus 

UK 29 y 13  Y Fcst (Δcst/t) CMR NS (Δcst/t) Δco/t 

Δcst/co 

 

N  S 

C 

18 Coot Fulica 

atra 

Netherlands 15 y 1 (1)  N Ft (NT) LR on Ft estimates 

(log transformed)  

NT F-LR N   

19 Starling 

Sturnus 

vulgaris 

Belgium 6 y 1   Ft (LRTcst/t) CMR NS (LRTco/t) LRTcst/co    

20 Great tit Parus 

major 

England 20 y 5 (6)  Y Ft (LRTcst/t) CMR NS (GOF Fco) LRTcst/co M   

21 Serin Serinus 

serinus 

Spain 15y*2s 3 (1)  N Ft (Δcst/t) CMR S (Δco/t) Δco/t 

Δcst/co 

 

N   
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22 Sand martin 

Riparia riparia 

Breeding in 

Nottinghams

hire (UK) 

wintering in 

West Africa 

23 y 3  N Ft  (Δcst/t) CMR S (Δco/t) Ftestcst/co/t N  S 

23 Common 

guillemot 

Cepphus grylle 

Isle of May 

(Scotland) 

10y 4 Y N Ft  (Δcst/t) CMR S (Δco/t) Ftestcst/co/t N R²_Dev  

24 Four resident 

forest bird 

species: 

Baeolophus 

bicolor, 

Picoides 

pubescens, 

Poecile 

carolinensis, 

Sita 

carolinensis 

Ohio (USA) 5 y 1    Fcst (Δcst/t) CMR NS (Δcst/t) LRTcst/co    

25 Soay sheep 

Ovis aries 

St Kilda 

(Scotland) 

13 y 1 (1) Y N Ft (LRTcst/t) LGR (no detection 

parameter) 

NT LRTcst/co N R²_Dev  

26 Northern 

spotted owl 
Strix 

occidentalis 

California 

(USA) 

9 y 10  N Ft (Δcst/t) CMR NS (Δco/t) Δco/t 

Δcst/co 

 

N R²_Var  

27 Black-legged 

kittiwake Rissa 

tridactyla 

Isle of May 

(Scotland) 

16 y 4 (2) Y N FT_q >Fcst > Ft 

(Δcst/t; Δcst/T_q; 

ΔT_q/t)² 

CMR NS (Δcst/t) LRTcst/co N R²_Var  S 

28 Desert tortoise 
Gopherus 

agassizii 

California 

(USA) 

5 y 1    Ft (Δcst/t) CMR NS (Δco/t) Δco/t 

Δcst/co 

 

   

29 Roe deer 
Capreolus 

capreolus 

France 10y 2 (2)  N Ft (LRTcst/t) CMR NS (LRTco/t) LRTcst/co N R²_Dev 

 

 

30 Mouflon Ovis Southern 9 biw 12  N Ft (Δcst/t) CMR NS (Δco/t) Δco/t N   
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aries France Δcst/co 

 

31 Blue tit 
Cyanistes 

caeruleus 

France 

(mainland 

and Corsica) 

6-13 y 9 Y Y Ft (Δcst/t) CMR NT Ftestcst/co/t M R²_Dev  

32 Northern 

fulmar 
Fulmarus 

glacialis 

Orkneys 

(Scotland) 

34 y 2 (1) Y Y FT>Fcst>Ft 

Fcst>FT>Ft 

 depending on 

sex (Δcst/t; Δcst/T; 

ΔT/t) 

CMR NS (Δcst/t) 

 

LRTcst/co 

LRTT/co+T 

N R²_Dev 

 

S 

C 

33 Mallard Anas 

platyrhynchos 

Sweden  2 y * 16  1   Fcst KF NT Δcst/co   S 

34 Soay sheep 

Ovis aries 

St Kilda 

(Scotland) 

8 y *18w 9  N Ft (NT) LR on number of 

deaths 

NT F-LR Y R²_Dev 

 

 

35 Atlantic puffin 
Fratercula 

arctica 

North eastern 

Atlantic 

11-17 y 6  Y Y Ft or Fcst 

depending on 

colony (Δcst/t) 

CMR NT Ftestcst/co/t N R²_Dev  

36 Atlantic puffin 

Fratercula 

arctica 

Scotland 21 y 4 (7)  N Ft (LRTcst/t) LR on Ft estimates NS (LRTco/t) F-LR N  S 

37 Ghost bat 
Macroderma 

gigas 

Australia 5y*4s 4  N Ft (Δcst/t) CMR NS (Δco/t) 

 

Δco/t 

Δcst/co 

N   

38 Southern 

fulmar 
Fulmarus 

glacialoides 

Terre Adélie 38 y 12  N Fcst (Δcst/t) CMR NS (Δcst/t) Δco/t 

Δcst/co 

UC (based 

on Δcst/co= -

0.39) 

Y R²_Dev 

 

 

39 Emperor 

penguin 

Aptenodytes 

forsteri, snow 

petrel 

Pagodroma 

nivea 

Terre Adélie 31-34y 13 Y N Fcst or Ft 

depending on 

sex and species 

(Δcst/t) 

CMR NS or S 

depending on 

sex and species 

(Δco/t) 

Δco/t 

Δcst/co 

 

N R²_Dev 
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40 Adélie 

penguins 

Pygoscelis 

adeliae 

Terre Adélie 8 y 7 Y Y Ft (Δcst/t) CMR NS (Δco/t) Δco/t 

Δcst/co 

 

N R²_Dev  

41 Least auklet 

Aethia pusilla 

North Pacific 10 y 3 Y N Fcst (Δcst/t) CMR NS (Δcst/t) Δcst/co M   

42 Bighorn sheep 

Ovis 

canadensis 

Alberta, 

(Canada) 

18y 1 (1)  N Fcst (Δcst/t) CMR NS (Δcst/t) Δcst/co N   

43 African 

multimammate 

rat Mastomys 

natalensis 

Tanzania 24 m 2 (1)  Y Ft (LRTcst/t) CMR NT Ftestcst/co/t N R²_Dev  

44 White stork 

Ciconia ciconia 

Alsace 

(breeding) 

20 y 7   N Fcst (LRTcst/t) CMR NS (LRTcst/t) LRTcst/co N  C 

45 Svalbard pink-

footed goose 
Anser 

brachyrhynchus 

Svalbard 

(arctic) in 

summer, 

Denmark and 

Netherlands 

in winter 

13 y 2 (3) Y Y Ft (Δcst/t) CMR S (LRT co/t) Ftestcst/co/t N R²_Dev S 

C 

46 Willow tit 
Poecile 

montana 

Finland 3 y*9m 2  N Ft or Fcst for 

seasonal 

variation, 

depending on 

year (LRTcst/t) 

LR on Ft estimates NT F-LR N R²_LR  

47 Manatee 
Trichechus 

manatus 

Florida 

(USA) 

15 y 1   Ft (Δcst/t) CMR NT Ftestcst/co/t  R²_Dev 

 

 

48 Leaf-eared 

mice Phyllotis 

darwini 

Central Chile 12 y * 4 s 2 (3) Y N Ft (Δcst/t) CMR S (Δco/t) Δco/t 

Δcst/co 

N R²_Dev 

 

 

49 Short-tailed 

shrew Blarina 

brevicauda 

Pennsylvania

(USA) 

20 y * 

12m 

3 (1) Y N Ft (LRTcst/t) CMR NS and S 

depending on 

age (Δco/t) 

Δco/t 

Δcst/co 

N R²_Dev 
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50 Chamois, isard 
Rupicapra 

rupicapra 

French Alps 

and Pyrenees 

12 y 15 Y Y Ft (Δcst/t) CMR NS and S 

depending on 

population 

LRTcst/co N R²_Dev 

 

 

51 Red deer 

Cervus elaphus 

Norway 19 y 2   Y Ft or Fcst 

depending on 

age (Δcst/t) 

CMR NT LRTcst/co N  S 

C 

52 European 

dipper Cinclus 

cinclus 

Norway 18 y 3 (1) Y Y Ft (Δcst/t) CMR NS and S 

depending on 

age (Δco/t) 

Δco/t 

Δcst/co 

UC (based 

on R²) 

N R²_Dev 

R²_Var 

 

 

53 Soay sheep 

Ovis aries 

St Kilda 

(Scotland) 

9 y 1 (1) Y N Rt (NT) Mixed LGR (no 

detection 

parameter) 

NT W(Rco) and 

Ftestcst/co/t 

N   

54 Moose Alces 

alces 

Alaska 11 y*3s 1   Ft ; homogeneity 

test  

KM NS; 

homogeneity 

test among 

normal snow 

years 

Homogeneit

y test 

between 

years with 

different 

climatic 

conditions 

   

55 Barn swallow 
Hirundo rustica 

Denmark 

(breeding) 

18 y 7  N Ft (Δcst/t) CMR NS(Δco/t) Ftestcst/co/t M R²_? 

 

 

56 Sparrowhawk 
Accipiter nisus 

UK 9-15y ≥15 

(1)  

 N Ft or Fcst 

depending on 

site (LRTcst/t) 

CMR NT LRTcst/co M  S 

C 

57 Thin-billed 

prion 

Pachyptila 

belcheri 

Kerguelen 

Islands 

14 y >500 Y N Fcst (Δcst/t) CMR NS (Δcst/t) Δcst/co N  S 

C 

58 Mauritius 

kestrel Falco 

punctatus 

Mauritius 

island 

(Indian 

ocean) 

15y 2 (2)  N Ft or Fcst 

depending on 

age (Δcst/t) 

CMR NS(Δco/t) Δco/t 

Δcst/co 

 

N R²_Dev 

 

 

59 Kudu 
Tragelaphus 

Kruger Park 

(South 

11y 2 (1)  N Ft (NT) LR on number alive 

at i+1 among those 

NT F-LR N R²_LR C 
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strepsiceros Atrica) seen at i 

60 Sedge warbler 
Acrocephalus 

schoenobaenus 

Britain 16y 1   Ft (LRTcst/t) CMR NS (LRTco/t) LRTcst/co  R²_Var S 

C 

61 Reed bunting 
Emberiza 

schoeniclus 

England 28y 1   Ft (LRTcst/t) CMR NT LRTcst/co   S 

C  

62 Lapwing 

Vanellus 

vanellus 

Great Britain 20-50y 35  Y Ft (GOF of Ft 

and Fcst) 

LR on Ft estimates NT F-LR N R²_Var  

63 Great tit Parus 

major 

Netherlands 35y 

 

1 (3)  N Ft (NT) LR on Ft estimates 

(arcsine 

transformed) 

NT F-LR N R²_LR  

64 Longtailed 

wagtail 

Motacilla clara 

South Africa 20y*4s 6 (2)  N Ft (Δcst/t) CMR S (Δco/t) AIC weights  N  S 

65 New Zealand 

long-tailed bats 

Chalinolobus 

tuberculatus 

New Zealand 9 y 1 (1)  N Fcst  (Δcst/t) CMR NS (Δcst/t) LRTcst/co N   

66 Song thrush 
Turdus 

philomelos 

Britain 32 y 2  N Fcst (Δcst/t) CMR NS (Δcst/t) LRTcst/co N   

67 5 seabird 

species:Uria 

aalge, Uria 

lomvia, Alca 

torda, 

Fratercula 

arctica, Rissa 

tridactyla 

Barents Sea 14 y 16 

(3) 

Y N Fcst, FT or Ft 

depending on 

species (Δcst/t, 

Δcst/T ΔT/t) 

CMR NS or S 

depending on 

species (Δco/t) 

Δcot  

Δcst/co 

UC in two 

species 

(Δcst/co= -

0.73 and 

Δcst/co= 1.22) 

N R²_Dev 

 

S 

68 Guanaco Lama 

guanicoe 

Chile 5y 1 (1)  Y Ft; homogeneity 

test Kaplan-

Meyer model 

CR NT Wald N   

69 Two African Kenya 22 m 8  N Fcst  (Δcst/t) CMR NS (Δco/t) Δcst/co N   
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warbler species 
Sylvia Boehmi, 

Sylvia lugens 

70 White stork 

Ciconia ciconia 

Germany, 

Poland 

(breeding) 

19 y 1 (3)  Y Ft (Δcst/t) and 

quantified from 

Rt 

CMR NT but 

Quantified 

from Rco  

Not assessed N R²_Var  

71 Pipistrelle bat 

Pipistrellus 

pipistrellus 

Hesse 

(Germany) 

3 y*2s 2  N Ft (Δcst/t) CMR S (Δco/t) Δco/t 

Δcst/co 

 

N   

72 Black-throated 

blue warbler 
Dendroica 

caerulescens 

New 

Hampshire 

(USA) 

11y 1 Y  Ft or Fcst 

depending on 

site (Δcst/t) 

CMR NS (Δco/t) Δco/t 

Δcst/co 

 

   

73 Elk Cervus 

elaphus 

Yellowstone 

(USA) 

3 y 4  N Ft (NT) LGR NT LRTcst/co N R²_Dev 

 

 

74 Common house 

martin 
Delichon 

urbicum 

Germany 8 y 10  N Ft (Δcst/t) CMR S (Δco/t) Not assessed 

 

N R²_Var  

75 Eurasian 

woodcock 
Scolopax 

rusticola 

France 7-14y 2  Y Ft or Fcst 

depending on 

area (Δcst/t) 

CMR NS or S 

depending on 

area (Δco/t) 

Δco/t 

Δcst/co 

UC in one 

area out of 

three  

N R²_Dev 

 

 

76 White-winged 

scoter 
Melanitta fusca 

Canada 15 bidaily 

intervals 

1   Fcst (NT) CMR NT AIC weights    

77 Common 

guillemot 

Cepphus grylle 

Skomer 

Island (UK) 

18 y 2 (2) Y Y Fcst  (Δcst/t) CMR NS (Δcst/t) Δcst/co N R²_Dev  

78 Northern 

Goshawk 

Accipiter 

gentilis 

Arizona 

(USA) 

4 y 1 (1)  N Ft  (Δcst/t) KF NS (Δco/t) Ftestcst/co/t N R²_Dev  
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(2) Bayesian modelling 

To specify the Bayesian model Rco for the analysis of the white stork and 500 simulated data 

sets, all priors were selected as sufficiently vague in order to induce little prior knowledge. 

Generally, if the data are sufficiently informative, the likelihood dominates the non-

informative priors and the posterior summaries using MCMC samples are close to the results 

of a frequentist analysis. Specifically, we chose uniform distributions on [0,1] for the 

detection probabilities, normal distributions with mean 0 and variances 1,000,000 for the b’s, 

and an inverse-gamma with both parameters equal to 0.001 for 
2 . We used software 

WinBUGS (Spiegelhalter et al., 2002) to implement our approach. For applications of this 

program in wildlife (Link et al., 2002) and for fisheries see Meyer & Millar (1999). We 

generated three chains of length 15,000, discarding the first 5,000 as burn-in. These 

simulations lasted a few seconds on a PC (512Mo RAM, 2.6GHz CPU). Convergence was 

assessed using the Gelman and Rubin statistic, also called the potential scale reduction, which 

compares the within to the between variability of chains started at different initial values 

(Gelman, Meng & Stern, 1996). Note that the covariate was first standardized in order to 

avoid numerical instabilities and to improve MCMC mixing. We found that the Markov 

chains exhibit moderate autocorrelation and good mixing regarding all parameters. In order to 

check for the robustness of our results, we ran our model using different priors during a 

sensitivity analysis, and in all cases there were only minimal changes. The codes used for 

fitting random- and fixed-effects models in a Bayesian framework for the analysis of white 

stork survival can be obtained from the first author on request. 
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Table 1. Meteorological stations in the Sahel region where rainfall data used in the white stork 1 

Ciconia ciconia survival analysis were collected. 2 

 3 

Station N latitude E longitude Label 

    

Dakar 14.7 -17.5 Dak 

Diourbel 14.7 -16.2 Dio 

Gao 16.3 -0.1 Gao 

Kandi 11.1 2.9 Kan 

Kayes 14.4 -11.4 Kay 

Kita 13.1 -9.5 Kit 

Koutiala 12.4 -5.5 Kou 

Maradi 13.5 7.1 Mar 

Mopti 14.5 -4.1 Mop 

Na Titingou 10.3 1.4 Na 

Ouahigouya 13.6 -2.4 Oua 

Sikasso 11.4 -5.7 Sik 

Ségou 13.4 -6.2 Seg 

Tahoua 14.9 5.3 Tah 

Tombouctou 16.7 -3 Tom 

    

 4 
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Table 2. Correlations among climatic covariates.  1 

Climatic covariate Label  Correlation pattern (Pearson’s r below the diagonal; P-value of a t-test for H0: r=0 above the diagonal) 

   WNAO PBST PBSRF PBSNAO PBSC BST BSRF BSNAO BSC CNSRF SSRF 

North Atlantic oscillation, 

December-February 
WNAO   0.82 0.64 0.63 0.64 0.71 0.07 0.57 0.25 0.45 0.06 

Temperature anomaly, breeding 

region, March-May 
PBST  0.06  0.01 0.07 <0.001 0.89 0.32 0.08 0.26 0.71 0.88 

Rainfall anomaly, breeding region, 

March-May 
PBSRF  -0.13 -0.63  0.13 <0.001 0.36 0.96 0.91 0.73 0.92 0.41 

North Atlantic oscillation, March-

May 
PBSNAO  0.13 0.46 -0.4  0.001 0.56 0.64 0.41 0.79 0.53 0.98 

Integrative climatic index, 

breeding region, March-May 
PBSC  0.13 0.87 -0.84 0.73  0.59 0.57 0.27 0.67 0.91 0.42 

Temperature anomaly, breeding 

region, June-August 
BST  -0.1 -0.04 -0.25 0.16 0.15  0.005 0.19 <0.001 0.60 0.35 

Rainfall anomaly, breeding region, 

June-August 
BSRF  0.47 0.26 0.01 0.13 0.15 -0.66  0.03 <0.001 0.95 0.32 

North Atlantic oscillation, June-

August 
BSNAO  -0.16 -0.46 0.03 -0.22 -0.29 0.34 -0.55  <0.001 0.28 0.98 

Integrative climatic index, 

breeding region, June-August 
BSC  -0.3 -0.3 -0.09 -0.07 -0.12 0.82 -0.91 0.74  0.88 0.42 

Central and northern Sahel 

rainfall index 
CNSRF  0.2 0.1 0.03 -0.17 -0.03 0.14 -0.02 -0.29 -0.04  0.45 

Southern Sahel rainfall index SSRF  -0.48 -0.04 -0.22 -0.01 0.07 0.25 -0.27 -0.01 0.22 -0.21  

 2 

The two shaded areas highlight two sets of intercorrelated covariates: those describing climatic conditions in the breeding area during the pre-3 

breeding period and during the breeding period, respectively. Bold type highlights the covariates retained for the analysis of white stork Ciconia 4 
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ciconia survival and the correlations among them. To avoid overloading the table, the 15 Sahel rainfall original covariates are not included here. 1 

Instead, we only included the two Sahel rainfall integrative covariates (CNSRF and SRF). 2 

 3 
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Table 3. Analysis of trends over time (linear and quadratic) in climatic factors 1 

 2 

 3 

 4 

 5 

 6 

Statistics were obtained from linear regression models with the focal climatic factor as the 7 

dependent variable and a linear temporal trend and, for quadratic temporal trend, that linear 8 

trend squared, as predictors. P-values were obtained from an F-test of the hypothesis that the 9 

slope(s) of the relationship(s) with the predictor(s) equal zero. R²-LR is the coefficient of 10 

determination of the linear regression model. Covariate abbreviations are defined in table 2. 11 

 12 

Covariate Linear trends Quadratic trends 

 R²_LR P-value R²_LR P-value 

WNAO 0.077 0.299 0.192 0.25 

CNSRF 0.573 0.001 0.603 0.003 

SSRF 0.004 0.81 0.065 0.65 

PBSC 0.002 0.89 0.012 0.92 

BSC 0.153 0.135 0.167 0.306 
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Table 4. Models used for describing survival [f(ϕi)] 1 

 2 

F refers to models including only fixed effects. R refers to models including random effects. Subscripts cst, t, T, T_q, co, refer to constant, time 3 

dependent , linear trend, quadratic trend, covariate respectively. 4 

Label Formulation Description Parameters to be estimated 

    

Fcst af i )(  Survival is constant over years - One constant parameter: a  

    

Ft ii af )(  Survival varies over years - One distinct parameter, ia , for each time interval i in the time series  

    

FT 
(FT_q)  

Survival varies according to a linear (or 

quadratic) trend 

- One parameter, a, for the intercept 

- One (or two) parameter(s), b (and c), for slopes of the linear (Ti,) [and 

quadratic (Ti²)] trend terms 
    

Rt ii af  )(  
Survival shows stochastic variation over 

years around a mean 

- One parameter, a , for the mean  

- One parameter for the variance 
2  of the random term εi that describes 

stochastic variation over years around the mean 
    

Fco  )()( 2

jijjiji xcxbaf   
Survival is totally determined by a linear (or 

quadratic) relationship with the covariate j 

- One parameter a  for the intercept  

- One (or two) parameter(s) bj, (and cj) for the relationship with covariate 

xj 
    

Rco  ijijjiji xcxbaf   )()( 2
 

Survival is totally determined by a linear (or 

quadratic) relationship with the covariate j. 

The variation over years that remains 

unexplained is stochastic 

- One parameter a  for the intercept  

-  One (or two) parameter(s) bj, (and cj) for the relationship with covariate 

xj 

- One parameter for the variance 
2  of the random term εi that describes 

stochastic variations over years unexplained by the climatic covariates 
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Table 5. Selection of a reference model for the analysis of white stork adult survival.  

 

Survival Recapture Dev K AICc 

     

Time dependent (Ft) Constant (Fcst) 249.28 17 1349.50 

     

Linear trend (FT) Constant (Fcst) 284.1 3 1355.61 

     

Constant (Fcst) Constant (Fcst) 286.60 2 1356.10 

     

Quadratic trend (FT_q) Constant (Fcst) 283.51 4 1357.03 

     

Linear trend (FT) Time dependent (Ft) 273.11 18 1375.41 

     

Time dependent (Ft) Time dependent (Ft) 241.58 31 1371.5 

     

Constant (Fcst) Time dependent (Ft) 276.09 17 1376.30 

     

Quadratic trend (FT_q) Time dependent (Ft) 273.04 19 1377.43 

     

 

F: refers to models including only fixed effects. Subscripts cst, t, T, T_q, and co refer to constant, time 

dependent, linear trend, quadratic trend and covariate, respectively (see also Table 4). Dev: deviance; 

K: number of parameters; AICc: Akaike Information Criterion corrected for small sample sizes. 
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Table 6. Estimates obtained from random-, fixed- and mixed-effects models of the relationship between climatic covariates and white stork 

Ciconia ciconia survival. 

 
Fixed-effects model  

Mixed-effects model 

(Method of moments) 
 

Mixed-effects model 

(Bayesian) 

 est coi- coi+  est coi- coi+  Est cri- cri+ 

            

 Model Fcst  Model Rt  Model Rt 

            

Intercept 0.68 0.54 (0.44*) 0.82 (0.92*)  0.69 0.46 0.93  0.72 0.50 0.98 

Process variance     0.14 0.02 0.51  0.16 0.02 0.42 

            

 Model Fco  Model Rco  Model Rco 

Linear effect of CNSRF            

Intercept 0.66 0.52 (0.44*) 0.81(0.88*)  0.68 0.46 0.89  0.70 0.49 0.93 

Slope 0.23 0.08 (-0.01*) 0.39 (0.47*)  0.23 0.01 0.45  0.24 0.01 0.46 

Residual process variance     0.09 0.00 0.43  0.12 0.01 0.36 

Coefficient of determination 0.23  0.33  0.29 

Quadratic effect of PBSC            

Intercept 1.08 0.82 (0.69*) 1.35 (1.47*)  1.05 0.68 1.42  1.09 0.73 1.45 

Slope linear term -0.17 -0.35 (-0.44*) 0.02 (0.10*)  -0.17 -0.43 0.10  0.17 -0.11 0.46 

Slope quadratic term -0.35 -0.54(-0.63*) -0.16(-0.07*)  -0.34 -0.61 -0.06  -0.34 -0.60 -0.07 

Residual process variance     0.08 0.00 0.41  0.10 0.01 0.38 

Coefficient of determination 0.38  0.39  0.38 

        

 

Fcst, Fco, Rt, Rco are different types of CMR models for describing survival (Table 4). CNSRF, central and northern Sahel rainfall; PBSC, pre-

breeding season climate; coi- and coi+: lower and upper 95% confidence intervals respectively; cri- and cri+: lower and upper credibility 



 111 

intervals, respectively; est: parameter estimate (posterior median in the Bayesian analysis). Coefficents of determination were estimated by 

R²_Dev, based on analysis of deviance, for fixed-effects models and by R²_Var, based on analysis of variance, for mixed-effects models (see 

equations 6 and 7 in Section IV.5.a). * indicates that confidence interval limits were corrected by the scale parameter ĉ  for over-dispersion due 

to the presence of residual process variation in models Fcst and Fco and based on a student distribution with 16, 15 and 14 degrees of freedom, 

depending on the number of parameters in the model. 
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Table 7. Statistics used to address the statistical support for the effect of climatic covariates on white Ciconia ciconia stork adult survival  

 

 
Model statistical 

characteristics 
 

NHT approach fixed-

effects models 

 NHT approach 

mixed-effects 

models 

 
Bayesian 

approach 

 
IT approach 

 Dev K AICc  

P-

value 

LRTco/t 

Corrected     

P-value 

Ftestcst/co/t 

(uncorrected) 

 

Corrected          

P-value      

W(Rco) 

(uncorrected) 

 
95% credible 

region 

 AICc differences Evidence ratio 

Δco/cst Δco/t wco/wcst 

Time dependent (Ft) 249.28 17 1349.5             

Constant (Fcst) 286.60 2 1356.1             

Covariate models (Fco)                

PBSC_q 275.44 4 1348.96  0.0382 0.468 (0.047)    [0; 0] excluded  -9.99 -3.39 147.78 

CNSRF 277.93 3 1349.44  0.0116 0.293 (0.059)  0.305 (0.061)  0.01 0.46  -6.66 -0.06 27.9 

CNSRF_q 286.53 4 1360.06  0.0162 0.33 (0.099)    [0; 0] included  -7.14 -0.54 35.45 

WNAO 286.58 3 1358.09  0.0016 0.837 (0.335)  1.259 (0.503)  -0.34 0.16  -0.47 6.13 1.26 

WNAO_q 272.58 4 1346.11  0.0009 1.259 (0.629)    [0; 0] included  1.47 8.07 0.48 

PBSC 286.08 3 1357.59  0.0008 1.106 (0.664)  1.271 (0.762)  -0.32 0.21  1.5 8.1 0.47 

BS 285.61 4 1359.14  0.0007 1.149 (0.804)  0.944 (0.661)  -0.34 0.21  3.04 9.64 0.22 

BS_q 286.43 3 1357.94  0.0005 1.049 (0.839)    [0; 0] included  1.84 8.44 0.4 

SSRF 284.04 4 1357.56  0.0007 1.032 (0.929)  1.005 (0.905)  -0.33 0.23  1.99 8.59 0.37 

SSRF_q 284.12 3 1355.63  0.0004 0.988 (0.988)    [0; 0] included  3.96 10.56 0.14 

                

 

NHT, null hypothesis testing; IT, information theoretic; Dev, deviance; AICc, Akaike information criterion corrected for small sample sizes; K, 

number of parameters;. LRTco/t tests for variation unexplained by the climatic covariates in model Fco. The threshold P-value for this test was set 

at 0.05. Ftestcst/co/t and W(Rco) test the null hypothesis that the focal climatic covariate has no effect on survival. The threshold P-value used for 

these tests is 0.20 and the observed P-values have been corrected so that the false discovery rate is maintained at 0.20. Uncorrected observed P-
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values are also provided between brackets. The criterion for covariate selection considered in the IT approach was Δco/cst <-2 and, Δco/t<2 where 

Δco/cst = AICc(Fco) –AICc(Fcst) and Δco/t = AICc(Fco)–AICc(Ft). wco/wcst is the evidence ratio for the focal covariate model (Fco) as compared to the 

constant survival model (Fcst). _q indicates a quadratic relationship between survival and the focal covariate. See Table 2 for climatic covariate 

definitions. See Table 4 for model descriptions. 
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Table 8. Performance of statistical procedures used to assess statistical support for effects of 

climatic covariates.  

 

        

  Residual process variance over years (
2 ) 

  0 0.01 0.03 0.05 0.1 0.3 

Slope (b)        
 

 

 

A) NHT, fixed-effects models Pr(rejection of H0: b = 0, by LRTcst/co if 

LRTco/t NS and by Ftestcst/co/t if LRTco/t S) 

0 L 0.04 0.05 0.08 0.07 0.06 0.05 

0.1 Pw 0.45 0.39 0.32 0.30 0.16 0.11 

0.15 Pw 0.77 0.72 0.55 0.42 0.32 0.17 

0.2 Pw 0.92 0.89 0.74 0.71 0.45 0.20 

0.3 Pw 1.00 0.99 0.95 0.90 0.76 0.46 

0.5 Pw 1.00 1.00 1.00 1.00 0.98 0.84 
 

  B) NHT, fixed-effects models: Pr(rejection of H0: b = 0 by Ftestcst/co/t) 

0 L 0.05 0.05 0.06 0.05 0.05 0.05 

0.1 Pw 0.40 0.35 0.26 0.26 0.15 0.11 

0.15 Pw 0.71 0.66 0.50 0.39 0.31 0.17 

0.2 Pw 0.89 0.87 0.71 0.68 0.44 0.20 

0.3 Pw 0.99 0.98 0.95 0.89 0.76 0.46 

0.5 Pw 1.00 1.00 1.00 1.00 0.98 0.84 
 

  C) NHT, mixed-effects models: Pr(rejection of H0: b = 0 by W(Rco)) 

0 L 0.04 0.04 0.06 0.05 0.05 0.06 

0.1 Pw 0.38 0.33 0.28 0.21 0.17 0.10 

0.15 Pw 0.70 0.62 0.48 0.41 0.28 0.14 

0.2 Pw 0.90 0.84 0.75 0.59 0.46 0.19 

0.3 Pw 0.98 0.99 0.95 0.91 0.77 0.41 

0.5 Pw 1 1 1 1 0.97 0.80 
 

  D) B: Pr(0 is not in the 95% credible interval) 

0  0.03 0.04 0.09 0.09 0.11 0.19 

0.1  0.36 0.39 0.32 0.28 0.26 0.27 

0.15  0.71 0.66 0.53 0.49 0.4 0.32 

0.2  0.89 0.86 0.81 0.66 0.59 0.37 

0.3  0.99 0.97 0.96 0.94 0.85 0.63 

0.5  1.00 1.00 1.00 1.00 1.00 0.89 
 

  E) IT: Pr(Δco/cst<-2 and, Δco/t<2) 

0  0.04 0.05 0.11 0.11 0.04 0.00 

0.1  0.46 0.42 0.32 0.24 0.08 0.00 

0.15  0.74 0.73 0.54 0.35 0.10 0.01 

0.2  0.92 0.89 0.65 0.49 0.12 0.00 

0.3  0.98 0.95 0.72 0.48 0.15 0.00 

0.5  1.00 0.97 0.74 0.56 0.18 0.00 
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NHT, null hypothesis testing; B, Bayesian; IT, information theory; L, level; Pw, power; Pr, 

probability; H0, null hypothesis; NS, non significant; S, significant . LRTx/y, Δx/y, Ftestx/y/z, 

W(Rco) are statistics to assess statistical support (Table 7 and Sections IV.1-IV.3). 

 



 116 

Table 9. Pitfalls in studies of the impact of climatic factor on survival. ESR, ecological studies reviewed; PCA, principal component analysis. 

 

 Characteristics of survival 

estimates and climatic 

covariates 

Associated methodological problem (CS = case 

studies) 
Detrimental consequences Advice 

     

A 

   Survival probabilities are not 

measured directly, but inferred 

from monitoring data at the 

individual scale. 

  -Survival estimated from models that do not 

account for detection probability (7/78). 

  Survival estimates may be biased and 

the bias can differ among years because 

of variation among years in detection 

probability. 
   Use a statistical framework 

specific to the analysis of monitoring 

data collected at the individual scale. 
   -Annual survival estimates derived from model 

Ft (see Table 4) used in standard regression 

models. Sampling variance-covariance structure 

of estimates ignored (9/78). 

   High probability of detecting spurious 

effects. 

B 

   Monitoring programs at the 

individual scale usually cover 

less than 30 years and most often  

do not allow studying survival 

variation at infra-annual time 

scales. 

 

   Numerous covariates are 

needed in order to describe fully 

local climatic conditions. 

 

   Ratio of number of statistical units to number of 

candidate time-varying covariates ≤ 5/1 (49/78). 

Correction for multiple tests applied in 2/49 ESR 

where multiple time-varying covariates 

considered (mentioned in 6 others). 

   If proper correction of the threshold 

P-value for multiple tests is not applied, 

the probability of detecting spurious 

climatic covariates effects is high. 

 

   If correction for multiple tests: low 

statistical power. 

   Keep the ratio climatic covariates 

to statistical units low. 

 

   Apply corrections for multiple 

tests. 

 

   Combine candidate covariates (for 

example using PCA) to generate 

integrative indices. 

C 

   Covariates describing local 

climatic conditions are often 

inter-correlated (i.e. collinearity 

among explanatory covariates). 

   Relationship among climatic covariates not 

examined (43/62 ESR where effect of several 

time-varying covariates addressed). 

   -Selection among regression models 

including highly correlated covariates is 

problematic. 

 

   -Spurious estimates can be obtained 

from multiple regression models 

including highly correlated covariates. 

 

   -Simple regression models with 

distinct correlated covariates may not 

reflect distinct causal relationships.  

   Select non-redundant candidate 

covariates. 

 

   Combine candidate covariates (for 

example using PCA) to generate few 

independent integrative indices from 

a large number of interdependent 

covariates. 
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Characteristics of survival and 

climatic covariates 
Associated methodological problem  Detrimental consequences Advice 

     

D 

   Variation in survival arise from 

the influence of multiple factors, 

some of which might be 

unsuspected by the investigator. 

+ 

   Relationships between survival 

and candidate climatic covariates 

are often indirect (climatic 

covariates are proxies). 

= 

Covariate models unlikely to 

explain most variation in 

survival. 

 

   -In 10/15 CS where residual variation in 

survival was detected, the information-theoretic 

approach that deals poorly with unexplained 

variation was adopted. In 7 of these 10, 

conclusion on climate effect based on 

misleading criteria. 

   Spurious climatic covariate effects 

can be detected and/or probability of 

detection of genuine climatic covariate 

effects can be low. 

   Favour the hypothesis testing 

approach over the information-

theoretic approach when variation in 

survival is large. 

 

   - The hypothesis testing approach was 

adopted but statistical support for climatic 

covariate effects was assessed using statistics 

that deal poorly with unexplained variation 

(5/24 CS where the hypothesis testing approach 

was adopted and where unexplained variation 

was detected or not tested). 

   Spurious climatic covariate effects 

can be detected. 

   When the hypothesis testing 

approach is adopted and significant 

unexplained variation is detected, 

use test statistics that account for this 

unexplained variation. 

E 

   Heterogeneity among 

individuals in survival and/or 

detection parameters generates 

spurious trends in time series of 

survival estimates. 

   Time series of climatic 

covariates do often exhibit 

trends. 

   Trends in survival were not investigated 

(61/78). 

   Trends in the climatic covariates were not 

investigated (66/78). 

   Spurious effects resulting from the co-

occurrence of trends in survival and the 

climatic covariate time series can be 

wrongly interpreted as causal 

relationships. 

   Test for the effects of trends in the 

climatic covariate and the survival 

time series. If trends are detected, 

use statistics that assess the fraction 

of the variation in the demographic 

parameter about the trend.  

F 

    The slope estimates from 

regression models are sensitive 

to the link function chosen for 

survival and to the possible 

transformations that can be 

applied to the climatic 

covariates. 

   The only measure of the impact of climatic 

covariates provided were slope estimates 

(35/78). 

   Results cannot be used in meta-

analyses addressing general issues on 

the impact of climate on ecological 

systems. 

   Assess the fraction of temporal 

variation in survival explained by 

climatic covariates. 
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FIGURE LEGENDS 

 

Fig. 1. Yearly estimates of adult survival for Baden-Würtemberg white storks Ciconia ciconia. Error 

bars indicate 95% confidence intervals. 

 

Fig. 2. Correlation circles of the principal components analyses (PCA) for building integrative 

climatic indices. The fifteen meteorological stations plotted in A are identified in Table 1. Climate 

covariate abreviations are as in Table 2. 

 

Fig. 3. Time series for integrative climatic indices considered as candidate covariates in the analysis 

of adult survival of Baden-Würtemberg white storks. 

 

Fig. 4. 95% joint credible region obtained with a Bayesian approach for the slopes of the linear and 

quadratic terms in relationships between white stork Ciconia ciconia survival and five climatic 

covariates. For descriptions of climatic covariates see Table 2 and Fig. 2. 

 

Fig. 5. Estimation of the fraction of temporal variation in the adult survival of Baden-Würtemberg 

white storks Ciconia ciconia accounted for by candidate climatic covariates based on analysis of 

deviance (R²_Dev; see equations 6 in Section IV.5.a), or on analysis of variance (R²_Var; see 

equation 7 in Section IV.5.a). Climatic covariate abbreviations are as in Table 2. _q indicates a 

quadratic relationship between survival and the focal covariate. 

 

Fig. 6. Relationships detected between climatic indices and adult survival of white storks Ciconia 

ciconia breeding in Baden-Würtemberg. NAO, north Atlantic oscillation, PBSC, pre-breeding 

climatic index, CNSRF, central and northern Sahel rainfall index. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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