
HAL Id: hal-03515044
https://hal.science/hal-03515044v1

Submitted on 6 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Patch Autocorrelation Features: A translation and
rotation invariant approach for image classification.

Radu Tudor Ionescu, Andreea Lavinia Ionescu, Josiane Mothe, Dan Popescu

To cite this version:
Radu Tudor Ionescu, Andreea Lavinia Ionescu, Josiane Mothe, Dan Popescu. Patch Autocorrelation
Features: A translation and rotation invariant approach for image classification.. Artificial Intelligence
Review, 2016, 2016, pp.1-32. �10.1007/s10462-016-9532-4�. �hal-03515044�

https://hal.science/hal-03515044v1
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.1007/s10462-016-9532-4
URL : https://doi.org/10.1007/s10462-016-9532-4

To cite this version : Ionescu, Radu Tudor and Ionescu, Andreea Lavinia and
Mothe, Josiane and Popescu, Dan Patch Autocorrelation Features: A
translation and rotation invariant approach for image classification. (2016)
Artificial Intelligence Review, 2016. pp. 1-32. ISSN 0269-2821

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18821

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Patch Autocorrelation Features: A translation and

rotation invariant approach for image classification

Radu Tudor Ionescu · Andreea Lavinia

Ionescu · Josiane Mothe · Dan Popescu

Abstract The autocorrelation is often used in signal processing as a tool for find-
ing repeating patterns in a signal. In image processing, there are various image
analysis techniques that use the autocorrelation of an image in a broad range of
applications from texture analysis to grain density estimation. This paper provides
an extensive review of two recently introduced and related frameworks for image
representation based on autocorrelation, namely Patch Autocorrelation Features
(PAF) and Translation and Rotation Invariant Patch Autocorrelation Features
(TRIPAF). The PAF approach stores a set of features obtained by comparing
pairs of patches from an image. More precisely, each feature is the euclidean dis-
tance between a particular pair of patches. The proposed approach is successfully
evaluated in a series of handwritten digit recognition experiments on the popular
MNIST data set. However, the PAF approach has limited applications, because it
is not invariant to affine transformations. More recently, the PAF approach was
extended to become invariant to image transformations, including (but not limited
to) translation and rotation changes. In the TRIPAF framework, several features
are extracted from each image patch. Based on these features, a vector of similar-
ity values is computed between each pair of patches. Then, the similarity vectors
are clustered together such that the spatial offset between the patches of each
pair is roughly the same. Finally, the mean and the standard deviation of each
similarity value are computed for each group of similarity vectors. These statis-
tics are concatenated to obtain the TRIPAF feature vector. The TRIPAF vector
essentially records information about the repeating patterns within an image at
various spatial offsets. After presenting the two approaches, several optical char-

R. T. Ionescu
University of Bucharest, 14 Academiei, Bucharest, Romania, E-mail: ra-
ducu.ionescu@gmail.com

A. L. Ionescu, D. Popescu
Politehnica University of Bucharest, 313 Splaiul Independentei Street, Bucharest, Romania,
E-mail: andreea.lavinia@ymail.com, dan popescu 2002@yahoo.com

J. Mothe
École Supérieure du Professorat et de l’Éducation, Université de Toulouse, IRIT, UMR 55005
CNRS, 118, Route de Narbonne, Toulouse, France, E-mail: josiane.mothe@irit.fr

acter recognition and texture classification experiments are conducted to evaluate
the two approaches. Results are reported on the MNIST (98.93%), the Brodatz
(96.51%), and the UIUCTex (98.31%) data sets. Both PAF and TRIPAF are fast
to compute and produce compact representations in practice, while reaching ac-
curacy levels similar to other state-of-the-art methods.

Keywords image autocorrelation · patch-based method · optical character
recognition · texture classification · rotation invariant method · translation
invariant method · MNIST · Brodatz · UIUCTex

1 Introduction

Artificial intelligence is a vast domain with important applications in many fields
(Valipour et al, 2013; Valipour, 2015a,b; Laalaoui and Bouguila, 2015; Ionescu
et al, 2016), including computer vision (Szeliski, 2010; Ionescu and Popescu, 2016).
The classical problem in computer vision is that of determining whether or not
the image data contains some specific object, feature, or activity. Object recogni-
tion, face recognition, texture classification and optical character recognition are
particular formulations of this problem, the last two of them being approached
in the current work. Optical character recognition is widely employed as a form
of acquiring digital information from printed paper documents such as passport
documents, business cards, or even historical documents, so that they can be elec-
tronically stored, edited or searched. On the other hand, texture classification is
extremely useful in industrial and biomedical surface inspection, for example for
defects or disease identification. Texture classification is also employed for ground
classification and segmentation of satellite or aerial imagery. Hence, there are many
potential applications of the two frameworks presented in this work.

Computer vision researchers have developed sophisticated methods for various
image classification tasks. Virtual SVM (DeCoste and Schölkopf, 2002), boosted
stumps (Kégl and Busa-Fekete, 2009), convolutional neural networks (LeCun et al,
1998; Ciresan et al, 2012) or deep Boltzmann machines (Salakhutdinov and Hin-
ton, 2009) are sophisticated state-of-the-art learning frameworks used for optical
character recognition. However, simple methods such as the k-Nearest Neighbor
(k-NN) model have also obtained very good recognition results, sometimes being
much better than more sophisticated techniques. Some of the techniques that fall
in this category of simple yet very accurate methods, and worth to be mentioned,
are the k-NN models based on Tangent distance (Simard et al, 1996), shape context
matching (Belongie et al, 2002), non-linear deformation (Keysers et al, 2007), and
Local Patch Dissimilarity (Dinu et al, 2012), respectively. While optical character
recognition can successfully be approached with a simple technique, more complex
image classification tasks require more sophisticated methods, naturally because
the methods have to take into account several aspects such as translation, rotation,
and scale variations, illumination changes, viewpoint changes, partial occlusions
and noise. Among the rather more elaborate state-of-the-art models used in image
classification are bag of visual words (Csurka et al, 2004; Liu et al, 2011; Ionescu
et al, 2013), Fisher Vectors (Perronnin and Dance, 2007; Perronnin et al, 2010),
and deep learning models (Krizhevsky et al, 2012; Socher et al, 2012; Simonyan
and Zisserman, 2014; Szegedy et al, 2015).

in this category of simple yet very accurate methods, and worth to be mentioned,

Local Patch Dissimilarity (Dinu et al, 2012), respectively. While optical character

This paper presents two feature representation for images that are based on
the autocorrelation of the image with itself. The first representation is a simple
approach in which each feature is determined by the euclidean distance between
a pair of patches extracted from the image. To reduce the time necessary to com-
pute the feature representation, patches are extracted at a regular interval by
using a dense grid over the image. This feature representation, which was initially
introduced in (Ionescu et al, 2015a), is termed Patch Autocorrelation Features
(PAF). Ionescu et al (2015a) have shown that PAF exibits state-of-the-art perfor-
mance in optical character recognition. However, the PAF approach is affected by
affine transformations and it requires additional improvements in order to solve1

more complex image classification tasks, such as texture classification, for exam-
ple. Ionescu et al (2015b) have proposed an extension of PAF that is invariant to
image transformations, such as translation and rotation changes. Naturally, this
extension involves more elaborate computations, but the resulted feature vector is
actually more compact, since it involves the vector quantization of pairs of patches
according to the spatial offset between the patches in each pair. Instead of directly
comparing the patches, the extended approach initially extracts a set of features
from each patch. The extended feature representation is termed Translation and
Rotation Invariant Patch Autocorrelation Features (TRIPAF).

Several handwritten digit recognition experiments are conducted in this work
in order to demonstrate the performance gained by using the PAF representa-
tion instead of a standard representation based on raw pixel values (a common
approach for optical character recognition). More precisely, experiments are per-
formed using two different classifiers (k-NN and SVM) on original and deslanted
images from the MNIST data set. Experiments are conducted on only 1000 images,
but also on the entire MNIST data set. The empirical results obtained in all the
experiments indicate that the PAF representation is constantly better than the
standard representation. The best results obtained with the PAF representation
are similar to some of the state-of-the-art methods (Kégl and Busa-Fekete, 2009;
Salakhutdinov and Hinton, 2009). The advantage of PAF is that it is easy and fast
to compute.

A series of texture classification experiments are also conducted in the present
work to evaluate the extended version of PAF, namely TRIPAF, in a more difficult
setting. Two popular texture classification data sets are used for the evaluation,
specifically Brodatz and UIUCTex. The empirical results indicate that TRIPAF
can significantly improve the performance over a system that uses the same fea-
tures, but extracts them from entire images. By itself, TRIPAF is invariant to
rotation and translation changes, and for this reason, it makes sense to combine
it with a scale invariant system in order to further improve the performance. As
such, the system based on TRIFAF was combined with the bag of visual words
(BOVW) framework of Ionescu et al (2014b) through multiple kernel learning
(MKL) (Gonen and Alpaydin, 2011). The BOVW framework is based on cluster-
ing SIFT descriptors (Lowe, 1999) into visual words, which are scale invariant. The
performance level of the combined approach is comparable to the state-of-the-art
methods for texture classification (Zhang et al, 2007; Nguyen et al, 2011; Quan
et al, 2014).

1 with a reasonable degree of accuracy

This paper presents two feature representation for images that are based on

1affine transformations and it requires additional improvements in order to solve1

images from the MNIST data set. Experiments are conducted on only 1000 images,

(BOVW) framework of Ionescu et al (2014b) through multiple kernel learning

The idea behind the PAF and the TRIPAF approaches is to represent the
repeating patterns that occur in the image through a set of features. Thus, they
provide a way of representing the image autocorrelation that is useful for learning
the repeating patterns in order to classify images. A key difference from previous
works using the autocorrelation for texture classification (Horikawa, 2004b,a; Toy-
oda and Hasegawa, 2007) is that TRIPAF obtains significantly better performance
for this task. Moreover, TRIPAF provides a compact representation that can be
computed fast.

To summarize, the contributions of this overview paper are:

• It provides an extensive description of PAF, a simple and efficient feature
representation for handwritten digit recognition and simple image classification
tasks (Section 3);

• It gives an extensive presentation of TRIPAF, a compact, efficient and invari-
ant feature representation for texture classification and more complex image
classification task (Section 4);

• It presents classification results obtained with PAF on the MNIST data set
(Section 6);

• It presents classification results obtained with TRIPAF on the Brodatz and
UIUCTex data sets (Section 7);

• It provides empirical evidence that TRIPAF is invariant to rotation and mirror
transformations (Section 7.6).

2 Related Work

2.1 Autocorrelation in Image Analysis

The autocorrelation is a mathematical tool for finding repeating patterns which has
a wide applicability in various domains such as signal processing, optics, statistics,
image processing, or astrophysics. In signal processing, it is used to find repetitive
patterns in a signal over time. Images can also be regarded as spatial signals. Thus,
it makes sense to measure the spatial autocorrelation of an image. Certainly, the
autocorrelation has already been used in image and video processing (Brochard
et al, 2001; Popovici and Thiran, 2001; Horikawa, 2004b; Toyoda and Hasegawa,
2007; Kameyama and Phan, 2013; Yi and Pavlovic, 2013; Haouas et al, 2016).
Brochard et al (2001) present a method for feature extraction from texture im-
ages. The method is invariant to affine transformations, this being achieved by
transforming the autocorrelation function (ACF) and then by determining an in-
variant criterion which is the sum of the coefficients of the discrete correlation
matrix.

A method for using higher order local autocorrelations (HLAC) of any order
as features is presented in (Popovici and Thiran, 2001). The method exploits
the special form of the inner products of autocorrelations and the properties of
some kernel functions used by SVM. Toyoda and Hasegawa (2007) created large
mask patterns for HLAC features and constructed multi-resolution features to
support large displacement regions. The method is applied to texture classification
and face recognition. However, Toyoda and Hasegawa (2007) apply their method
on only 32 Brodatz textures and obtain their best accuracy rate of 83.0% with
19 training samples per class. By contrast, TRIPAF is evaluated on all the 111

repeating patterns that occur in the image through a set of features. Thus, they

classification task (Section 4);

Brodatz textures using only 3 training samples per class, a considerably more
difficult setting. However, the accuracy of TRIPAF (92.85%) is nearly 10% better.

Kernel canonical correlation analysis based on autocorrelation kernels is ap-
plied to invariant texture classification in (Horikawa, 2004b). The autocorrelation
kernels represent the inner products of the autocorrelation functions of original
data. In (Horikawa, 2004a), SVM based on autocorrelation kernels are used for
texture classification invariant to similarity transformations and noise. Different
from these works (Horikawa, 2004b,a), the TRIPAF framework is evaluated on the
entire Brodatz data set, demonstrating good results for more than a few kinds of
texture.

Kameyama and Phan (2013) explored the nature of the (Local) Higher-Order
Moment kernel of various orders as measures for image similarity. The Higher-
Order Moment kernel enables efficient utilization of higher-order autocorrelation
features in images. Through sensitivity evaluation and texture classification exper-
iments, the authors found that the studied kernel allows to control the selectivity
of the similarity evaluation.

Yi and Pavlovic (2013) propose an autocorrelation Cox process that encodes
spatio-temporal context in a video. In order to infer the autocorrelation struc-
ture relevant for classification, they adopt the information gain feature selection
principle. The authors obtain state-of-the-art performance on action recognition
in video.

Haouas et al (2016) focus on the combination of two important image features,
the spectral and the spatial information, for remote sensing image classification.
Their results show the effectiveness of introducing the spatial autocorrelation in
the pixel-wise classification process.

2.2 Patch-based Techniques

As many other computer vision techniques (Efros and Freeman, 2001; Deselaers
et al, 2005; Guo and Dyer, 2007; Barnes et al, 2011; Michaeli and Irani, 2014),
the PAF map considers patches rather than pixels, in order to capture distinctive
features such as edges, corners, shapes, and so on. In other words, the PAF repre-
sentation stores information about repeating edges, corners, and other shapes that
can be found in the analyzed image. For numerous computer vision applications,
the image can be analyzed at the patch level rather than at the individual pixel
level or global level. Patches contain contextual information and have advantages
in terms of computation and generalization. For example, patch-based methods
produce better results and are much faster than pixel-based methods for texture
synthesis (Efros and Freeman, 2001). However, patch-based techniques are still
heavy to compute with current machines, as stated in (Barnes et al, 2011). To
reduce the time necessary to compute the PAF representation, patches are com-
pared using a grid over the image. The density of this grid can be adjusted to
obtain the desired trade-off between accuracy and speed.

A paper that describes a patch-based approach for rapid image correlation or
template matching is (Guo and Dyer, 2007). By representing a template image
with an ensemble of patches, the method is robust with respect to variations
such as local appearance variation, partial occlusion, and scale changes. Rectangle

Moment kernel of various orders as measures for image similarity. The Higher-
Order Moment kernel enables efficient utilization of higher-order autocorrelation

filters are applied to each image patch for fast filtering based on the integral image
representation.

An approach to object recognition was proposed by Deselaers et al (2005),
where image patches are clustered using the EM algorithm for Gaussian mixture
densities and images are represented as histograms of the patches over the (dis-
crete) membership to the clusters. Patches are also regarded in (Paredes et al,
2001), where they are classified by a nearest neighbor based voting scheme.

Agarwal and Roth (2002) describe a method where images are represented
by binary feature vectors that encode which patches from a codebook appear in
the images and what spatial relationship they have. The codebook is obtained by
clustering patches from training images whose locations are determined by interest
point detectors.

Passino and Izquierdo (2007) propose an image classification system based
on a Conditional Random Field model. The model is trained on simple features
obtained from a small number of semantically representative image patches.

The patch transform, proposed in (Cho et al, 2010), represents an image as a
bag of overlapping patches sampled on a regular grid. This representation allows
users to manipulate images in the patch domain, which then seeds the inverse
patch transform to synthesize a modified image.

In (Barnes et al, 2011), a new randomized algorithm for quickly finding ap-
proximate nearest neighbor matches between image patches is introduced. This
algorithm forms the basis for a variety of applications including image retarget-
ing, completion, reshuffling, object detection, digital forgery detection, and video
summarization.

Patches have also been used for handwritten digit recognition in (Dinu et al,
2012). Dinu et al (2012) present a dissimilarity measure for images that quantifies
the spatial non-alignment between two images. With some efficiency improve-
ments, Ionescu and Popescu (2013b) show that their method reaches state-of-the-
art accuracy rates in handwritten digit recognition. An extended version of the
same method has also been used for texture classification in (Ionescu et al, 2014a).

Michaeli and Irani (2014) present an approach for blind deblurring, which is
based on the internal patch recurrence property within a single natural image.
While patches repeat across scales in a sharp natural image, this cross-scale recur-
rence significantly diminishes in blurry images. The authors exploit these devia-
tions from ideal patch recurrence as a cue for recovering the underlying (unknown)
blur kernel, showing better performance than other state-of-the-art deblurring
frameworks.

3 Patch Autocorrelation Features

The Patch Autocorrelation Features are inspired from the autocorrelation used in
signal processing. Instead of quantifying the autocorrelation through a coefficient,
the approach described in this section is to store the similarities between patches
computed at various spatial intervals individually in a vector. This vector con-
tains the Patch Autocorrelation Features that can be used for image classification
tasks in which the amount of variation induced by affine transformations is not
significant.

The L2 euclidean distance is used to compute the similarity between patches,
but it can be substituted with any other distance or similarity measure that could
possibly work better, depending on the task. The only requirement in the case
of the euclidean distance is that the patches should all be of the same size, in
order to properly compute the similarity between patches. To reduce the number
of parameters that need to be tuned, another constraint to use square shaped
patches was also added. Formally, the L2 euclidean distance between two gray-
scale patches X and Y each of p× p pixels is:

∆L2
(X,Y) =

√

√

√

√

p
∑

i=1

p
∑

j=1

(Xi,j − Yi,j)2, (1)

where Xi,j represents the pixel found on row i and column j in X, and Yi,j

represents the pixel found on row i and column j in Y . At this point, one can
observe that the PAF representation contains a quadratic number of features with
respect to the number of considered patches. More precisely, if n denotes the
number of patches extracted from the image, then the resulted number of features
will be n(n−1)/2, since each pair of patches needs to be considered once and only
once. Thus, the computational complexity of PAF is O(n2). However, a dense grid
is applied over the image to reduce the number of patches n. Extracting patches
or local features using a sparse or a dense grid is a popular approach in computer
vision (Cho et al, 2010; Ionescu and Popescu, 2015). The density of the grid is
directly determined by a single parameter that specifies the spatial offset (in pixels)
between consecutive patches. In practice, a good trade-off between accuracy and
speed can be obtained by adjusting this parameter.

Algorithm 1: PAF Algorithm

1 Input:
2 I - a gray-scale input image of h× w pixels;
3 p - the size (in pixels) of each square-shaped patch;
4 s - the distance (in pixels) between consecutive patches.

5 Initialization:
6 n← ceil((h− p+ 1)/s) · ceil((w − p+ 1)/s);
7 P ← ∅;
8 vi ← 0, for i ∈ {1, 2, ..., n(n− 1)/2};

9 Computation:
10 for i = 1 : s : w do

11 for j = 1 : s : w do

12 P ← Ii:(i+p−1),j:(j+p−1);

13 P ← P ∪ P ;

14 k ← 1;
15 for i = 1 : n− 1 do

16 for j = i+ 1 : n do

17 v(k)← ∆L2
(Pi, Pj);

18 k ++;

19 Output:
20 v - the PAF feature vector with n(n− 1)/2 components.

2, since each pair of patches needs to be considered once and only
once. Thus, the computational complexity of PAF is

Fig. 1 The classification system based on Patch Autocorrelations Features. The PAF repre-
sentation is obtained by storing the similarity between pairs of patches that are previously
extracted using a dense grid over the input image. The PAF maps of train images are used to
learn discriminant features. The trained classifier can then be used to predict class labels for
new images represented as PAF vectors.

Algorithm 1 computes the PAF representation for a gray-scale input image I.
Notice that gray-scale images are considered for simplicity, but the PAF approach
can also be computed on color images. For instance, the PAF representation can
be easily adapted to work on color patches. Alternatively, color images can be
transformed to gray-scale before any further processing.

The following conventions and mathematical notations are considered in Al-
gorithm 1 and throughout this paper. Arrays and matrices are always considered
to be indexed starting from position 1, that is v = (v1, v2, ..., v|v|), where |v| is
the number of components of v. The notations vi or v(i) are alternatively used to
identify the i-th component of v. The sequence 1, 2, ..., n is denoted by 1 : n, but
if the step is different from the unit, it can be inserted between the lower and the
upper bounds. For example, 1 : 2 : 8 generates the sequence 1, 3, 5, 7. Moreover,
for a vector v and two integers i and j such that 1 ≤ i ≤ j ≤ |v|, vi:j denotes
the sub-array (vi, vi+1, ..., vj). In a similar manner, Xi:j,k:l denotes a sub-matrix
of the matrix X. Since the analyzed images are reduced to gray-scale, the notion
of matrix and image can be used interchangeably, with the same meaning. In this
context, a patch corresponds to a sub-matrix. The set of patches extracted from
the input image is denoted by P = {P1, P2, ..., Pn}.

The first phase of Algorithm 1 (steps 10 -13) is to use a dense grid of uniformly
spaced interest points in order to extract patches at a regular interval. The patches
are stored in a set denoted by P. In the second phase (steps 14 -18), the patches

are compared two by two using the euclidean distance, and the distance between
each pair of patches is then recorded in a specific order in the PAF vector v.
More specifically, step 17 of Algorithm 1 is computed according to Equation (1).
An important remark is that the features are generated in the same order for
every image to ensure that all images are represented in the same way, which is a
mandatory characteristic of feature representations used in machine learning. For
instance, if the similarity of two patches with the origins given by the coordinate
points (x, y) and (u, z) in image I, respectively, is stored at index k in the PAF
vector of image I, then the similarity of the patches having the origins in (x, y)
and (u, z) in any other image must always be found at index k in the PAF map.
This will enable any learning method to find the discriminant features from the
PAF vectors. The entire process that involves the computation of the PAF vector
for image classification is illustrated in Figure 1.

A quick look at Algorithm 1 is enough to observe that the PAF approach is a
simple technique. While it was found to be very effective for rather simple image
classification tasks (Ionescu et al, 2015a), the PAF algorithm needs to be adjusted
to handle images variations common to more complex image classification tasks.
This issue is going to be addressed in the next section.

4 Translation and Rotation Invariant Patch Autocorrelation Features

Several modifications have been proposed in (Ionescu et al, 2015b) in order to
transform Patch Autocorrelation Features into an approach that takes into ac-
count several image variation aspects including translation and rotation changes,
illumination changes, and noise. Instead of comparing the patches based on raw
pixel values, a set of features is extracted from each image patch. Depending on
the kind of patch features, the method can thus become invariant to different
types of image variations. In this work, a set of texture-specific features are used
since the approach is evaluated on the texture classification task. These features
are described in detail in Section 4.1. The important remark is that a different
set of features can be extracted from patches when PAF is going to be used for a
different problem.

Rather than computing a single value to represent the similarity between two
patches based on the extracted features, the extended PAF approach computes
several similarities, one for each feature. More precisely, patches are compared
using the Bhattacharyya coefficient between each of their features. Given two
feature vectors fX , fY ∈ R

m extracted from two image patches X and Y , the
vector of similarity values between the two patches sX,Y is computed as follows:

sX,Y (i) =
√

fX(i) ·
√

fY (i), ∀i ∈ {1, 2, ...,m}. (2)

Note that each component of sX,Y is independently computed in the sense that
it does not depend on the other features. Therefore, sX,Y can capture different
aspects about the similarity between X and Y , since each feature can provide
different information. The same features are naturally extracted from each patch,
thus |fX | = |fY | = m for every pair of patches (X,Y).

In the basic PAF approach, the next step would be to concatenate the similarity
vectors generated by comparing patches two by two. This would be fine, as long as

the method relies entirely on the features to achieve invariance to different image
transformations. However, further processing can be carried out to ensure that
PAF remains invariant to translation and rotation, even if the extracted features
are not. Unlike the basic PAF approach, the pairs of patches are vector quantized
by the spatial offset between the patches of each pair. Given two patches X and
Y having the origins in (x, y) and (u, z), respectively, the spatial offset o between
X and Y is measured with the help of the L2 euclidean distance between their
origins:

o(X,Y) =
√

(x− u)2 + (y − z)2. (3)

In order to cluster pairs of patches together, the spatial offsets are rounded
to the nearest integer values. Given two pairs of patches (X,Y) and (U, V), they
are clustered together only if ⌊o(X,Y)⌉ = ⌊o(U, V)⌉, where ⌊x⌉ is the rounding
function of x ∈ R, that returns the nearest integer value to x. It is important to
note that the similarity vector determined by a pair of patches is included in the
cluster, not the patches themselves. Formally, a cluster (or a group) of similarity
vectors between patches extracted at a given spatial offset k is defined as follows:

Ck = {sPi,Pj
| ⌊o(Pi, Pj)⌉ = k, ∀(Pi, Pj) ∈ P × P, 1 ≤ i < j ≤ |P|}, (4)

where P = {P1, P2, ..., P|P|} is the set of patches extracted from the input image,
o(Pi, Pj) is the offset between Pi and Pj determined by Equation (3), and sPi,Pj

is the similarity vector between patches Pi and Pj computed as in Equation (2).
In each cluster, the similarity vectors are computed between patches that re-

side at a certain spatial offset, in all possible directions. The exact position of
each patch is simply disregarded in the clustering process. When the image is
translated or rotated, these clusters remain mostly unaffected, because the spa-
tial offsets between patches are always the same. Obviously, the patches extracted
from an image will not be identical to the patches extracted from the same image
after applying a rotation, specifically because the patches are extracted along the
vertical and horizontal axes of the image based on a fixed grid, as illustrated in
Figure 2. As such, the clusters may not contain the very same patches when the
image is rotated, but in principle, each cluster should capture about the same in-
formation, since the distance between patches is always preserved. Therefore, the
method can be safely considered as translation and rotation invariant. The final
step is to find a representation for each of these clusters. The mean and the stan-
dard deviation are computed for each component of the similarity vectors within
a group. Finally, the Translation and Rotation Invariant Patch Autocorrelation
Features (TRIPAF) are obtained by concatenating these statistics for all the clus-
ters C1, C2, ..., Cd, in this specific order, where d is a constant integer value that
determines the number of clusters. Figure 2 illustrates the entire process required
for computing the TRIPAF vector.

It is important to note that in order to make sure all the images in a set I are
represented by vectors of the same length, each image needs to be resized such
that its diagonal is equal to the constant integer value d:

√

wI
2 + hI

2 = d, ∀I ∈ I, (5)

where wI and hI are the width and the height of image I, respectively. The number
of components of the TRIPAF vector is O(md), where m represents the number of

Fig. 2 The classification system based on Translation and Rotation Invariant Patch Auto-
correlations Features. In a first stage, feature vectors are computed from patches extracted
by applying a grid over the image, and then, the resulted feature vectors are stored in a set
P. Then, similarity vectors are computed and subsequently clustered according to the spatial
offsets between patches. Finally, the TRIPAF vector is generated by computing the mean (µ)
and the standard deviation (σ) of each component of the similarity vectors within each cluster.
The TRIPAF maps of train images are then used to learn discriminant features. The trained
classifier can be used to predict class labels for new images represented as TRIPAF vectors.
For better readability, not all arrows have been represented in this figure.

features extracted from patches and d is a positive integer value that controls the
number of pairs of patches per cluster. Actually, d can be considered as a parameter
of TRIPAF that can be usually adjusted in practice, in order to obtain a desired
trade-off between accuracy and space. Having an extra parameter that needs to be
adjusted based on empirical observations is not necessarily desired. Therefore, to
reduce the number of parameters that need to be tuned, d can be set to the average
diagonal size of all the images in I. An interesting detail about TRIPAF is that
the clusters of similarity vectors naturally tend to become more and more sparse
as the spatial offset between patches grows. Certainly, cluster C1 is the most dense
cluster, while Cd contains only two components that correspond to the patches
situated in the four corners of the image. Being so far apart, the patches that
form the sparse clusters no longer bring any useful information about the image.

This hypothesis was empirically tested in the context of texture classification. The
accuracy of TRIPAF remains at the same level when the representation is reduced
to half of its size by removing the sparse clusters Cd, Cd−1, ..., C⌊d/2⌉. Another
constant value c ∈ (0, 1] is introduced to control the proportion of dense clusters
that is taken into consideration. More precisely, only the first ⌊c · d⌉ clusters will
be kept in the final TRIPAF vector.

Algorithm 2: TRIPAF Algorithm

1 Input:
2 I - a gray-scale input image of h× w pixels;
3 p - the size (in pixels) of each square-shaped patch;
4 s - the distance (in pixels) between consecutive patches;
5 d - the number of clusters;
6 c - a constant value in the range (0, 1];
7 F = {F1, F2,, Fm | Fi : R

p × R
p → R, ∀i} - a set of m feature extraction functions.

8 Initialization:

9 I ← resized image I such that
√

(w)2 + (h)2 = d;
10 (h,w)← size(I);
11 n← ceil((h− p+ 1)/s) · ceil((w − p+ 1)/s);
12 P ← ∅;
13 Ci ← ∅, for i ∈ {1, 2, ..., ⌊c · d⌉};
14 vi ← 0, for i ∈ {1, 2, ...,m · ⌊c · d⌉};

15 Computation:
16 for i = 1 : s : h do

17 for j = 1 : s : w do

18 P ← Ii:(i+p−1),j:(j+p−1);

19 for k = 1 : m do

20 fP (k)← Fi(P);

21 P ← P ∪ fP ;

22 for i = 1 : n− 1 do

23 for j = i+ 1 : n do

24 if ⌊o(Pi, Pj)⌉ ≤ ⌊c · d⌉ then
25 for k = 1 : m do

26 sPi,Pj
(k)←

√

fPi
(k) ·

√

fPj
(k);

27 C⌊o(Pi,Pj)⌉
← C⌊o(Pi,Pj)⌉

∪ sPi,Pj
;

28 k ← 1;
29 for i = 1 : ⌊c · d⌉ do
30 for j = 1 : m do

31 v(k)← mean(s(j)), for s ∈ Ci;
32 v(k + 1)← std(s(j)), for s ∈ Ci;
33 k ← k + 2;

34 Output:
35 v - the TRIPAF feature vector with m · ⌊c · d⌉ components.

The TRIPAF representation is computed as described in Algorithm 2. The
same mathematical conventions and notations provided in Section 3 are also used
in Algorithm 2. On top of these notations, two predefined functions are used to
compute the mean and the standard deviation (as defined in literature), namely

that is taken into consideration. More precisely, only the first ⌊c · d⌉ clusters will

mean and std. The TRIPAF algorithm can be divided into three phases. In the
first phase (steps 16 -21), feature vectors are computed from patches extracted by
applying a grid of uniformly spaced interest points, and then, the resulted feature
vectors are stored in the set P. The notation P is used by analogy to Algorithm 1,
even if it is now used to store feature vectors instead of patches. In the second
phase (steps 22 -27), the similarity vectors are computed and subsequently clus-
tered according to the spatial offsets between patches. In the third phase (steps
28 -33), the TRIPAF vector v is generated by computing the mean and the stan-
dard deviation of each component of the similarity vectors within each cluster. A
close view reveals that Algorithm 2 is more complex than Algorithm 1, but it is
also more flexible, in the sense that it can easily be adapted for a variety of image
classification tasks, simply by changing the set of features F . The set of texture-
specific features used for the texture classification experiments are described next.

4.1 Texture Features

The mean and the standard deviation are the first two statistical features extracted
from image patches. These two basic features can be computed indirectly, in terms
of the image histogram. The shape of an image histogram provides many clues
to characterize the image, but the features obtained from the histogram are not
always adequate to discriminate textures, since they are unable to indicate local
intensity differences. Therefore, more complex features are necessary.

One of the most powerful statistical methods for textured image analysis is
based on features extracted from the Gray-Level Co-Occurrence Matrix (GLCM)
proposed by Haralick et al (1973). The GLCM is a second order statistical measure
of image variation and it gives the joint probability of occurrence of gray levels
of two pixels, separated spatially by a fixed vector distance. Smooth texture gives
a co-occurrence matrix with high values along diagonals for small distances. The
range of gray level values within a given image determines the dimensions of a
co-occurrence matrix. Thus, 4 bits gray level images give 16 × 16 co-occurrence
matrices. Relevant statistical features for texture classification can be computed
from a GLCM. The features proposed by Haralick et al (1973), which show a good
discriminatory power, are the contrast, the energy, the entropy, the homogeneity,
the variance and the correlation.

Another feature that is relevant for texture analysis is the fractal dimension.
It provides a statistical index of complexity comparing how detail in a fractal
pattern changes with the scale at which it is measured. The fractal dimension is
usually approximated. The most popular method of approximation is box counting
(Falconer, 2003). The idea behind the box counting dimension is to consider grids
at different scale factors over the fractal image, and count how many boxes are filled
over each grid. The box counting dimension is computed by estimating how this
number changes as the grid gets finer, by applying a box counting algorithm. An
efficient box counting algorithm for estimating the fractal dimension was proposed
by Popescu et al (2013). The idea of the algorithm is to skip the computation for
coarse grids, and count how many boxes are filled only for finer grids. The TRIPAF
approach includes this efficient variant of box counting.

Daugman (1985) found that cells in the visual cortex of mammalian brains
can be modeled by Gabor functions. Thus, image analysis by the Gabor functions

is similar to perception in the human visual system. A set of Gabor filters with
different frequencies and orientations may be helpful for extracting useful features
from an image. The local isotropic phase symmetry measure (LIPSyM) of Kuse
et al (2011) takes the discrete Fourier transform of the input image, and filters
this frequency information through a bank of Gabor filters. Kuse et al (2011)
also note that local responses of each Gabor filter can be represented in terms of
energy and amplitude. Thus, Gabor features, such as the mean-squared energy
and the mean amplitude, can be computed through the phase symmetry measure
for a bank of Gabor filters with various scales and rotations. These features are
relevant because Gabor filters have been found to be particularly appropriate for
texture representation and discrimination. The Gabor features are also used in the
TRIPAF algorithm.

5 Learning Methods

There are many supervised learning methods that can be used for classification,
such as Näıve Bayes classifiers (Manning et al, 2008), neural networks (Bishop,
1995; Krizhevsky et al, 2012; LeCun et al, 2015), Random Forests (Breiman, 2001),
kernel methods (Shawe-Taylor and Cristianini, 2004) and many others (Caruana
and Niculescu-Mizil, 2006). However, all classification systems used in this work
rely on kernel methods to learn discriminant patterns. Therefore, a brief overview
of the kernel functions and kernel classifiers used either for handwritten digit recog-
nition or texture classification is given in this section. For the texture recognition
experiments, the TRIPAF representation is combined with a bag of visual words
representation to improve performance, particularly the bag of visual words rep-
resentation described in (Ionescu et al, 2014b), which is based on the PQ kernel.
Details about the BOVW model are also given in this section.

5.1 Kernel Methods

Kernel-based learning algorithms work by embedding the data into a Hilbert space,
and searching for linear relations in that space using a learning algorithm. The
embedding is performed implicitly, that is by specifying the inner product between
each pair of points rather than by giving their coordinates explicitly. The power
of kernel methods lies in the implicit use of a Reproducing Kernel Hilbert Space
(RKHS) induced by a positive semi-definite kernel function. Despite the fact that
the mathematical meaning of a kernel is the inner product in a Hilbert space,
another interpretation of a kernel is the pairwise similarity between samples.

The kernel function offers to the kernel methods the power to naturally handle
input data that is not in the form of numerical vectors, such as strings, images,
or even video and audio files. The kernel function captures the intuitive notion of
similarity between objects in a specific domain and can be any function defined on
the respective domain that is symmetric and positive definite. For images, many
such kernel functions are used in various applications including object recognition,
image retrieval, or similar tasks. Popular choices are the linear kernel, the inter-
section kernel, the Hellinger’s kernel, the χ2 kernel or the Jensen-Shannon kernel.
Other state of art kernels are the pyramid match kernel of Lazebnik et al (2006)

experiments, the TRIPAF representation is combined with a bag of visual words

Details about the BOVW model are also given in this section.

and the PQ kernel of Ionescu and Popescu (2013a). Some of these kernels are also
used in different contexts in the experiments presented in this work, specifically
the linear kernel, the intersection kernel and the PQ kernel. These three kernels
are described in more detail next.

For two feature vectors X,Y ∈ R
n, the linear kernel is defined as:

k(X,Y) = 〈X,Y 〉, (6)

where 〈·, ·〉 denotes the inner product.
The intersection kernel is given by component-wise minimum of the two feature

vectors:

k(X,Y) =
n
∑

i

min {xi, yi}. (7)

An entire set of correlation statistics for ordinal data are based on the number
of concordant and discordant pairs among two variables. The number of concordant
pairs among two variables X,Y ∈ R

n is:

P = |{(i, j) : 1 ≤ i < j ≤ n, (xi − xj)(yi − yj) > 0}|. (8)

In the same manner, the number of discordant pairs is:

Q = |{(i, j) : 1 ≤ i < j ≤ n, (xi − xj)(yi − yj) < 0}|. (9)

Among the correlation statistics based on counting concordant and discordant
pairs are Goodman and Kruskal’s gamma, Kendall’s tau-a and Kendall’s tau-b

(Upton and Cook, 2004). These three correlation statistics are very related. More
precisely, all are based on the difference between P and Q, normalized differently.
In the same way, the PQ kernel (Ionescu and Popescu, 2013a) between two his-
tograms X and Y is defined as:

kPQ(X,Y) = 2(P −Q). (10)

The PQ kernel can be computed in O(n log n) time with the efficient algorithm
based on merge sort described in (Ionescu and Popescu, 2015). An important
remark is that the PQ kernel is suitable to be used when the feature vector can also
be described as a histogram. For instance, the PQ kernel improves the accuracy in
object recognition (Ionescu and Popescu, 2013a, 2015) and texture classification
(Ionescu et al, 2014b) when the images are represented as histograms of visual
words.

After embedding the features with a kernel function, a linear classifier is used
to select the most discriminant features. Various kernel classifiers differ in the way
they learn to separate the samples. In the case of binary classification problems,
Support Vector Machines (SVM) (Cortes and Vapnik, 1995) try to find the vector
of weights that defines the hyperplane that maximally separates the images in the
Hilbert space of the training examples belonging to the two classes. The SVM is
a binary classifier, but image classification tasks are typically multi-class classifi-
cation problems. There are many approaches for combining binary classifiers to
solve multi-class problems. Usually, the multi-class problem is broken down into
multiple binary classification problems using common decomposing schemes such

as one-versus-all and one-versus-one. In the experiments presented in this paper
the one-versus-all scheme is adopted for SVM. Nevertheless, there are some classi-
fiers that take the multi-class nature of the problem directly into account, such as
Kernel Discriminant Analysis (KDA). The KDA method provides a projection of
the data points to a one-dimensional subspace where the Bayes classification error
is smallest. It is able to improve accuracy by avoiding the class masking problem
(Hastie and Tibshirani, 2003). Further details about kernel methods can be found
in (Shawe-Taylor and Cristianini, 2004).

5.2 Bag of Visual Words Model

In computer vision, the BOVW model can be applied to image classification and
related tasks, by treating image descriptors as words. A bag of visual words is a
vector of occurrence counts of a vocabulary of local image features. This repre-
sentation can also be described as a histogram of visual words. The vocabulary is
usually obtained by vector quantizing image features into visual words.

The BOVW model can be divided in two major steps. The first step is for
feature detection and representation. The second step is to train a kernel method
in order to predict the class label of a new image. The entire process, that involves
both training and testing stages, is illustrated in Figure 3.

The feature detection and representation step works as described next. Fea-
tures are detected using a regular grid across the input image. At each interest
point, a SIFT feature (Lowe, 1999) is computed. This approach is known as dense
SIFT (Dalal and Triggs, 2005; Bosch et al, 2007). Next, SIFT descriptors are vec-
tor quantized into visual words and a vocabulary (or codebook) of visual words
is obtained. The vector quantization process is done by k-means clustering (Le-
ung and Malik, 2001), and visual words are stored in a randomized forest of k-d
trees (Philbin et al, 2007) to reduce search cost. The frequency of each visual word
in an image is then recorded in a histogram. The histograms of visual words enter
the training step. Typically, a kernel method is used for training the model. In the
experiments, the recently introduced PQ kernel is used to embed the features into
a Hilbert space. The learning is done either with SVM or KDA, which are both
described in Section 5.1.

6 Handwritten Digit Recognition Experiments

Isolated handwritten character recognition has been extensively studied in the
literature (Suen et al, 1992; Srihari, 1992), and was one of the early successful
applications of neural networks (LeCun et al, 1989). Comparative experiments on
recognition of individual handwritten digits are reported in (LeCun et al, 1998).
While recognizing individual digits is one of many problems involved in designing
a practical recognition system, it is an excellent benchmark for comparing shape
recognition methods.

Fig. 3 The BOVW learning model for image classification. The feature vector consists of
SIFT features computed on a regular grid across the image (dense SIFT) and vector quantized
into visual words. The frequency of each visual word is then recorded in a histogram. The
histograms enter the training stage. Learning is done by a kernel method.

6.1 Data Set Description

The data set used for testing the feature representation presented in this paper is
the MNIST set, which is described in detail in (LeCun et al, 1998). The regular
MNIST database contains 60, 000 train samples and 10, 000 test samples, size-
normalized to 20 × 20 pixels, and centered by center of mass in 28 × 28 fields. A
random sample of 15 images from this data set is presented in Figure 4. The data
set is available at http://yann.lecun.com/exdb/mnist.

6.2 Implementation Details

The PAF representation is used in a learning context in order to evaluate its
performance on handwritten digit recognition. Certainly, two learning methods
based on the PAF representation are evaluated to provide a more clear overview
of the performance improvements brought by PAF and to demonstrate that the
improvements are not due to a specific learning method. The first classifier, that is

performance on handwritten digit recognition. Certainly, two learning methods

Fig. 4 A random sample of 15 handwritten digits from the MNIST data set.

intensively used through all the experiments, is the k-Nearest Neighbors (k-NN).
The k-NN classifier was chosen because it directly reflects the characteristics of
the PAF representation, since there is no actual training involved in the k-NN
model. A state-of-the-art kernel method is also used in the experiments, namely
the SVM based on the linear kernel.

It is important to note that the TRIPAF representation is not used in the
handwritten digit recognition experiments, because it is not suitable for this task.
Since TRIPAF is rotation invariant, it will certainly produce nearly identical rep-
resentations for some samples of digits 6 and 9, or similarly for some samples of
digits 1 and 7. This means that a classifier based on the TRIPAF representation
will not be able to properly distinguish these digits, consequently producing a
lower accuracy rate.

6.3 Organization of Experiments

Several classification experiments are conducted using the 3-NN and the SVM
classifiers based on the PAF representation. These are systematically compared
with two benchmark classifiers, specifically a 3-NN model based on the euclidean
distance between pixels and a SVM trained on the raw pixel representation. The
experiments are organized as follows. First of all, the two parameters of PAF and
the regularization parameter of SVM are tuned in a set of preliminary experiments
performed on the first 300 images from the MNIST training set. Another set of
experiments are performed on the first 1000 images from the MNIST training set.
These subsets of MNIST contain randomly distributed digits from 0 to 9 pro-
duced by different writers. The experiments on these subsets are performed using
a 10-fold cross validation procedure. The procedure is repeated 10 times and the
obtained accuracy rates are averaged for each representation and each classifier.
This helps to reduce the variation introduced by the random selection of samples
in each fold, and ensures a fair comparison between results. It is worth mentioning
that the subset of 1000 images is used to assess the robustness of the evaluated
methods when less training data is available. Usually, the accuracy degrades when
there is less training data available, but a robust system should maintain its ac-
curacy level as high as possible. Nevertheless, the classifiers are also evaluated on
the entire MNIST data set. Each experiment is repeated using deslanted digits,

Fig. 5 A random sample of 6 handwritten digits from the MNIST data set before and after
deslanting. The original images are shown on the top row and the slant corrected images are on
the bottom row. A Gaussian blur was applied on the deslanted images to hide pixel distortions
introduced by the deslanting technique.

which was previously reported to improve the recognition accuracy. The method
used for deslanting the digits is described in Section 6.5.

6.4 Parameter Tuning

A set of preliminary tests on the first 300 images of the MNIST training set are
performed to adjust the parameters of the PAF representation, such as the patch
size and the pixel interval used to extract the patches. Patch sizes ranging from
1 × 1 to 8 × 8 pixels were considered. The best results in terms of accuracy were
obtained with patches of 5 × 5 pixels, but patches of 4 × 4 or 6 × 6 pixels were
also found to work well. In the rest of the experiments, the PAF representation is
based on patches of 5× 5 pixels.

After setting the desired patch size, the focus is to test different grid densities.
Obviously, the best results in terms of accuracy are obtained when patches are
extracted using an interval of 1 pixel. However, the goal of adjusting the grid
density is to obtain a desired trade-off between accuracy and speed. Girds with
intervals of 1 to 10 pixels were evaluated. The results indicate that the accuracy
does not drop significantly when the pixel interval is less than the patch size.
Consequently, a choice was made to extract patches at every 3 pixels to favor
accuracy while significantly reducing the size of the PAF representation. Given that
the MNIST images are 28×28 pixels wide, a grid with a density of 1 pixel generates
165.600 features, while a grid with the chosen density of 3 pixels generates only
2.016 features, which is roughly 80 times smaller.

The regularization parameter C of SVM was adjusted on the same subset of
300 images. The best results were obtained with C = 102 and, consequently, the
rest of the results are reported using C = 102 for the SVM.

6.5 Deslanting Digits

A good way of improving the recognition performance is to process the images
before extracting the features in order to reduce the amount of pattern variations
within each class. As mentioned in (Teow and Loe, 2002), a common way of re-
ducing the amount of variation is by deslanting the individual digit images. The

Table 1 Accuracy rates on the subset of 1000 images for the MNIST data set for the PAF
representation versus the standard representation based on raw pixel data. The results are
reported with two different classifiers using the 10-fold cross validation procedure. The results
obtained on the original images are shown on the left-hand side and the results obtained on
the deslanted images are shown on the right-hand side.

Features Method Original Deslanted
Standard 3-NN 86.97% 91.60%
PAF 3-NN 90.65% 93.42%
Standard SVM 86.21% 92.34%
PAF SVM 93.88% 95.38%

deslanting method described in (Teow and Loe, 2002) was also adopted in this
work and it is briefly described next. For each image, the least-squares regression
line passing through the center of mass of the pixels is computed in the first step.
Then, the image is skewed with respect to the center of mass, such that the regres-
sion line becomes vertical. Since the skewing technique may distort the pixels, a
slight Gaussian blur is applied after skewing. A few sample digits before and after
deslanting are presented in Figure 5.

6.6 Experiment on 1000 MNIST Images

In this experiment, the PAF representation is compared with the representation
based on raw pixel data using two classifiers. First of all, a 3-NN classifier based
on the PAF representation is compared with a baseline k-NN classifier. The 3-NN
based on the euclidean distance measure (L2-norm) between input images is the
chosen baseline classifier. In (LeCun et al, 1998) an error rate of 5.00% on the
regular test set with k = 3 for this classifier is reported. Other studies (Wilder,
1998) report an error rate of 3.09% on the same experiment. The experiment was
recreated in this work, and an error rate of 3.09% was obtained. Second of all, a
SVM classifier based on the PAF representation is compared with a baseline SVM
classifier. All the tests are conducted on both original and deslanted images.

Table 1 shows the accuracy rates averaged on 10 runs of the 10-fold cross
validation procedure. The results reported in Table 1 indicate that the PAF rep-
resentation improves the accuracy over the standard representation. However, the
PAF representation does not equally improve the accuracy rates for original versus
deslanted images. On the original images, the PAF representation improves the
accuracy of the 3-NN classifier by 3.68% and the accuracy of the SVM classifier by
roughly 7.67%. In the same time, the PAF representation improves the accuracy
of the 3-NN classifier by almost 2% and the accuracy of the SVM classifier by
roughly 3% on the deslanted digit images. The best accuracy (95.38%) is obtained
by the SVM based on the PAF map on deslanted images. First of all, the empiri-
cal results presented in Table 1 show that the PAF representation is better than
the standard representation for the digit recognition task. Second of all, the PAF
representation together with the deslanting technique further improve the results.
In conclusion, there is strong evidence that the Patch Autocorrelation Features
provide a better representation for the digit recognition task.

Table 2 Accuracy rates on the full MNIST data set for the PAF representation versus the
standard representation based on raw pixel data. The results are reported on the official MNIST
test set of 10, 000 images. The results obtained on the original images are shown on the left-
hand side and the results obtained on the deslanted images are shown on the right-hand side.

Features Method Original Deslanted
Standard 3-NN 96.91% 98.11%
PAF 3-NN 97.64% 98.42%
Standard SVM 92.24% 94.40%
PAF SVM 98.64% 98.93%

6.7 Experiment on the Full MNIST Data Set

The results presented in the previous experiment look promising, but the PAF
vector should be tested on the entire MNIST data set for a strong conclusion of
its performance level. Consequently, the 3-NN and the SVM classifiers based on
the PAF representation are compared on the full MNIST data set with the 3-NN
and the SVM classifiers based on the feature representation given by raw pixels
values. The results are reported in Table 2.

As other studies have reported (Wilder, 1998), an error rate of 3.09% is ob-
tained by the baseline 3-NN model based on the euclidean distance. The 3-NN
model based on the PAF representation gives an error rate of 2.36%, which repre-
sents an improvement lower than 1%. The two 3-NN models have lower error rates
on deslanted images, proving that the deslanting technique is indeed helpful. The
baseline 3-NN shows an improvement of 1.2% on the deslanted images. The PAF
representation brings an improvement of 0.31% on the deslanted digits. Compared
to the results reported in the previous experiments, the PAF representation does
not have a great impact on the performance of the k-NN model. However, there
are larger improvements to the SVM classifier. The PAF representation improves
the accuracy of the SVM classifier by 6.4% on the original images, and by 4.53%
on the deslanted images. Overall, the PAF representation seems to have a signif-
icant positive effect on the performance of the evaluated learning methods. The
lowest error rate on the official MNIST test set (1.07%) is obtained by the SVM
based on Patch Autocorrelation Features. This performance is similar to those
reported by state-of-the-art models such as virtual SVM (DeCoste and Schölkopf,
2002), boosted stumps (Kégl and Busa-Fekete, 2009), or deep Boltzmann ma-
chines (Salakhutdinov and Hinton, 2009). In conclusion, the PAF representation
can boost the performance of the 3-NN and the SVM up to state-of-the-art accu-
racy levels on the handwritten digit recognition task, with almost no extra time
required. Indeed, it takes 20 milliseconds on average to compute the PAF rep-
resentation for a single MNIST image on a machine with Intel Core i7 2.3 GHz
processor and 8 GB of RAM using a single Core. Hence, the method can even be
used in real-time applications.

7 Texture Classification Experiments

Texture classification is a difficult task, in which methods have to take into account
several aspects such as translation, rotation, and scale variations, illumination

-NN model. However, there
are larger improvements to the SVM classifier. The PAF representation improves

Fig. 6 Sample images from three classes of the Brodatz data set.

changes, viewpoint changes, and non-rigid distortions. Thus, texture classification
is an adequate task to prove that a particular method is robust to such image vari-
ations. Indeed, the main goal of the texture classification experiments presented
in this section is to demonstrate that TRIPAF is invariant to several image trans-
formations, including translation and rotation changes, and that it can yield good
results on this rather difficult image classification task.

7.1 Data Sets Description

Texture classification experiments are presented on two benchmark data sets of
texture images. The first experiment is conducted on the Brodatz data set (Bro-
datz, 1966). This data set is probably the best known benchmark used for texture
classification, but also one of the most difficult, since it contains 111 classes with
only 9 samples per class. The standard procedure in the literature is to obtain
samples of 213 × 213 pixels by cutting them out from larger images of 640 × 640
pixels using a 3 by 3 grid. Figure 6 presents three sample images per class of three
classes randomly selected from the Brodatz data set.

The second experiment is conducted on the UIUCTex data set of Lazebnik et al
(2005). It contains 1000 texture images of 640 × 480 pixels representing different
types of textures such as bark, wood, floor, water, and more. There are 25 classes of
40 texture images per class. Textures are viewed under significant scale, viewpoint
and illumination changes. Images also include non-rigid deformations. This data
set is available for download at http://www-cvr.ai.uiuc.edu/ponce grp. Figure 7
presents four sample images per class of four classes representing bark, brick,
pebbles, and plaid.

7.2 Implementation Details

The TRIPAF representation is compared with a method that extracts texture-
specific features from entire images, on the texture classification task. Among the
GLCM features that show a good discriminatory power, only four of them are used

Fig. 7 Sample images from four classes of the UIUCTex data set. Each image is showing a
textured surface viewed under different poses.

by the classification systems, namely the contrast, the energy, the homogeneity,
and the correlation. These GLCM features are averaged on 4 directions (vertical,
horizontal and diagonals) using gaps of 1 and 2 pixels. The mean and the standard
deviation are also added to the set of texture-specific features. Another feature
is given by the box counting dimension. The Gabor features (the mean-squared
energy and the mean amplitude) are computed on 3 scales and 6 different rotations,
resulting in a total of 36 Gabor features (2 features × 3 scales × 6 directions).
There are 43 texture-specific features put together. Alternatively, the two Gabor
features are also averaged on 3 scales and 6 different rotations, generating only 4
Gabor features. This produces a reduced set of 9 texture-specific features, which
is more robust to image rotations and scale variations. Results are reported using
both representations, one of 43 features and the other of 9 features.

The parameter d that determines the number clusters in the TRIPAF approach
was set to the average diagonal size of the images in each data set. Without any
tuning, the parameter c was set to 0.5 in order to reduce the size of the TRIPAF
map by half. As a consequence, all the TRIPAF representations have between 300
and 1500 components.

The TRIPAF approach, which is rotation and translation invariant, is com-
bined with the BOVW model, which is scale invariant (due to the SIFT descrip-
tors), in order to obtain a method that is invariant to all affine transformations.
These methods are combined at the kernel level through multiple kernel learning

(MKL) (Gonen and Alpaydin, 2011). When multiple kernels are combined, the
features are actually embedded in a higher-dimensional space. As a consequence,

the search space of linear patterns grows, which helps the classifier to select a
better discriminant function. The most natural way of combining two kernels is to
sum them up, and this is exactly the MKL approach used in this paper. Summing
up kernels in the dual form is equivalent to feature vector concatenation in the
primal form. The combined representation is alternatively used with the SVM or
the KDA. The two classifiers are compared with other state-of-the-art approaches
(Zhang et al, 2007; Nguyen et al, 2011; Quan et al, 2014), although Quan et al
(2014) do not report results on the Brodatz data set.

7.3 Parameter Tuning

A set of preliminary tests on a subset of 40 classes from Brodatz are performed
to adjust the parameters of the PAF representation, such as the patch size, and
the pixel interval used to extract the patches. Patches of 16 × 16, 32 × 32 and
64× 64 pixels were considered. Better results in terms of accuracy were obtained
with either patches of 16 × 16 or 32 × 32 pixels, and the rest of the experiments
are based on patches of such dimensions. The TRIPAF representations generated
by patches of 16 × 16 or 32 × 32 pixels are also combined by summing up their
kernels to obtain a more robust representation.

After setting up the patch sizes, the next goal is to adjust the grid density.
The grid density was chosen such that the processing time of TRIPAF is less than
5 seconds per image on a machine with Intel Core i7 2.3 GHz processor and 8 GB
of RAM using a single Core. Notably, more than 90% of the time is required to
extract the texture-specific features from every patch. For the Brodatz data set,
patches are extracted at an interval of 8 pixels, while for the UIUCTex data set,
patches are extracted at every 16 pixels.

The regularization parameter C of SVM was adjusted on the same subset of
of 40 classes from Brodatz. The best results were obtained with C = 104 and,
consequently, the rest of the results are reported using C = 104 for the SVM. In
a similar fashion, the regularization parameter of KDA was set to 10−5.

7.4 Experiment on Brodatz Data Set

Typically, the results reported in previous studies (Lazebnik et al, 2005; Zhang
et al, 2007; Nguyen et al, 2011) on the Brodatz data set are based on randomly
selecting 3 training samples per class and using the rest for testing. Likewise, the
results presented in this paper are based on the same setup with 3 random samples
per class for training. Moreover, the random selection procedure is repeated for
20 times and the resulted accuracy rates are averaged. This helps to reduce the
amount of accuracy variation introduced by using a different partition of the data
set in each of the 20 trials. To give an idea of the amount of variation in each
trial, the standard deviations for the computed average accuracy rates are also
reported. The evaluation procedure described so far is identical to the one used in
the state-of-the-art approaches (Zhang et al, 2007; Nguyen et al, 2011) that are
included in the following comparative study.

Table 3 presents the accuracy rates of the SVM classifier based on several
TRIPAF representations, in which the number of texture-specific features and

Table 3 Accuracy rates of the SVM classifier on the Brodatz data set for the TRIPAF repre-
sentation versus the standard representation based on texture-specific features. The reported
accuracy rates are averaged on 20 trials using 3 random samples per class for training and the
other 6 for testing. The best accuracy rate for each set of texture-specific features is highlighted
in bold.

Feature Map Texture Features Patches Kernel Accuracy
Standard 9 none linear 76.52%± 1.6
Standard 9 none intersection 77.11%± 1.3
TRIPAF 9 16× 16 intersection 87.78%± 1.2
TRIPAF 9 32× 32 intersection 91.40%± 0.9
TRIPAF 9 16× 16 + 32× 32 intersection 91.92%± 0.6
Standard 43 none linear 89.93%± 1.1
Standard 43 none intersection 90.42%± 1.2
TRIPAF 43 16× 16 intersection 92.11%± 0.8
TRIPAF 43 32× 32 intersection 92.28%± 0.9
TRIPAF 43 16× 16 + 32× 32 intersection 92.85%± 0.8

Table 4 Accuracy rates of the TRIPAF and BOVW combined representation on the Brodatz
data set compared with state-of-the-art methods. The TRIPAF representation is based on 43
texture-specific features extracted from patches of 16 × 16 and 32 × 32 pixels. The BOVW
model is based on the PQ kernel. The reported accuracy rates are averaged on 20 trials using
3 random samples per class for training and the other 6 for testing. The best accuracy rate is
highlighted in bold.

Model Accuracy
SVM based on BOVW (Ionescu et al, 2014b) 92.94%± 0.8
SVM based on TRIPAF 92.85%± 0.8
SVM based on TRIPAF + BOVW 96.24%± 0.6
KDA based on TRIPAF + BOVW 96.51%± 0.7
Best model of Zhang et al (2007) 95.90%± 0.6
Best model of Nguyen et al (2011) 96.14%± 0.4

the size of the patches are varied. Several baseline SVM classifiers, based on the
same texture-specific features used in the TRIPAF representation, are included
in the evaluation in order to estimate the performance gain offered by TRIPAF.
When the set of 9 texture-specific features is being used, the TRIPAF approach
improves the baseline by more than 10% in terms of accuracy. On the other hand,
the difference is roughly 2% in favor of TRIPAF when the set of 43 texture-specific
features is being used. Both the standard and the TRIPAF representations work
better when more texture-specific features are extracted, probably because the
Brodatz data set does not contain significant rotation changes within each class of
images. Nevertheless, the TRIPAF approach is always able to give better results
than the baseline SVM. An interesting remark is that the results of TRIPAF are
always better when patches of 16× 16 pixels are used in conjunction with patches
of 32×32 pixels, even if the accuracy improvement over using them individually is
not considerable (below 1%). The best accuracy (92.85%) is obtained by the SVM
based on the TRIPAF approach that extracts 43 features from patches of 16× 16
and 32× 32 pixels.

The empirical results presented in Table 3 clearly demonstrate the advantage
of using the TRIPAF feature vectors. Intuitively, further combining TRIPAF with
BOVW should yield even better results. While TRIPAF is rotation and translation

Table 5 Accuracy rates of the SVM classifier on the UIUCTex data set for the TRIPAF
representation versus the standard representation based on texture-specific features. The re-
ported accuracy rates are averaged on 20 trials using 20 random samples per class for training
and the other 20 for testing. The best accuracy rate for each set of texture-specific features is
highlighted in bold.

Feature Map Texture Features Patches Kernel Accuracy
Standard 9 none linear 78.23%± 1.7
Standard 9 none intersection 79.87%± 1.3
TRIPAF 9 16× 16 intersection 92.60%± 1.1
TRIPAF 9 32× 32 intersection 92.38%± 1.1
TRIPAF 9 16× 16 + 32× 32 intersection 93.54%± 1.1
Standard 43 none linear 82.19%± 1.6
Standard 43 none intersection 83.62%± 1.4
TRIPAF 43 16× 16 intersection 91.40%± 1.2
TRIPAF 43 32× 32 intersection 90.91%± 1.2
TRIPAF 43 16× 16 + 32× 32 intersection 91.82%± 1.0

invariant, BOVW is scale invariant, and therefore, these two representations com-
plement each other perfectly. Table 4 compares the results of TRIPAF and BOVW
combined through MKL with the results of two state-of-the-art methods (Zhang
et al, 2007; Nguyen et al, 2011). The intersection kernel used in the case of TRIPAF
is summed up with the PQ kernel used in the case of BOVW (Ionescu et al, 2014b).
The individual results of TRIPAF and BOVW are also listed in Table 4. The two
methods obtain fairly similar accuracy rates when used independently, but the
accuracy rates are almost 3% lower than the state-of-the-art methods. However,
the kernel combination of TRIPAF and BOVW yields results comparable to the
state-of-the-art methods (Zhang et al, 2007; Nguyen et al, 2011). In fact, the best
accuracy rate on the Brodatz data set (96.51%) is given by the KDA based on
TRIPAF and BOVW, although the SVM based on the kernel combination is also
slightly better than both state-of-the-art models. The kernel sum of TRIPAF and
BOVW is much better than using the two representations individually, proving
that the idea of combining them up is indeed crucial for obtaining state-of-the-art
results.

7.5 Experiment on UIUCTex Data Set

As in the previous experiment, the standard evaluation procedure for the UIUC-
Tex data set is used to assess the performance of approach proposed in this work.
More precisely, the samples are split into a training set and a test set by ran-
domly selecting 20 samples per class for training and the remaining 20 samples
for testing. The random selection process is repeated for 20 times and the resulted
accuracy rates are averaged over the 20 trials. Table 5 reports the average accu-
racy rates along with their standard deviations which give some indication about
the amount of variation in each trial. In Table 5, the SVM classifiers based on
various TRIPAF representations are compared with baseline SVM classifiers that
extract the same texture-specific features used in the TRIPAF representation, but
from entire images instead of patches. For each set of texture-specific features, the
TRIPAF approach improves the baseline by roughly 10%. It can be observed that
the improvement is higher for the set of 9 texture-specific features, going up by

Table 6 Accuracy rates of the TRIPAF and BOVW combined representation on the UIUCTex
data set compared with state-of-the-art methods. The TRIPAF representation is based on 9
texture-specific features extracted from patches of 16 × 16 and 32 × 32 pixels. The BOVW
model is based on the PQ kernel. The reported accuracy rates are averaged on 20 trials using
20 random samples per class for training and the other 20 for testing. The best accuracy rate
is highlighted in bold.

Model Accuracy
SVM based on BOVW (Ionescu et al, 2014b) 91.74%± 1.4
SVM based on TRIPAF 93.54%± 1.1
SVM based on TRIPAF + BOVW 97.75%± 0.7
KDA based on TRIPAF + BOVW 98.31%± 0.5
Best model of Zhang et al (2007) 98.70%± 0.9
Best model of Nguyen et al (2011) 97.84%± 0.3
Pattern Lacunarity Spectrum (Quan et al, 2014) 96.57%

13% in terms of accuracy. Perhaps surprisingly, the results of TRIPAF are better
when the lighter patch representation is being used. The set of 9 texture-specific
features is more robust to rotation and scale variations, and this kind of changes
are more prominent in the UIUCTex data set. This could probably explain why
the lighter patch representation produces better results. The overall results pre-
sented in Table 5 are consistent with the results on the Brodatz data set shown
in Table 3. Indeed, the TRIPAF approach is always able to give better results
than the SVM baseline. As in the Brodatz experiment, the results of TRIPAF are
better when patches of 16 × 16 pixels are used together with patches of 32 × 32
pixels. However, if the patches are used individually, it seems that using 16 × 16
patches is a better choice. The best accuracy (93.54%) is obtained by the SVM
based on the TRIPAF approach that extracts 9 features from patches of 16 × 16
and 32 × 32 pixels. To conclude, the best TRIPAF representation along with the
other TRIPAF representations bring significant improvements over the baseline
SVM systems.

Next, the TRIPAF representation is combined with the BOVW representation
of Ionescu et al (2014b) and compared with three state-of-the-art methods (Zhang
et al, 2007; Nguyen et al, 2011; Quan et al, 2014) using the same evaluation
procedure. The results of this comparative study are presented in Table 6. To better
understand why is it important to combine TRIPAF and BOVW, the individual
results of the two feature representations are also included in Table 6. Notably,
the accuracy rate of the BOVW model (91.74%) is roughly 2% lower than the
accuracy rate of the TRIPAF approach (93.54%), probably because there are more
rotation and translation changes than scale variations in the UIUCTex data set.
Certainly, it can be easily observed that the two approaches work much better
when they are combined through MKL. The kernel combination of TRIPAF and
BOVW is at least 4% better than each of the individual components. As in the
previous experiment, KDA yields slightly better results than SVM, although they
are both comparable with the state-of-the-art methods. More specifically, the SVM
based on the kernel combination obtains similar performance to the best model of
Nguyen et al (2011), while KDA is only 0.4% lower than the best model of Zhang
et al (2007). Nevertheless, the difference between the accuracy rates of the last
four approaches listed in Table 6 is within the range designated by the standard
deviations. Interestingly, both SVM and KDA based on the kernel combination of

Fig. 8 A sample image from the of UIUCTex data set shown under four different rotations.
The top left image is the original version. The others are obtain by applying 180 degrees
rotation and horizontal flip on the original.

TRIPAF and BOVW are better than the Pattern Lacunarity Spectrum of Quan
et al (2014). Using MKL for texture classification proves to be again an efficient
way to improve performance.

7.6 Empirical Proof of Rotation Invariance

Since the UIUCTex data set contains significant image variations including rota-
tions, one concern is to demonstrate that TRIPAF is rotation invariant. In this
context, three different rotations are applied on each image of the UIUCTex data
set, while also keeping the original images. First, a copy of UIUCTex data set
is created by rotating the original images by 180 degrees. A second copy of the
original images is obtained by flipping them horizontally, which corresponds to a
mirroring effect. The third and last copy is obtained by first rotating the original
images by 180 degrees and then by flipping them horizontally. Essentially, four
versions (including the original) are obtained from each image, as illustrated in
Figure 8. In the end, 4000 images are obtained by applying all these rotations.

Next, the intersection kernel matrix is computed from the TRIPAF feature
vectors that correspond to all the 4000 images. The best TRIPAF representation
in the UIUCTex classification experiment was used, more precisely, the one based
on 9 texture-specific features extracted from patches of 16×16 and 32×32 pixels.
As defined in literature (Shawe-Taylor and Cristianini, 2004), the kernel matrix
for n samples is the matrix K ∈ Mn,n of all possible pairwise similarities between
the corresponding feature vectors. In this experiment, the intersection kernel as
defined in Equation (7) is used to compute the similarity of each two samples.
The resulted kernel matrix of 4000 × 4000 components is illustrated in Figure 9.

Fig. 9 The intersection kernel matrix based on TRIPAF features computed on the UIUCTex
images given under four different rotations. Light shades of gray correspond to high pairwise
similarities and dark shades correspond to low pairwise similarities. The diagonal patterns
indicate that the TRIPAF representation is rotation invariant.

The normalized similarity stored in a matrix cell is a value between 0 and 1. In
Figure 9, the higher similarity values (closer to 1) are represented by lighter shades
of gray, while the lower similarity values (closer to 0) are represented by darker
shades of gray, in a space of 256 shades of gray.

To produce the kernel matrix, the images are considered in a specific order
that gives the means for some interesting patterns2 to emerge in the matrix. First,
images are grouped according to the four types of rotation changes. Certainly, the

2 In this context, interesting refers to patterns that can be visually interpreted with the
naked eye.

first 1000 images are the original ones from UIUCTex, the next 1000 images are
the ones rotated by 180 degrees, and so on. Within each of these groups of 1000
unique images, the images are again grouped into smaller subgroups according to
their classes. Consequently, the small light gray squares along the main diagonal
(there are 100 of them, as there are 25 classes and 4 rotations) represent the within
class similarity. The fact that these are lighter in color indicates that images within
each class are more similar to each other and less similar to the images from other
classes.

The four highlighted blocks along the main diagonal represent the similarity
between samples with the same kind of rotation. For each type of rotation, there
is a block of 1000×1000 pairwise similarities. These blocks appear to be identical,
which means that the similarity between the images remains invariant when these
are obtained by applying a certain kind of rotation on all the images. This pattern
can be expressed mathematically as follows:

Ki,j ≃ Ki+r·1000,j+r·1000, ∀i, j ∈ {1, ..., 1000}, ∀r ∈ {1, 2, 3}, (11)

where K is the intersection kernel matrix illustrated in Figure 9. Furthermore,
the entire kernel matrix seems to be constructed by repeating the same block
(of 1000 × 1000 pairwise similarities) for 16 times (4 times in each of the two
directions). This pattern can be expressed mathematically as follows:

Ki,j ≃ Ki+r·1000,j+q·1000, ∀i, j ∈ {1, ..., 1000}, ∀r, q ∈ {0, 1, 2, 3}. (12)

Equation (12) indicates that for any two images (at indexes i and j) in the
UIUCTex data set, the similarity between them is almost the same, no matter
which of the four kinds of considered rotations is applied to each of the two images.
This property of the intersection kernel matrix was put to the test. Remarkably,
Equation (12) holds for all i, j ∈ {1, ..., 1000} and all r, q ∈ {0, 1, 2, 3} with an
approximation error lower than 10−6. Given that Ki,j can be any real value be-
tween 0 and 1, the error is indeed very small. Hence, it is safe to consider that the
pairwise similarities are almost completely invariant to the four types of rotations,
which translates to the fact that the TRIPAF representation is rotation invariant.
The diagonal patterns formed by the little light gray squares (parallel to the main
diagonal) that can be observed in Figure 9 show that the intraclass pairwise sim-
ilarities are higher than interclass pairwise similarities (which are represented by
darker shades of gray), even when a different rotation is applied to each image of
a given class. Therefore, it can be concluded that the TRIPAF representation is
invariant to significant rotation changes and even mirroring effects.

8 Conclusion

This work presented two feature representations for images inspired by the au-
tocorrelation. The first representation, termed Patch Autocorrelation Features,
extracts patches by applying a grid over the image, then records the similarities
between all pairs of patches in a vector, also referred to as the PAF representation.
Despite of being successfully used for handwritten digit recognition, the PAF ap-
proach is not invariant to affine transformations, thus having limited applications.

The second representation, termed Translation and Rotation Invariant Patch Au-
tocorrelation Features, is an extension of the PAF representation that is designed
to be invariant to image transformations, such as translations and rotations. In
the TRIPAF approach, a set of texture-specific features are extracted from each
image patch. Based on these features, a vector of similarities is computed between
each pair of patches. The resulting similarity vectors are quantized according to
the spatial offset between the patches of each corresponding pair. In the end, the
mean and the standard deviation of each similarity value are computed for each
cluster of similarity vectors and stored in the TRIPAF feature vector.

The PAF approach was evaluated in a series of handwritten digit recognition
experiments using the popular MNIST data set. In these experiments, the PAF rep-
resentation improved the accuracy rate of the learning methods (k-NN and SVM),
a fact that indicates that the Patch Autocorrelation Features provide a robust and
consistent approach of boosting the recognition performance with almost no extra
time required. In a similar way, the TRIPAF approach was evaluated in a set of
texture classification experiments that require the use of invariant techniques to
obtain good performance. The TRIPAF representation consistently improved the
accuracy rate over a baseline model based on extracting texture-specific features
from entire images. Moreover, the TRIPAF approach was combined with a BOVW
model (Ionescu et al, 2014b) through MKL. The kernel combination of TRIPAF
and BOVW reached accuracy levels comparable and sometimes better than three
state-of-the-art texture classification methods (Zhang et al, 2007; Nguyen et al,
2011; Quan et al, 2014).

By evaluating PAF and TRIPAF in several experiments on various data sets,
statistical evidence was collected in order to eliminate any doubts with respect to
the danger of overfitting. In every experiment, the data sets were always separated
into different training and test sets, and regularization was employed as a mean
to control overfitting on the training set. Hence, the uncertainty that PAF and
TRIPAF would yield equally good image classification results on other data sets
(not considered in the present study) is greatly reduced.

It is interesting to note that the TRIPAF representation is more compact
and can be computed more efficiently than state-of-the-art representations such as
BOVW (Bosch et al, 2007; Ionescu et al, 2014b) or Fisher Vectors (Perronnin et al,
2010). Indeed, both these state-of-the-art models need to cluster the descriptors
extracted from all the images, and this step requires a considerable amount of
time. Furthermore, BOVW needs thousands of visual words, while Fisher Vectors
have a quadratic dependence on the number of visual words, and thus, can even
go up to a million features. By contrast, the empirical results presented in this
work indicate that TRIPAF works well with only a few hundred features.

In future work, the TRIPAF approach can be used for other image classification
tasks such as object recognition or facial expression recognition. Depending on
the task, a more suitable set of features to be extracted from patches could be
discovered and used to improve performance.

Acknowledgements The authors thank the reviewers for their helpful comments. Andreea
Lavinia Ionescu has been funded by the Sectoral Operational Programme Human Resources
Development 2007-2013 of the Ministry of European Funds through the Financial Agreement
POSDRU/159/1.5/S/134398.

References

Agarwal S, Roth D (2002) Learning a Sparse Representation for Object Detection.
Proceedings of ECCV pp 113–127

Barnes C, Goldman DB, Shechtman E, Finkelstein A (2011) The PatchMatch
Randomized Matching Algorithm for Image Manipulation. Communications of
the ACM 54(11):103–110

Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition
using shape contexts. IEEE Transactions on Pattern Analysis and Machine In-
telligence 24(4):509–522

Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford University
Press, Inc., New York, NY, USA

Bosch A, Zisserman A, Munoz X (2007) Image Classification using Random Forests
and Ferns. Proceedings of ICCV pp 1–8

Breiman L (2001) Random forests. Machine Learning 45(1):5–32, DOI
10.1023/A:1010933404324

Brochard J, Khoudeir M, Augereau B (2001) Invariant feature extraction for 3D
texture analysis using the autocorrelation function. Pattern Recognition Letters
22(6-7):759–768, DOI http://dx.doi.org/10.1016/S0167-8655(01)00015-0

Brodatz P (1966) Textures: a photographic album for artists and designers. Dover
pictorial archives, Dover Publications, New York, USA

Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learn-
ing algorithms. In: Proceedings of the 23rd international conference on Machine
learning, New York, NY, USA, ICML ’06, pp 161–168

Cho TS, Avidan S, Freeman WT (2010) The patch transform. IEEE Transactions
on Pattern Analysis and Machine Intelligence 32(8):1489–1501

Ciresan DC, Meier U, Schmidhuber J (2012) Multi-column Deep Neural Networks
for Image Classification. Proceedings of CVPR pp 3642–3649

Cortes C, Vapnik V (1995) Support-Vector Networks. Machine Learning
20(3):273–297

Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization
with bags of keypoints. In Workshop on Statistical Learning in Computer Vision,
ECCV pp 1–22

Dalal N, Triggs B (2005) Histograms of Oriented Gradients for Human Detection.
Proceedings of CVPR 1:886–893

Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters. Journal of
the Optical Society of America A 2(7):1160–1169

DeCoste D, Schölkopf B (2002) Training Invariant Support Vector Machines. Ma-
chine Learning 46(1–3):161–190, DOI 10.1023/A:1012454411458

Deselaers T, Keyser D, Ney H (2005) Discriminative Training for Object Recog-
nition using Image Patches. Proceedings of CVPR pp 157–162

Dinu LP, Ionescu R, Popescu M (2012) Local Patch Dissimilarity for Images.
Proceedings of ICONIP 7663:117–126

Efros AA, Freeman WT (2001) Image quilting for texture synthesis and transfer.
Proceedings of SIGGRAPH ’01 pp 341–346

Falconer K (2003) Fractal Geometry: Mathematical Foundations and Applications,
2nd edn. Wiley

Gonen M, Alpaydin E (2011) Multiple Kernel Learning Algorithms. Journal of
Machine Learning Research 12:2211–2268

Guo G, Dyer CR (2007) Patch-based Image Correlation with Rapid Filtering.
Proceedings of CVPR

Haouas F, Dhiaf ZB, Solaiman B (2016) Fusion of spatial autocorrelation and
spectral data for remote sensing image classification. Proceedings of ATSIP pp
537–542

Haralick RM, Shanmugam K, Dinstein I (1973) Textural Features for Image Clas-
sification. IEEE Transactions on Systems, Man and Cybernetics 3(6):610–621

Hastie T, Tibshirani R (2003) The Elements of Statistical Learning, corrected edn.
Springer

Horikawa Y (2004a) Comparison of support vector machines with autocorrelation
kernels for invariant texture classification. Proceedings of ICPR 1:660–663, DOI
10.1109/ICPR.2004.1334253

Horikawa Y (2004b) Use of Autocorrelation Kernels in Kernel Canonical Correla-
tion Analysis for Texture Classification. Proceedings of ICONIP 3316:1235–1240

Ionescu RT, Popescu M (2013a) Kernels for Visual Words Histograms. Proceedings
of ICIAP 8156:81–90

Ionescu RT, Popescu M (2013b) Speeding Up Local Patch Dissimilarity. Proceed-
ings of ICIAP 8156:1–10

Ionescu RT, Popescu M (2015) PQ kernel: a rank correlation kernel for
visual word histograms. Pattern Recognition Letters 55:51–57, DOI
http://dx.doi.org/10.1016/j.patrec.2014.06.003

Ionescu RT, Popescu M (2016) Knowledge Transfer between Computer Vision and
Text Mining. Advances in Computer Vision and Pattern Recognition, Springer
International Publishing

Ionescu RT, Popescu M, Grozea C (2013) Local Learning to Improve Bag of Visual
Words Model for Facial Expression Recognition. Workshop on Challenges in
Representation Learning, ICML

Ionescu RT, Popescu AL, Popescu D, Popescu M (2014a) Local Texton Dissimi-
larity with Applications on Biomass Classification. Proceedings of VISAPP

Ionescu RT, Popescu AL, Popescu M (2014b) Texture Classification with the PQ
Kernel. Proceedings of WSCG

Ionescu RT, Popescu AL, Popescu D (2015a) Patch Autocorrelation Features for
Optical Character Recognition. Proceedings of VISAPP

Ionescu RT, Popescu AL, Popescu D (2015b) Texture Classification with Patch
Autocorrelation Features. Proceedings of ICONIP 9489:1–11

Ionescu RT, Popescu M, Cahill A (2016) String kernels for native language identifi-
cation: Insights from behind the curtains. Computational Linguistics 42(3):491–
525

Kameyama K, Phan TNB (2013) Image Feature Extraction and Similarity Eval-
uation Using Kernels for Higher-Order Local Autocorrelation. Proceedings of
ICONIP 2013 pp 442–449

Kégl B, Busa-Fekete R (2009) Boosting Products of Base Classifiers. Proceedings
of ICML pp 497–504, DOI 10.1145/1553374.1553439

Keysers D, Deselaers T, Gollan C, Ney H (2007) Deformation Models for Image
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
29(8):1422–1435, DOI 10.1109/TPAMI.2007.1153

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet Classification with Deep
Convolutional Neural Networks. Proceedings of NIPS pp 1106–1114

Kuse M, Wang YF, Kalasannavar V, Khan M, Rajpoot N (2011) Local isotropic
phase symmetry measure for detection of beta cells and lymphocytes. Journal
of Pathology Informatics 2(2):2

Laalaoui Y, Bouguila N (eds) (2015) Artificial Intelligence Applications in Infor-
mation and Communication Technologies. Springer International Publishing

Lazebnik S, Schmid C, Ponce J (2005) A Sparse Texture Representation Using
Local Affine Regions. IEEE Transactions on Pattern Analysis and Machine In-
telligence 27(8):1265–1278

Lazebnik S, Schmid C, Ponce J (2006) Beyond Bags of Features: Spatial Pyra-
mid Matching for Recognizing Natural Scene Categories. Proceedings of CVPR
2:2169–2178

LeCun Y, Jackel LD, Boser B, Denker JS, Graf HP, Guyon I, Henderson D, Howard
RE, Hubbard W (1989) Handwritten digit recognition: Applications of neural
net chips and automatic learning. IEEE Communications pp 41–46

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11):2278–2324

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Leung T, Malik J (2001) Representing and Recognizing the Visual Appearance of

Materials using Three-dimensional Textons. International Journal of Computer
Vision 43(1):29–44

Liu L, Fieguth P, Kuang G, Zha H (2011) Sorted Random Projections
for robust texture classification. Proceedings of ICCV pp 391–398, DOI
10.1109/ICCV.2011.6126267

Lowe DG (1999) Object Recognition from Local Scale-Invariant Features. Pro-
ceedings of ICCV 2:1150–1157

Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA

Michaeli T, Irani M (2014) Blind deblurring using internal patch recurrence. Pro-
ceedings of ECCV pp 783–798

Nguyen HG, Fablet R, Boucher JM (2011) Visual textures as realizations of mul-
tivariate log-Gaussian Cox processes. Proceedings of CVPR pp 2945–2952

Paredes R, Prez-Cortes J, Juan A, Vidal E (2001) Local Representations and a
Direct Voting Scheme for Face Recognition. Proceedings of Workshop on Pattern
Recognition in Information Systems pp 71–79

Passino G, Izquierdo E (2007) Patch-based image classification through conditional
random field model. Proceedings of the International Conference on Mobile Mul-
timedia Communications pp 6:1–6:6

Perronnin F, Dance CR (2007) Fisher kernels on visual vocabularies for image
categorization. Proceedings of CVPR

Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-
scale image classification. Proceedings of ECCV pp 143–156

Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with
large vocabularies and fast spatial matching. Proceedings of CVPR pp 1–8

Popescu AL, Popescu D, Ionescu RT, Angelescu N, Cojocaru R (2013) Efficient
Fractal Method for Texture Classification. Proceedings of ICSCS

Popovici V, Thiran J (2001) Higher order autocorrelations for pattern classifica-
tion. Proceedings of ICIP 3:724–727, DOI 10.1109/ICIP.2001.958221

Quan Y, Xu Y, Sun Y, Luo Y (2014) Lacunarity analysis on image patterns for
texture classification. Proceedings of CVPR pp 160–167

Salakhutdinov R, Hinton GE (2009) Deep boltzmann machines. Proceedings of
AISTATS pp 448–455

Shawe-Taylor J, Cristianini N (2004) Kernel Methods for Pattern Analysis. Cam-
bridge University Press

Simard P, LeCun Y, Denker JS, Victorri B (1996) Transformation Invariance in
Pattern Recognition, Tangent Distance and Tangent Propagation. Neural Net-
works: Tricks of the Trade

Simonyan K, Zisserman A (2014) Very Deep Convolutional Networks for Large-
Scale Image Recognition. CoRR abs/1409.1556

Socher R, Huval B, Bath B, Manning C, Ng A (2012) Convolutional-Recursive
Deep Learning for 3D Object Classification. Proceedings of NIPS pp 665–673

Srihari SN (1992) High-performance reading machines. Proceedings of the IEEE
(Special issue on Optical Character Recognition) 80(7):1120–1132

Suen CY, Nadal C, Legault R, Mai TA, Lam L (1992) Computer recognition of
unconstrained handwritten numerals. Proceedings of the IEEE (Special issue on
Optical Character Recognition) 80(7):1162–1180

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke
V, Rabinovich A (2015) Going Deeper With Convolutions. Proceedings of CVPR

Szeliski R (2010) Computer Vision: Algorithms and Applications, 1st edn.
Springer-Verlag New York, Inc., New York, NY, USA

Teow LN, Loe KF (2002) Robust vision-based features and classification schemes
for off-line handwritten digit recognition. Pattern Recognition 35(11):2355–2364,
DOI http://dx.doi.org/10.1016/S0031-3203(01)00228-X

Toyoda T, Hasegawa O (2007) Extension of higher order local au-
tocorrelation features. Pattern Recognition 40(5):1466–1473, DOI
http://dx.doi.org/10.1016/j.patcog.2006.10.006

Upton G, Cook I (2004) A Dictionary of Statistics. Oxford University Press, Ox-
ford

Valipour M (2015a) Long-term runoff study using SARIMA and ARIMA models
in the United States. Meteorological Applications 22(3):592–598

Valipour M (2015b) Optimization of neural networks for precipitation analysis in
a humid region to detect drought and wet year alarms. Meteorological Applica-
tions 23(1):91–100

Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA,
ARIMA, and the autoregressive artificial neural network models in forecasting
the monthly inflow of Dez dam reservoir. Journal of Hydrology 476:433–441

Wilder KJ (1998) Decision tree algorithms for handwritten digit recognition. Elec-
tronic Doctoral Dissertations for UMass Amherst

Yi S, Pavlovic V (2013) Spatio-temporal Context Modeling for BoW-Based Video
Classification. Proceedings of ICCV Workshops pp 779–786

Zhang J, Marszalek M, Lazebnik S, Schmid C (2007) Local Features and Kernels
for Classification of Texture and Object Categories: A Comprehensive Study.
International Journal of Computer Vision 73(2):213–238

